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Abstract. Natural languages are polyphonic: typically, no two speakers asso-
ciate identical meanings with all the words they are using. Also, the meanings
of words may change over time. Yet we are still missing a formal framework
with which to handle this variety. This paper is making a first step by intro-
ducing the logic of so-called deflectors. These are devices to borrow someone
else’s language.
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1. Varieties of Meaning

There are essentially two ways in which a sentence can cease be true. One is that
it describes a state of affairs that no longer obtains. The other is that the state
of affairs is no longer described by that same sentence. The first one is the usual
scenario. The sentence “The door is open.” is true on one occasion because the
door actually is open; and it ceases to be true because the door gets closed. So
far so good. Now consider this: nothing changes and yet the sentence ceases to be
true. A spectacular case of this sort is the sentence

There are nine planets. (1)

(Here, as further down, we are talking about planets of the sun rather than what
is also referred to as “moons”, like Ceres. Also, in informal discussion I will con-
tinue to use the English word “planet” as if it still denotes all the nine customary
planets.) It was true in 1980, but it no longer is true. What has happened? As-
tronomers have decided in 2006 on a new definition of the word “planet”, and that
new definition excludes Pluto. Hence what is true in astronomical sciences now,
in 2014, is rather

There are eight planets. (2)

I wish to thank Daniel Milne and Udo Klein for useful discussions.
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So, (1) ceased to be true not because the world has changed, but because (1) no
longer describes a state of affairs that obtains.

This situation is pervasive, actually. As have argued Kracht and Klein (2014),
there is no guarantee that the meaning of words is the same for two different
speakers. Any learning algorithm will lead to slight differences between individuals.
Thus, whether or not a certain object will be called “green” or “yellow” will differ
when the colour is in the middle between the clear cut cases. Or, with respect to
the above case it may very well be that plenty of people have not heard about
the scientific reform and so continue to use the word “planet” in the old sense.
Hence for them (1) is still true. To say that they are wrong is to maintain that
there can be only one meaning to a word and that it is in this case up to the
astronomers what is the correct use of “planet”. But if there is only one correct
meaning, how is one to interpret the change that happened in 2006? Can we say
that the astronomers talking in the 1980ies have been wrong in saying there are
nine planets? Is “planet” one of these infamous non natural kinds that Goodman
defined? I think, this is clearly not the case. And we can diagnose that by looking
at ways in which we refer to the alternative way of talking. Not even astronomers
would say, for example,

I was wrong in 1986 in calling Pluto a planet. (3)

Obviously, they think, as we do, that they had every right in 1986 to call Pluto
a planet. And that is because the meaning of that term at the time of utterance
was such that it included Pluto.

To describe the situation, people would say, for example,

Pluto is no longer called a planet. (4)

Contrast this with

Pluto no longer is a planet. (5)

Consider an event in 2000 (before the change in definition) whereby Pluto collides
with a big asteroid and is being kicked out of its orbit so that it leaves the solar
system. As a consequence, astronomers have decided to stick with the original
definition of “planet”. Then, while (5) would be appropriate today in 2014, (4)
definitely would not. The reason is that (4) asserts that a change in the way we
call things has happened. (5) however only states that the sentence “Pluto is a
planet.” has become false.

This much has always been known, of course. A sentence is true because of
the way the world is and what the words mean together with the composition
algorithm for meanings. Change one of the ingredients and your sentence may
change truth value. What has been missing so far is a logical treatment of this
phenomenon. Or, to say it more modestly, I am not aware of any such treatment.
I wish to provide one here. 1

1There is a resemblance with what is known as two dimensional semantics, see for example
Stalnaker (1978). However, the approach taken here is different in that I use two distinct sets
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2. Deflectors

If the various meanings would simply coexist side by side, there would be no
point in developing a theory. However, language also provides means to quote the
meaning of a word from different sources. In addition to talking our own talk we
can also talk other people’s talk. We can say, for example, “in your words” or “in
Finnish” and the like and thereby change the way in which our words are to be
interpreted. I call the devices to achieve this deflectors. We shall provide a formal
theory of such deflectors.

We assume a fixed language, L, that has constants and a fixed mode of inter-
preting complex expressions. However, the so-called constants will lack a uniform
interpretation. Instead, their interpretation may vary according to some index.
This index can be a time point, a speaker, a dialect, a combination of the two etc.
Given an index i and a sentence ϕ, the expression “⟪i⟫ϕ” may be translated as “in
the words of i, ϕ” when i is a person, or as “speaking i, ϕ” or “in the terminology
of i, ϕ”, when it is a mode of expression.

In addition to indices, we also have worlds and a modality ◇ that ranges
over possible worlds. So, “◇ϕ” says that ϕ is possible. Although we can think
of several more modal operators, one will suffice to demonstrate the interaction
between modality and deflection.

The basic symbols of the language are the following.

1. A set C of constants.
2. A set I of indices.
3. ⟪⋯⟫, ◇, ¬, ∧.

There are no variables. A proposition is formed as follows.

● Any constant is an proposition.
● If ϕ, χ are propositions, so are ¬ϕ, ◇ϕ and ϕ ∧ χ.
● If ϕ is a proposition and i an index, ⟪i⟫ϕ is a proposition.

The brackets “⟪⋯⟫” are called deflectors. They allow to quote a proposition in
the words of someone else. A preframe is a triple D = ⟨W,R,{Ji ∶ i ∈ I}⟩, where
R ⊆W 2 is a binary relation and for every index i, Ji ∶ C → 2W is an interpretation
of the constants.

⟨D, (w, i)⟩ ⊧ c ∶⇔w ∈ Ji(c)
⟨D, (w, i)⟩ ⊧ ¬ϕ ∶⇔ ⟨D, (w, i)⟩ ⊭ ϕ
⟨D, (w, i)⟩ ⊧ ϕ ∧ χ ∶⇔ ⟨D, (w, i)⟩ ⊧ ϕ;χ
⟨D, (w, i)⟩ ⊧◇ϕ ∶⇔ for some w′ such that wRw′:⟨D, (w′, i)⟩ ⊧ ϕ
⟨D, (w, i)⟩ ⊧ ⟪j⟫ϕ ∶⇔ ⟨D, (w, j)⟩ ⊧ ϕ

(6)

Formulas are evaluated at pairs consisting of a world and an index.

of worlds as coordinates and that the content attributed to a speaker is not obtained by diag-

onalisation (obviously, if the coordinate sets are different, this cannot be done). Moreover, the

quotation operators used here (called deflectors) are absent in Stalnaker (1978). I thank Daniel
Milne for urging me to consider that issue.
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The effect of ⟪i⟫ is to change the index of interpretation. This calls for a
polymodal reformulation. The preframe D will be changed to a frame

D♯ ∶= ⟨W × I,R♯,{fi ∶ i ∈ I}, J⟩, (7)

where

1. R♯ ∶= {((w, i), (w′, i)) ∶ wRw′, i ∈ I}.
2. fj((w, i)) ∶= (w, j).
3. J(c) ∶= {(w, i) ∶ w ∈ Ji(c)}.

(The fj are functions. However, note that as functions they are also the relations
{((w, i), (w, j)) ∶ (w, i) ∈W × I}. So we have a standard polymodal Kripke-frame,
which also interprets the propositional constants.) The clauses of (6) will be trans-
ferred in the natural way. For example, here are the first and the fourth clause:

⟨D♯, (w, i)⟩ ⊧ c ∶⇔ (w, i) ∈ J(c)
⟨D♯, (w, i)⟩ ⊧◇ϕ ∶⇔ for some (w′, i′) such that

(w, i)R♯ (w′, i′) ∶ ⟨D♯, (w′, i′)⟩ ⊧ ϕ
(8)

But note that by definition of R♯, i = i′, so the clause for ◇ in (8) is equivalent to
the one in (6). A deflector frame is a frame of the form D♯.

3. An example

Consider the example of the introduction. We have two constants c9 and c8, which
are the sentences /There are nine planets/ and /There are eight planets/,
respectively. There are two indices, a and p. The index a corresponds to time
points to interpret language before 2006, p to time points from 2006 on. And there
are three worlds. In w0 we have the usual nine planets. In w1, of the nine Pluto is
missing; in w2, Venus is missing instead of Pluto. (Hence, while w0 has nine planets
in the standard sense, w1 and w2 each have eight.) We have W ∶= {w0,w1,w2},
R =W 2 and Ja(c9) = {w0}, Ja(c8) = {w1,w2}; Jp(c9) = ∅, Jp(c8) = {w0,w1}. This
defines the preframe P. We turn this into the frame

P♯ = ⟨W × {a, p},R♯,{fa, fb}, J⟩, (9)

with fa((w, i)) ∶= (w,a), fb((w, i)) ∶= (w,p). Consider an astronomer in 1980. If he
utters (1), his world is w0 and his index is a. We find that (1) is true since Ja(c9)
contains w0. If he utters (1) in 2014, it is false since Jp(c9) does not contain w0.
However, ⟪a⟫c9 is true at (w0, p), as is easily checked. It is the formal rendering
of

In the terminology of 1980, there are nine planets. (10)

The deflector ⟪a⟫ allows to decontextualise the interpretation.
The deflector frames dissociate the worlds of the preframes into several coun-

terparts. Thus, while the worlds of the preframe D constitute different states-of-
affairs, this is no longer true of the worlds of the deflector frame D♯. How is this
to be explained? The idea I am pushing here is that there are two ways of looking
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at the notion of “state-of-affairs”. In the customary meaning it denotes a way of
being of the world without taking into account the language; in the other, new
meaning, the language itself also is a way of being of the world. The fact that
Pluto is called a planet in a but not in p is in the second sense a way of being
of the worlds a and p. Thus, the worlds comprise in addition to the languageless
facts also facts of the language.

This can only work nontrivially if there is a separation between a core that
remains constant, and a remainder whose interpretation is free. Here the core
consists in the boolean connectives, the deflectors and the modal operator ◇ whose
interpretation remains fixed, while the interpretation of the constants is freely
assignable. 2

To encompass this difference we need a new terminology. We will say that
the pair (w0, p) is the same world as (w0, a), the only difference being how we
encode the state of affairs. This calls for a definition. A polyphonic proposition in
a deflector frame D♯ is an arbitrary subset of W ×I. The proposition is monophonic
if it is of the form V × I for some V ⊆W . Standardly, a proposition is considered
to be monophonic. For we wish to say that whatever a proposition is, as a set
of worlds it should not depend on the code that we are using. However, this
would mean that the constants “c9” and “c8” do not express propositions since
their values are not of the required form. Indeed, in the present circumstances we
would be inclined to say exactly that. Consequently, we distinguish two types of
formulae: those that express a (monophonic) proposition and those that do not.
An utterance is meant to express a proposition. Hence, when ϕ is uttered at index
i, the proposition that is being expressed is not ϕ (because that may not denote
a proposition) but rather ⟪i⟫ϕ. In this way the utterance of the same expression
can denote a different proposition in the same world. This is a general fact worthy
of note.

Proposition 1. A polyphonic proposition c is monophonic if and only if c = ⟪i⟫c
for some (and hence for all) i.

Now, when we use variables, it seems that we are forced to say that they
denote monophonic propositions rather than polyphonic ones. This will then in-
troduce a dichotomy between constants and propositions, since the latter are con-
strained in the way the former are not.

However, given the observation above, we can always explicitly reduce a
proposition to become monophonic by prefixing it with a deflector.

4. The Logic of Deflector Frames

We will now proceed to an axiomatization of deflector frames. The resulting logic
will not axiomatise all and only the deflector frames. Hence, we shall generalize

2As natural language allows to phrase deflectors using plain words, such as “in the parlance of the
prime minister”, the translation of deflectors of the language into those of the logical language

is of course nontrivial. I shall ignore this problem here.
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the terminology to include those frames that satisfy the logic of deflector frames.
Quasi-deflector frames are frames of the form F = ⟨W,R, f⟩, where W is a set of
worlds, R ⊆ W 2 and f a function assigning to each i ∈ I a function fi such that
the following holds.

À For all w ∈W , i, j ∈ I: fj(fi(w)) = fj(w).
Á For all w ∈W there is a i ∈ I such that w = fi(w).
Â For all w,w′ ∈W , if wRw′ and i ∈ I, then fi(w)Rfi(w′).
Ã For all w,w′ ∈ W and i ∈ I, if fi(w)Rw′ then there is a w′′ ∈ W such that
wRw′′ and fi(w′′) = w′.

The first conditions says that the quoted meanings are absolute. The second says
that every meaning has some index. The last two conditions state that the maps
w ↦ fi(w) are p-morphisms. To see why À is the case, let us take a preframe
D. Then in D♯, fj(fi((w,k))) = fj((w, i)) = (w, j) = fj((w,k)). Using (6), this
translates into ⟪i⟫⟪j⟫p↔ ⟪j⟫p. To see this, observe that

⟨D, (w,k)⟩ ⊧ ⟪i⟫⟪j⟫p
⇔ ⟨D, (w, i)⟩ ⊧ ⟪j⟫p
⇔ ⟨D, (w, j)⟩ ⊧ p
⇔ ⟨D, (w,k)⟩ ⊧ ⟪j⟫p

(11)

The other conditions are also easily verified. The satisfaction clauses for deflector
frames are standard. Observe that since the fi are functions we have

⟨F , β,w⟩ ⊧ ⟪i⟫ϕ⇔ ⟨F , β, fi(w)⟩ ⊧ ϕ (12)

A general quasi-deflector frame is a structure ⟨W,R, f,U⟩, where ⟨W,R, f⟩ is a
quasi-deflector frame, and U ⊆ ℘(W ) is a collection of sets closed under comple-
ment, intersection; which for every i is closed under the operator

⟪i⟫a ∶= {w ∶ fi(w) ∈ a} (13)

and which is closed under the operator

◇a ∶= {w ∶ ∃w′ ∶ wRw′ ∈ a} (14)

From this we can extract a logic of quasi-deflector frames. It is characterized by
the following axioms. We use ⟦i⟧ϕ to abbreviate ¬⟪i⟫¬ϕ.

(Ax 1) ⟪i⟫p↔ ⟦i⟧p
(Ax 2) ⟪i⟫⟪j⟫p↔ ⟪j⟫p
(Ax 3) ◇⟪i⟫p↔ ⟪i⟫◇ p
(Ax 4) ⟪i⟫ ◻ p→ ◻⟪i⟫p
(Ax 5) ◇⟦i⟧p→ ⟦i⟧◇ p
(Ax 6) ϕ→ ⋁i∈I⟪i⟫ϕ

(15)

(The last axiom requires that I is finite.) (Ax 4) and (Ax 5) are derivable. (Ax 4)
is obviously equivalent to ◇⟦i⟧p → ⟦i⟧◇ p (replace p by ¬p, and then do contra-
position). Using the fact that ⟦i⟧p↔ ⟪i⟫p is derivable, we get an equivalence with
◇⟪i⟫p→ ⟪i⟫◇p, which is one half of (Ax 3). Similarly (Ax 5) follows from (Ax 3)
by replacing ⟪i⟫ by ⟦i⟧.
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Notice that deflector frames are products of frames, one component dealing
with the deflectors ⟪i⟫ and the other with the modality ◻. The first logic is called
DefI the second L. We do allow to add any set of postulates for the modality ◻. If
L is the logic of ◻, we denote by DefI(L) the logic of adding the postulates of L
to DefI . As we shall show below, this logic is identical to the product of the logics
DefI and L (see (Kurucz, 2007) for an overview of products). This means that the
logic of some class of quasi-deflector frames is the logic of some class of deflector
frames, no matter what L is. This is a rather strong result, akin to a result by
Gabbay and Shehtman (1998) on products of logics with functional operators. For
definition, if L is a modal logic based on the operators taken from O and L′ is a
modal logic based on the modal operators taken from O′ where O′ is disjoint from
O, write [L,L′] for the logic axiomatized by

(a) L and L′;
(b) ⟨m⟩⟨m′⟩p↔ ⟨m′⟩⟨m⟩p, where m ∈ O and m′ ∈ O′;
(c) ⟨m⟩[m′]p→ [m′]⟨m⟩p, m ∈ O and m′ ∈ O′;
(d) ⟨m′⟩[m]p→ [m]⟨m′⟩p, m ∈ O and m′ ∈ O′.

This logic is called the commutator (Kurucz (2007)). The postulates under (b)
encode the commutation, the postulates under (c) and (d) encode the Church-
Rosser property. (They are dual to each other, so either of (c) and (d) is sufficient.)
They state that for each pair of modalities m ∈ O and m′ ∈ O′, if wR(m)w′ and
wR(m′)w′′ there exists w′′′ such that w′R(m′)w′′′ and w′′R(m)w′′′. Call a frame
⟨W,R,D⟩, with R ∶ O∪O′ →W ×W , D ⊆ ℘(W ) a product frame if (i) W =W0×W1,
and (u0, u1)R(m) (v0, v1) iff either (iia) m ∈ O, u0R(m) v0 and u1 = v1, or (iib)
m ∈ O′, u0 = v0 and u1R(m) v1. Finally, D must be a field of sets closed under the
modal operators. A complete logic over O ∪O′ is the product logic L × L′ if it is
the logic of products of frames for L and frames for L′. The question is whether
the above axioms suffice to axiomatize L ×L′.

Let us now return to the logic of deflector frames. Notice first that the pos-
tulates for DefI(L) include the postulates for the commutator [DefI , L]. The re-
mainder of this paper is devoted to showing that this axiomatises the product,
whence that it is the logic of deflector frames. The following is easily proved.

Proposition 2. The deflectors ⟪i⟫ commute with ¬, ∧, ◇, ◻. Moreover, every for-
mula is equivalent in DefI to a formula built from atomic formulae or formulae of
the form ⟪i⟫p, ⟪i⟫c (i ∈ I) using only ¬, ∧, and ◇.

Observe namely that ⟪i⟫p ≡ ⟦i⟧p, so that ¬⟪i⟫p ≡ ⟦i⟧¬p ≡ ⟪i⟫¬p. Commu-
tativity over ∧ is clear. Moreover, we have commutativity with ◇ as an axiom.
Hence, we can always push the deflectors inside. Now observe that any sequence
of deflectors can be reduced to the innermost deflector.

The axioms (Ax1-6) above correspond to first-order conditions on the frames
saying that for each i, the relation associated with ⟪i⟫ is a function (Ax 1) such
that fj(fi(w)) = fj(w) (Ax 2). (Ax 3) corresponds to the properties (16a) and
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(16b), respectively.

(∀ww′w′′)(wRw′ ∧w′′ = fi(w′)→ (∃w′′′)(w′′′ = fi(w) ∧w′′′Rw′′)) (16a)

(∀ww′w′′)(w′ = fi(w) ∧w′Rw′′ → (∃w′′′)(wRw′′′ ∧w′′ = fi(w′′′)) (16b)

(16a) and (16b) can be simplified to (17a) and (17b).

(∀w)(∀w′)(wRw′ → fi(w)Rfi(w′)) (17a)

(∀w)(∀w′)(fi(w)Rw′ → (∃w′′)(wRw′′ ∧ fi(w′′) = w′)) (17b)

(Ax 4) and (Ax 5) are derivable. (It can also be checked that the Church-Rosser
property must hold. Suppose namely that wRw′ and w′′ = fi(w) then with w′′′ ∶=
fi(w′) we have w′′Rw′′′.) Thus we have managed to reproduce conditions À – Ã.
Finally, (Ax 6) corresponds to the first-order condition

(∀w)(⋁
i∈I
fi(w) = w) (18)

This finishes the axiomatisation. Now we shall proceed to show that quasi-deflector
frames for a logic DefI(L) can be replaced by deflector frames for that same logic.

Let us be given a quasi-deflector frame F and a world w0 ∈ W . Define
CF(w0) ∶= {fi(w0) ∶ i ∈ I} and call this the cycle of w0. Likewise, put SF(w0) ∶=
{w′ ∶ w0R(◻)∗w′}, and call it the sheaf of w0. (As is customary, R(◻)∗ denotes
the reflexive transitive closure of R(◻).) It becomes a frame SF(w0) with the re-
lation RS , where wRS w′ iff wRw′. Furthermore, let CI be the following frame:
⟨I,{gi ∶ i ∈ I},℘(I)⟩, gi(i′) ∶= i for all i′ ∈ I. We shall show that given a model for
ϕ based on F at w0 we can define a product frame over SF(w0)× CI and a model
for ϕ on this product frame. Notice that the construction even works for general
frames. Thus we shall lift the restriction implicit in the definition of products that
the component logics be complete.

We start with a model ⟨F , β,w0⟩ ⊧ ϕ. The frame F○ is defined to be the
product of the frames SF(w0) and CI , with the following internal sets. For an
internal set a of F , put a○ ∶= {(w, i) ∶ w ∈ SF(w0), fi(w) ∈ a}. By definition,
a○ = {(w, i) ∶ w ∈ SF(w0),w ∈ ⟪i⟫a}.

(−a)○ = {(w, i) ∶ w ∈ SF(w0), fi(w) ∈ −a}
= {(w, i) ∶ w ∈ SF(w0), fi(w) /∈ a}
= −{(w, i) ∶ w ∈ SF(w0), fi(w) ∈ a}
= −a○

(19)

(a ∩ b)○ = {(w, i) ∶ w ∈ SF(w0), fi(w) ∈ a ∩ b}
= {(w, i) ∶ w ∈ SF(w0), fi(w) ∈ a}

∩{(w, i) ∶ w ∈ SF(w0), fi(w) ∈ b}
= a○ ∩ b○

(20)

(⟪j⟫a)○ = {(w, i) ∶ w ∈ SF(w0), fi(w) ∈ ⟪j⟫a}
= {(w, i) ∶ w ∈ SF(w0),w ∈ ⟪i⟫⟪j⟫a}
= {(w, i) ∶ w ∈ SF(w0),w ∈ ⟪j⟫a}
= {(w, i) ∶ w ∈ SF(w0), (w, j) ∈ a○}
= ⟪j⟫a○

(21)
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For note that by (13), ⟪j⟫a○ = {(w, i) ∶ w ∈ SF(w0), fj((w, i)) ∈ a○} = {(w, i) ∶ w ∈
SF(w0), (w, j) ∈ a○}. And, finally,

(◇a)○ = {(w, i) ∶ w ∈ SF(w0), fi(w) ∈◇a}
= {(w, i) ∶ w ∈ SF(w0),∃w′ ∶ fi(w)Rw′ ∈ a}
= {(w, i) ∶ w ∈ SF(w0),∃w′ ∶ wRw′ ∧ fi(w′) ∈ a}
=◇{(w′, i) ∶ w′ ∈ SF(w0), fi(w′) ∈ a}
=◇a○

(22)

The sets of the form a○ are therefore closed under complement, intersection
and the modal operators. Hence we have a general frame. By construction, it is a
deflector frame. Now put β○(p) ∶= β(p)○. From the previous considerations we get
that β○(ϕ) = (β(ϕ))○. It follows that

⟨F○, β○, (w, j)⟩ ⊧ ϕ (23)

Let us now turn to the general logic of deflector frames. Let L be the logic of ◇.
Assume as above that there are no further axioms concerning deflectors. Thus,
additional axioms over DefI only contain ◇ as a modal. Denote the resulting logic
by DefI(L). Denote the logic of pure deflectors by DefI . Then we have

Theorem 3. If I is finite, DefI(L) = DefI × L = [DefI , L]. If L is complete, so is
DefI(L).

Proof. We have just shown that F ⊭ ϕ implies that F○ ⊭ ϕ. If F ⊧ DefI(L), we
also have F○ ⊧ DefI(L). This is seen as follows. By construction, F○ is a deflector
frame, so it satisfies the postulates of DefI . Moreover, it satisfies the postulates of
L since every sheaf is isomorphic to SF(w0), which by assumption on F is a frame
for L. ◻

5. Conclusion

People do not talk alike, the meaning of words or constructions change from people
to people and over time. This does not mean however that no analytic tools can
be used. In this essay I have shown how we can borrow each other’s language.
The logic of deflectors is rather well behaved. Quoting your language is easy. The
hard part, of course, is knowing what we are getting into when we do that. I have
used a rather well documented case of language reform to demonstrate how we can
handle different ways of talking in a fully rational way. It requires knowing when
the meaning changed and how. Informal language, however, never is like that. We
are often not even aware how subtle the differences are. Yet, as (Putnam, 1988) has
reminded us, we often do borrow meanings from each other when, for example, we
tacitly rely on expert opinion. There is then a place for a thorough investigation
of the logic and pragmatics of deflection.
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