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Introduction

This manuscript presents an outline of something which I like to call metatheory of
linguistics. It is not the attempt to replace any existing framework by a new one;
it is rather the attempt to provide some result that show us the interconnection
between certain requirements on theories. The word “metatheory” emphasises
that we do not try to establish a new framework or discover concrete properties
of languages but that we want to find methods of establishing the properties that
a given language has. The aim is to find out in what way our initial assumptions
about the structure of language or linguistic theory can actually yield an insight
into languages and what this insight consists in. We shall isolate a few principles
and investigate their empirical potential in this way. One such principle is the
Principle of Compositionality. It will emerge, for example, that the Principle
of Compositionality has no empirical impact whatsoever unless we fix the input
to be signs consisting of form and meaning; additionally, when defining form
and meaning for natural languages we must make sure that there are restrictions
on syntactic and semantic representations and functions. If this is guaranteed,
however, we shall show that there can be concrete results about the structure of
natural languages.

This book owes much to [Keenan and Stabler, 2001]. However, here the em-
phasis is quite different. Rather than assuming a particular grammar for a language
at the outset, it is our aim to establish to what extent a language determines the
grammar that generates it. In contrast to a lot of work in linguistics we do not
take syntax as the exclusive source of evidence for structure, but both syntax and
semantics together. Certainly, structural properties determine in which way ex-
pressions can be formed, but it has often been assumed in the linguistic literature
that this is effectively all there is to be said about structure. This prejudice is
the rather unfortunate heritage of a view promoted mainly—but not exclusively—
within Generative Grammar. That linguistics is neither just about form (syntax)
nor just about content (semantics) has been emphasised also by [Manaster-Ramer
and Michalove, 2001] in the context of historical linguistics. A reconstruction
solely based on either sound or meaning is useless. It must obviously involve
both.

Although the style of the book is ostensively neutral, the motivation for this
research is the belief that ultimately the Principle of Compositionality is correct.
However the methodology is not to try and verify it (this is impossible) but to
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see what consequences there are to the belief that it is true. For it turns out to be
possible to show that there are noncompositional languages. This means that it is
an empirical question whether natural languages are compositional. It should be
clear though that no definitive answer can be given for any natural language. The
reason for this is a—in my view unavoidable—peculiarity of the whole theory;
namely that for a finite language no grammar is needed. A simple enumeration of
all items is enough. Hence, we can only fruitfully apply the theory to infinite lan-
guages. Thus, when we apply the present theory to a particular language we have
to make assumptions about its global nature; and these assumptions are always
tentative.

One of the biggest problem areas that I have identified in the course of study-
ing compositionality is the nature of semantics. While the prevailing attitude used
to be that meanings are hopelessly unclear, many semanticists nowadays feel that
there is not much to discuss either: meanings are objects of the typed universe.
Both groups will feel that the present book got it wrong; the first because I include
semantics as primitive data, the second because I reject most semantic approaches
to compositionality on the grounds that their semantics encodes semantically con-
tingent syntactic structure. My response to the first group is this: if it is possible
that humans understand each other, and if we do agree that there is such a thing
as meaning, which can be preserved—among other—in translation, we must con-
clude that something of substance can be said about meanings, both concrete and
abstract. The response to the second group is more complex. On the one hand,
Montague Grammar has enjoyed a success, and it popularised the notion of com-
positionality. Nevertheless, I feel that there is a sort of complacency in most
research conducted within type logical grammar as a whole. Most questions of
actual meaning are not really solved, they are only relegated (for example to lexi-
cology). Instead, much formal semantics is just offering technology without much
proof that this is what we really wanted. It is much like saying that technologi-
cal advances have made it possible for man to fly. That is only half true because
originally the dream was to fly like a bird. It will take large parts of this book
(especially Chapter 4) to work out exactly what is at fault with type theoretical
semantics for natural language.

The Principle of Compositionality can be seen as an abstract requirement on
the grammar of a language (and therefore, albeit indirectly, on the language it-
self). The rationale for adopting it, however, comes from an assumption on the
architecture of language that is not universally shared. A particularly blatant case
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of this sort is generative grammar, where interpretation is done after the structure
building has taken place. It will be seen, though, that even if we grant this as-
sumption, there is still so much to take care of that it becomes unclear just why
a level such as LF is at all needed and how it can help us. In addition, it turns
out that many more frameworks or theories fail to be compositional. This may be
surprising since linguists commonly judge theories on the basis of whether they
are compositional or not. Thus, if we value compositionality so highly we ought
to know what exactly makes a theory compositional. This is what this book is
about. Part of my claims may be contentious. For example, I claim below that
indices are not part of a syntactic representation. This militates against a num-
ber of well-established theories, among them Generative Grammar and Montague
Grammar (!). It may therefore be thought that this diminishes the usefulness of
the present approach. On the other hand, it is not my task to agree with a the-
ory simply because it is popular. What is at stake is rather the very foundation
on which the current theories are built. And in this respect it seems to me that
linguistic theory on the whole suffers from a lack of understanding of how solid
the ground is on which it rests. The actual syntactic structure, for example, has
become highly theory internal in Generative Grammar. The independent evidence
of Kayne’s Antisymmetry Thesis, for example, was originally quite thin. And it is
simply not true that it has been proved to be correct thereafter. Rather, the factual
approach has been to adopt it and explore its consequences (just as I adopt here
the Principle of Compositionality and explore its consequences). One of the con-
sequences is that one needs a lot more categories, for the theory predicts plenty
of movement steps and appropriate landing sites must be furnished. However, a
careful review of the syntactic structure of German (within the generative frame-
work) undertaken in [Sternefeld, 2006] has yielded a far less articulated structure
than standardly assumed. Thus, the question as to what categories we need and
what structure we should assume seems to be complete open. So, if syntax cannot
do it, maybe we can make progress with the help of semantics.

This book has basically two parts. The first consists in the Chapters 2 and
3, the second in Chapters 4 and 5. The first part develops a mathematical theory
of interpreted languages; Chapter 2 provides the background of string languages,
using grammars that generate the languages from the lexicon, known from Mon-
tague Grammar. Chapter 3 then turns to interpreted languages. In the second
part, starting with Chapter 4 we zoom in on natural languages. We ask what the
meanings of natural language constituents are and how they can be manipulated.
Then, in Chapter 5 we apply the theory. We shall show that the notion of a con-
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cept defined in Chapter 4 changes the outlook on predicate logic: finite variable
fragments are compositional, while with infinite variables the languages have no
compositional context free grammar. Then we show how we can argue for struc-
ture from a purely semantic point of view.

The current text is a development of ideas found in [Kracht, 2003]. Since then
I have spent considerable energy in getting a clearer idea on the central notion
of this book, namely compositionality. In the meantime, new articles and books
have appeared (for example [Barker and Jacobson, 2007]) showing that the topic
is still a lively issue. I have had the benefit of extended discussions with Damir
Ćavar, Lawrence Cheung, Herbert Enderton, Kit Fine, Hans-Martin Gärtner, Ben
George, Fritz Hamm, László Kálmán, Ed Keenan, Ben Keil, István Kenesei, Udo
Klein, Greg Kobele, András Kornai, Uwe Mönnich, Yannis Moschovakis, Chris
Piñon, Nathaniel Porter, Richard Schröder and Ed Stabler. Special thanks also
to István Kenesei for his support and to Damir for organising the summer school
in Zadar, which got me started on this manuscript. All of them have influenced
my views on the subject in numerous ways. The responsibility for any occurring
errors in this text remains entirely with me.

A Note on Notation. This text contains lots of examples and occasional “inter-
missions”. The end of an example or an intermission is marked by o.
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Chapter 1

Synopsis

Before I start with the technical discussion it is perhaps worthwhile
to discuss the relevance of the concepts. I shall begin with some notes
on the historical context and the current developments before I turn to
the questions that I have tried to answer in this book.

Modern linguistics begins with de Saussure, yet he wrote surprisingly little on
the subject matter. The famous Cours de linguistique générale exists in several
editions none of which were published by de Saussure himself. Some years ago,
however, a bundle of autographs have been found in his home in Geneva which
are, I think, of supreme importance. We see de Saussure agonize over some quite
basic and seemingly innocent problems: one is the distinction between what he
calls “parole”, a continuous object of changing and elusive nature, and “langue”, a
system of oppositions, in other words a structured object. De Saussure constantly
reminds us that all the objects we like to talk about in linguistics are abstractions:
meanings, letters, phonemes, and so on. The second problem that he deals with,
and one that will be central to this book, is that language is a relation between
form an meaning and not just a system of well-formed expressions.

One might think that hundred years later we have settled these issues and
found satisfactory answers to them. I think otherwise. Both of the problems
are to this day unsolved. To understand why this is so it is perhaps useful to
look at Chomskyan linguistics. The basic ingredients of Generative Grammar are
a firm commitment to discrete objects and the primacy of form over meaning.
There is no room for gradience (though occasional attempts have been made even

9



10 Synopsis

by Chomsky himself to change this). Grammars are rule systems. Moroever,
linguistics is for the most part the study of form, be it phonology, morphology
or syntax. The rise of Montague Grammar has changed that to some degree but
not entirely. One reason for this is that Montague Grammar itself, like Generative
Grammar, is rooted in metamathematics, which puts the calculus, the mindless
symbolic game, into the center of investigation.

The present book took its beginning in the realisation that what linguists (and
logicians alike) call meaning is but a corrupted version thereof. A second, related
insight was that linguists rarely if ever think of language as a relation. The am-
bition of the present monograph is to change that. What I shall outline here is a
theory of formal languages that are not merely collections of syntactic objects but
are relations between syntactic objects and their meanings.

Throughout this book, language means a set of signs. Signs are pairs
consisting of syntactic objects are meanings. Languages are sets of
signs, and hence relations between syntactic objects and meanings.

This calls for a complete revision of the terminology and the formal framework.
Consider by way of example the syntactic rule

(1.1) S→ NP VP

This rule can be used to replace the string /S/ by the string /NP VP/. (I use slashes to
enclose strings so as to make them more visible against the text.) Yet, if language
consists of syntactic objects together with their meanings we must ask what the
meaning of /S/ is, or, for that matter, of /NP VP/. If anything, the meaning of /S/

is the disjunction of all possible meanings of sentences of the language, or some
such object. However, notice that /S/ is not an object of any language. The whole
point of auxiliary symbols in the grammar is that they are not meant to be part of
the language for which they are used. And if they are not in the language then
they have no meaning, for a language by definition endows only its own objects
with meaning.

Notice that the problem existed already at the inception of grammar as pro-
duction rules. Grammars never generated only the language they were designed
to generate but a host of strings that did not belong to the language. Again this
was precisely because they contained auxiliary symbols. While it was unproblem-
atic if only string generation was concerned, the problem becomes more urgent if
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meanings are considered as well. For now we need to replace the rule by some-
thing that replaces not only strings but signs, like this:

(1.2) 〈S, x〉 → 〈NP, y〉 〈VP, z〉

This means something like this: an /S/ that means x can be decomposed into an
/NP/ that means y and a /VP/ that means z. This formulation however is unsatis-
factory. First, we have lost the idea that /S/ is replaced by the sequence of /NP/

followed by /VP/, for we needed to annotate, as it were, the parts by meaning. Sec-
ond, there is no unique way to derive y and z from x; rather, x is unique once y and
z are given. In Montague Semantics, following Frege, z is a function, and x = z(y),
the result of applying z to y. Thus, it is actually more natural to read the rule from
right to left. In that formulation it would read as follows: given an object α of
category NP and meaning y and an object β of category VP and meaning z, the
concatenation αaβ is an object of category S and meaning z(y). The objects can be
anything; however, I prefer to use strings. Notice now that we have variables for
strings and that we have (de facto) eliminated the syntactic categories. The rule
looks more like this now:

(1.3) 〈α, y〉, 〈β, z〉 → 〈αaβ, z(y)〉

There is a proviso: α must be of category NP, β of category VP. To implement this
we say that there is a function f that takes two signs and returns a sign as follows.

(1.4) f (〈α, y〉, 〈β, z〉) :=


〈αaβ, z(y)〉 if α is of category NP,

and β of category VP;
undefined otherwise.

This is the formulation that we find in Categorial Grammar and variants thereof.
It is, as I see it, the only plausible way to read the rules of grammar. In this for-
mulation the category is not explicit, as we are generating objects of the language
intrinsically. The fact that the generated string αaβ is an S is therefore something
that we must be able to recover from the sign itself. Notice that this problem ex-
ists also with the input: how do we known whether α is a string of category NP?
Where does this knowledge reside if not in the grammar? I shall answer some of
these questions below. They show suprising complexity, and contrary to popular
opinion it is not necessary to openly classify strings into categories.
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From this moment on we are faced with plenty of choices. The binary function
f takes as its input two signs, each of which consists of two parts. Thus it has
in total four inputs. The question is whether the function is decomposable into
simpler functions. Some people would argue that this is not so, and some theories
encode that dictum in one or another form. Yet, from a theoretical point of view it
is not good to drop a plausible hypothesis unless one really has to. The plausible
hypothesis is this.

Independence. The functions of the grammar that create signs create
the components of the signs independently of each other.

This thesis has two parts. One is the so called Autonomy of Syntax Thesis and the
other the Compositionality Thesis. For convenience I spell them out for our ex-
ample. The autonomy thesis says that whatever f (〈α, x〉, 〈β, y〉) may be in a given
language, the form (or morphology) of the sign is a function of α and β alone, dis-
regarding x and y. The compositionality thesis says that whatever f (〈α, x〉, 〈β, y〉)
may be in a language, its semantics depends only on x and y and nothing else.
Thus we have functions f γ and f µ such that

(1.5) f (〈α, x〉, 〈β, y〉) = 〈 f γ(α, β), f µ(x, y)〉

Translated this says that whatever form the expression takes does not depend on
the meaning of the component expressions; and whatever meaning the expression
has does not depend on the form of the component expressions.

What does this Principle of Independence actually say? It is at this point where
many linguists start to be very creative. Anything goes in order to prove language
to be compositional. But the problem is that there is little room for interpretation.
Language is a relation R between expressions and meanings. What we postulate
in the case of f is that there is a pair of binary functions f γ : E × E → E and
f µ : M×M → M such that (1.5). What is important is that the input signs are taken
from the language R and the ouput sign must be in R too. Thus, independence
means that we have a set of functions that generate R from the lexicon.

All functions are allowed to be partial. Partiality is essential in the generation
of the signs. For example, let us see how to account for the fact that it is grammati-
cal to say “Jack drove the car.” but not “Jack drove the bicycle.”. Clearly, we must
say that “drive” requires a certain kind of vehicle. The nature of the restriction
may now be either morphological or semantic. If it is morphological then it may
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be formulated as a restriction on the function f γ on the expressions. If however
it is semantic, what to do? There are various options. The best is probably to say
that the type of vehicle is already implied by the expression and so we cannot use
a different one on pain of contradiction. If one dislikes this solution, here is an-
other one. Create two modes, f1, and f2, and declare that f µ1 (x, y) is defined only
if y is a motorized (earth bound) vehicle, while f µ2 (x, y) is defined in cases y is a
different kind of vehicle. What we cannot do, however, is add some material in the
syntactic structure that replicates the semantic properties, such as carmotorized and
bicycle¬motorized. This is effectively what has been proposed with θ-roles. More
often than not they have been used to encode semantic properties in syntax. The
converse has also often been done: encode a syntactic restriction in semantics.

There is a lot of terminological ground to be covered here. If the formation
of signs is a partial operation the question is whether we can at all distinguish
syntactic from semantic deviance. Chomsky has argued that we can, and I wish
to basically agree with his observation even though it does seem to me that it
often requires some education to disentangle ungrammaticality and semantic odd-
ness. If it is therefore possible to distinguish semantic from syntactic oddness,
what could be the source of that distinction? It would be this: a sentence is syn-
tactically well-formed if it could be generated if we looked only at the syntactic
composition functions, and semantically well-formed if its meaning could be gen-
erated if we looked only at the semantic composition functions. Thus, the fact that
we can distinguish between these two notions of (un)acceptability requires that
we have independent knowledge of both the syntactic functions and the semantic
functions. However, notice that the definition I gave is somewhat strange: how
can we know the meaning of an ungrammatical sentence? What is the meaning
that it has despite the fact that it is ungrammatical? Unfortunately, I do not have
an answer to this question, but it is these kinds of questions that come to the fore
once we make a distinction between different kinds of well-formedness. Another
problem is how it is that we can at all attribute a meaning to an ungrammatical
sentence. Why is it that sometimes the semantic functions are more general than
the syntactic functions and sometimes the syntactic functions more general than
the semantic functions? This is not only a theoretical problem. It is important
also in language learning: if a child hears only correct input, it will hear sentences
that are both grammatical and meaningful, so it can never (at least in principle)
learn to distinguish these concepts. Again I have not much to say except notic-
ing the problems. Part of it is that I am not concerned with learning. Another is
that—surprisingly—setting up something as simple as a formal theory of inter-
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preted languages as opposed to a formal theory of string languages requires much
more care in the definitions, and this task has to come first. For despite the fact
that the language is given in a relational form it is not clear how we can or should
define from that a grammar that manipulates syntax and semantics independently.
Parts of Chapter 3 are consumed by disentangling various notions of autonomy
and compositionality.

Now as much as one would agree with my insistance that the language R is
given a priori and cannot be adapted later, there is still a problem. Namely, no one
knows for sure exactly how R looks like. This is not only due to the somewhat in-
sufficient knowledge of what is a grammatical constituent. It has to do more with
the problem of knowing exactly what the meaning of a given expression actually
is. For example, what is the meaning of “drive”? Is it a function, an event, an
algorithm? Is it extensional, intensional, time dependent? My own stance here is
that basically expressions have propositional content, and the meaning of a propo-
sition is its truth conditions. This implies that it is not a function in the sense of
Frege (from individuals to truth values), and that the dependencies it displays re-
sult from the conditions that it places on the model. Yet, what exactly the formal
nature of truth conditions is is far from clear. Logicians have unfortunately also
been quite complacent in thinking that the calculi they have formulated are com-
positional. They mostly are not. For this reason I have to take a fresh start and
develop something of a calculus of truth conditions. The problem is that certain
vital constructs in logic must be discarded when dealing with natural language
semantics. One of them are variables, another is type theory. To see why this
is so we must simply ask ourselves what the semantics of a variable, say, “x” is
and how it differs from the semantics of a different variable, say “y”. Moreover,
these meanings should be given independently of the form of the expression. The
result is that there is nothing that can distinguish the meaning of “x” from that of
“y” because all there is to the difference is the difference in name. Consequently,
if names are irrelevant, the meaning of the expression “R(x,y)” is the same as
“R(y,x)”, that is, we cannot even distinguish a relation and its converse!

This observation has far reaching consequences. For if we accept that we
cannot explicate same or different reference in terms of variables then the com-
position of meanings is severely restricted. Indeed, I shall show that it amounts
to the restriction of predicate logic to some finite variable fragment. On the other
hand, I will argue that nevertheless this is precisely what we want. Consider an
ergative language like Dyirbal. Dixon in his [Dixon, 1994] translates the verbs of
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Dyirbal by their passives in English. So, the verb meaning “hit” is translated by
“is hit by”. This makes a lot of sense in Dyirbal, as it also turns out that the tran-
sitive object in Dyirbal is the syntactic pivot in coordination. Yet, we may wonder
how come that “hit” can at all mean the same thing as “is hit by”, for “John hits
Rover.” does not mean the same as “John is hit by Rover.”. The answer lies here
in a distinction between meaning and meaning composition. The way the verb
“hit” composes with a subject expression is certainly different from that of “is hit
by”. And yet, both mean that someone hit someone.

Similarly, the issue of types is a difficult one. Take once again the meaning of
the transitive verb “hit”. Montague gave it the type e → (e → t) (it is enough to
look at the extensionaly type). This means that it is a function which, when given
an object, returns an intransitive verb, which in turn is a function that returns a
truth value when given an object. So the first object supplied is the direct object.
We could think however that it is just the other way around (compare Dyirbal
for that matter): the first to be supplied is the subject and the direct object comes
next. Alternatively we may give it the type e•e→ t, in which it gives a truth value
when given a subject paired with an object. Now which of the three is correct? The
problem is that they are all equivalent: choose one, get the others for free. From a
technical viewpoint this is optimal, yet from our viewpoint this says that there is
no a priori way to choose the types. However, from a philosophical point of view
this gives rise to what has been termed Benaceraff’s Dilemma after [Benaceraff,
1973]: if we cannot choose between these formalisations how can we know that
any of them is correct? That is, if there are such objects as meanings but they
are abstract then how can we obtain knowledge of them? If we are serious about
meanings then either we must assume that they are real (not abstract) or else that
they do not exist. In particular, the idea that types are abstract properties of objects
is just an illusion, a myth. Types are introduced too smoothen the relationship
between syntax and semantics. They are useful but not motivated from semantics.
In this connection it is important to realise that by semantics I do not mean model
theoretic semantics. If I did, then any type assignment could be motivated from a
needed fit with a particular formal model. Instead, I think of semantics primarily
as truth conditions in the world.

In order to understand how this affects thinking semantically, take the sentence
“John is hitting Rover.”. How can we judge whether this sentence is true? Obvi-
ously, it is of no help to say that we have to look whether or not the pair consisting
of John and Rover is in the hit-relation. For it is the latter that we have to con-
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struct. That we somehow possess a list of pairs where we can look the facts up is
no serious suggestion. Obviously, such a list if it ever exists has to be compiled
from the facts out there. But how? Imagine we are witnessing some incident be-
tween John and Rover or watching a film—where is that relation and how are we
to find it? Clearly, there must be other criteria to tell us who is subject (or first ar-
gument) and who is object (or second argument). So, for a given situation we can
effectively decide which object can fill the first slot and which one the second slot
so that they come out as a pair in the hit-relation. Once we have established these
criteria, however, there is no need to appeal to pairs anymore. For whatever it is
that allows us to judge who will be subject, it is this procedure that we make use
of when inserting the subject into the construction, but not earlier. The pair has
become redundant. Similarly we can deal with the verbs as functions meaning,
eliminating the functional nature.

A type theorist will object and say: so you are in effect changing the nature of
meanings. Now they are functions from scenes (or films) to objects or whatever,
but still you uphold type distinctions and so you are not eliminating types. I
actually agree with this criticism. It is not types as such that I wish to eliminate.
There are occasions when types are necessary or essentially equivalent to whatever
else we might put in their place. What I contest is the view that the types tell us
anything of essence about the syntax of the expressions. We can of course imagine
languages where the fit is perfect (some computer languages are of that sort) but
truth is that natural languages are definitely not of that kind.

I have said above that language is a relation, that is, a set of pairs. This relation
is many-to-many. A given meaning can be expressed in many ways, a given ex-
pression may have many meanings. However, one may attempt to reduce the com-
plexity by a suitable reformulation. For example, we may think that an expression
denotes not several meanings but rather a single one, say, the set of all its mean-
ings. Call this kind of meaning set-meaning and the other the ground meaning.
Thus, /crane/ denotes a set of ground meanings, one covering the bird meaning
and another the machine meaning. This technical move eliminates polysemy and
makes language a function from expressions to (set-)meanings. There are how-
ever many problems with this approach. The first is that the combination of two
set-meanings is much more complex than the combination of ground meanings,
for it must now proceed through a number of cases. Consider namely how com-
plex signs are being made. Given a two place function f , a complex sign is made
from two simple signs, each being an expression paired with a ground meaning. It
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is thus particular expressions with particular ground meanings that are composed
via f , and not expressions with all their meanings or meanings with the totality
of their expressions. If an expression is polysemous the claim is therefore that it
must enter with any one of its meanings in place of the collection of all its mean-
ings. The expression /big crane/ can therefore be formed with two particular
meanings for /crane/, each of them however taken on its own. The expression
is thus again polysemous insofar as the combination of “big” with any of the two
ground meanings makes sense. Similarly, /all cranes/ can never be a quantifi-
cation over objects of the expression /cranes/ in both senses simultaneously. It
can only be either of them: a quantification over some birds, or a quantification
over some machines. Lumping the two meanings into a set therefore creates op-
tions that languages do not seem to have. Or, more precisely, the fact that a given
expression has two ground meanings (= is polysemous) is technically different
from it having a set-meaning.

As the reader will no doubt notice the present monograph is quite technical.
This is because I felt it necessary to explore certain technical options that the
setup leaves us with. Since the details are essentially technical there is no point
in pretending that they can be dealt with in an informal way. Moreover, if we
want to know what the options are we better know as exactly as possible what
they consist in. It so turns out that we can obtain certain results on the limitations
of compositionality. Moreover, I show that certain technical manoeuvers (such as
introducing categories or eliminating polysemy) each have nontrivial side effects
that need to be addressed. By doing this I hope to provide the theoretical linguist
with a tool for choosing among a bewildering array of options.





Chapter 2

String Languages

This chapter introduces the notion of a grammar as an algebra. We
shall describe how context free grammars and adjunction grammars
fit the format described here. Then we shall study syntactic cate-
gories as they arise implicitly in the formulation of the grammar and
then turn to the relationship between languages, grammars and sur-
face tests to establish structure. We shall meet our first principle: the
Principle of Preservation.

2.1 Languages and Grammars

Languages in the way they appear to us seem to consist of strings. The text in
front of you is an example. It is basically a long chain of symbols, put one after
the other. Yet, linguists stress over and over again that there is structure in this
chain, and that this structure comes from a grammar that generates this language. I
shall assume that the reader is familiar with this standard view on language. In this
chapter I shall rehearse some of the definitions, though taking a slightly different
view. While standard syntactic textbooks write rules in the form of replacement
rules (S → NP VP) to be thought of as replacing what is to the left by what is
to the right, here we take a bottom up view: we define grammars as devices that
combine expressions. The reasons for this shift have already been discussed. This
is also the way in which Montague defined his formation rules.

19
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Although I shall have very little to say about phonology I should make it
clear that when I use the terms “alphabet” and “letter” you may replace them by
“phoneme inventory” and “phoneme”. Likewise, we may decide to include tone
and other characteristics into the representation. All this can be done. The only
reason that I do not do it is, apart from the fact that I am not a phonologist, that it
would distract the attention from the central issues. The reader is however asked
to keep in mind that the discussion is largely independent of the actual nature and
manifestation of the alphabet.

I said that languages are sets of strings. Clearly, there is more to languages, as
they also give meanings to the strings. Yet, if we disregard this latter aspect—and
maybe some more—, we retain as the simplest of all manifestations of a language:
that of a set of strings. The topic of string languages is very rich since it has been
thoroughly studied in formal language theory. We start therefore by discussing
string languages.

Recall that a string over some alphabet A is a sequence of letters from A; for
example, /abcbab/ is a string over {a, b, c}. It is also a string over the alphabet
{a, b, c, d} but not over {a, b}. Alternatively, a string over A is a function ~x : n→ A
for some natural number n (see Appendix); n is the length of ~x. If n = 0 we get
the empty string; it is denoted by ε. We write ~x, ~y (with an arrow) for arbitrary
strings. Concatenation is either denoted by ~xa~y or by juxtaposition. In running
text, to enhance explicitness, I enclose material strings (or exponents in general)
in slashes, like this: /dog/. This carries no theoretical commitment of any sort.

Definition 2.1 Let A be a finite set, the so-called alphabet. A∗ denotes the set of
strings over A, A+ the set of nonempty strings. A language over A is a subset of
A∗.

Following Unix convention, we shall enclose names for sets of symbols by colons
(for example, :digit:). This way they cannot be confused with sets of strings, for
which we use ordinary notation.

Definition 2.2 The union of two sets is alternatively denoted by S ∪ T and S | T.
Given two sets S and T we write

(2.1) S · T := {~xa~y : ~x ∈ S , ~y ∈ T }

Furthermore, S n is defined inductively by

(2.2) S 0 := {ε}, S n+1 := S n · S
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Finally we put

(2.3) S ∗ :=
⋃
n∈N

S n

as well as

(2.4) S + := S · S ∗

Typically, we write S T in place of S · T. ∗ binds stronger than ·, and · binds
stronger than ∪. We shall write {x} and x indiscriminately in case x is a single
letter.

It is important to note that a language as defined here is a set, so it is unstruc-
tured. A grammar on the other hand is a description of the language. There are
two types of grammars: descriptive and generative. Descriptive grammars de-
scribe the strings of the language, while generative grammars describe a process
that generates them. We shall delay a definition of descriptive grammars. Thus,
for now a grammar is a system of rules (or rather functions). It is the grammar
that imposes structure on a language. This point seems contentious; in fact, many
linguists think differently. They think that the language itself possesses a struc-
ture that needs to be described using the grammar. Some are convinced that some
descriptions (maybe even a single one) is better than all the others (see [Tomalin,
2006] on the origin of this view). I consider this belief unfounded. That we know
the right grammar when we see it is wishful thinking. It is clear that regularities
need accounting for. However, that accounting for them in a particular way will
make the rule apparatus more transparent needs to be demonstrated. The most
blatant defect of such claims is that no one knows how to define simplicity in
an unambiguous way. One exception is perhaps Kolmogorov complexity, which
is however difficult to use in practice (see [Kornai, 2007] on that subject). In ab-
sence of a unique notion of simplicity we are left with the intuition that a language
“calls” for a particular description in the form of a certain grammar. But it may
well be that there are different descriptions of the same facts, none of which need
to be essentially better than the other. Indeed, if one looks around and studies
various frameworks and the way they like to deal with various phenomena, one
finds that there is little fundamental consensus; nor is there a criterion by which
to judge who is right. Thus, a language may possess various quite different gram-
mars. These grammars in turn impose different structures on the language and it
may be impossible to say which one is “correct”. Thus the distinction must be
made between the set of acceptable strings and the structure that we see in them.
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Example 1. (See also Example 6 below.) The language of unbracketed additive
arithmetical terms (or ua-terms for short) is defined as follows. Consider the set

(2.5) :digit: := {0, 1, · · · , 9}

An ua-term is a string over this alphabet plus the additional symbol /+/ such that
it neither ends nor begins with /+/. So it is a member of the following set:

(2.6) UA := :digit:+(+:digit:+)∗

Examples are

(2.7) 0, 10, 010+7, 00+01+31, 1001+000+9

In practice we think of such a string as consisting of blocks of digits separated by
/+/. This is so far just a matter of convenience. We shall see below however what
may justify this view.

In contrast to the unbracketed arithmetical terms, the bracketed arithmetical
terms (a-terms) always have brackets. They are technically strings over a different
alphabet, namely :digit: ∪ {+, (, )}. Thus, it is not that we do not write ua-terms
with brackets; they do not contain any brackets in the first place. An a-term, by
contrast, has them everywhere. (A precise definition of a-terms will be given in
Example 6.) There are many ways to “analyse” a given ua-term as arising from
some a-term. For example, we can think of the ua-term

(2.8) ~x0+~x1+~x2+ · · · +~xn

as being derived, among other, in a left bracketed (2.9) or a right bracketed (2.10)
way:

(~x0+(~x1+(~x2+ · · · (~xn−1+~xn) · · · )))(2.9)
(( · · · ((~x0+~x1)+~x2)+ · · · ~xn−1)+~xn)(2.10)

Similarly, the ua-term

(2.11) 3+1+7+5

can be derived from the following a-terms by deleting brackets:

(2.12) (((3+1)+7)+5), ((3+(1+7))+5), (3+((1+7)+5)), (3+(1+(7+5))).

There is no way to decide which analysis is correct. o
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Example 2. The formation of the third singular present of the English verb is
identical to the plural of nouns. It consists—irregular forms and idiosyncrasies
of spelling aside—in the addition of /s/, /es/ or /ses/, depending on the end of
the word. Is there a formal identity between the two or do they just accidentally
happen to be the same? o

Let me briefly go into some details. Ordinary languages contain—apart from
the obvious alphabetic characters—also punctuation marks; in addition to punc-
tuation marks we find the digits, and the blank, written here / / throughout when
quoting material language strings, and, finally, some less obvious characters such
as “newline” or “new paragraph”. These should be counted into the alphabet A
for the purposes of writing serious grammars for languages. There is, for exam-
ple, a difference in English between /black bird/ and /blackbird/. In written
English the only difference is the presence or absence of the blank; in spoken En-
glish this comes out as a different stress assignment. The same goes obviously for
punctuation (the difference between restrictive and nonrestrictive relative clauses
is signalled by the presence of a comma). Spoken language has intonation, which
is absent from written language; punctuation is a partial substitute for intonation.
In what is to follow, we will concentrate on written language to avoid having to
deal with issues that are irrelevant for the purpose of this book. Writing system
however introduce their own problems. For matters concerning the intricacies of
alphabets I refer the reader to [Korpela, 2006].

Intermission 1. Some interesting facts about punctuation. In general, there is
something of a syntax of punctuation marks. Writing no blank is different from
writing one blank, while one blank is the same as two (consecutive) blanks. Two
periods are likewise the same as one, two commas the same as one, and so on. In
general, punctuation marks act as separators, not as brackets. This means that they
avoid being put in sequence (with minor exceptions such as a period and a comma
when the period signals an abbreviation). Separators come in different strengths.
For example, a period is a stronger separator than a comma. This means that if a
period and a comma will be in competition, the (sentence) period will win. o

Anyone who is nowadays dealing with characters will know that there is a lot
of structure in an alphabet, much the same way as the set of phonemes of a lan-
guage is highly structured. There is first and foremost a division into alphabetic
characters, digits, and punctuation marks. However, there is an additional division
into such characters that serve as separators and those that do not. Separators are
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there to define the units (“identifiers” or “words”). For ua-terms, /+/ is a separator.
Separators could also be strings, of course. If we want to understand where the
words are in a text we break a string at all those positions where we find a sepa-
rator. Thus, the blank and also punctuation marks are typical separators. But this
is not always the case. A hyphen, for example, is a punctuation mark but does not
serve as a separator—or at least not always. In programming languages, brackets
are separators; this means that the name of a variable may not contain brackets,
since they would simply not be recognised as parts of the name. Anyone inter-
ested in these questions may consult, for example, books or manuals on regular
expressions and search patterns.

While we often think of languages as being sets of strings over a given al-
phabet, there are occasions when we prefer to think of languages as somehow
independent of the alphabet. These viewpoints are not easy to reconcile. We can
introduce some abstractness as follows. Let A and B be alphabets and m : A→ B∗

a map. m induces a homomorphism m : A∗ → B∗ in the following way.

(2.13) m(x0x1 · · · xn−1) := m(x0)am(x1)a · · ·am(xn−1)

Then m[L] is the realphabetisation of L.

Example 3. In German, Umlaut refers to the change of /a/, /o/ and /u/ to /ä/,
/ö/ and /ü/, respectively. Standard German allows to replace the vowels with dots
by a combination of the vowel with /e/ (historically, this is where the dots come
from; they are the remnants of an /e/ written above the vowel). So, we have a map
m : a 7→ ae, ö 7→ oe, ü 7→ ue. For all other (small) letters, m(x) = x. Hence,

(2.14) m(Rädelsführer) = Raedelsfuehrer

o

We then say that we look at a language only up to realphabetisation. In linguistics
this is done by considering spoken language as primary and all written languages
as realphabetisations thereof. Usually we will want to require that m is injective
on L, but spelling reforms are not always like that. In Switzerland, the letter
/ß/ is written /ss/, and this obliterates the contrast between /Maße/ ‘measures’ and
/Masse/ ‘mass’. For this reason we shall not deal with realphabetisation except for
theoretical purposes, where we do require that m be injective. Realphabetisations
are not structurally innocent. What is segmentable in one alphabet may not be



2.1. Languages and Grammars 25

in another. Imagine an alphabet where /downtown/ is rendered by a single letter,
say, /�/. The map sending /�/ to /downtown/ makes an indecomposable unit
decomposable (/down/ + /town/). The dependency of the analysis on the alphabet
is mostly left implicit throughout this work.

The division into units, which are so important in practical applications (wit-
ness the now popular art of tokenisation), is from a theoretical standpoint sec-
ondary. That is to say, it is part of the responsibility of a grammar to tell us what
the units are and how to find them. Whether or not a symbol is a separator will
be a consequence of the way the grammar works, not primarily of the language
itself. This is why we may maintain, at least in the beginning, that the alphabet
is an unstructured set in addition to the language. The structure that we see in the
language and its alphabet is—as I emphasised above—imposed on them through
a system of rules and descriptions, in other words a grammar. This applies of
course to phonemes and features in the same way.

In my view, a grammar is basically an interpretation of an abstract language.
In computer science one often talks about abstract and concrete syntax. The
abstract syntax talks about the ideal constitution of the syntactic items, while the
concrete syntax specifies how the items are communicated. The terminology used
here is that of “signature” (abstract) versus “grammar” (concrete).

Definition 2.3 Let F be a set, the set of function symbols. A signature is a func-
tion Ω from F to the set N of natural numbers. Given f , Ω( f ) is called the arity
of f . f is a constant if Ω( f ) = 0.

If f has arity 2, for example, this means that it takes two arguments and yields
a value. If f is a function on the set S , then f : S × S → S . We also write
f : S 2 → S . The result of applying f to the arguments x and y in that order
is denoted by f (x, y). If f is partial then f (x, y) need not exist. In this case we
write f : S 2 ↪→ S . We mention a special case, namely Ω( f ) = 0. By convention,
f : S 0 ↪→ S , but there is little gain in allowing a zeroary function to be partial.
Now, S 0 = {∅}, and so f yields a single value if applied to ∅. However, ∅ is
simply the empty tuple in this connection, and we would have to write f () for the
value of f . However, we shall normally write f in place of f (), treating f as if
it was its own value. The 0-ary functions play a special role in this connection,
since they shall form the lexicon.
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Definition 2.4 A grammar over A is a pair 〈Ω, I〉, where Ω is a signature and for
every f ∈ F, I( f ) : (A∗)Ω( f ) ↪→ A∗. F is the set of modes of the grammar. I is
called the interpretation. If Ω( f ) = 0, f is called lexical, otherwise nonlexical.
The set {I( f ) : Ω( f ) = 0} is called the lexicon of G, and the set {I( f ) : Ω( f ) > 0}
the set of rules. The language generated by G, in symbols L(G), is defined to be
the least set S satisfying for every f ∈ F and all ~xi ∈ A∗, i < Ω( f ):

(2.15) If for all i < Ω( f ) : ~xi ∈ S then I( f )(~x0, · · · , ~xΩ( f )−1) ∈ S

Example 4. Let F := { j, t, f }, and Ω( j) = Ω(t) = 0, Ω( f ) = 2. Now, I is defined
as follows. I( j) is a zeroary function, and so I( j)() is a string, the string /John/.
Likewise, I(t)() = talks. Finally, we look at I( f ). Suppose first that I( f ) is
interpreted like this.

(2.16) I( f )(~x, ~y) := ~xa a~ya.

Then the language contains strings like this one:

(2.17) John talks. talks.

The function I( f ) needs to be constrained. One obvious way is to restrict the first
input to /John/ and the second to /talks/. An indirect way to achieve the same is
this definition.

(2.18) I( f )(~x, ~y) :=


~xa a~ya. if ~x ends with /n/

and ~y begins with /t/;
undefined otherwise.

This grammar has the following language:

(2.19) {John, talks, John talks.}

o

Example 5. Here is now a pathological example. A set S is called countable if
it is infinite and there is an onto function f : N → S . If S is countable we can
assume that f is actually bijective. Let L ⊆ A∗. L is countable, since A is finite.
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Let f : N → L be bijective. Let now F := {b, s}, Ω(b) := 0, and Ω(s) := 1. This
means that we get the following terms: b, s(b), s(s(b)), s(s(s(b))), ... The general
element has the form sn(b), n ∈ N. This is a familiar way to generate the natural
numbers: start with zero and keep forming successors. Further, we put

(2.20)
I(b)() := f (0)

I(s)(~x) := f ( f −1(~x) + 1)

So, we start with the first element in the enumeration f . The number of ~x in the
enumeration is f −1(~x). If we add 1 to this number and translate this via f we get
the next element in the list. In other words, we have I(s)( f (n)) = f (n + 1).

This grammar generates L. It follows that every countable language has a
grammar that generates it. o

Evidently, any f ∈ F (that is, every mode) is either lexical or nonlexical.
Notice that there are no requirements on the functions, not even that they be com-
putable. (Recently, [Lasersohn, 2006] has argued that computability may not even
be an appropriate requirement for meanings. Without endorsing the argument that
he presents I have dropped the requirement here.) We shall introduce restrictions
on the functions as we go along. The lexicon is not always considered part of the
grammar. I make no principled decision here; it is just easier not to have to worry
about the rules and the lexicon separately.

Example 6. This is one of our main examples: it will be called the language of
equations.

(2.21) :eq: := :digit: ∪ {+, -, (, ), =}

F = { f0, f1, f2, f3, f4, f5, f6}. Ω( f0) = Ω( f1) = 0, Ω( f2) = Ω( f3) = 1, Ω( f4) =

Ω( f5) = Ω( f6) = 2. ~x is binary if it only contains /0/ and /1/; ~x is an a-
term if it does not contain /=/. The modes are shown in Table 2.1. The strings
that this grammar generates are of the following form. They are either strings
consisting of the letters /0/ and /1/, for example /010/, /11101/, or they are a-
terms, like /(1+(01-101))/; or they are equations between two such a-terms,
like /(1+10)=11/. (A single numeral expression also is an a-term.) o

Given a signature Ω, we define the notion of an Ω-term.
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Table 2.1: The Modes of Example 6

I( f0)() := 0

I( f1)() := 1

I( f2)(~x) :=

~xa0 if ~x is binary
undefined else

I( f3)(~x) :=

~xa1 if ~x is binary
undefined else

I( f4)(~x, ~y) :=

(a~xa+a~ya) if ~x, ~y are a-terms
undefined else

I( f5)(~x, ~y) :=

(a~xa-a~ya) if ~x, ~y are a-terms
undefined else

I( f6)(~x, ~y) :=

~xa=a~y if ~x, ~y are a-terms
undefined else

Definition 2.5 Let V be a set of variables disjoint from F. Let Ω be a signature
over F. An Ω-term over V is a string t over F ∪ V satisfying one of the following.

Ê t ∈ V,

Ë t = f , where Ω( f ) = 0,

Ì t = f ata0 · · ·
a tn−1, where n = Ω( f ) and ti is an Ω-term for every i < n.

The symbol TmΩ(V) denotes the set of all Ω-terms over V. The set TmΩ(∅) is
of special importance. It is the set of constant Ω-terms. A term t is constant if
t ∈ F+, that is, if it contains no variables. Given a grammar G = 〈Ω, I〉, we also
call an Ω-term a G-term.

See Figure 2.2 on Page 53 for an example of term. Notice that the second case is
a subcase of the third (where n = 0). It is listed separately for better understand-
ing. Some remarks are in order. Standardly, terms are considered abstract, but I
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thought it easier to let terms also be concrete objects, namely strings. The syntax
chosen for these objects is Polish Notation. It has the advantage of using the al-
phabet itself and having the property of transparency (see Page 65 for a definition).
Exercises 4 and 5 show that the language enjoys unique readability. Delaying the
justification for the terminology, let us make the following definition.

Definition 2.6 Let t be an Ω-term. s is a subterm of t if and only if s is an Ω-term
and a substring of t.

Based on the exercises at the end of this section one can show that the language
of terms is quite well behaved. A substring that looks like a term actually is a
subterm under every analysis. (Consequently there can be only one analysis.)

Proposition 2.7 Let s and t be Ω-terms and s a substring of t. Then either s = t
or t = f ata0 · · ·

a tn−1 for some f and n = Ω( f ) and there is an i < n such that s is a
subterm of ti.

Given a grammar G we can define the interpretation ιG(t) of a constant term t.

Ê ιG( f ) := I( f ) if Ω( f ) = 0,

Ë ιG( f t0 · · · tn−1) := I( f )(ιG(t0), · · · , ιG(tn−1)), where n = Ω( f ).

We call ιG the unfolding function and say that t unfolds in G to ~x if ιG(t) = ~x.
If the grammar is clear from the context, we shall write ι(t) in place of ιG(t).
Continuing our example, we have

(2.22)

ι( f4 f3 f0 f2 f1) = (ι( f3 f0)+ι( f2 f1))
= (ι( f0)1+ι( f2 f1))
= (ι( f0)1+ι( f1)0)
= (01+ι( f1)0)
= (01+10)

This establishes the interpretation of constant terms. Since the string functions
may be partial not every constant term has a value. Thus, ι(t) may be undefined.
We call

(2.23) dom(ι) := {t ∈ TmΩ(∅) : ι(t) is defined}
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the set of orthographically definite terms. The term f4 f3 f0 f2 f1 is orthographi-
cally definite, while the term f6 f6 f0 f1 f1 is not. This is because once f6 has been
used, it introduces the symbol /=/, and none of the modes can apply further. If t is
orthographically definite, so is any subterm of t. Notice that for a grammar G, the
language can simply be defined as

(2.24) L(G) := {ι(t) : t ∈ TmΩ(∅)}

Notice that this is different from the standard concept. This difference will be
of great importance later on. Standardly, grammars may contain symbols other
than the terminal symbols. The nonterminal alphabet contains characters foreign
to the language itself. While in formal languages the presence of such characters
can be motivated from considerations of usefulness, in our context these symbols
make no sense. This is because we shall later consider interpreted languages; and
there is, as far as I know, no indication that the nonterminal symbols have any
meaning. In fact, in the terminology of this book, by the definition of “language”
and “nonterminal symbol” the latter have no meaning. All of this will follow
from the principles defined in Section 2.6. The present requirement is weaker
since it does not constrain the power of the rules. What it says, though, is that the
generation of strings must proceed strictly by using strings of the language itself.
Later we shall also require that the strings must be used in the meaning that the
language assigns to them.

If we eliminate nonterminal symbols, however, a lot of things change as well.
L(G) not only contains the strings at the end of a derivation but every string that is
built on the way. If, for example, we write our grammar in a context free fashion,
L(G) not only contains the sentences, but the individual words, and all constituents
that any sentence of L(G) has. Therefore, unlike in traditional linguistic theory,
L is not simply assumed to contain sentences but all constituents. To distinguish
these two notions we shall talk of a language in the narrow sense if we mean
language as a set of sentences; and we speak of a a language in the wide sense—
or simply of a language—otherwise. Notice that the difference is merely the
way in which the language defines its grammar. As objects both are sets. But a
language in the narrow sense leaves larger room to define grammars as languages
in the narrow sense also fix the set from which constituents may be drawn. Our
stance in the matter is that one should start with language in the wider sense. The
reasons for this will I hope become clear in Chapter 3. At this moment I’d like
to point out that for all intents and purposes starting with language in the narrow
sense makes the grammar radically underdetermined.
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For the working linguist, the choice of L is a highly empirical matter and
hence full of problems: in defining L we need to make decisions as to what the
constituents of the language are. This means we need more input in the first place.
On the other hand, we get a more direct insight into structure. A grammar can only
analyse a string into parts that are already members of L. Of course there is still a
question of whether a given string really occurs as a constituent (we shall discuss
that point later). But it can only do so if it is in L. A side effect of this is that we can
sometimes know which occurrences of symbols are syncategorematic. Basically,
an occurrence of a symbol is syncategorematic in a string under a derivation if it
is not part of any primitive string which the derivation uses. This is admittedly
vague; a proper definition must be deferred to Section 2.6.

Example 7. I give two alternative formulations of Boolean logic. The alphabet
is as follows.

(2.25) :bool: := {0, 1, p, ¬, ∧, ∨, (, )}

The first language is the smallest set S satisfying the equation (here, as in the
sequel, · binds stronger than | or ∪):

(2.26) S = (p · (0 | 1)∗) ∪ ( · ¬ · S · ) ∪ ( · S · (∨ | ∧) · S · )

The other language is the union D ∪ S , where D and S are the minimal solution
of the following set of equations:

(2.27)
D = D ∪ (0 | 1) · D
S = p · D ∪ ( · ¬ · S · ) ∪ ( · S · (∨ | ∧) · S · )

It turns out that in both cases S is the same set; however, in the first example the
language defined is just S , in the second it is S ∪ D. S contains p01, (¬p0),
(p1∧(¬p1)). D (but not S ) also contains 0, 111. o

Given a grammar G and a string ~x, we call a term t an analysis term or simply
an analysis of ~x if ι(t) = ~x. A string may have several analysis terms. In this
case we say that it is ambiguous. If it has none it is called ungrammatical. A
grammar is called ambiguous if it generates at least one ambiguous string, and
unambiguous otherwise.

Exercise 1. Describe the set of orthographically definite structure terms for the
language of equations.
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Exercise 2. Write grammars for the unbracketed additive terms, the left and the
right bracketed additive terms of Example 1, respectively.

Exercise 3. Terms are strings, by definition, and can therefore be looked at as
members of a language. The methodology of this book can therefore also be
applied to them. Consider, by way of example, the strings for terms in Example 6.
Write a grammar for the set of all terms; then write a grammar for the set of all
orthographically definite terms.

Exercise 4. The formal notation of terms must be accompanied by a proof that
it is uniquely readable. We shall use this and the next exercise to deliver such a
proof. Recall that terms are sequences of function symbols, no extra symbol is
added. However, not every such sequence is a term. Let Ω be a signature. For
f ∈ F ∪ V let γ( f ) := Ω( f ) − 1, and for a string ~x = x0x1 · · · xn−1 ∈ F∗ let
γ(~x) =

∑
i<n γ(xi). Show the following: if ~x ∈ F∗ is a term, then (i) γ(~x) = −1, and

(ii) for every proper prefix ~y = x0x1 · · · xm−1, m < n, γ(~y) ≥ 0. (It follows from this
that no proper prefix of a term is a term.) Hint. Do induction on the length.

Exercise 5. (Continuing the previous exercise.) Let ~x = x0x1 · · · xn−1 ∈ F∗ be a
string. Then if ~x satisfies (i) and (ii) from the previous exercise, ~x is a term. Hint.
Induction on n. The cases n = 0, 1 are straightforward. Now suppose that n > 1.
Then x = x0x1 · · · xn−1 and γ(x0) = p ≥ 0, by (ii). Show that there is a number
i > 1 such that γ(x1 · · · xi−1) = −1; and we choose i minimal with that property.
Hence, ~y0 = x1 · · · xi−1 is a term, by inductive assumption. If p > 1 we have i < n,
and there is i′ > i such that ~y1 = xixi+1 · · · xi′ such that ~y is a term. And so on,
getting a decomposition x0~y0 · · ·~yp.

Exercise 6. Show Proposition 2.7. Hint. Assume that s , t. Then there is a
decomposition t = f ata0 · · ·

a tn−1. Now fix a substring occurrence of s in t. Assume
that it starts in ti. Then show that it must also end in ti.
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2.2 Parts and Substitution

We defined a language (in the wide sense) to be the set of all of its constituent
expressions. Since we do not discriminate sentences from nonsentences the lan-
guage contains not only sentences but parts thereof. We would like to be able
to say of some expressions whether one is a part of the other. In particular, we
would like to say that /The cat is on the mat./ contains /on the mat/ as
its part, but not, for example, /cat is on/ or /dog/. In the cases just given this
is straightforward: /cat is on/ is not in our language (in the wide sense), for it
has no meaning; /dog/ on the other hand is not a string part of the expression. In
other cases, however, matters are not so easy. Is /Mary ran/ a part of /John and

Mary ran./ or is it not? It is a string part of the sentence and it is meaningful.
As it turns out, there is no unique answer in this case. (Curiously enough even
semantic criteria fail to give a unanimous answer.) More problems arise, making
the notion of part quite elusive. One problem is that there are no conditions on
the string functions; another is that a given string may have been composed in
many different ways. Let us discuss these issues below. We begin however with a
definition of part.

Definition 2.8 Let G be a grammar. ~x is a part of ~y if there are constant terms s
and u such that s is a subterm of u and ιG(s) = ~x as well as ιG(u) = ~y.

This definition of part of pays no attention to the strings. Instead it looks at the
way the strings are obtained through the string functions of the grammar. Thus,
any useful restriction will come from restricting the power of string functions. The
definition also pays no attention to the way in which the parts occur in the larger
string. Occurrences will be defined in Definition 2.11, and then we shall review
Definition 2.8. The examples of this section will show how broad the spectrum of
grammars is and how it affects parthood.

Example 8. Consider a unary function f which forms the past tense, for exam-
ple I( f )(go) = went, I( f )(sing) = sang, I( f )(ask) = asked. In this grammar,
/go/ is a part of /went/, /sing/ a part of /sang/, /ask/ a part of /asked/. o

In standard terminology it is actually not assumed that /went/ is literally made
from /go/; rather, it is assumed that the verbform /go/ possesses different allo-
morphs, and the context decides which of them is going to be used. At the end
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of this chapter we shall propose that syntactic functions may not delete material.
This takes care of the problem by excluding the grammar of Example 8. Let us
now look at a second example.

Example 9. We present two ways of generating the nonempty strings over the
alphabet :blet: := {a, b} of “binary letters”. C1 consists of the zeroary functions
fa, fb plus the unary functions f0 and f1. We have

(2.28)

I1( fa)() := a

I1( fb)() := b

I1( f0)(~x) := ~xaa
I1( f1)(~x) := ~xab

So, ιC1( f1 f0 f0 fa) = aaab. This grammar is the ‘typewriter model’ of strings.
Strings are generated by appending letters one by one to the initial letter.

The grammar C2 has the zeroary function symbols fa and fb and a binary
symbol γ. We have

(2.29)
I2( fa)() := a

I2( fb)() := b

I2(γ)(~x, ~y) := ~xa~y

For example, ιC2(γγ fa faγ fa fb) = aaab.

In C1, ~x is part of ~y if and only if it is a nonempty prefix of ~y. In C2, ~x is a part
of ~y if and only if it is a nonempty subword. o

It is to be noted that both grammars generate the set A+, so they are extension-
ally identical. Yet structurally they are distinct. According to C2 strings can have
many more parts than according to C1. For example, /aaab/ possesses (apart from
itself) the parts /a/, /aa/, /aaa/, /b/, /ab/, /aab/. In addition, the string /aa/ has
two occurrences in /aaab/, which we may denote as follows: /aaab/, and /aaab/.
(More on occurrences in Definition 2.11 and Section 2.5.) Both occurrences are
actually parts of the string. It turns out, though, that not all parts can be parts
in one and the same derivation. The more useful motion is in fact defined for a
particular analysis term. The relation “is part of” is then the union of the relations
“is a t-part of” for all terms t.
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Definition 2.9 Let G be a grammar, t a constant term and ~x and ~y strings. We say
that ~x is a t-part of ~y if ιG(t) = ~y and there is a subterm s of t such that ιG(s) = ~x.
In this case there is t′(x) such that t = t′(s).

With certain adaptations we can say that the relation “is a t-part of” is transitive.
(If ~y is a t-part of ~z and is the unfolding of s, s a subterm of t, then parts of ~y must
be s-parts of ~y in order to be t-parts of ~z.) Here is a somewhat surprising result
given that the union of transitive relations need not be transitive.

Proposition 2.10 The relation is part of is transitive.

Proof. Let ~x be a part of ~y and ~y a part of ~z. Then there are terms r and s such
that r unfolds to ~x and s unfolds to ~y and r is a subterm of s. Furthermore there
are t and u that unfold to ~y and ~z, respectively, and t is a subterm of u. Since they
unfold to the same string, we may replace t in u by s, giving us a new term u′, of
which s is a subterm. Since r is a subterm of s, it is also a subterm of u. �

Given a single C2-term t for /aaab/, the substring occurrences that correspond
to the subterms actually form a tree. This is essentially because the grammar
encodes a context free analysis. However, C2 is ambiguous: /aaab/ has several
analysis terms, and they provide different constituent analyses. The analysis terms
are as follows: γγγ fa fa fa fb, γγ faγ fa fa fb, γγ fa faγ fa fb, and γ faγ faγ fa fb. On the
other hand, C1 is unambiguous.

Standard tests for constituency in textbooks include the substitution test. Be-
fore we look in detail at the test let us first say a few words about string substitu-
tion.

Definition 2.11 A (1-)context is a pair C = 〈~x,~z〉 of strings. Inserting ~y into C
results in the string C(~y) := ~x~yvecz. We say that ~y occurs in ~u if there is a context
C such that ~u = C(~y). We also say then that C is an occurrence of ~y in ~u. The
result of substituting ~w for ~y in its occurrence C is C(~w) = ~x~w~z.

For example, C := 〈s, ish〉 is a 1-context. C(elf) = saelfaish = selfish.
Notice that for any 1-context C = 〈~x, ~y〉, C(ε) = ~xa~y. The substitution test runs as
follows: take a sentence like

(2.30) John likes cricket.
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and look for the string occurrences that can be substituted for /cricket/ such
that the result is once again a sentence. These include /chess/, /vegetables/,
/his new home/ and so on. Similarly, we try to substitute for other sequences
such as /likes/, /John likes/ and /likes cricket/. The underlying idea is
that nonconstituents cannot be substituted for (for example /John likes/) while
constituents can. In practice, this test is not without problems, as it often turns
out that nonconstituents can be substituted for (as is the case with /John likes/,
for which we can substitute /Peter dislikes/). In fact, it sometimes turns out
that the alleged nonconstituent passes all tests and we must be prepared to either
strengthen our tests or admit that these really are constituents (as some claim is
the case with /John likes/, see [Steedman, 1990]). In this section we shall look
in some detail at the formal underpinnings of the substitution test.

First of all, we have to ask what we actually mean by substitution and second
how it can possibly show us something about the grammars for our language. The
answer to the first question is in fact not trivial. In the absence of a grammar the
substitution we should be performing is simply string substitution. The underlying
claim of the constituency test is that it shows us when string substitution is actually
constituent substitution. This is the case if it can be performed without affecting
grammaticality. Here I have defined constituent substitution to be substitution on
the level of the analysis terms: it is the substitution of one subterm by another.
The syntactic tests assume that constituent substitution if defined is always string
substitution. This is problematic for two reasons. One is that the two need not be
identical because the string functions of the grammar may be different from string
polynomials (see the end of this section for a definition). The second is that the
substitution can give misleading evidence. We start with some examples to show
the point.

Definition 2.12 Let L be a language. Write ~x ∼L ~y if for all 1-contexts C: C(~x) ∈
L ⇔ C(~y) ∈ L. The set CatL(~x) := {C : C(~x) ∈ L} is called the string category of
~x in L.

Obviously, ~x ∼L ~y if and only if CatL(~x) = CatL(~y). If string substitution is con-
stituent substitution then the definition above defines exactly the syntactically rel-
evant classes of English. However, mostly this is not a realistic assumption. Let
us review how the notion of part can depart from that of a constituent.
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Example 10. We look at three grammars to form the plural of English. Let F0 be
a list of functions fx, where in all grammars below f~x will be evaluated to the string
~x. To keep it simple, let F0 = R∪ I, where FR = { fcat, fdog}, FI = { fsheep, fmouse, fox}.
Thus FR contains the regular nouns, FI the irregular nouns. Thus, with Ii the
interpretation function of the grammar Pi we have Ii( fcat)() = cat, Ii( fmouse)() =

mouse, and so on. Now, put Ω0( f~x) := 0. We denote by Rs the set {x : fx ∈ FR}, Rp

the corresponding plural forms, likewise Is := {~x : f~x ∈ FI}, Ip the corresponding
plural forms.

The first grammar, P1 = 〈Ω1, Ii〉, is as follows. F1 := F0 ∪ {p}, Ω1(p) = 1,
Ω1 � F0 = Ω0. I1(p) is defined on Rs∪ Is, that is all strings that are singular nouns
(/cat/, /mouse/, /ox/, but not /oxen/) and its output is the corresponding plural.
So we have

(2.31) I1(p) = {〈cat, cats〉, 〈dog, dogs〉, 〈sheep, sheep〉,

〈mouse, mice〉, 〈ox, oxen〉}

The second grammar, P2 = 〈Ω2, I2〉, has instead F2 := F0∪{g, fmice, fε, fs, fes, fen},
where g is a binary function symbol. We put

(2.32) I2(g)(~x, ~y) :=


~xa~y if ~x ∈ Rs and ~y = s

or ~x = sheep and ~y = ε

or ~x = ox and ~y = en

undefined else.

In short, I2(g)(~x, ~y) is defined only if ~x is a noun root and ~y a proper plural suffix
for ~x. Since the plural of /mouse/ is not obtained by affixation, it has been added to
the lexicon. A variation of this grammar would be to set I2(g)(mouse, ε) := mice.
Thus, the plural is formed by a zero affix to a different stem.

The third grammar, P3 = 〈Ω3, I3〉 is a mixture between the two. F3 := F0 ∪

{p, g, fs, fes}. For regular nouns it uses g, for irregular nouns it uses f .

I3(g)(~x, ~y) =

I2(g)(~x, ~y) if ~x ∈ Rs

undefined otherwise
(2.33)

I3(p)(~x) =

I1(p)(~x) if ~x ∈ Is

undefined otherwise
(2.34)

(2.35)
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First of all notice that we can distinguish between these grammars in terms of
the generated language. It turns out that P1 generates all and only the singular
and plural noun forms. P2 in addition contains the plural morphs (like /s/, /es/,
/en/, and ε). P3 contains only the regular plural morphs and not ε, for example
(though that depends on the exact distribution of the work between f and g). P1

realises a model called item and process, while P2 realises a model called item
and arrangement (see [Matthews, 1978] for a discussion of these models).

Next we need to look at how constituent substitution works in these examples.
Here is an example: in P2, the string /cats/ is the value of the term g fcat fs. Re-
place fcat by fdog and you get the term g fdog fs, which unfolds to /dogs/. Replace
it by fmouse and you get g fmouse fs, which is undefined. Similarly, replace fs by fen

and you get g fcat fen, which also is undefined.

In P2, the plural morph is a constituent, so it should be substitutable. Like-
wise, the root noun is a constituent, so we should be able to substitute for it.
Sometimes we can successfully perform such a substitution, as certain nouns ac-
cept two plural endings: we have /formulas/ next to /formulae/. Most of the
time the substitution will fail, though. In P1 on the other hand the substitution of
the plural morph is illicit for a different reason: it is not a constituent. The form
/cats/ is the value of p fcat, so the only constituent substitution we can perform is
to replace fcat by fmouse, and in this case the result is /mice/.

In P3 string substitution of the plural morph by something else is sometimes
licit sometimes not. Let us look now at the substitution of the root noun by an-
other root noun. In P2 we may exchange /house/ for /cat/ but not /mouse/. This
is because I2(g)(house, s) = houses, which is the result of substituting the sub-
string /cat/ of /cats/ by /house/, but I2(g)(mouse, s) is undefined, while apply-
ing the string substitution gives /mouses/. Trying the same in P1 we find that the
string substitution facts are similar; however, I2( f )(mouse) is defined, and it gives
/mice/. Thus, the difference between P1 and P2 is that the substitution of the sub-
constituent /mouse/ for /cat/ in the derivation is licit in P1, but illicit in P2. In P1,
the result of this substitution is different from string substitution, though. o

The grammar P2 actually uses straight concatenation and the string categories
of English actually do tell us about the necessary distinctions we need to make
in the paradigms. (Note though that the grammars here do not explicitly mention
paradigms. There is no need to do so. The classes are just defined indirectly via
the partiality.)
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Example 11. The next example is a variation of the previous theme. The first
grammar, Q1, has constants for the names /John/, /Alex/, and /Pete/ and for the
verb forms, /sings/ and /sing/, /runs/ and /run/. It has two binary functions
c, g. Call a sequence ~x an NP if it has the form /x1 and x2 and x3 · · · /. It is
singular if it does not contain /and/ and plural otherwise.

(2.36) I(c)(~x, ~y) :=

~xa and a~y if ~x and ~y are NPs
undefined else

g combines NPs with verb forms. The chosen verb form must agree in number
with the sequence. This is done as follows.

(2.37) I(g)(~x, ~y) :=



~xa a~y if either ~x is a singular NP
and ~y is a singular verb form

or ~x is a plural NP
and ~y is a plural verb form

undefined else

This grammar generates /John sings/ (it is the value of g fJohn fsings) and /John

and Mary and Alex sing/ (the value of gcc fJohn fMary fAlex fsing) but not /Mary

and Alex sings/. For the second grammar, Q2, we assume we have only verb
roots (form identical with the singulars of the previous grammar) and change the
interpretation of g as follows:

(2.38) K(g)(~x, ~y) :=


~xa a~y if ~x is a plural NP and ~y is a verb root
~xa a~yas if ~x is a singular NP and ~y is a verb root
undefined else

In Q1, we can string substitute /John and Mary/ for /John/ only if the verb form
is already plural, but not, for example, in /John sings/, for we would get /John

and Mary sings/, which the grammar does not generate. We can also not con-
stituent substitute, for the result is the same. In Q2, the constituent substitution
gives us different results. Namely, constituent substitution of /John and Mary/

for /John/ in /John sings/ yields /John and Mary sing/! This is because the
sentence is the value (under K) of g fJohn fsing, and we replace fJohn by c fJohn fMary.
This yields the term gc fJohn fMary fsing, which unfolds to /John and Mary sing/.
o
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The previous examples established two things: first, it may be the case that
certain affixes are introduced by the derivation. In this case, the string substitution
has nothing to do with constituent substitution, since there is no constituent to be-
gin with. Second, there is a difference between string substitution and constituent
substitution. It is the latter notion that is dependent on the grammar. It is defined
as follows.

We have seen in the previous section how to evaluate constant terms. Now we
shall introduce variables over constituents. Thus, we shall allow to write f x and
gxy but also g f xx, where f is unary and g binary, and x and y are variables over
terms. For terms containing such variables the interpretation must be a function
from values of these variables to strings. Here is a way to implement this idea.
The interpretation of a term is a partial function from (A∗)N to A∗. Here, an infinite
sequence s := 〈s0, s1, · · ·〉 codes the assignment of strings to the variables that
maps xi to the string si. Now put

Ê ιG(xi)(s) := si,

Ë ιG( f )(s) := I( f ) if Ω( f ) = 0,

Ì ιG( f t0 · · · tn−1)(s) := I( f )(ιG(t0)(s), · · · , ιG(tn−1)(s)), where n = Ω( f ).

Again, if G is clear from the context, ιG will be simplified to ι. Notice that if the
string functions are partial some of the ιG(t) may also be partial functions. In the
sequel I shall not use x0 and x1, but the usual x, y instead. (ι has been defined in
Section 2.1 for constant terms slightly differently. On constant terms the valuation
is irrelevant.)

Example 12. We continue Example 9. The grammar C1 has only unary func-
tions, so the terms we can create have at most one variable. Examples are f1x0,
f0 f1x1, and so on. These describe functions from assignments to strings. The first
defines a function from s to A∗: s 7→ sa0a. The second is s 7→ sa1b. I shall sim-
plify this by eliminating reference to the entire valuation and replacing s0 and s1

by metavariables. This way we get the somewhat simpler expression ~x 7→ ~xaa,
~x 7→ ~xab. It is possible to describe the totality of definable functions. They all
have the form ~x 7→ ~xa~y for some ~y ∈ A∗ (which may be empty, since we generally
also have the term x, which denotes the identity function on A∗).
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C2 has many more functions. In fact, the terms that we can define in C2 are all
the definable string polynomials using constants from A. o

It is the simplifications of the preceding example that I shall adopt throughout.
If we have a term t(x, y, z) then the result of applying it to some values ~x, ~y and ~z
for x, y and z, respectively, is denoted by t(x, y, z)[~x, ~y,~z], or—if we want to make
explicit which value replaces which variable—, t(x, y, z)[~x/x, ~y/y,~z/z]. The latter
notation is more practical when we suppress the variables in the term itself by
writing t[~x/x, ~y/y,~z/z]. Now let f : (A∗)n → A∗. Say that it is a term function of
G if there is a term t(x0, x1, · · · , xn−1) such that

(2.39) f (~x0, · · · , ~xn−1) = ιG(t)[~x0/x0, · · · , ~xn−1/xn−1]

A polynomial (over A) is a term in the signature expanded by fa (with value
a) for every a ∈ A. f is a polynomial function of G if there is a polynomial
p(x0, x1, · · · , xn−1) such that

(2.40) f (~x0, · · · , ~xn−1) = ιG(p)[~x0/x0, · · · , ~xn−1/xn−1]

A particular sort of polynomial is the string polynomial. Let A be an alphabet.
Then the string polynomials over A are the polynomials defined over the signature
Ω : · 7→ 2, ε 7→ 0 in the algebra 〈A∗, ε,a 〉. The interpretation is fixed: · is
intepreted by concatenation, ε by the empty string and a by constant yielding
the letter a itself. (Bracketing is therefore eliminable since string concatenation
is associative.) For example, p(x0, x1) := x1 · a · x1 · x0 · b is a polynomial. It is
interpreted by the following function over A∗:

(2.41) pA∗(~x, ~y) := ιG(t)[~x/x0, ~y/x1] := ~yaaa~ya~xab

Typically, we do not even write the dot, so that x0 · x1 reduces to x0x1.

I close this section with an observation concerning the method of substitution,
using Definition 2.12. This test is supposed to reveal something about the structure
of the language provided that the grammar for it is some constituent grammar:
parts are assumed to be substrings. (If the grammar is not of that form, another
form of test is needed.) There are two ways to understand this test, ultimately
deriving from two different definitions of language; one is to start with a language
as the set of sentences and try to define the constituents smaller than sentences via
substitution classes. Another, less ambitious method, starts with a language in the
wide sense and tries to find out the constituent occurrences in a given string. We
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shall look here at the first of these interpretations; the other interpretation shall be
looked at in more detail later.

Let L ⊆ A∗ be a language in the narrow sense and ~x a string. Evidently, there
are two cases. Either ~x is not a substring of any string in L, and so CatL(~x) = ∅, or
it is and then CatL(~x) , ∅. Apart from that there is nothing of substance one can
say about the distribution of categories. There is no theoretical instrument to tell
us from the substitution possibilities which are the constituents. This is reflected
also in some grammars. In the Lambek Calculus all substrings of a string of the
language are given a category.

There is a little bit that we can say about the relationship between the number
of categories and L itself. For it turns out that if the set of string categories is finite
the language is regular.

Theorem 2.13 A language has finitely many string categories if and only if it is
regular.

Proof. Suppose that L has finitely many categories. Intersect the categories with
the set {〈ε, ~x〉 : ~x ∈ A∗}. This yields a finite set of occurrences of prefixes. By
the Myhill-Nerode Theorem (see [Harrison, 1978]), the language is regular. Now
assume that the language is regular, and accepted by a finite automaton A. Let Ii

be the language of all strings that lead from the initial state to state i; and let A j

be the language of all strings that lead from j to some accepting state. Then the
categories coincide with the sets of pairs Ii × A j for all states i and j such that j
can be reached from i. �

Exercise 7. Describe all unary term functions of C2, that is, all actions of C2-
terms in one variable.
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Exercise 8. Verify that the language of ua-terms is defined by the following
grammar:

(2.42)

I(n0)() := 0

. . . . . .

I(n9)() := 9

I(c0)(~x) := ~xa0
. . . . . .

I(c9)(~x) := ~xa9
I(a0)(~x) := ~xa+a0

. . . . . .

I(a9)(~x) := ~xa+a9

Exercise 9. (Continuing the previous exercise.) In the grammar of the previ-
ous exercise /10+1/ is a part of /10+12/. Simply choose the analysis n1c0a1c2.
However, /12/ is not a part of /10+12/ although intuitively it should be. Begin by
specifying when a given string is a substring of another. Then write a grammar
where only those substring occurrences are parts that should be.

Exercise 10. The language of ua-terms is regular. Nevertheless, show that there
is no regular grammar that generates exactly this language in the wide sense; this
means that L is taken to be the union of all expressions that belong to some non-
terminal of the grammar. Hint. Regular grammars allow to add only one symbol
at a time.

2.3 Grammars and String Categories

In the previous section we looked at string categories defined by replacing sub-
strings by other substrings. In this section we look at a similar but different defi-
nition where replacement is done only of constituent occurrences. This definition
presupposes a grammar.
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Definition 2.14 Let G be a grammar and ~x, ~y ∈ L(G). We write ~x ∼G ~y if for
every term t(x0), ιG(t)(~x) is defined if and only if ιG(t)(~y) is defined. We write
[~x]G := {~y : ~x ∼G ~y}. These sets are called the syntactic categories of G.

We have restricted the definition to strings in L(G). Thus, categories are defined
only on the strings of the language. Strings outside the language have no category.
An alternative formulation is this: ~x and ~y have the same category if for every pair
of terms s0 and s1 that unfold to ~x and ~y respectively, t(s0) is orthographically
definite if and only if t(s1) is. (It is easy to see that if this holds for one pair of
terms s0 and s1 then it holds for all. See also Definition 2.32.)

Notice that the set of strings on which no function is defined also is a syntactic
category. For example, in Example 1 this category is empty, in Example 6 it
contains all equations.

There need not be finitely many equivalence classes as the following example
shows.

Example 13. Let A := {a}. G = 〈Ω, I〉 is defined by Ω(e) = 0, Ω( f ) = Ω(g) = 1
and

I(e)() := ε

I( f )(an) :=

an−1 if n > 0
undefined else

(2.43)

I(g)(an) := a2n

G generates a∗ in a somewhat unconventional way. In this case we have that if
m > n: I( f )n(am) = am−n and I( f )m(am) = ε. However, for n > m, I( f )n(am) is
undefined. Thus, am ∼G an if and only if m = n, and so there are infinitely many
equivalence classes.

Now, the grammar H = 〈Ω′, J〉 with F′ := {e, h} where J(e)() := ε, and
J(h)(~x) := ~xaa has exactly one class of strings. It is checked that am ∼H an for all
m, n ∈ N. o

It is linguistic practice not to leave the categories implicit (in the form of do-
main restrictions) but to make them part of the representation. If we so wish this
can be implemented as follows. Let C be a set. A c-string is a pair s = 〈~x, c〉
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where ~x ∈ A∗ and c ∈ C. Given s, we put

(2.44) ε(s) := ~x, κ(s) := c

For a set S of c-strings write ε[S ] := {ε(s) : s ∈ S }, κ[S ] := {κ(s) : s ∈ S }. A
c-string language is a subset of A∗ × C. A c-string grammar is a pair 〈Ω,C〉
where Ω is a signature (with domain F) and C an interpretation function such that
for all f ∈ F C( f ) : (A∗ ×C)Ω( f ) ↪→ (A∗ ×C). We define ιG(t) for an Ω-term t by

(2.45) ιG( f s0 · · · sΩ( f )−1) := C( f )(ιG(s0), · · · , ιG(sΩ( f )−1))

We write tε in place of ε(ιG(t)) and tκ in place of κ(ιG(t)). Thus we have

(2.46) ιG(t) = 〈tε, tκ〉

We also use the notation f ε for the function ε ◦ C( f ) and f κ for κ ◦ C( f ). A more
detailed discussion can be found in Chapter 3. The categories will be most useful
when the string operations of the grammar are independent. We shall deal with
grammars acting on several components in Chapter 3.

Example 14. The shift to categories is not as innocent as it first appears, for we
lose certain properties. Here is an example. The relation “is part of” is no longer
transitive. Let F := { f0, f1, g}, Ω( f0) := Ω( f1) := 0 and Ω(g) := 1. C := {α, β} and
A := {a}.

(2.47)

I( f0)() := 〈a, α〉
I( f1)() := 〈aa, α〉

I(g)(〈~x, c〉) :=

〈~xaa, β〉 if c = α

undefined else

This grammar generates the language {〈a, α〉, 〈aa, β〉, 〈aa, α〉, 〈aaa, β〉}. It turns
out that /a/ is a part of /aa/, and /aa/ a part of /aaa/, but /a/ is not a part of /aaa/.
o

As the example shows we can no longer simply say that a string occurs as a
substring; it occurs in a c-string as a c-string and so the category that it has in that
occurrence may also be fixed. For example, /I see John fly./ contains /fly/

as a verb and not as a noun.
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An important class of (c-string) grammars are the bottom up context free (c-
)grammars. These are not the same as ordinary CFGs. We shall recall the defi-
nition of standard CFGs first and then turn to the bottom up version. Recall that
a context free grammar is standardly taken to be a quadruple G = 〈A,N, S ,R〉,
where A ∩ N = ∅ are disjoint sets, S ∈ N, and R a set of replacement rules. They
have the form X → ~y, where X ∈ N and ~y ∈ (A ∪ N)∗ is a sequences over A ∪ N.
The rules define a replacement relation in the following way.

Definition 2.15 Let ρ = ~x → ~y be a rule. We say that ~u~y~w is 1-step derivable via
ρ from ~u~x~v, in symbols ~u~x~v ⇒ρ ~u~y~v. For a set R of rules we write ~u~x~v ⇒ρ ~u~y~v
and say that ~u~y~v is 1-step derivable from ~u~x~v if there is a rule ρ ∈ R such that
~u~x~v⇒ρ ~u~y~v. Furthermore, we say that ~w is n-step derivable in R from ~v and write
~v~x~v ⇒n

R ~w if either n = 0 and ~w = ~v or n > 0 and there is a u such that ~u is
n − 1-step derivable from ~v and ~w is 1-step derivable from ~u.

Notice that ~v ⇒1
R ~w and ~v ⇒R ~w are synonymous, and that ~v ⇒{ρ} ~w and ~v ⇒ρ ~w

are also synomous; R or ρ will be dropped when the context makes clear which
rules are being used. Notice furthermore that it may happen that a rule can be
applied to a given string in several ways. The rule A → aa can be applied to the
string /AcAb/ to yield either /aacAb/ or /Acaab/. Therefore, if we want to know
what the next result will when applying the rule we need to identify the occurrence
of the left-hand side that is being replaced. When can do this by underlining as
follows: AcAb⇒ aacAb and AcAb⇒ Acaab. If the occurrence is underlined then
the rule must be applied to that occurrence. Hence wo do not have AcAb⇒ Acaab.
Now, suppose we have such a marked string; then the result is still not unique
unless we know which rule is being applied. This follows from the fact that several
rules may replace a given string. For example, if we also have the rule A → cd

then from /AcAb/ we may proceed to /cdcAb/ in addition to /aacAb/. However,
if also the resulting string is given the rule that has been applied can be inferred.
Thus, in order to show that a given string ~w is n-step derivable from a string ~v we
need to produce a sequence 〈~vi : i < n〉 of length n of underlined strings such that
~vi ⇒ ~vi+1 for i < n − 1 and ~vn−1 ⇒ ~w. Such a sequence is called a derivation.
Notice that the sequence contains marked strings not just strings, though we shall
often not show the mark. The derived string is by definition not marked, though
it is often added at the end of the derivation sequence so that one can infer the
choice of rules in each step.

Given a nonterminal A and a string ~x we write A `G ~x and say that G derives
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~x from A if there is an n such that S ⇒n
R ~x, where S is the start symbol and R the

rule set of G.

Definition 2.16 Let G = 〈S ,N, A,R〉 be a CFG. The language of G in the narrow
sense is defined by

(2.48) L(G) := {~x ∈ A∗ : S `G ~x}

The language in the wide sense is defined by

(2.49) Lw(G) := {~x ∈ A∗ : for some X ∈ N : X `G ~x}

A language L in the narrow (wide) sense is context free if there is a context free
grammar G such that L = L(G) (L = Lw(G)).

Also, write [A]G := {~x : A `G ~x}. Then L(G) = [S ]G. This notion of grammar
is top down and nondeterministic. It generates the strings from a single string
(consisting in the single letter S ).

Example 15. Let G be defined as follows.

(2.50) G := 〈{a, · · · , z, }, {<S>, <NP>, <VP>, <N>, <D>, <VI>, <VT>},
<S>,R〉

The alphabet consists of all lower case letters plus the space.

(2.51)

R = { <S>→ <NP><VP>
<NP>→ <D><N>
<D>→ the | a

<N>→ cat | dog | mouse

<VP>→ <VI> | <VT><NP>
<VI>→ runs | sleeps

<VT>→ sees | chases }

This grammar generates among other the following strings:

(2.52)

<S>
<NP><VP>
<D>dog <VI>
a dog chases the cat
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Only the last of the four strings is meaningful. A derivation of the third string is
as follows.

(2.53) 〈<S>, <NP><VP>, <D><N><VP>, <D><N><VI><D>dog <VI>〉

o

Let us now look at a bottom up version of CFGs. Obviously, to get such
a grammar we simply turn the rules around. Rather than assuming a rule, say,
ρ = A → BC, we define a string function fρ of arity 2 such that fρ is interpreted
as concatenation, that is, I( fρ)(~x, ~y) = ~xa~y. However, this function is only defined
if ~x is a B-string, that is, if we can derive ~x from B in the grammar and if ~y is a C
string. In this way we guarantee that ~xa~y is an A-string. In general, for each rule ρ
we assume a function symbol fρ and an interpretation I( fρ). A rule is of the form
A→ ~x for some ~x ∈ (A ∪ N)∗.

This means that there is n and ~xi ∈ A∗, i < n + 1, and Bi ∈ N, i < n, such that

(2.54) ρ = A→ ~x0~B0~x1B1 · · · Bn−1~xn

Then Ω( fρ) := n, and its interpretation is

(2.55) I( fρ)(~y0, · · · , ~yn−1) :=


~x0~y0~x1~y1 · · ·~yn−1~xn if for all i < n:

~yi is a Bi-string
undefined else

We do this for all ρ which do not have the form A → B. It is an easy matter
to transform G into a grammar that has no such rules, but that transformation is
actually unnecessary. This defines the grammar G�.

Example 16. I transform the grammar from Example 15. Let us note that the
constituents generate only finitely many strings, so we can list them all.

(2.56)

[<D>]G = {/a /, /the /}
[<N>]G = {/cat /, /dog /, /mouse /}
[<VI>]G = {/runs /, /sleeps /}
[<VT>]G = {/sees /, /chases /}
[<VP>]G = (runs | sleeps) | (sees | chases )(the | a )

(cat | dog | mouse )
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Before transformation we need to consider the rule <VP> → <VI>. This is a
unary rule. We eliminate it and add instead the rule

(2.57) <S>→ <NP><VI>

Now we begin the transformation. The grammar G� is based on the set { f1, f2, · · · , f11}

with Ω( fi) = 0 for i < 9 and Ω( fi) = 2 otherwise. We have

(2.58)

I( f0)() := a

I( f1)() := the

I( f2)() := cat

I( f3)() := dog

I( f4)() := mouse

I( f5)() := runs

I( f6)() := sleeps

I( f7)() := sees

I( f8)() := chases

I( f9)(~x, ~y) :=

~xa~y if ~x ∈ [<D>]G and ~y ∈ [<N>]G

undefined otherwise

I( f10)(~x, ~y) :=

~xa~y if ~x ∈ [<VT>]G and ~y ∈ [<NP>]G

undefined otherwise

I( f11)(~x, ~y) :=

~xa~y if ~x ∈ [<NP>]G and ~y ∈ [<VI>]G

undefined otherwise

The reader is asked to check that these modes correspond exactly to the rules of
the grammar (in its slight modification). The string /a cat sees the dog / is
derived by the term f11 f9 f0 f2 f10 f7 f9 f1 f3, as can be checked. o

G� is a grammar in the sense of Section 2.1. The grammar G� generates the
language of G in the wide sense, as the following theorem documents.

Proposition 2.17 Let G be a context free grammar. Then ~x ∈ L(G�) if and only if
there is a nonterminal X such that X `G ~x. In other words, L(G�) = Lw(G).

The proof is a relatively easy induction on the length of derivations. I shall relegate
this to the exercises.
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Example 17. The elimination of unary rules is not as innocent as it first appears.
In natural languages there are plenty of examples of zero-derivation. One example
is the conversion of adjectives to nouns in Hungarian. Typically, adjectives do not
inflect. However, in the absence of a noun they can inflect just as nouns and hence
should be regarded as such. Thus, the form /fehéret/ (accusative of /fehér/)
must be translated as “a white one”. Critically, also the nominative form /fehér/

can be so regarded and hence can be translated as either “white” or “a white one”.
Given a bottom up grammar these two are not confused. However, as long as we
do not treat meaning in addition there is no harm in this. This theme will be picked
up in Section 3.4. o

Notice that there is no way to generate only the language L(G), that is, all and
only the S -strings for the start symbol S . When we do a top down generation we
can simply choose to start with the start symbol and all the strings we generate
are sentences. However, in the bottom up process we cannot restrict ourselves to
generating just the sentences. We must generate all intermediate strings. On the
other hand there is no need to generate strings with extraneous symbols. In the
c-string grammar we can make up for this defect as follows. For a CFG in the
standard sense let

(2.59) Lc(G) := {〈~x, X〉 : X ∈ N, X `G ~x}

So, Lc(G) contains strings together with their categorial information; it does not
however single out a particular category. We can derive L(G) from Lc(G) by pick-
ing all ~x for which 〈~x, S 〉 ∈ Lc(G). This is a different notion of language than
the generated language in the wide sense. For in the latter we do not know what
the categories of the strings are; we just know that they have some category. On
the other hand, for a language in the wide sense there is no need to construct the
categories from the input data (as languages mostly do not always mark their ex-
pressions for category). The arity of fρ equals the number of nonterminals on the
right hand side of the rule.

The string based version presented above is not an exact equivalent of the
grammar G. In the exercises we shall show that these grammars may have quite
different derivations. To get a more exact correspondence we turn to c-strings. In
the case at hand we choose C := N. Thus c-strings are pairs 〈~x, A〉 where ~x ∈ A∗

and A ∈ N. The interpretation of the function symbol fρ is now the partial function

(2.60) C( fρ)(〈~y0, c0〉, 〈~y1, c1〉, · · · , 〈~yn−1, cn−1〉)
:= 〈~x0~y0~x1~y1 · · ·~yn−1~xn, f κ∗ (c0, c1, · · · , cn−1)〉
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where

(2.61) f κ∗ (c0, · · · , cn−1) :=

A if for all i < n: ci = Bi

undefined else

Then L(G) is a set of pairs 〈~x, c〉. We say that ~x has category c in G if some
G-term unfolds to 〈~x, c〉. A given string can have several categories.

Example 18. We continue the language of equations (Example 6 on Page 27).
The grammar GQ consists of the alphabet of terminals

(2.62) :bt: := {0, 1, +, -, (, ), =},

The alphabet of nonterminals is N := {E, B, T}, the start symbol /E/ and the set of
rules is as follows.

(2.63)
E→ T=T

T→ (T+T) | (T-T) | B

B→ B0 | B1 | 0 | 1

By default, a derivation starts with the letter /E/. Thus

(2.64) C = 〈:bt:,N, E,R〉

Recall that ‘|’ is an abbreviation. It allows to group together rules with the same
left hand side. Figure 2.1 shows an example of a derivation in GQ. In each step we
replace a single occurrence of a nonterminal by a corresponding right hand side
of (2.63). o

An X-derivation is a sequence of strings starting with the nonterminal X,
where each nonfirst member is obtained from the previous by replacing a nonter-
minal symbol in the appropriate way. A derivation is an X-derivation with X the
top symbol. For our purposes, however, the best objects to deal with are not the
derivations, but the analysis terms. The analysis term of a derivation is obtained
as follows. Assign to each rule ρ with n(ρ) nonterminals on the right a function
symbol fρ of arity n(ρ). This is the signature. Start with the variable x0. A step
in the derivation consists in the replacement of an occurrence of a variable xi by
a term of the form fρ(xi0 , xi1 , · · · , xin(ρ)−1) and the xi j are not already used. This
procedure is best explained with the derivation above.
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Figure 2.1: A derivation in GQ

E

T=T

B=T

0=T

0=(T-T)

0=(T-B)

0=(T-0)

0=(B-0)

0=(B0-0)

0=(10-0)

Example 19. Continuing Example 18. We give the following names to the rules.

(2.65)

a E→ T=T

b T→ (T+T)

c T→ (T-T)

d T→ B

e B→ B0

f B→ B1

g B→ 0

h B→ 1

Thus the symbols are called fa, fb, fc (binary), fd, fe, f f (unary), and fg and fh

(zeroary). The derivation is translated to a term as shown in Figure 2.2. The
variable that is being replaced is surrounded by a box. The exact recipe is this:
if the derivation replaces the nth nonterminal counting from the left, then it is the
nth variable from the left that is being replaced irrespective of its index. o

Now we shall supply the term symbols with interpretations that match the
effect of the rules. Call ~x an X-string if X `∗G ~x. Write LX(G) for the set of X-
strings of G. In our example LE(GQ) is the set of equations; these are strings of
the form /~x=~y/, where both ~x and ~y are T-strings. T-strings are terms; these are
strings of the form (a) ~x, where ~x consists of 0 and 1 only (a number expression,
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Figure 2.2: Deriving the term

E x0

T=T fa x0 x1

B=T fa fd x0 x1

0=T fa fd fg x1

0=(T-T) fa fd fg fcx0 x1

0=(T-B) fa fd fg fcx0 fd x1

0=(T-0) fa fd fg fc x0 fd fg

0=(B-0) fa fd fg fc fd x0 fd fg

0=(B1-0) fa fd fg fc fd fe x0 fd fg

0=(10-0) fa fd fg fc fd fe fh fd fg

or a B-string), (b) /(~x+~y)/ where ~x and ~y are T-strings, or (c) /(~x-~y)/ where ~x and
~y are T-strings. Finally, the B-strings are exactly the strings from {0, 1}+.

For example, ρ = B → B1 is a rule of GQ, and so we have a symbol fρ with
Ω( fρ) = 1. The function takes a B-string ~x and appends /1/. Hence:

(2.66) ι( fρ)(~x) :=

~xa1 if ~x is a B-string
undefined else

Similarly, if ρ′ = T→ (T+T) we postulate a symbol fρ′ with Ω( fρ′) = 2 and which
acts as follows:

(2.67) ι( fρ′)(~x, ~y) :=

(a~xa+a~ya) if ~x and ~y are T-strings
undefined else

As we have briefly noted above, the properties ‘B-string’, ‘T-string’ and so on can
actually be defined without making reference to the grammar.

We can use Example 19 to show that the transformation of CFGs preserves the
strings but not the set of terms. The rule d has the form T → B. It is converted
into the string function I( fd)(~x) = ~x, in other words the identity function. This
function is iterable, while the rule is not. Thus the term fd fd fg evaluates in σ(GQ)
to /0/:

(2.68) ι( fd fd fg) = I( fd)(I( fd)(I( fg)())) = I( fd)(I( fg)(0)) = I( fd)(0) = 0
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However, there is no derivation with term fd fd fg. Try to start with the symbol T,
for example:

(2.69)
T x0

B fd x0

? fd fd x0

Similarly if we start with /B/. (If you want a derivation beginning with the start
symbol, take the term fa fd fd fg fd fh.) It might be deemed that all we have to do is
to exclude unary rules. That this is not so is shown in Exercise 16.

We can characterise in more exact terms the connection between the two kinds
of grammars. Here is a characterisation of context free languages in terms of the
generating functions. It shows that if the functions are partial functions of a certain
kind and such that ranges of functions are subsets of domains (or disjoint) then
the generated language is context free (and conversely).

Definition 2.18 Let G = 〈Ω, I〉 be a grammar. G is called a concatenation gram-
mar if for all modes f , I( f ) is the restriction of a polynomial function of the string
algebra to some arbitrary set of sequences of strings.

This definition says the following. In a concatenation grammar a mode f inter-
preted as a partial function I( f ) : (A∗)Ω( f ) ↪→ A∗. While the domain is some
arbitrary set D ⊆ (A∗)Ω( f ), there must exist a polynomial function p such that
I( f ) = p � D. Notice namely that the string polynomials are total. These polyn-
nomials may be arbitrarily restricted. However, as we shall see, in context free
grammars there are tight restrictions on these domains. Say a polynomial p(~x) is
a linear string polynomial if it is composed from the variables xi and constants
such that each xi occurs exactly once. If p is a polynomial, we denote the induced
function by pA∗ . f : (A∗)n → A∗ is a rectangularly restricted linear string poly-
nomial if there is a linear string polynomial p(x0, · · · , xn−1) such that f ⊆ pA∗(~x)
and there are subsets Pi ⊆ A∗, i < n, such that dom( f ) = Xi<nPi. Now recall that
the grammar σ(G) uses precisely such functions. Thus we have

Proposition 2.19 If a language L ⊆ A∗ is context free then it has a grammar G
in which all function symbols are interpreted by rectangularly restricted linear
string polynomials.
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For the converse, a little more is needed. Namely, let H be a grammar such that all
I( f ) are rectangularly restricted linear polynomials. So for each f there are sets
Q f

i , i < Ω( f ), such that the domain of I( f ) is Xi<Ω( f )Q
f
i . Assume moreover that

for every g and i < Ω(g): either rng(I( f )) ⊆ Qg
i or rng(I( f ))∩Qg

i = ∅. We call this
the connectivity property for H. For each domain Q we choose a nonterminal
NQ (notice that NQ = NP if P = Q as sets). Further, for a function symbol f such
that dom(I( f )) = Xi<Ω( f )Q

f
i and rng(I( f )) ⊆ Qg

i we create a rule

(2.70) ρ f : NQg
i
→ ~x0NQ f

0
~x1NQ f

1
~x2 · · · ~xΩ( f )−1NQ f

Ω( f )−1
~xΩ( f )

where the ~xi are chosen such that I( f ) is the restriction of the polynomial

(2.71) pA∗(y0, · · · , yΩ( f )−1) := ~x0y0~x1y1~x2 · · · ~xΩ( f )−1yΩ( f )−1~xΩ( f )

This grammar is such that ~y is an NQ-string for some Q if and only if it is in L(H).

Proposition 2.20 If H is a grammar such that all I( f ) are rectangularly restricted
linear string polynomials and I has the connectivity property then L(H) is context
free.

Example 20. I give some examples to show that none of the conditions can be
dropped. First, the functions must be linear string polynomials. For take f (~x) :=
~x~x on the alphabet {a}. This function is induced by the polynomial p(x0) := x0x0.
It is not linear as the variable x0 occurs twice on the right. As it happens the
function generates the language {a2n

: n ∈ N, n > 0} from a. (Thus, add a constant
c to the signature with interpretation a.) One may be tempted to eliminate the
nonlinearity by using the following function instead.

(2.72) f (~x, ~y) :=

~x~y if |~x| = |~y|
undefined otherwise.

This (binary) function is the restriction of the polynomial p(x0, x1) := x0x1 to
the set of all pairs of strings of equal length. Unfortunately, this function is not
rectangularly restricted. There are no sets H, K such that the domain of f is
H × K. And the set of strings generable from a with this function is again the set
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{a2n
: n ∈ N, n > 0}. Finally, consider the following two functions. The first is a

modification of f :

(2.73) f (~x, ~y) :=

~x~y if ~x, ~y ∈ a∗

undefined otherwise.

The second is a unary function g defined by

(2.74) g(~x) :=

~xb if |~x| = 2n for some n
undefined otherwise.

Both these functions restrictions of linear polynomial functions to some rectan-
gles. Only the connectivity property is lacking. The generated language is

(2.75) a+ ∪ {a2n
b : n ∈ N, n > 0}

This is not context free. Hence all the conditions are really necessary and inde-
pendent of each other. o

This gives rise to the following definition.

Definition 2.21 A string grammar is called (bottom up) context free if it is a
concatenation grammar with rectangularly restricted linear string polynomials
with the connectivity property.

Notice that “context free” is applied not only to rule based grammars, but also to
c-string grammars and string grammars alike. Whenever there is risk of confusion,
the context free grammars in the sense of this book are called “bottom up context
free”.

I close this section with some remarks concerning the use of categories as
discriminatory devices. Suppose two strings are such that in a language they have
the same category. Then we will want to say that they should also be of the
same category in the analysing grammar. Recall that in a context free language,
the formal concept of identity of category was substitutability in all 1-contexts,
written ~x ∼L ~y.

Principle 1 (Identity of Indiscernibles) Let G be a context free c-grammar. If
~x ∼L ~y and 〈~x, c〉 ∈ L(G) then also 〈~y, c〉 ∈ L(G).

We shall not spell out the generalisation to other kinds of grammars, though it is
straightforward to do.
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Exercise 11. In Example 14 is was shown that the relation is a part of is not
transitive. Find an example to show that it is also not antisymmetric. (A relation
R is antisymmetric if from x R y and y R x follows x = y.)

Exercise 12. A grammar is left regular if the functions are zeroary or unary; and
the unary functions all have the form f (~x) := ~xaa for some a. Let L be a language.
Define ~x/L := {~y : ~xa~y ∈ L}. Show that for a regular grammar G generating L:
~x ∼G ~y if and only if ~x/L = ~y/L.

Exercise 13. Why does the bottom up grammar G� not contain any fρ for rules
of the form ρ = A→ B?

Exercise 14. Let G be a context free grammar and A a nonterminal. Let HA :=
{~x : A `G ~x}. Show that for every ~x ∈ HA HA ⊆ [~x]G. Give an example to show
that equality need not hold!

Exercise 15. Prove Proposition 2.17.

Exercise 16. Context free grammars allow to tune derivations more finely than
grammars in the sense of Definition 2.4. Here is an example, due to Ben George.
Let G consist of the rules

(2.76)
S→L | R

L→La | a

R→aR | a

Construct the corresponding grammar and show that it allows for more analysis
terms for the string /aaa/ than does G.

2.4 Indeterminacy and Adjunction

In the previous section we have constructed a “bottom up” version G� of a context
free grammar G. (I should stress here, though, that only G�, not G, is a grammar
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in the sense of this book.) In addition to the differences between these types
of grammars that I mentioned earlier there is a major difference between G and
G�. It is that by definition L(G�) is the set of all strings that are constituents
for some nonterminals as opposed to just the strings corresponding to the start
symbol. Thus the standard definition of L(G) for a CFG is contained in L(G�), but
the two need not be identical (cf. Prop. 2.17). The difference is exactly between
language in the wide sense and language in the narrow sense. Since I insist that
the language of a grammar must be taken in the wide sense we must ask if there
is a kind of grammar that generates the sentences all by themselves so that the
two notions actually coincide for this type of grammar. Such grammars do exist.
The adjunction grammars are of this kind. Unfortunately, these grammars turn
out to be somewhat different from the grammars previously defined in that the
defining operations generally are relations. Grammars of this form shall be called
indeterminate grammars (the label relational grammar has already been taken).
I shall return to indeterminate grammars again in Section 3.7 in connection with
interpreted languages.

Definition 2.22 An indeterminate grammar over A is a pair 〈Ω, I〉, where Ω is
a signature and for every f ∈ F, I( f ) ⊆ (A∗)Ω( f )+1. F is the set of modes of
the grammar. The set { f : Ω( f ) = 0} is called the lexicon of G, and the set
{ f : Ω( f ) > 0} the set of rules. The language generated by G, in symbols L(G), is
defined to be the least set S satisfying for every f ∈ F and all ~xi ∈ A∗, i < Ω( f ):

(2.77) If for all i < Ω( f ) : ~xi ∈ S and if 〈~x0, · · · , ~xΩ( f )−1, ~y〉 ∈ I( f ) then ~y ∈ S .

Thus, the output of a rule is not assumed to be unique. In a grammar of the usual
sort the output need not exist, but if it exists, it is unique. In an indeterminate
grammar it need not even be unique. Adjunction grammars are such grammars.
They are popular since they generate more than context free languages and en-
joy nevertheless quite a simple description. I point out that as soon as we move
to interpreted languages it will turn out that the indeterminacy will have to be
eliminated; see also the discussion in Section 3.7.

Definition 2.23 A 2-context is a triple γ = 〈~u,~v, ~w〉. The result of inserting a pair
〈~x, ~y〉 into γ is defined as follows:

(2.78) γ(〈~x, ~y〉) := ~u~x~v~y~w
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A 2-locale is a set of 2-contexts. A string adjunction rule is a pair ρ = 〈〈~x, ~y〉,Λ〉,
where Λ is a 2-locale.

According to the previous definition, the string relation associated with ρ is

(2.79) Adj(ρ) := {〈~u~v~w, ~u~x~v~y~w〉 : 〈~u,~v, ~w〉 ∈ Λ}

Definition 2.24 A string adjunction grammar is a pair A = 〈S ,R〉, where S is a
finite set of strings and R a finite set of string adjunction rules.

For a string adjunction grammar we define the following signature: let f~x be a
symbol of arity 0 for every ~x ∈ S ; and let gρ be a symbol of arity 1 for every
ρ ∈ R. This defines the signature. The interpretation is given by

(2.80) I( f~x) := ~x, I(gρ) := Adj(ρ)

With this definition, the formal apparatus of the previous sections can be used with
minor adaptations.

We say that G generates ~y in n-steps if the following holds: n = 0 and ~y ∈ S
or n > 0 and there is a ~z such that A generates ~z in n − 1 steps and there is a
rule 〈〈~x0, ~x1〉,Λ〉 and γ = 〈~u,~v, ~w〉 ∈ A∗ such that ~z possesses the decomposition
~z = γ(〈ε, ε〉) = ~u~v~w and

(2.81) ~y = γ(〈~x0, ~x1〉) = ~u~x0~v~x1~w

L(G) denotes the set of strings that can be generated in a finite number of steps.
An alternative way to define this notion is to define the value of terms to be sets.

(2.82) ιG( f s0 · · · sΩ( f )−1) :=

 ∏
i<Ω( f )

ιG(si)

 × A∗ ∩ I( f )

For a zeroary mode f~x we have

(2.83) ιG( f~x) = (1 × A∗) ∩ {~x} = {~x}

The other cases are similar.
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Example 21. We shall now give a presentation of the E-strings of the grammar
from Example 18 using a string adjunction grammar. We put

(2.84) S := {0=0, 0=1, 1=0, 1=1}

The rules are as follows. Let Λ1 be the set of triples 〈~ux,~v, ~w〉 such that x is
either /0/ or /1/ and ~v~w does not begin with /0/ or /1/. (This is equivalent with the
following: (1) ~v , ε and ~v does not begin with /0/ or /1/, or (2) ~v = ε and ~w (!)
does not begin with /0/ or /1/.) Let Λ2 be the set of triples of the form 〈~u,~v, ~w〉,
where both ~u does not end with /0/ or /1/, ~w does not begin with /0/ or /1/, while
~v ∈ {0, 1}∗.

(2.85)

ρ0 :=〈〈0, ε〉,Λ1〉

ρ1 :=〈〈1, ε〉,Λ1〉

ρ2 :=〈〈ε, 0〉,Λ1〉

ρ3 :=〈〈ε, 1〉,Λ1〉

ρ4 :=〈〈(, +0)〉,Λ2〉

ρ5 :=〈〈(, +1)〉,Λ2〉

R :={ρ0, · · · , ρ5}

The signature is F := { f0, · · · , f3, g0, · · · , g5}, where the fi are zeroary and the gi

are unary. Further,

(2.86)

I( f0) := {0=0}
I( f1) := {0=1}
I( f2) := {1=0}
I( f3) := {1=1}

I(gi) := Adj(ρi)

Here is an example of a derivation:

(2.87)

f1 0=1

g5 f1 (0+1)=1

g2g5 f1 (0+10)=1

g5g2g5 f1 (0+(10+1))=1

The first line is in S . To get from the first line to the second we choose a decom-
position 0=1 = εa0a=1. Thus, choose γ = 〈ε, 0, =1〉. This is in Λ2 since ε does
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not end in /0/ or /1/, the middle string is a binary string and /=1/ does not begin
with /0/ or /1/. Thus we can apply the rule 〈〈(, +1)〉,Λ2〉. We get

(2.88) γ(〈(, 1)〉) = εa/(/a/0/a/+1)/a/=1/ = /(0+1)=1/

It may be checked that

(2.89)

ιG(g5g2g5 f1)
= {((00+1)+1)=1, (00+1)=(1+1), ((0+1)+10)=1, (0+1)=(10+1),

((0+1)+1)=10, (0+1)=(1+10), (00+(1+1))=1, 00=((1+1)+1),

(0+(10+1))=1, 0=((10+1)+1), (0+(1+1))=10, 0=((0+1)+10),

(00+1)=(1+1), 00=(1+(1+1)), (0+10)=(1+1), 0=(10+(1+1)),

(0+1)=(10+1), 0=(1+(10+1))}

o

Example 22. (Cf. Example 7.) We give another example: boolean logic in Pol-
ish Notation. The alphabet is :bool: = {∧, ∨, ¬, p, 0, 1}. A term in Polish Notation
is either /p/ followed by an index (a sequence of /0/ and /1/) or it is a function
symbol f (¬, ∧ or ∨) followed by Ω( f ) many terms. The formation rules using
adjunction grammars are as follows. The set of start strings is S := {p}. The rules
are

(2.90)

R := {〈〈0, ε〉, 〈A∗ · p, ε, A∗〉〉,
〈〈1, ε〉, 〈A∗ · p, ε, A∗〉〉,
〈〈¬, ε〉, 〈A∗, (p|∧|∨|¬) · A∗, ε〉〉,
〈〈∧p, ε〉, 〈A∗, (p|∧|∨|¬) · A∗, ε〉〉,
〈〈∨p, ε〉, 〈A∗, (p|∧|∨|¬) · A∗, ε〉〉}

Using the Exercises 4 and 5 we can see that this preserves termhood: the sum of
the elements added in the string is 0, and the sum of the prefixes is positive. The
original Polish Notation had no room for indices, but they pose no problem here.
It is easy to verify that any string in Polish Notation is derivable in this grammar.
o

It is easy to generalise the previous example to Polish Notation in general (see
the exercises). Furthermore, I describe in the exercises how one can derive an
adjunction grammar for bracketed notation as well.
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In the remainder of this section I shall describe two variants of adjunction
grammars that have been discussed in the literature.

Definition 2.25 A 2-locale Λ is factored if there are sets S ⊆ A∗ × A∗ and C ⊆ A∗

such that Λ = {〈~u,~v, ~w〉 : 〈~u, ~w〉 ∈ S ,~v ∈ C}. A rule is factored if its 2-locale
is. A contextual grammar is a string adjunction grammar in which every rule is
factored.

See [Martı́n-Vide and Păun, 1998] for an overview.

The most popular variant of adjunction grammars are however the tree adjunc-
tion grammars (TAGs). These grammars can be explained by a method of coding
trees into strings. To make matters even simpler, we simply declare certain strings
to be trees. Let N be a set, the set of nonterminal labels. Then N-trees over the
alphabet A are strings from A∪N∪{(, ), }. (a) x ∈ A∗ is an N-tree; (b) if ~ui, i < n,
are N-trees, and X ∈ N, then /(X~u0~u1 · · ·~un−1X)/ and / (X ~u0~u1 · · ·~un−1 X) /
is an N-tree. The adjunction rules have the following form. Let 〈~x0, ~x1〉 be a pair
such that ~x0 =  (X · · · , ~x1 = · · · X) and ~x0~x1 is an N-tree. Such pair shall be
called an N-adjunction tree. Given this tree, let

(2.91) Λ := {〈~u,~v, ~w〉 : ~u~v~w is an N-tree,~v = (X · · · X)}

The pair 〈〈~x0, ~x1〉,Λ〉 is called a tree adjunction rule. Notice that the category
X of the adjunction string must match the X in the locale. Also, the presence
of  blocks adjunction at a node. (The symbol  is not needed to code the tree
structure; its sole purpose was to restrict adjunction.) There are many variants of
TAGs. We have picked the most common form for comparison. The language
generated by a TAG G is however not the string language; rather it is the language
of yields. This is defined as follows. Put

(2.92)
h (x) :=

ε if x ∈ N ∪ {(, ), }
x else

h (x0x1 · · · xn−1) := h (x0)h (x1) · · · h (xn−1)

Then LY(G) := h [L(G)] is the language of yields, by definition the language
generated by G.

Exercise 17. Verify that the grammars from Examples 21 and 22 are contextual
grammars.
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Exercise 18. Let Ω be an arbitrary signature. Write an adjunction grammar for
all terms in Polish Notation in this signature.

Exercise 19. Let Ω be an arbitrary signature. Terms in this signature are now
written as follows. If f is binary, and s and t terms, then (asa f ata) is a term. If f
is unary then then f a(asa) is a term. If f is ternary and higher order, terms are of
the form f a(asa0,

a,a · · ·a ,asΩ( f )−1) is a term. Use the previous exercise to derive
an adjunction grammar for this language.

2.5 Syntactic Structure

Contemporary linguistics insists that what matters is not the string that we see but
rather its structure. Structure usually means tree structure. It has been stressed
by Chomsky that rules operate on constituents and not on strings. Moreover,
Transformational Grammar uses representations that contain the structure in them.
Formally, however, it is not clear whether the structure needs to be represented.
In this section I shall discuss a popular way to encode structure into the string.
Moreover, we shall investigate to what extent a context free language determines
the grammar from which it is generated.

Let us take a look at CFGs and tree structures. Given a string ~x and a grammar
G that generates it, G assigns a structure to ~x through a term in the following way.
Assume a term t for the string ~x. Then t = fρ(s0, · · · , sn−1), where n = Ω( fρ).

(2.93) ρ = A→ ~x0B0~x1B1 · · · Bn−1~xn

If n = 0, ρ = A→ ~x0, and we just let the tree consist of two nodes, one with label
~x0, and a preterminal with label A. In general, we create a daughter for each Bi

and attach the tree for si there, and a daughter for every nonempty ~xi whose label
will be ~xi (we avoid positing empty words).

We can code the derivation into the string. This is done by switching to a
grammar that distributes brackets, called Gb. This grammar is defined as follows.
We introduce for each nonterminal symbol X a pair of brackets (X and )X. Let
ρ = X → ~Y be a rule. Then

(2.94) ρb := X → (X~Y)X
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Gb contains in place of the rules R the set

(2.95) Rb := {ρb : ρ ∈ R}

Let ~x be a string. Each term t of ~x can be mapped to a term tb, which is defined by
replacing every occurrence of fρ by an occurrence of fρb , for every occurrence and
every ρ. Thus mapping t into a term tb of the bracketed grammar we find the string
~xt, which contains a record of t. ~x is obtained from ~xt by deleting the brackets and
the category symbols. More exactly, define a map d as follows.

(2.96)
d(a) :=

ε if for some X: a = (X or a = )X

a else

d(x0x1 · · · xn−1) := d(x0)d(x1) · · · d(xn−1)

Notice that the mapping d is many to one, since a given string can have many
derivations. Notice also that there may be derivations that lead to the same brack-
eted string. Thus the structure is intermediate between the string and the deriva-
tion, adding detail to the string but not enough to recover the entire derivation.

Example 23. Let G = 〈:blet:, {E, A, B}, E,R〉 where R contains the following
rules:

(2.97)
E→ AB | BA | EE

A→ AE | EA | a

B→ BE | EB | b

Now Gb = 〈:blet: ∪ {(E, )E, (A, )A, (B, )B}, {E, A, B}, E,Rb〉, with Rb consisting of

(2.98)
E→ (EAB)E | (EBA)E | (EEE)E

A→ (AAE)A | (AEA)A | (Aa)A

B→ (BBE)B | (BEB)B | (Bb)B

The string /abab/ can be derived in G in several ways. One is given by the se-
quence /E/, /EE/, /ABE/, /ABAB/, and so on; another is given by the sequence /E/,
/AB/, /AEB/, /ABAB/, and so on. These derivations give rise to the following brack-
eted strings:

(2.99)
(E(E(Aa)A(Bb)B)E(E(Aa)A(Bb)B)E)E

(E(Aa)A(B(E(Bb)B(Aa)A)E(Bb)B)B)E
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Erasing the brackets returns the original string. The derivation /E/, /EE/, /EAB/,
/ABAB/ on the other hand yields the first string again. o

Proposition 2.26 Gb is unambiguous.

The proof is straightforward. It rests on the usual bracket count of embeddings.

Notice however that the structure of ~x is a derived notion and the bracketed
string just a theoretical construct. The structure is actually an epiphenomenon.
It may be used in theoretical discourse but is in principle eliminable. This will
have to be reassessed when we turn to interpreted grammars. We discuss the
definitions and results first in the context of CFGs. We shall now discuss the
notion of constituent occurrence without adding brackets. Recall the definition
of an occurrence from Definition 2.11. Given a grammar G and a term t we can
assign constituent occurrences of substrings in a straightforward way. Choose a
subterm occurrence s and decompose t into t = t′(s). This means that t′(x0) is a
term with one free variable and it defines a function ιG(t′(x0)) : ~x 7→ ~u~x~v. This
means that 〈~u,~v〉 is a 1-context, and the substring that occurs in t is ιG(s). For a
constant term t, occ(~y, t) is the set of occurrences of ~y in ιG(t).

This definition basically repeats what is intuitively known. Moreover, from
the derivation we can uniquely assign a category to the string occurrence. The
following formalises the known substitution principle.

Definition 2.27 Let G be a CFG, t an A-analysis of the string ~x and C an occur-
rence of ~y in ~x. If C ∈ occ(~y, t) then C is said to be a constituent occurrence
of ~y in ~x under the analysis t. If C < occ(~y, t), the occurrence is said to be an
accidental A-occurrence if ~y ∈ LA(G). G is transparent if no constituent has an
accidental occurrence in a string of L(G). A language is transparent if it has a
transparent grammar.

Notice that we look at occurrences under a given analysis term t. A given string ~x
can in principle have several analyses. Suppose that a context free language L is
transparent. Then given a string ~x ∈ L we know that every substring occurrence
of ~x which is in L also is a constituent occurrence under every analysis. Thus
any context free grammar will assign the same constituent tree to ~x. This is very
useful for languages of analysis terms, because we need to know that they are
structurally unique. This is the case for TmΩ(V), as the next theorem asserts.
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Proposition 2.28 The language TmΩ(V) is transparent.

Proof. (For notation and facts see the Exercises 4 and 5.) Let s and t be terms,
and C = 〈~u,~v〉 an occurrence of s in t. We shall show that s is actually a subterm
occurrence of t by induction on t. For either (a) ~u = ε or (b) ~u , ε. If (a) is the
case then ~v = ε, that is, s = t, or else s is a proper prefix. This cannot be, since
this would imply γ(s) ≥ 0. Now in case (b) there is a an i such that the named
occurrence begins in ti. (Case 1) The occurrence is contained in ti, that is, ti = ~xs~y
for some ~x and ~y. Then we are done by inductive hypothesis. (Case 2) s overlaps
with ti. Then we have ~x, ~y and ~z all nonzero such that ti = ~x~y and s = ~y~z. Now
note that since −1 = γ(ti) = γ(~x) + γ(~y) and γ(~x) ≥ 0 (since ti is a term) we must
have γ(~y) < 0. but then s is not a term since γ(~y) ≥ 0 if ~y is a proper prefix. So
this case does not arise and we are done. �

Every constituent occurrence in ~x under t corresponds to a subterm occurrence
in t. We use this for the following definition. A term is simple if has no nontrivial
subterms.

Definition 2.29 Let G be a CFG, t an A-analysis of the string ~x and C an occur-
rence of a letter ~y in ~x. C is syncategorematic if the term to which it belongs is
not simple. A substring occurrence is syncategorematic if every letter is syncat-
egorematic and belongs to the same subterm. G is in standard form if no string
has syncategorematic occurrences.

A CFG is standard if the functions are terms. This definition can easily be gener-
alised. For a CFG, being in standard form means that the right hand side of a rule
cannot contain both a nonterminal and a terminal letter. For example, the standard
formulation of regular grammars is that they have rules of the form A → xB or
A→ x. Such grammars are not standard. It is easy to convert a CFG into standard
form. However, notice that this changes the language of the grammar, since for us
the language contains all constituents.

Example 24. We continue Example 23 above. The first derivation given by the
sequence /E/, /EE/, /ABE/, /ABAB/, /aBAB/, /abAB/, /abaB/, /abab/. In the string we
have the constituent occurrences 〈ε, ε〉, 〈ε, ab〉, 〈AB, ε〉 of category E; the occur-
rences 〈ε, bab〉 and 〈ab, b〉 of category A; and the occurrences 〈a, ab〉 and 〈aba, ε〉
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of category B. The string /ab/ has an accidental occurrence 〈a, b〉. The string /aa/

has no accidental occurrence although it is a substring of /aabb/. o

Proposition 2.30 Let G be a CFG, ~x ∈ L(G) and t an analysis term. Fix a con-
stituent occurrence of ~y in ~x under t. If ~y occurs as A in the context C, and ~z is any
string of category A of G, then C(~z) ∈ L(G).

Suppose now that we wish to give a syntactic analysis of a string language L. We
assume that the analysis is given in terms of a CFG. If that is so, we know that
the set of strings of L fall into finitely many classes, say, S i for i < n, and that if
~x, ~y ∈ S i then each constituent occurrence of ~x can be substituted by ~y and each
constituent occurrence of ~y can be substituted by ~x. This superficially looks like a
way to discover the grammar behind a given language.

The problem with this idea is that we do not know whether a given occur-
rence is a constituent occurrence. However there is one exception: a single letter
wherever it occurs can only occur as a constituent on condition that the grammar
contains no syncategorematic occurrences of symbols. It is easy to massage any
CFG into such a form without losing anything.

Example 25. The language of equations. In the form presented in Example 18
on Page 51. This grammar introduces /=/, the operation symbols and the brackets
in a syncategorematic way. It can be reformulated as follows. The original rule
set is

(2.100)
E→ T=T

T→ (T+T) | (T-T) | B

B→ B0 | B1 | 0 | 1

Now introduce a nonterminal for each symbol. For example, introduce /O/, /C/, /Q/

together with the unary rules

(2.101)

O→ (

C→ )

P→ +

M→ -

Q→ =
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Next replace the occurrence of the syncategorematic symbols above by the corre-
sponding nonterminal:

(2.102)
E→ TQT

T→ OTPTC | OTMTC | B

B→ B0 | B1 | 0 | 1

It is possible to simplify this grammar; we group /P/ and /M/ into just one symbol,
say, /H/. Then we have the following rule set:

(2.103)

O→ (

C→ )

H→ + | -

Q→ =

E→ TQT

T→ OTHTC | B

B→ B0 | B1 | 0 | 1

o

Notice that the grammars (2.101) and (2.103) are not only different grammars;
they in fact generate different languages. For example, the string /(/ is in the
language of (2.103), but not in (2.101). This is a consequence of the fact that we
defined L(G) to contain all constituents of G, not just the sentences.

Let us now turn to the idea of recovering the grammar from the set of strings.
We start with the assumption that our language is generated by a context free
grammar. This means that constituents are strings, and that a string is a part of
another string only if it is a subword. The standard substitution method starts with
the language L, and establishes for every ~x ∈ L the set of contexts:

(2.104) cntL(~x) := {〈~u,~v〉 : ~u~x~v ∈ L}

The syntactic classes are the context sets so obtained. We present an example first.

Example 26. Continuing Example 11. The language is generated by u, defined
by

(2.105)
t := Alex | Pete | Mary

u := t(and t)∗(sing | run | sings | runs )
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We consider words as units together with a following blank. (This makes the
calculations easier.) The context sets are as follows. Here is a more succinct
definition of the language:

(2.106)

a := and

v := sings | runs

w := sing | run

u = tv | t(at)+w

It turns out that the syntactic classes are the following: v, tv, w, a, t, ta, at, tat, atat,
atw, tatw. These are more classes and more constituents than the were present
in the original grammar even if we massaged the syncategorematic occurrences
away. o

The exercises give one more example. The problem with the substitution
method is that there is no way of telling whether an occurrence is accidental or
not. Consequently, the method will return context sets that are the sets of non-
constituent occurrences. In fact, we may end up with infinitely many context sets
(see the exercises). And this is not because of the finiteness of the data: even if
we had all data in our hands, the grammar is still underdetermined. Thus, there is
some art involved in establishing the subset of constituent occurrences. This set
can be different from the one for the original grammar. However, in the absence
of decisive evidence this is the best one can do.

Under certain circumstances we can know in advance that the set of nonter-
minals is going to be finite. A particular case is provided by primitive languages.

Definition 2.31 A language is called primitive if every substitution class contains
a string of length 1, that is, consisting of a single letter.

Evidently, since the alphabet is finite, there are finitely many substitution classes.
This does not guarantee the uniqueness of the solution (see the exercises) but it
narrows the choice considerably.

The language defined above is not primitive. This is because the set of E-
strings (which form a substitution class!) consists of strings of length at least 3:
an equation sign, and two terms on either side. Terms may not be empty, they
have length at least 1.
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Primitive languages can easily be turned into CFGs. Just observe that for each
letter a there is a substitution class [a]L. Let Na be the nonterminal representing
this class (if [a]G = [b]G then also Na = Nb). The rules are of the form

(2.107)
Na → a a ∈ A
Na → Nc0 Nc1 · · ·Ncn c0c1 · · · cn ∈ [a]L

This set is typically infinite, but a finite subset is enough to generate L, by assump-
tion on L.

We shall finally turn to the abstract case.

Definition 2.32 Let u and v constant Ω-terms and G a grammar. We say that u
and v are categorially equivalent, in symbols u ∼G v, if for all terms s(x): s(u)
is orthographically definite if and only if s(v) is. They are intersubstitutable, in
symbols u ≈G v, if and only if they are categorially equivalent and ι(s(u)) ∈ L(G)
if and only if ι(s(v)) ∈ L(G).

This definition does not talk about strings; it talks about terms. This is because the
term may be very complex while the string is very simple. Moreover, in absence
of any condition on the form of the rules it is not possible to assign any sensible
structure to the string.

Example 27. Here is a context sensitive grammar, consisting of the following
rules.

(2.108)

S→ ATB

T→ x | xT

Ax→ xA

AB→ y

In a derivation, first /A/ is generated to the left of the string. However, when the last
rule applies, /A/ has to be to the right. The system of constituents formed by this
grammar is quite confusing. It puts the occurrence of /y/ into a constituent with
all occurrences of /x/ (for each occurrence of /x/ there is a separate constituent,
though). o

Notice also that adjunction grammars in the general form may fail to allow
for an unequivocal assignment of structure. This is why tree adjunction grammars
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work differently from string adjunction grammars. In TAGs the constituent struc-
ture is by definition preserved while in string adjunction grammars it need not be.

Exercise 20. Show that the substitution classes of a context free grammar (con-
strued as a grammar in the sense of this book in the straightforward way) are of
the following form. Let N be the set of nonterminals, and P ⊆ N. Then a string ~x
is said to be of class P if for all Y ∈ N: Y ⇒∗ ~x if and only if Y ∈ P.

Exercise 21. Apply the method of context sets to grammar C1 of Example 9.
Show that the grammar that this gives is C2 (also from Example refstrings)! Show
that the language generated by either grammar is primitive.

Exercise 22. Let G consist of the rules S → ab | aSb. Establish the context
sets of all substrings and show that there are infinitely many of them. Show that
infinitely many context free grammars can be postulated on the basis of these sets.

Exercise 23. Let G be a context free grammar. Try to establish an inductive
definition of occ(~y, t). Hint. This definition will have to be inductive in the length
of ~y and t.

2.6 The Principle of Preservation

We have seen that the effect of substitution is unpredictable unless restrictions are
placed on the nature of the string functions. We propose here two principles that
simplify the situation. In the most ideal case, functions are only able to change
a string except by appending material to its left or right. If we required this we
get something slightly more general than context free grammars. To get some
more freedom we propose that grammars do not operate on the set A∗ but on some
slightly more general set of exponents, which we equate with (A∗)m for some m,
or perhaps

⋃
m∈N(A∗)m, as proposed in [Kracht, 2003].
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Principle 2 (Structure) Exponents are sequences of strings.

This is a heavy restriction but it still allows substantial freedom, more than is
immediately apparent. First of all, we have not said anything at all about the
alphabet from which the strings are formed. In conjunction with the Principle
of Structure Preservation this will simply be equivalent to saying that letters are
alphabetic letters; but I think that matters are not that easy. The problems of this
viewpoint will be discussed below. Let us for the moment remain with the idea
that the alphabet is simply the standard typographical alphabet. Then exponents
are strings of that alphabet—or, as I proposed above, sequences thereof. This
latter qualification is important. Consider the following principle.

Principle 3 (Structure Preservation) A rule may not break any string of the ex-
ponent or delete any parts of it.

This can be formalised as follows. The interpretation of a function symbol f is
a function from Ω( f ) many m-tuples to a single m-tuple of strings. So, ι( f ) =

〈t0, t1, · · · , tΩ( f )−1〉, where the ti are terms in m < Ω( f ) variables which are poly-
nomial functions in the string algebra

(2.109) 〈A∗, ε, a〉

over the signature Ωa := {〈ε, 0〉, 〈a, 2〉}. This means further that ti may use vari-
ables, constants for letters of A and for the empty string, and concatenation.

What these principles rule out is deletion of any kind; they also rule out break-
ing a constituent. However, what they do allow is discontinuity. A constituent may
consist of a bounded number of parts. Typically, we find that constituents consist
of just 1 or 2 strings. An example of the latter kind are the verbs of German (after
verb second has applied), the crossed dependencies in Dutch infinitives, and split-
DPs. Occasionally we find languages that seem to have arbitrarily fragmented
DPs, like Warlpiri or Jiwarli. However, even in the case of these languages it
is not entirely clear that the approach does not work; for these languages do not
break embedded clauses either. This needs further work.

We have so far only spoken about breaking or deleting strings. The next prin-
ciple talks about nonlexical rules.

Principle 4 (Syncategorematicity Prohibition) A rule may not add any occur-
rence of a given symbol.
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Again, this can be formalised by saying that the interpretation of functions uses
only definable term functions in Ωa, not polynomials. This allows for complete
reduplication (as in Malay), and it also allows for partial reduplication (modulo
a regular relation), as long as the parts can be represented as strings. The way it
does so is by stipulating that a given string may be repeated. This in fact does not
mean that a fixed symbol is introduced since the nature of the string to be redu-
plicated is unknown. An alternative to reduplication is the following. We allow
to concatenate two strings ~x and ~y on condition that they are identical. Thus, the
formation of the plural in Malay can be expressed in two ways: by a reduplication
rule, using a function

(2.110) r(x) = xax

or by partial concatenation, using the function

(2.111) c(x, y) =

xay if x = y
undefined else

The advantage of the latter is that every occurrence of a letter can be uniquely
traced back to a leaf. The disadvantage is that it creates too many substitution
classes. 1 Apart from that it is hard to distinguish this approach from the one based
on duplication, the more so since the rule is completely general, and the categories
will anyway turn out to be eliminable from the formulation of a grammar.

Another hard case to treat is the so-called tmesis. This is the coordination of
parts that are not words by themselves. For example, in German we have the words
/Urfeind/ and /Erzfeind/, both formed from /Feind/ “enemy” and a prefix /Ur/

“since very long ago” and /Erz/ “arch-”. What is striking is that while neither
prefix can be on its own, it is possible to say

(2.112) Ur- und Erzfeind

Similarly, verbal prefixes can be separated

(2.113) auf- und abladen “load and unload”
1If we look at this rule in combination with semantics (anticipating the next chapter) we find

that the reduplication approach will form the plural in the semantics by performing the step from
properties of individuals to properties of sets of individuals. The partial concatenation approach
however makes the plurals appear more like dvandva-compounds. The idea is that in the Malay
plural noun /anak-anak/ ‘children’, we get the plural meaning from extrapolating a dvandva from
‘child’ and ‘child’ rather than (the more natural) dvandva formed from different parts.
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Tmesis can be applied at the juncture of compounds and with certain prefixes. It
is in particular not free to apply to any morphological part of the word. A proper
formulation of tmesis under the conditions just sketched is not impossible but
requires great care.

What the principle does not allow is the addition of any concretely specified
symbol. For example, it may not say: “add an /s/ at the end”. This must be
represented alternatively as a binary rule concatenating the string to ~x. Again,
requiring this we do not so much restrict what can be done but rather how it can
be done. Yet, there is a problem with this requirement, and it runs as follows.
We practically assume that also bound forms are part of the language; that is, the
plural /s/ of English, even though it cannot occur on its own, is part of the English
language. However, that might just be an artefact of the requirement that only
words are free forms; and we may say that the language consists of more that just
the free forms. The semantics of the plural on the other hand is unproblematic or
at least not more problematic than that of any other item.

Now we turn to the question of the alphabet and the nature of the underlying
strings. Here, I admit, no unique and satisfying answer can be given. Two ex-
tremes exist: on the one hand we have alphabetic systems which are more or less
sound based (with complications of their own). On the other we have ideographic
systems like Chinese, which make a single letter correspond (again more or less)
to a morpheme. Chinese presents a good example of the predicament we are fac-
ing: if we base our analysis on the sounds then there are about 100 letters (vowels
in four tones plus consonants), or maybe somewhat more, given that pauses and
intonation contours must be taken on board as well. If, however, we base our
analysis on the alphabet of characters then we have an alphabet of up to 50,000
‘letters’. (The Chinese Standard Interchange Code, the most comprehensive of
the lists, has close to 50,000 characters.) The question that naturally arises is this:
which of the two should we choose? In principle, it seems, we should be able to
do both, but writing systems can be so artificial that it seems we ought to exclude
some of them from the analysis.2 But even if we do, the sound based approach
presents difficulties of its own. One is that the notion of part is somewhat obscure.
For example, we say that a string ~x is part of a string ~y if it is a subword. Thus,

2There was a way to write in Japan that used only Chinese characters and even Chinese word
order. The characters were augmented with numbers so that one knew in which way to read the
characters. Now, not only do the characters come out differently (the character for mountain is
read ‘yama’ in Japanese and ‘shān’ in Chinese), but they are also arranged according to Chinese
syntax.
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we may for example say that /eel/ is part of /reel/, or /ice/ is part of /rice/.
If we apply our substitution tests, however, we get quite a bizarre picture of the
language. Thus, we would like to apply substitution only to constituents, or, as we
have said above, study those strings (or sequences) that can be substituted for a
single letter. If letter can be equated with morph, or morpheme, we would get a far
more interesting grammar from our substitution tests than if we insisted on sounds
(or alphabetic characters). The disadvantage of the method is that it presupposes
what it ought to reveal: the primitive parts. However, as we shall see in the next
chapter, the notion of a morph(eme) makes perfect sense, because once we add
the meaning the alphabetic characters are in fact not the most basic elements, but
the morph(eme)s.

In stratificational linguistics we actually pursue both analyses at once. There
are various strata at which we have structure. Such frameworks have been pursued
among other by [Lamb, 1966] and [Mel’cuk, 1993 2000]. In our view the various
levels are mostly epiphenomenal and can be reconstructed on the basis of the
language (as a set) itself. I shall briefly discuss the reconstruction of levels in
Section 3.7.

Even if all this is granted, we still face a number of problems. Suppose, for
example, that our language is based on morphemes, which are the letters of our
alphabet. Then, by our principles above, these letters must surface in our strings
(or sequences of sounds). It follows that morphemes are sequences of characters
of the alphabet. If that is so, we must address exceptions to strict concatenation. I
mention here as representatives: final devoicing (as found in Russian and German,
for example), vowel harmony (as found, say, in Finnish, Hungarian and Turkish),
consonant lenition in Welsh, or consonant gradation in Sami ([Svenonius, 2007]).
Let us discuss the first case. Final devoicing is a process that turns any consonant
in the coda of a syllable into a voiceless consonant. For example, there are two
nouns in German, /Rad/ [Ka:t] “bicycle”, and /Rat/ [Ka:t] “council”. They sound
exactly the same. On the other hand, their respective genitives, /Rades/ [Ka:d@s]
and /Rates/ [Ka:t@s], do not. The reason is that the rules of segmentation put the
stop into the onset of the next syllable, where it does not undergo devoicing. If we
base ourselves on the written forms, no problem. The sounds however do pose a
problem. What can be the solution?

One solution ultimately rests on the distinction between complete and incom-
plete forms. Suppose that the base form comes without word end markers. So they
would be [Ka:d] and [Ka:t], respectively. Now, when we attempt to pronounce such



76 String Languages

a word, we must speak it in isolation, so we add a word boundary marker to its left
and right: [#Ka:d#] and [#Ka:t#]. After that, there is a process that will produce
the required form. This solution does explain the different outcomes, but it falls
short of complying with the Principle of Preservation. This applies to all other
phenomena listed above, which is why we have mentioned them. We shall there-
fore relax this principle a little bit. We shall assume that it is not the actual surface
forms that must be preserved but a more abstract form.

If we left matters at that we would basically remove all restrictions. We need to
restrict the abstraction. This is done as follows. We operate now with two levels:
SP (the surface phonological level) and DP (the deep phonological level). Each of
the levels uses the same alphabet (tentatively). The principles apply only to DP.
The actual strings of SP are obtained by applying a finite state transducer. In other
terms, the relation between DP and SP is a regular relation (see [Kracht, 2003] for
definitions and discussion). To account for German devoicing, we assume that at
DP no devoicing applies. The relation to SP, however, is such that every consonant
which happens to be syllable final is devoiced. This can be achieved using a finite
state transducer.

Let us briefly touch on the question of c-languages. If one wishes to include
categories into the language then the Principle of Preservation loses some of its
bite. It would namely be possible to introduce material into the category part
where it is invisible to the principles formulated above. I assume therefore that
when categories are added they cannot introduce a finer distinction than already
present in the functions:

Principle 5 (Categorial Granularity) For a c-grammar G and the associated
string grammar H, if 〈~x, c〉 ∈ L(G), and ~y ∼H ~x then also 〈~y, c〉 ∈ L(G).

Thus, the set of categories cannot differentiate the exponents in a finer way than
the string functions. The way this is phrased makes the principle somewhat cir-
cular. But you need to recall that the string categories are derived from the string
functions and ultimately from the language itself. Thus, bringing in an extra set C
of categories really is to serve the purpose of explicitly coding the categorial facts
rather than bringing back a lost dimension. However, I should note that adding
categories even with the Granularity Principle brings in extra power.
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Exercise 24. German nouns are written with an initial upper case letter. How-
ever, in compounds only the first letter is in upper case. For example, /Auto/ “car”
and /Bahn/ “way” result in the compound /Autobahn/ “highway”. (Observe sim-
ilarly /Erzfeind/ in the example above.) Propose a solution to this. Hint. There
are (at least) two solutions. One uses the regular relations, the other proposes
several forms for the same word.
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Chapter 3

Compositionality

The principle of compositionality is introduced in this chapter: it
concerns the relationship of strings with their meanings. To be able to
formulate it properly, we shall have to introduce interpreted languages
and grammars for them.

3.1 Compositionality

Let us begin with some exegetical remarks concerning the notion of composition-
ality. Here is what I regard as a standard definition of compositionality.

The meaning of a complex expression is a function of the meanings of
its parts and the mode of composition by which it has been obtained
from these parts.

Almost every word of this definition is in need of explanation. We begin with
the subject of the sentence: the meaning of an expression. To use this expression
here means to acknowledge that there first of all are expressions and meanings;
and that expressions have meanings. Immediately we start to ask ourselves what
expressions are and what meanings are. Since meanings are attributed to ex-
pressions, I take this to say that whatever expressions are, they must be part of
the language to begin with. Thus, strictly speaking, expressions must be strings.

79
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However, we have settled the question somehwat differently in Section 2.5; there
we concluded that expressions are sequences of strings. Moreover, they must be
sequences of strings of which we know what their meaning is. This is implicit in
the use of the definite determiner in ‘the meaning of an expression’. The use of
the definite determiner is somewhat troublesome: it may mean that an expression
has one and only one meaning; it may also mean that its meaning is not arbitrary.
If taken in the first sense expressions are unambiguous. I take this to be incorrect
and not the way in which ‘the’ is to be understood here (see also the discussion in
Section 3.5). Rather, I wish to plead that we interpret this as follows: given that
we are under way to investigate some given meaning of an expression, which is
one of the many that it may have, but we have fixed that one as opposed to others,
we have a recipe to get this meaning from whatever the components mean. Thus,
the definite determiner points to an implicitly made choice. I defer a definition of
what meanings are. So far we know this much: there are expressions (sequences
of strings) and meanings; a language consists of a relation between the two. This
is the original idea laid out in [Saussure, 1967].

One word still remains to be discussed: complex. To say whether an expres-
sion is simple or complex cannot be determined intrinsically; in fact, ‘complex’
here means the following. We are given a grammar G of the expressions. An
expression is G-simple if it is the value in G of a simple term; and an expression
is G-complex if it is the value in G of a complex term. Often, we omit mentioning
the grammar. It turns out that one and the same expression can both be simple
and complex; this is the case with idioms, for example. But it is also the case with
false idioms such as /caterpillar/. This expression is both simple and complex,
at least if we assume a grammar of English where compounding is performed by
concatenation. Notice that so far the grammar is just a context free grammar for
tuples of strings and knows nothing about the meaning. To make sense of the
above definition, however, we must assume that the grammar also handles mean-
ings together with expressions. For we wish to say, for example, that idioms are
simple. For although as expressions they are complex, their meaning is not de-
rived from the parts their expressions have.

We are thus led to assume that the definition of compositionality talks about
languages as relations between expressions and meanings and grammars that
generate such relations from a given finite set. It is this type of language and
grammar that we shall look at in detail in this chapter. We call them interpreted
languages and interpreted grammars. To finish explicating the definition, let us
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assume that we have such a grammar that generates not just expressions but pairs
of expressions and meanings. Such pairs we call from now on signs. A sign is
thus a pair σ = 〈e,m〉, where e is the exponent of σ and m the meaning. While it
cannot be said that in a given language a given expression has just one meaning
and a given meaning has just one expression, it is true by definition that a given
sign has exactly one exponent and one meaning. It thus seems that it is more ap-
propriate to exchange ‘expression’ in the above definition by ‘sign’. It therefore
reads as follows.

The meaning of a complex sign is a function of the meanings of its
parts and the syntactic rule by which it has been composed from these
signs.

Let us try to understand this definition further. A grammar generates signs; it
starts with a lexicon, which we may take to be a finite list of signs. In addition
it has some functions to generate signs from signs, in the same way as a string
grammar generates strings from strings.

A sign σ is simple if and only if it is the value of a simple term; it is complex if
and only if it is the value of a composite term. A given sign can be both simple and
complex. The previous problems have now disappeared. An idiom for example is
a sign that is simple but not complex, because its meaning is not obtainable in the
grammar in a regular way. (To be more exact, idioms are signs whose exponent
has another meaning together with which it forms a complex sign. The definition
of idiom is a truly delicate affair.) So, the definition begins by assuming that we
have a grammar G and a sign σ. Furthermore, we assume that there is a term t(~x)
and signs σ, σ0, · · · , σn−1 such that

(3.1) σ = t(σ0, · · · , σn−1)

In that case assume that σi = 〈ei,mi〉 and σ = 〈e,m〉. Then

(3.2) m = F(t,m0, · · · ,mn−1)

for some F that depends only on G. We can without further ado write tµ for the
function F(t, , · · · , ). Then the previous means that

(3.3) m = tµ(m0, · · · ,mn−1)
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It follows by a simple argument (induction on the length of t) that it is enough to
require (3.3) for t a basic function of G.

At last we need to clarify the notion of a mode of composition. First of all, we
use the same terminology as in the preceding chapter. We assume that we have a
finite set F of function symbols forming a signature 〈F,Ω〉 together with Ω. As
we saw above, for each f ∈ F there is an f µ satisfying (3.3). This is the meaning
function; there also is a function f ε such that

(3.4) e = f ε(σ0, · · · , σΩ( f )−1)

We shall see later that one would ideally impose some restrictions on f ε. Cru-
cially, we may understand mode as referring just to f , or as referring in fact to f ε.
Suppose for example that we have the following language L.

(3.5) L = {〈a, 0〉, 〈b, 1〉, 〈ab, 2〉, 〈ab, 3〉}

Assume that /ab/ is to be considered complex. If we understand a mode to be
a syntactic function this language cannot be compositional, for there is only one
function to compose /a/ and /b/.1 To make this even more precise: we shall assume
that what counts in the specific case is not the function as a whole but rather what
it does to the specific elements at hand. That is to say that we can also define the
following function:

(3.6) f (x, y) :=


xay if x = a and y = b

yay if x = aa and y = b

undefined else

This is a different function, but on the strings of the language it shows no differ-
ence to plain concatenation. We say therefore that f ε and gε count as the same
mode exactly when f ε(~σ) = gε(~σ). There are languages which satisfy composi-
tionality even with this strict identity of modes; many computer languages are of
that form. There simply is only one way to combine two constituents semantically;
the surface syntax may be flexible (allowing the use of brackets, for example), but
this is just a means of identifying the constituents. However, semantically, there
is just one way to combine two meanings. Natural languages are quite different in
this respect. Many expressions are naturally ambiguous.

Let us now settle down on the final definition of compositionality:
1Well, there are two: f (x, y) := xay g(x, y) := yax. But this can be handled by constructing a

more complex example.
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A language is compositional if there is a grammar G based on a sig-
nature 〈F,Ω〉 if for each f ∈ F there is a function f µ such that if
σ = 〈e,m〉 and σi = 〈ei,mi〉, i < Ω( f ), are signs such that

(3.7) σ = f (σ0, · · · , σΩ( f )−1)

and g is the same mode as f then

(3.8) m = gµ(m0, · · · ,mΩ( f )−1)

Notice that from (3.7) we deduce that

(3.9) m = f µ(σ0, · · · , σΩ( f )−1)

since f is the same as f . However, there could be more modes that are the same
as f . Three notions of sameness come to mind: (a) f = g (symbolic identity),
(b) f ε = gε (extensional identity), and (c) f ε(~σ) = gε(~σ) (casewise identity).
Option (c) is the least strict on the functions (and therefore induces the strictest
condition on compositionality); in that case, any two functions which are defined
at all on the input (and return the output string) are the same for the purpose of the
definition.

A last point to mention is that strings may have categories. In that case we may
further refine the notion of identity, allowing functions to depend on the categories
of the arguments. I shall discuss the ramifications of this option below.

I shall now review some alternative definitions of compositionality. First, there
is a tradition to use a more elaborate structure than the string, namely a tree struc-
ture defined over the string. In fact there are several such structures, and it is one
of them that is actually interpreted, namely LF. The meaning of a particular LF is
actually independent of the way in which it was obtained; however, as it has inter-
nal structure, its meaning can be obtained with reference to that structure. I shall
return to the question of the viability of this proposal in Section 5.4. Here I just
notice that to safeguard themselves from a different interpretation of composition-
ality some people have named the concept used here rule-to-rule composition-
ality, or direct compositionality (see the volume [Barker and Jacobson, 2007]).
I shall not follow that usage partly because I think that the alternative notions are
too weak to yield interesting results.

More interesting therefore are definitions that are more restrictive than the one
given here. [Szabó, 2000] gives the following definition.
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The meaning of a complex expression is determined by the meaning
of its constituents and by its structure.

In his discussion, Szabó focuses mainly on the word ‘determines’. The idea is that
‘determines’ refers to some causal connection. Thus a language that uses just any
function is not good enough. Some essential link must exist between the structure
and the meaning. Thus, Szabó claims, we are led to assume that in order for the
meaning to be determined by the structure, meanings must be structured and there
must be a kind of structural parallel between syntax and semantics. The argu-
ments by [Pagin, 2003] go in the same direction, though his reasons are slightly
different. Pagin argues that speakers and hearers must be able to effectively find
meanings associated to expressions and conversely, and it is hard to imagine how
that can be done without some kind of structural similarity. The structure in mean-
ing is language independent, so this would among other imply a certain similarity
between all human languages. We have chosen not to go that way. One reason
for our choice is that the structure of meanings is something that we believe is too
poorly understood to give insightful results at this point; thus, I am not arguing
that meanings are not structured, I am only saying that the actual structure they
have—whatever it may be—is very hard to determine. The recent discussion in
[King, 2007] I do not find very revealing in this connection and too much language
bound. Should it turn out that meanings are structured our approach is neverthe-
less not invalid; there will then be more conditions on syntactic structure. I think
that one need not believe in structured meanings in order to establish a difference
between just any kind of meaning composition function and one that is ‘good’,
that is, ‘compositional’. I shall return to the question of natural meaning functions
in the next chapter.

Another notion of compositionality is that of [Hodges, 2001]. In essence, the
definitions are the same as the ones given here; there are however some techni-
cal differences that need to be pointed out. The main difference is that Hodges
assumes that meanings are given to an expression through a function; thus an ex-
pression always has a unique meaning. This simplifies the technical apparatus and
works well for artificial languages, but for natural language this is actually a prob-
lematic assumption. Notice that it eliminates ambiguity. Words such as /bank/

or /crane/ will not be considered ambiguous by the grammar. Moreover, the se-
mantic functions f µ will operate on the total meaning. This means the following:
an adjective such as /big/ does not simply operate on the different meanings of
/crane/ independently; rather, it operates on the combined meaning of the two.
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Let us make that concrete. /crane/ either means a type of birds—call this mean-
ing crane′b—, or a type of machines—call the meaning crane′m. The meaning
function now associates with it the concept crane′b ∨ crane′m, which is true of x if
and only if x is either a bird crane or a machine crane. The meaning big′ of /big/

on its part takes the whole concept and forms the concept of being-a-big-crane.
Evidently, big bird cranes are far smaller than big machine cranes, so we expect
the idea of a big bird-or-machine-crane to be different from both.

We may try to save the theory by proposing that the meaning of an ambiguous
item is the set of different meanings it has otherwise. Thus, we assign to /crane/

the meaning {crane′b, crane′m}. This opens problems of its own. For example, an
adjective will now apply to a set of what we otherwise would call meanings. How
does it apply to such a set? We will have to say that it applies to each member indi-
vidually. Thus we are already imposing a structure onto semantics (that meanings
are sets) that languages cannot override. All stands and falls with the question
whether a language contains genuinely ambiguous expressions. A defender of
the functional view will have to claim that expressions are not ambiguous in that
sense; they simply mean what they mean in all their totality. This is difficult to
maintain since it would deprive us of the possibility of differentiating between
idiomatic and nonidiomatic meanings of expressions. The expression “He kicked
the bucket” will have to have both the literal and the idiomatic reading as its mean-
ing simpliciter without there being a way to say what it is that makes the idiomatic
reading idiomatic.

Another problem with the functional account is that it assumes that all ambi-
guity is spurious. Suppose namely that there is a string ~x that can be derived in
several different ways. As the meaning of ~x is assumed to be unique, we want each
of the derivations to give us the unique reading. This is problematic for reasons of
structural ambiguity.

is square free or it is a product of two(3.10)
prime numbers and greater than 100.

This description can be read in two ways. It says that the number is greater than
100; or it is less or equal than 100 and then it is either square free of the product of
two primes. Alternatively, the number is either square free or it is not, and in the
latter case the product of two primes and greater than 100. In the second reading
71 satisfies the description, in the first reading it does not. The values for each of
the readings can be obtained using a compositional grammar. However, the sum
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of all values cannot be so given, since it would require the grammar to know in
each case about alternative readings. This cannot work. Of course, such a claim
needs rigorous proof. We shall return to this matter in Section 3.5.

I also add another feature that is frequently encountered in artificial languages
but not in human languages. I have above given an example of a language that
figures in [Zadrozny, 1994] to show that there are languages which we intuitively
consider not compositional. A critical analysis of this example reveals that the
intuition is based on the assumption that what is graphically complex (here the
string /ab/) also is syntactically complex. Since alphabets are small, ‘graphically
complex’ cannot always mean ‘consists of more than one letter’. Rather, it is taken
to mean: consists of more than one identifier, where identifiers are sequences of
letters not interrupted by special symbols. More complex criteria can be imag-
ined; what is important is that syntactic complexity is decidable regardless of the
underlying grammar. That this is so is a design property of formal languages; it
is built into the parser. It allows tokenisation to precede syntactic analysis. We
cannot likewise assume human languages to be built that way. The said property,
that complexity is decidable on the basis of of the string alone, is called morpho-
logical transparency. Human languages are therefore in general morphologically
intransparent. Idioms are a case in point.

3.2 Interpreted Languages and Grammars

We assume the setup of the previous chapter. As we have said, objects of a lan-
guage are sequences of strings over some alphabet (modulo a regular transduc-
tion). To avoid having to talk about the exact nature of syntactic objects, we
assume that they come from a set E. E can be, for example, A∗, but different
choices are possible (and often necessary).

To differentiate languages as sets of strings from the interpreted languages
defined below we shall call sets of strings string languages (though in fact we
have allowed the exponents to be sequences of strings).

Definition 3.1 Let E and M be sets (of exponents and meanings, respectively).
The members of E × M are called signs. For a sign σ = 〈e,m〉 define

(3.11) ε(σ) := e, µ(σ) := m
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e is the exponent of σ and m its meaning. A set L ⊆ E×M is called an interpreted
language over E. The projection

(3.12) ε[L] := {e : there is m ∈ M : 〈e,m〉 ∈ L}

is called the string language of L and the set

(3.13) µ[L] := {m : there is e ∈ E : 〈e,m〉 ∈ L}

the expressive power of L.

The meaning of σ is not to be confused with its denotation, a term that I wish to
avoid.

Definition 3.2 Let L be an interpreted language. L is unambiguous if for every
〈e,m〉, 〈e,m′〉 ∈ L we have m = m′. L is monophone if for every 〈e,m〉, 〈e,m′〉 ∈ L
we have e = e′.

Thus a language is generally defined to be a set of signs; that a sign is seen here
just as a pair and not a triple (see Section 3.2) is mainly due to the fact that form
and meaning are the most obvious components of it. The exponent can be seen,
heard or touched (think of Braille letters), and the meaning—although somewhat
hard to establish in exact detail—is what makes language a symbolic system. With
this definition we also return to the roots. The definition of a sign pairing form and
meaning is due to [Saussure, 1967]. (Chomsky also endorsed that view in [Chom-
sky, 1993], though the exponents in Generative Grammar are far more complex.)
De Saussure speaks of signifiant and signifié, rather than of exponent and mean-
ing. The straightforward generalisation of the definition of grammar would be the
following.

Definition 3.3 Let E be a set of exponents and M a set. An interpreted grammar
is a pair G = 〈Ω, I〉 where Ω is a finite signature and I a function that assigns to
a symbol f ∈ F a partial Ω( f )-ary function on E × M:

(3.14) I( f ) : (E × M)Ω( f ) ↪→ (E × M).

Furthermore,

(3.15) L(G) := {ι(t) : t ∈ TmΩ(∅)}

is the language generated by G.
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To put it somewhat more simply, given E and M, the set S := E × M is the space
of signs. If f is a function symbol, I( f ) is a partial n-ary function on S . Indeed,
the definitions of the previous chapter can be imported without much adaptation.
The only difference is that where we generated strings (or sequences thereof) how
we generate signs.

I remark here that we can always choose E and M in a such a way that E =

ε[L(G)] and M = µ[L(G)], though of course L(G) need not be identical with E×M.

Example 28. (See also Example 5.) If G is a grammar, L(G) is either finite or
countable. This is because we can effectively enumerate the terms, and there are
only countably many terms. Let now L be countable. Then there is a bijection
f : N → L. Define the grammar G in the same way as in Example 5. It is easy
to see that the terms are of the form snb for some n ∈ N. For this term we have
I(snb) = f (n). Thus this grammar generates L. We conclude that a language has a
grammar if and only if it is finite or countable. o

We refer the reader to the Appendix A for the relationship between a partial
function f : A ↪→ B×C and the projections πB ◦ f : A ↪→ B and πC ◦ f : A ↪→ C.
We apply this to the case at hand. The symbol f is interpreted by a function
I( f ) : (E × M)Ω( f ) ↪→ (E × M), and so we can factor I( f ) into a pair of partial
functions

(3.16) f ε := πE ◦ I( f ), f µ := πM ◦ I( f )

This means in more detail that for all signs σi, i < Ω( f ), we put

(3.17)
f ε(σ0, · · · , σΩ( f )−1) := ε(I( f )(σ0, · · · , σΩ( f )−1))
f µ(σ0, · · · , σΩ( f )−1) := µ(I( f )(σ0, · · · , σΩ( f )−1))

It follows that we have

(3.18) I( f )(σ0, · · · , σΩ( f )−1) = 〈 f ε(σ0, · · · , σΩ( f )−1), f µ(σ0, · · · , σΩ( f )−1)〉

This is written in a more concise form as

(3.19) I( f ) = f ε ? f µ
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Here, f ? g for f : An → C and g : Bn → D is a function from (A × B)n to C × D
defined by

(3.20) ( f ? g)(〈x0, y0〉, · · · , 〈xn−1, yn−1〉) := 〈 f (x0, · · · , xn−1, g(y0, · · · , yn−1)〉

(Notice that we write f (x0, · · · , xn−1) in place of f (〈x0, · · · , xn−1〉).) Now, in place
of a single interpretation function I we may also consider having two such func-
tions, namely Iε and Iµ, which we get as follows.

(3.21) Iε( f ) := πE ◦ I( f ), Iµ( f ) := πM ◦ I( f )

As we shall see, having two independent interpretations changes things dramati-
cally. So we shall give the new construct a name and call it a bigrammar.

Definition 3.4 Let E be a set of exponents and M a set of meanings. A bigrammar
over E and M is a triple G = 〈Ω, Iε, Iµ〉 where Ω is a finite signature and Iε

and Iµ functions that assign to a mode f two partial functions, namely Iε( f ) :
(E × M)Ω( f ) ↪→ E and Iµ( f ) : (E × M)Ω( f ) ↪→ M.

The concept of a bigrammar is a different concept as we shall show. If G =

〈Ω, Iε, Iµ〉 is a bigrammar then put I( f ) := Iε( f ) ? Iµ( f ). Then G× := 〈Ω, I〉 is an
interpreted grammar. Conversely, given an interpreted grammar G = 〈Ω, I〉, put
G× := 〈Ω, Iε, Iµ〉; this is a bigrammar.

It is easy to see that for every interpreted grammar G, G = (G×)×. However, it
is not generally the case that H = (H×)× for every bigrammar H. This is because
an interpreted grammar G = 〈Ω, I〉 can be turned into a bigrammar in several
ways. Notice namely that

(3.22) dom(Iε( f ) ? Iµ( f )) = dom(Iε( f )) ∩ dom(Iµ( f ))

However, the grammar G× has the property that

(3.23) dom( f ε) = dom( f µ)

Hence, a bigrammar of the form G× satisfies

(3.24) dom(Iε( f )) = dom(Iµ( f ))

We call a bigrammar satisfying (3.24) balanced. The following is easy to see.
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Proposition 3.5 Let H be a bigrammar. Then H is balanced if and only if (H×)×.

Proof. Clearly, if H = (H×)× then H is of the form G×, and so is balanced.
Conversely, if H is balanced then dom( f ) = dom( f ε) = dom( f µ) and so we have
dom(Iε( f )?Iµ( f )) = dom( f ). It follows that f = Iε( f )?Iµ( f ), and so H = (H×)×.
�

The terminology of Section 2.1 for grammars is taken over unchanged. For
example, the definition of analysis term is the same (it involves only the under-
lying signature) and the interpretation is defined inductively in the same manner.
The reason is that the same signature can be applied to generate string languages,
and to generate interpreted string languages (and even more complex languages,
which we shall consider below in Section 3.3). It just depends on the function I

what types of objects are generated. This is one of the reasons for our abstract
definition of grammars using signatures. For example, given an interpreted gram-
mar G = 〈Ω, I〉, we define the interpretation of a constant term t by induction as
follows:

(3.25) ιG( f s0s1 · · · sΩ( f )−1) := I( f )(ιG(s0), ιG(s1), · · · , ιG(sΩ( f )−1))

We use also the following notation. For terms t we let tε be the exponent of
ι(t) and tµ its meaning. A term t is semantically definite if tµ exists; and it is
orthographically definite if tε exists. We say that t is definite if it is both or-
thographically and semantically definite and indefinite otherwise. In a balanced
bigrammar a term is definite iff it is semantically definite iff it is orthographically
definite. In general however they are different, but only slightly. For a term of
the form t = f (u0, · · · , uΩ( f )−1) we either have that one of the ui is not definite, in
which case t is both semantically and orthographically indefinite. Or all of the ui

are definite, and then t is can be orthographically but not semantically definite, or
semantically but not orthographically definite.

Terms that contain variables are interpreted as partial functions from S N ↪→ S ,
where S is the space of signs, here E ×M. Given a sequence 〈σ0, σ1, · · ·〉 of signs
ι(t) computes the value of t where for every i ∈ N, xi is interpreted as σi.

Example 29. Let E := A∗ where A := {0, 1, +, -, (, ), =}. Let M := Z ∪ {>,⊥}.
F := { f0, f1, f2, f3, f4, f5, f6}. Ω( f0) := Ω( f1) := 0, Ω( f2) := Ω( f3) := 1, Ω( f4) :=
Ω( f5) := Ω( f6) := 2. ~x is binary if it only contains /0/ and /1/; ~x is a term if
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Figure 3.1: A Grammar for Binary Strings

(3.26)

J( f0)() := 〈0, 0〉
J( f1)() := 〈1, 1〉

J( f2)(〈~x, n〉) :=

〈~x0, 2n〉 if ~x is binary
undefined else

J( f3)(〈~x, n〉) :=

〈~x1, 2n + 1〉 if ~x is binary
undefined else

J( f4)(〈~x, n〉, 〈~y,m〉) :=

〈(~x+~y), n + m〉 if ~x, ~y are terms
undefined else

J( f5)(〈~x, n〉, 〈~y,m〉) :=

〈(~x-~y), n − m〉 if ~x, ~y are terms
undefined else

J( f6)(〈~x, n〉, 〈~y,m〉) :=


〈~x=~y,>〉 if ~x, ~y are terms and m = n
〈~x=~y,⊥〉 if ~x, ~y are terms and m , n
undefined else

it does not contain /=/. The grammar is shown in Figure 3.1. The signs that this
grammar generates are of the following form. They are either strings of 0s and 1s,
paired with the number that they represent as binary numbers. Or they are terms,
interpreted in the usual way; or they are equations between two such terms. A
single numeral expression is also a term. An equation is either true (in which case
it is interpreted by >) or false (in which case it is interpreted by ⊥). o

Example 30. We shall now define an unbalanced bigrammar that defines the
same interpreted grammar as the previous example. The semantic functions are
shown in Figure 3.3. For the bigrammar G = 〈Ω,Kε,Kµ〉 we find that G× =

〈Ω, J〉. However, it does not satisfy the equations (3.24). For example, Kε( f2)(〈(1+1), 2〉)
is undefined while Kµ( f2)((1+1), 2〉) = 4, since Kµ does not look at the exponent.
Notice that the semantic functions are not total, but could easily be made to be.
Notice also that they do not depend on the exponent, so they can be further sim-
plified. This will be discussed in detail in Section 3.3. o
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Figure 3.2: An Unbalanced Bigrammar for Binary Strings I

(3.27)

Kε( f0)() := 0

Kε( f1)() := 1

Kε( f2)(〈~x, n〉) :=

~x0 if ~x is binary
undefined else

Kε( f3)(〈~x, n〉) :=

~x1 if ~x is binary
undefined else

Kε( f4)(〈~x, n〉, 〈~y,m〉) :=

(~x+~y) if ~x, ~y are terms
undefined else

Kε( f5)(〈~x, n〉, 〈~y,m〉) :=

(~x-~y) if ~x, ~y are terms
undefined else

Kε( f6)(〈~x, n〉, 〈~y,m〉) :=

~x=~y if ~x, ~y are terms
undefined else

Let me conclude with a few words on the algebraic treatment. A grammar
G = 〈Ω, I〉 can also be viewed as a partial Ω-algebra defined over the space E×M
(see Appendix A for definitions). Bigrammars have no straightforward algebraic
equivalent. Exercises 33 and 34 will pursue this theme.

Exercise 25. It is possible to interpret the modes f2 and f3 by the string functions
~x 7→ 0a~x and ~x 7→ 1a~x. Show that it is however impossible to use the meaning
functions given above with these string functions.

Exercise 26. (Continuing the previous exercise.) Give a grammar that gener-
ates the language of equations using the string functions above. (Evidently, the
functions on meanings must be quite different.)
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Figure 3.3: An Unbalanced Bigrammar for Binary Strings II

(3.28)

Kµ( f0)() := 0
Kµ( f1)() := 1

Kµ( f2)(〈~x, n〉) :=

2n if n ∈ Z
undefined else

Kµ( f3)(〈~x, n〉) :=

2n + 1 if n ∈ Z
undefined else

Kµ( f4)(〈~x, n〉, 〈~y,m〉) :=

n + m if m, n ∈ Z
undefined else

Kµ( f5)(〈~x, n〉, 〈~y,m〉) :=

n − m if m, n ∈ Z
undefined else

Kµ( f6)(〈~x, n〉, 〈~y,m〉) :=


> if m, n ∈ Z and m = n
⊥ if m, n ∈ Z and m , n
undefined else

Exercise 27. Let G = 〈Ω, I〉 be a grammar. Show that there is a bigrammar
G• = 〈Ω, Iε•, I

µ
•〉 such that (G•)× = G and such that for every f ∈ F, Iε•( f ) is total.

(Dually, we can construct G• such that Iµ•( f ) is total for every f ∈ F.)

Exercise 28. (Using the previous exercise.) Show by giving an example that
we cannot expect both Iε•( f ) and I

µ
•( f ) to be total. Hint. This should be totally

straightforward.

3.3 Compositionality and Independence

In this section we shall look at the interdependence between the components of
a sign. We shall look at ways of formulating the grammar in such a way that the
exponents and meanings are completely independent. We have so far assumed
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that the modes are interpreted as functions on signs. As such they have the form

(3.29) I( f ) = f ε ? f µ

with the functions defined as given in (3.24). If, however, we start with a bigram-
mar we simply put

(3.30) f ε := Iε( f ), f µ := Iµ( f )

In this case, as we observed, (3.24) does not necessarily hold any more. Although
we do not always mention this fact, the reader is asked to be aware of the possi-
bility of using a bigrammar in place of a grammar, which is a more subtle notion
of grammar.

There are two senses in which these equation (3.29) can be required to hold. I
call the first the strict sense: the equation is valid as stated above. That means that
the equation specified is valid even if the relevant functions are applied to signs
that are not in the language. The extensional sense requires that the equations only
hold for the language of the grammar. This is formally expressed in (3.33).

(3.31) I( f ) � L(G) = ( f ε ? f µ) � L(G)

Here if f : An → B and C ⊆ A,

(3.32) f � C := {〈~c, f (~c)〉 : ~c ∈ C}

These two viewpoints really are different. It is assumed that the grammatical
formation rules are more general; they may be applied to words (and meanings)
that do not exist. For example, we may introduce new words into a language or
create new idioms. What we find is that more often than not the morphological
rules know how to deal with them. If the rules were just defined on the language
as it is, we would have to artificially extend the interpretation of the modes as soon
as new entries get introduced into the lexicon. Consider for example the nouns of
Malay (cf. also the discussion in Example 34 below). Malay nouns reduplicate in
the plural. Now suppose a new word, say, a loanword from English is introduced.
Will it be reduplicated or will it be used with the English plural? Exactly such
kind of question is studied in the so-called ‘wug-test’, where people are asked to
form the plural of a word that is not English. If a speaker forms a plural of such a
word it means that his morphological functions are more general; they operate on
words that are not English, and they operate even in the absence of any semantics.
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Children are in a similar situation. When they grow up they will have to guess how
the plural of nouns is formed. It is not realistic to assume that they will simply
learn the plural of each word individually. Rather, they will abstract a general rule
that can be used on new words as well. And they can both understand what is
a morphological plural and what is the concept behind plurality. And both seem
to be independent. Notice that the idea of a human grammar as different from
a formal grammar is irrelevant here. Formal languages often do display similar
differences. And though the wug-test seems to indicate that there is a uniform rule
of plural formation in English it is not clear that all people have the same abstract
formation rule. Not only does individual variation exist (showing us extensional
differences, that is, differences in the languages of the speakers); also it is quite
conceivable that intensional variation exists. In other words, it is conceivable that
when presented with a nonexistent verbal root, German speakers will differ as to
how it will be inflected even when they otherwise agree on existing verbs (though
I am not aware of a positive result showing this).

Thus, we assume with some justification that the functions above are possibly
defined on signs outside of the language generated by the grammar. Neverthe-
less we shall study the behaviour of the functions in the intensional sense. This
is because it is easy to return to the extensional sense by restricting the origi-
nal functions to L(G). Formally, this may be expressed as follows. We say that
G′ = 〈Ω, I′〉 is an extensional variant of G = 〈Ω, I〉 if L(G′) = L(G) and for
every mode f , I′( f ) � L(G) = I( f ) � L(G). Extensional variants cannot be distin-
guished from each other by looking at the language they generate; but they might
be distinguishable by introducing ‘nonce signs’.

Let’s return to the equation (3.29) above. I shall rewrite it as follows:

(3.33)
I( f )(〈e0,m0〉, · · · , 〈eΩ( f )−1,mΩ( f )−1〉)
= 〈 f ε(〈e0,m0〉, · · · , 〈eΩ( f )−1,mΩ( f )−1〉),

f µ(〈e0,m0〉, · · · , 〈eΩ( f )−1,mΩ( f )−1〉)〉

We say that a grammar is compositional if f µ does not depend on the ei. This can
be restated as follows. (For notions of independence, see the Appendix A. For
partial functions, independence is weak independence by default.)

Definition 3.6 A bigrammar G is semicompositional if for every mode f , f µ is
independent of the exponents of the signs. If the f µ are strongly independent of
the exponents, G is called compositional. G is extensionally compositional if it
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has an extensional variant that is compositional. An interpreted language L is
compositional if there is a compositional bigrammar G such that L = L(G).

The notion of semicompositional may easily be confused with compositionality.
The difference is not in the value that the function yields: it is unique. The differ-
ence is whether the choice of certain expressions can make the semantic function
undefined when it has a value for at least some expressions. In a compositional
grammar this is excluded while a semicompositional still allows for that possibil-
ity. See Example 33 for a semicompositional grammar that is not compositional.

We extend these notions to interpreted grammars as follows. For an interpreted
grammar G, G is P if and only if G× is P (see Page 89 for notation). So, G is
semicompositional if and only if G× is. Notice that a language is compositional if
and only if it has a compositional interpreted grammar.

If G is extensionally compositional or semicompositional then for every mode
f there exists a partial function f µ∗ : MΩ( f ) ↪→ M such that

(3.34) µ(I( f )(σ0, · · · , σΩ( f )−1)) >
= f µ∗ (µ(σ0), · · · , µ(σΩ( f )−1))

The sign >
= means that the left and right hand sides are equal if defined; and more-

over, the right side is defined if the left hand side is, but the converse need not
hold. If G is compositional then also the left hand side is defined if the right hand
side is, so full equality holds. In that case we can put

(3.35) f µ∗ (m0, · · · ,mΩ( f )−1) := f µ(〈e,m0〉, 〈e,m1〉, · · · , 〈e,mΩ( f )−1〉)

where e is chosen arbitrarily. Since by assumption f µ does not depend on the
exponents, any choice of e will give the same result. Another definition is to take
the full image of the function f under projection. Recall that an n-ary function g
on signs is a subset of (E × M)n+1. For any such function put

(3.36) µ[g] := {〈µ(σ0), · · · , µ(σn)〉 : 〈σ0, · · · , σn〉 ∈ g}

Then we may alternatively define f µ∗ by

(3.37) f µ∗ := µ[I( f )]

Independence from the exponents guarantees that this is a function. We see here
more explicitly that f µ∗ is a partial function only on meanings. Suppose now
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that L is compositional; this means that there is a compositional grammar G
such that L = L(G). This means in turn that for every σ ∈ L there is a term
t such that σ = ιG(t). If t = f s0 · · · sΩ( f )−1 then the meaning of ιG(t) equals
f µ∗ (µ(ιG(s0)), · · · , µ(ιG(sΩ( f )−1))), which is to say that, given that the σi are the
parts of σ, the meaning of σ is the result of applying the function f µ to the mean-
ing of its parts. However, notice that we have two senses of compositionality, the
simple (intensional) and the extensional. For a language to be compositional we
may require the existence of either an extensionally compositional grammar, or of
a compositional grammar. For if an extensionally compositional grammar exists,
there is a compositional variant, which by definition generates the same language.

Notice a further consequence. If G is extensionally compositional then we can
produce an extensional variant in the following way. Put

(3.38) f̂ ε := (ε ◦ I( f )) � L(G)

This function is defined exactly on the signs of L(G). Now take as f̂ µ∗ any function
extending f µ∗ .

Example 31. Here is an example. Let G = 〈Ω, I〉 be a grammar containing a
binary mode f , and a unary modes gi, i < 3, where

(3.39)
I(g0)() = 〈ed, past′〉
I(g1)() = 〈laugh, laugh′〉
I(g2)() = 〈car, car′〉

Here, I am assuming the following type assignment: car′ : e → t, laugh′ : e →
s→ t and past′ : (e→ s→ t)→ (e→ s→ t).

(3.40) I( f )(〈e,m〉, 〈e′,m′〉) := 〈eae′,m′(m)〉

This means that semantically, the only meaningful combination is past′(laugh′).
We now extend f µ in such a way that it also takes the pair 〈car′, past′〉 and returns
some value. Then put

(3.41) f̂ ε(e, e′) :=

eae′ if e = laugh and e′ = ed

undefined

This grammar generates the same output language. o
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A particular choice that we may take is µ[I( f )]. This is sufficient. Notice
however that this may still be a partial function. Any function extending it will
also do, but nothing less.

In and of itself this seems to capture the notion of compositionality. However,
it presupposes a notion of a part and mode of composition. There are two ways
to understand ‘part’ and ‘mode of composition’. We may simply say that it is the
grammar that defines what is part of what, and what is a mode. Or we may say
that the notion of part is not arbitrary. Not every grammar implements a correct
notion of ‘part of’. Not every grammar therefore uses a good notion of ‘mode of
composition’. In [Kracht, 2003] I have put the restrictions into the definition of
compositionality. Here I shall keep them separate.

Signs are pairs; switching the order in the pair gives rise to the dual of the sign.
Switching the order in the entire language defines the dual of the language. Notice
that most technical notions do not distinguish between exponents and meanings,
so they can be applied to both a language and its dual. The notion dual to compo-
sitionality is known as autonomy.

Definition 3.7 A bigrammar G is semiautonomous if for every mode f the func-
tion f ε is weakly independent of the mi. If f ε are also strongly independent of
them mi, G is called autonomous. G is extensionally autonomous if it has an ex-
tensional variant that is autonomous. An interpreted language L is autonomous
if there is an autonomous bigrammar G such that L = L(G).

Semiautonomy says that the exponent of a complex sign is the result of applying
a certain function to the exponent of its parts, and that function depends only on
the leading symbol of the analysis term. One consequence is that for every mode
f there exists a partial function f ε∗ : EΩ( f ) ↪→ E such that

(3.42) ε(I( f )(σ0, · · · , σΩ( f )−1)) >
= f ε∗ (ε(σ0), · · · , ε(σΩ( f )−1))

Again, if the left and side is defined then the right hand side is as well, but not
conversely. In an autonomous grammar, also the converse holds.

Finally, we say our language is independent if both syntax and semantics can
operate independently from each other.

Definition 3.8 A bigrammar is independent if it is both compositional and au-
tonomous; it is extensionally independent if it is both extensionally compositional
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and extensionally autonomous. A language is independent if it has an indepen-
dent bigrammar.

Thus G is independent if for every f there are functions f ε∗ and f µ∗ such that for all
σi = 〈ei,mi〉, i < n:

(3.43) I( f )(σ0, · · · , σΩ( f )−1) = 〈 f ε∗ (e0, · · · , eΩ( f )−1), f µ∗ (m0, · · · ,mΩ( f )−1)〉

with the left hand side defined if and only if the right hand side is. (The functions
f ε∗ and f µ∗ are defined as ε[Iε( f )] and µ[Iµ( f )], respectively.) Another formulation
is as follows:

(3.44)
Ω( f ) Ω( f )

I( f ) = ( f ε∗ ◦〈
︷   ︸︸   ︷
ε, · · · , ε〉) × ( f µ∗ ◦〈

︷   ︸︸   ︷
µ, · · · , µ〉)

or

(3.45) I( f )(σ0, · · · , σΩ( f )−1)
= 〈 f ε(ε(σ0), · · · , ε(σΩ( f )−1)), f µ(µ(σ0), · · · , µ(σΩ( f )−1))〉

It may be thought that extensional independence follows from extensional auton-
omy and extensional compositionality. However, this is not so.

Example 32. We construct four different grammars to show that autonomy and
compositionality are independent notions. Let A := {a}, E := A∗; M := N. The
signature is { f0, f1, f2}, with f0 nullary and f1 and f2 both unary. We have

(3.46)

I( f0)() := 〈ε, 0〉

I( f1)(〈~x, n〉) :=

〈~xaa, n + 1〉 if |~x| = n
undefined otherwise

I( f2)(〈~x, n〉) :=

〈~xaa, n〉 if |~x| ≥ n
〈~x, n + 1〉 otherwise

Call this grammar U. The action of the unary functions on the space E × M is
shown in Figure 3.4. U generates the language D := {〈~x, n〉 : n ≤ |~x|}, as is easily
verified; the entry point is the origin, and everything is in D that is reachable by
following the arrows. Notice that the second clause of the definition for I( f2) is
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Figure 3.4: The Action of the Grammar U
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never used inside D. Thus, we could have made I( f2)(〈~x, n〉) undefined if n >
|~x|. That would give us an extensional variant of the original grammar. U is not
autonomous: I( f2)(〈a, 3〉) = 〈a, 4〉, but I( f2)(〈a, 1〉) = 〈aa, 1〉. So to compute the
exponent we need to know the meaning. It is not compositional either. For we
have I( f2)(〈aaa, 3〉) = 〈aaaa, 3〉), so to compute the meaning we need to know
the exponent.
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Consider the following variants of I, which agree on f0 and f1 with I:

(3.47)

Ia( f2)(〈~x, n〉) :=

〈~xaa, n〉 if |~x| ≥ n
〈~xaa, n + 1〉 else

Ic( f2)(〈~x, n〉) :=

〈~xaa, n〉 if |~x| ≥ n
〈~xaaaa, n〉 else

Iac( f2)(〈~x, n〉) := 〈~xaa, n〉

All of them only generate the language D. The grammar Uac := 〈Ω, Iac〉 is au-
tonomous and compositional (even independent). Uc = 〈Ω, Ic〉 is independent but
not autonomous. For we have µ(Ic( f2)(〈e,m〉)) = m, which is independent of e;
but we have ε(Ic( f2)(〈aa, 2〉)) = aaa , aa = ε(Ic( f2)(〈aa, 3〉)). Similarly we find
that 〈Ua := 〈Ω, Ia〉 is autonomous but not compositional. o

Finally, let us look at these concepts for bigrammars. If a bigrammar is au-
tonomous then it is possible to define an extensional variant of the form 〈Ω, Iε∗, I

µ
∗〉

where Iε∗( f ) is total. Namely, observe that there is a function g on exponents such
that

(3.48) Iε( f )(~σ) = g(e0, · · · , eΩ( f )−1)

Choose a total extension g∗ ⊇ g.

(3.49)
Iε∗( f )(~σ) := g∗(e0, · · · , eΩ( f )−1)

Iµ∗( f ) := Iµ( f ) ∩ dom(Iε( f ))

Then I∗( f )(~σ) is defined if and only if ~σ ∈ dom(Iµ∗( f )) = dom(Iε( f ))∩dom(Iµ( f )).
And in that case

(3.50)
〈Iε∗( f )(~σ), Iµ∗( f )(~σ)〉 =〈g∗(~e), Iµ(~σ)〉

=〈g(~e), Iµ(~σ)〉
=〈Iε(~σ), Iµ(~σ)〉

Example 33. From a grammar we can essentially make two bigrammars: one
where all the exponent functions are total, and another where the semantic func-
tions are total. With a bit of luck the first grammar is autonomous and the second
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compositional. Here is an example. Let A := {a}, E := A∗; M := N. The signature
is { f0, f1, f2}, with f0 nullary and f1 and f2 both unary.

(3.51)

I( f0)() := 〈ε, 0〉
I( f1)(〈~x, n〉) := 〈~xaa, n + 1〉

I( f2)(〈~x, n〉) :=

〈~xaa, n〉 if |~x| = n
undefined else

The definite terms are of the form f n
1 f0 or f2 f n

1 f0. The first bigrammar is as fol-
lows.

(3.52)

Inε ( f1)(〈~x, n〉) := ~xaa

Inε ( f2)(〈~x, n〉) :=

~xaa if |~x| = n
undefined else

(3.53)
Inµ( f1)(〈~x, n〉) := n + 1

Inµ( f2)(〈~x, n〉) := n

The second bigrammar is as follows.

(3.54)
Ioε ( f1)(〈~x, n〉) := ~xaa
Ioε ( f2)(〈~x, n〉) := ~xaa

(3.55)

Ioµ( f1)(〈~x, n〉) := n + 1

Ioµ( f2)(〈~x, n〉) :=

n if |~x| = n
undefined else

The grammar Gn is compositional but only semiautonomous; the grammar Go is
autonomous but only semicompositional. The reason is this. In Gn the functions
Inµ( fi) do not depend on the exponent, they are total and always yield a unique
value. On the other hand, Inε ( f2) weakly depends on the meaning:

(3.56) Inε ( f2)(〈aaa, 2〉) = undefined, Inε ( f2)(〈aaa, 3〉) = aaaa

Thus Gn is indeed semiautonomous but compositional. Likewise for the other
claim. However, it turns out that there is no bigrammar corresponding to G that
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is both autonomous and compositional. To see this, suppose G./ = 〈Ω, I./ε , I
./
µ 〉 is

such a grammar. Then for any given string ~x there is some n (namely |~x|) such that
I./ε ( f2)(〈~x, n〉) is defined. If the grammar is autonomous this means that for all m
I./ε ( f2)(〈~x,m〉) is defined. Hence the function I./ε ( f2) is total. Likewise we see that
I./µ ( f2) is total. It follows that dom(I./( f2)) = dom(I( f2)) is total. But this is not the
case in G. o

The independence of form and meaning has interesting consequences also for
the assessment of arguments concerning generative capacity. Both examples con-
cern the problem whether or not there is copying in syntax.

Example 34. This and the next example deal with the problem of reduplication.
In Malay, the plural of a noun is formed by redpulicating it: /orang/ means “man”,
/orang-orang/ means “men” (see also the discussion on Page 73). Thus, the
plural mode p in Malay is unary mode and is interpreted as follows.

(3.57) I(p)(〈e,m〉) :=

〈ea-ae, pl′(m)〉 if e is a noun
undefined otherwise

Under this interpretation, there is a plural morpheme with no fixed exponent; the
exponent of the morpheme depends on whatever the singular is. If Malay works
like this, then the grammar is not context free in the sense that it has non context
free rules. An alternative view however is to assume that Malay has a binary
operation q with the following interpretation.

(3.58) I(q)(〈e,m〉, 〈e′,m′〉) :=


〈ea-ae′, pl′(m)〉 if e and e′ are nouns

and e = e′

undefined otherwise

This means that each occurrence of the singular form is a true occurrence of a
constituent. A third account is this. Malay has a binary mode r defined by

(3.59) I(r)(〈e,m〉, 〈e′,m′〉) :=


〈ea-ae′, pl′(m)〉 if e and e′ are nouns

and m = m′

undefined otherwise

This looks similar to q but the difference is that the combinatorial restrictions are
now semantic rather than syntactic. This has repercussions on how powerful we
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believe the syntax of Malay is. If we think Malay uses p then the syntax uses
nonlinear polynomials, hence cannot be approximated by what is known as linear
context free rewrite systems (LCFRS). If we think that Malay uses p we think that
the syntax is an LCFRS, even context free, since the number of nouns is finite.
However, performing the substitution tests will reveal that there are as many form
classes as there are nouns. Finally, if we think that Malay uses q we think that the
syntax is context free and that there is essentially only one noun class. It is not
easy to distinguish between these alternatives. Only if Malay has two nouns e and
e′ with identical meaning can we check whether Malay uses p or q (though it is in
principle also possible to treat exceptions with extra modes as well). o

Example 35. [Manaster-Ramer, 1986] discusses a construction of English in
which a constituent is repeated verbatim:

The North Koreans were developing nuclear weapons(3.60)
anyway, Iraq war or no Iraq war.

∗The North Koreans were developing nuclear weapons(3.61)
anyway, Iraq war or no Afghanistan war.

The meaning is something like: “independent of”, “irrespective of”. As Manaster-
Ramer claims, the construction has the form /~x or no ~x/, where ~x is an NP
(determinerless!). The construction /~x or no ~y/where ~x and ~y are different does
not have this meaning. On this basis, Manaster-Ramer argues that English is not
context free. Bascially, the idea is that there is a unary mode f defined as follows.

(3.62) I( f )(〈e,m〉) :=

〈ea or no ae, irrespective-of′(m)〉 if e is an NP
undefined otherwise

I put aside the alternative with a binary operation that checks for string identity.
This construction is called the ‘X-or-no-X construction’ by [Pullum and Rawlins,
2007]. They observe that the second part of it need not be an exact copy. They
take this as evidence that this is not a requirement imposed by the syntax but a
semantic requirement. So the construction takes the form /~x or no ~y/, where
~x and ~y may be different but must be synonymous. I shall leave this point aside.
What [Pullum and Rawlins, 2007] propose is that rather than checking syntactic
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identity, English works with a binary mode g defined by

(3.63) I( f )(〈e,m〉, 〈e′,m′〉) :=


〈ea or no ae, if e, e′ are NP

irrespective-of′(m)〉 and m = m′

undefined otherwise

The problem is reminiscent of reduplication discussed earlier. Although [Pullum
and Rawlins, 2007] show that the resulting language is not context free, their
argument makes clear that there are two notions of generative capacity involved.
One is the purely syntactic capacity and the other is the capacity to generate signs.
Given a bigrammar 〈Ω, Iε, Iµ〉 we may either look at the language generated by
〈Ω, Iε∗〉 (pure syntax), or we may look at the language ε[L(G)]. The first is the set
of all syntactically well-formed sentences, the second the set of all syntactically
and semantically well-formed sentences.

The two analyses are not identical empirically. Suppose namely we have
expressions that are synonymous for all we know (say /Abelian group/ and
/commutative group/ then the two proposals make different claims about gram-
maticality. If syntactic identity is the key then using the expression

(3.64) Abelian group or no commutative group

cannot mean “irrespective of an abelian group”, whereas if semantic identity
counted, that would be perfect. I have not investigated this, though. o

Under the assumption of independence it is possible to extend some of the
results of formal language theory to the present setting. I give an instructive ex-
ample. A CF string language has the following property:

Lemma 3.9 (Pumping Lemma) Let L be a context free string language. Then
there exists a number cL such that for every ~x ∈ L of length at least cL there are
strings ~u,~v, ~w, ~y,~z such that

1. ~x = ~u~y~v~z~w;

2. ~x~y , ε;

3. for all n ∈ N: ~u~yn~v~zn~w ∈ L.
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For a proof see among other [Harrison, 1978]. This theorem has many strength-
enings, and all of them could be used in its place below. To be able to state the
extension properly, we need to look at two different equivalence relations induced
by a bigrammar 〈Ω, Iε, Iµ〉. Recall from Definition 2.14 the definition of a catego-
rial equivalence. The first is the equivalence ∼Gε , where Gε := 〈G, Iε × 1〉, where
1( f ) gives a unit value for every input (and is always defined). This equivalence
relation gives rise to the syntactic categories only. Another is the equivalence
∼G, induced by G itself. It is defined in the same way as Definition 2.14, the
only difference being that the definition is applied to a bigrammar. We say that
G is syntactically well regimented if ∼G=∼Gε . Intuitively, if a grammar is syn-
tactically well regimented then the combinability of signs can be determined by
looking at the exponents alone (which does not mean that the semantic functions
have to be total). Or, I( f )(~σ) is defined if only Iε(~e) is defined.

Theorem 3.10 Let L be an interpreted language that has a syntactically well reg-
imented CF bigrammar. Then there is a cL such that for all 〈~x,m〉 ∈ L where ~x
has length at least cL there are strings ~u,~v, ~w, ~y,~z, an element n ∈ M and unary
partial functions f , g on M such that

1. 〈~x,m〉 = 〈~u~y~v~z~w, f (p)〉;

2. ~x~y , ε;

3. for all n ∈ N: 〈~u~yn~v~zn~w, f (gn(p))〉 ∈ L.

The proof of the theorem proceeds basically in the same way as the proof of the
original Pumping Lemma. Given a string ~x we find a decomposition of the string;
furthermore, we know that the decomposition is in terms of constituents. In other
words, we have terms r(x0), s(x0) and a constant term t such that

1. ~x = rε(sε(tε))

2. ~y~v~z = sε(tε)

3. ~v = tε.

Put p := tµ, g(x0) := sµ(x0), and f (x0) := rµ(x0). This defines the functions. The
assumption of syntactic well regimentedness allows us to conclude that since the
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terms r(sn(t)) are all orthographically definite, they are also semantically definite.
Hence we have

(3.65) ιG(r(sn(t))) = 〈~u~yn~v~zn~w, f (gn(p))〉 ∈ L

Example 36. The assumption of the syntactic well regimentedness cannot be
dropped. Here is an example. Let E := v∗. According to [Thue, 1914] there is an
infinite word w0w1w2 · · · over {a, b, c} such that no finite subword is immediately
repeated. Let M := {w0w1 · · ·wn−1 : n ∈ N}. Our language is {〈vn,w0w1 · · ·wn−1〉 :
n ∈ N}. Here is a CF bigrammar for it: Ω( fa) = Ω( fb) = Ω( fc) = 1 and Ω(p) = 0.
The functions are defined as follows:

(3.66)

Iε(p)() := ε Iµ(p)() := ε

Iε( fa)(~x) := ~xav Iµ( fa)(~x) :=

~xaa if ~xaa ∈ M
undefined else

Iε( fb)(~x) := ~xav Iµ( fb)(~x) :=

~xab if ~xab ∈ M
undefined else

Iε( fc)(~x) := ~xav Iµ( fc)(~x) :=

~xac if ~xac ∈ M
undefined else

Suppose that the assertion of Theorem 3.10 holds for L. Then with the notation as
in the theorem we would have

(3.67) σ := 〈~u~y2~v~z2~w, f (g2(p))〉 ∈ L

However, g(~x) = ~x~e for some string ~e; and f (~x) = ~x~q for some ~q. So, f (g2(p)) =

p~e~e~q. By assumption on σ < L, since no string can repeat itself in a string from
M. o

The success of the previous counterexample rested in the fact that the same
syntactic function is split into different semantic functions. I conjecture that if
this were not the case the Theorem 3.10 will also hold for L even if the grammar
is not assumed to be syntactically well regimented. I simply conjecture that it can
be shown that the grammar has that property anyway. This would constitute a case
where the notions of compositionality based on identity of functions might actu-
ally be relevant. If compositionality is based on extensional identity of syntactic
functions (see Page 83) then Theorem 3.10 might hold without the assumption of
syntactic well regimentedness. However, this still awaits proof.
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I stress again that the diverse pumping lemmata discussed in the literature can
be generalised to interpreted languages in the same way (Ogden’s Lemma, the
strengthened form of [Manaster-Ramer et al., 1992], the lemmata for simple literal
movement grammars, see [Groenink, 1997], and so on). This is simply because
they are all based on the identification of constituents, which are meaningful units
of the language.

Exercise 29. Show how to generate the language of Example 33 using an inde-
pendent grammar.

Exercise 30. Suppose that L ⊆ E × M is an unambiguous countable interpreted
language. Show that L is extensionally autonomous. Show that the result holds
also if we assume that there is a number k such that for every e ∈ E there are at
most k many m with 〈e,m〉 ∈ L.

Exercise 31. Suppose that L is a monophone countable interpreted language.
Show that L is extensionally compositional. Note. Show that if G is defined only
on the signs from L, G already is extensionally compositional.

Exercise 32. Suppose that L ⊆ E ×M is a countable interpreted language which
is a partial bijection between E and M. Then L is independent.

Exercise 33. The following exercise points at some algebraic connections. I re-
fer to the Appendix A for basic algebraic concepts. Let E and M be given. Given
a signature Ω, we can think of a grammar as a partial Ω-algebra G = 〈E × M, I〉.
Now show the following. (a) G is autonomous if and only if the map ε is a homo-
morphism from G onto some algebra E = 〈E, J〉 of exponents; can you identify
the functions J( f )? (b) G is compositional if and only if µ is a homomorphism
from G onto some algebra 〈M,K〉 of meanings. Can you identify K( f )? Hint. (b)
is dual to (a).

Exercise 34. (Continuing the previous exercise.) Show that if a bigrammar is
independent then the algebra of signs that it generates is a direct product of its



3.4. Categories 109

algebra of exponents and its algebra of meanings.

3.4 Categories

Following the tradition in linguistics, I have assumed in [Kracht, 2003] that signs
are triples σ = 〈e, c,m〉, with e the exponent, m the meaning, and c the category
of σ. This is in line with [Keenan and Stabler, 2001], [Pollard and Sag, 1994],
[Mel’cuk, 1993 2000], not to mention Categorial Grammar, for which categories
are essential, and even recent LFG, which assumes a level of m-structures in ad-
dition to c-structure (syntax) and f-structure (semantics) and even a-structure (to
deal with argument handling), see [Falk, 2001]. However, from an abstract view-
point we must ask if categories are really necessary. After all, each level that is
added introduces new degrees of freedom and new ways to outplay restrictions in
other levels. And, to add to that, the categories are actually not directly observ-
able. [Chomsky, 1993] assumes that language pairs form with meaning. Whatever
this says in practice for Generative Grammar (and in practice the syntactic cate-
gories reappear in the form part), the initial hypothesis is the same: start with a
set of signs that contain only form and meaning. I am inclined to view categories
as basically encoding restrictions stemming from partiality (see [Kracht, 2006]).
This makes the formulation somewhat more transparent. For example, in a con-
text free grammar rather than making the string concatenation partial we may say
that on the level of exponents there is only one function, concatenation, which is
not partial; and that the partiality arises in the categories only. It turns out, though,
that one needs to be extremely cautious in thinking that the different formulations
are exactly the same. Time and again it appears that they are only the same in
‘normal’ circumstances and that counterexamples to their equivalence exist. This
section will elaborate on the theme of categories and prove some results only to
abandon them later. One result is that in case the set of signs contains only finitely
many categories they can be eliminated (Theorem 3.12), though we may be forced
to pay a price.

The formal details are as follows. A c-sign is a triple γ = 〈e, c,m〉. The space
of c-signs is given as a product E ×C × M. A c-language is a set of c-signs. Put

(3.68) H(γ) := 〈e,m〉

A c-grammar consists in a signature of modes 〈F,Ω〉 plus an interpretation func-
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tion C, which for given f returns a partial function (E×C×M)Ω( f ) ↪→ (E×C×M).
A c-grammar is autonomous if the exponent of I( f )(~σ) is strongly independent of
the categories and meanings of the input signs; it is compositional if the meaning
of I( f )(~σ) is strongly independent of the exponent and category of the input signs.
In addition to the notions of autonomy and compositionality we now have a third
notion, which I call categorial autonomy. It says that the category of F( f )(~σ) is
strongly independent of the exponents and the meanings of the input signs. The
grammar is independence if it is autonomous, compositional and categorially au-
tonomous. In case of independence we can exchange the grammar for a different
kind of grammar.

Definition 3.11 A trigrammar over E×C×M is a quadruple 〈Ω, Iε, Iκ, Iµ〉, where
Ω is a signature and Iε an interpretation of Ω in E, Iκ an interpretation of Ω in C,
and Iµ an interpretation of Ω in M.

From a trigrammar we form the corresponding c-grammar by putting

(3.69) G× := 〈Ω, Iε ? Iκ ? Iµ〉

The c-language of G, L(G), is the set of c-signs generated by this grammar. This
is defined inductively in the usual way. Now, given L = L(G), the H-image is

(3.70)
H[L] :={H(γ) : γ ∈ L}

={〈e,m〉 : there is c ∈ C : 〈e, c,m〉 ∈ L}

Theorem 3.12 Let G = 〈C,Ω〉 be a c-grammar such that L = L(G) ⊆ E ×C × M
for some finite C. Then there exists an interpreted grammar K such that L(K) =

H[L].

Proof. Let 〈F,Ω〉 be the signature of G. For a natural number i let Fi be the set of
f such that Ω( f ) = i. Define

(3.71) F+
n := { f~c : f ∈ Fn, ~c ∈ Cn}

For example

(3.72)
F+

0 = { f〈〉 : f ∈ F0}

F+
1 := { f〈c〉 : f ∈ F1, c ∈ C}

F+
2 := { f〈c,c′〉 : f ∈ F2, c, c′ ∈ C}
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As for the signature, we put

(3.73) Ω+( f~c) := Ω( f )

We define the actions of the functions over this signature.

(3.74) I( fc0,c1,··· ,cn−1)(〈e0,m0〉, 〈e1,m1〉, · · · , 〈en−1,mn−1〉)
:= H(C( f )(〈e0, c0,m0〉, 〈e1, c1,m1〉, · · · , 〈en−1, cn−1,mn−1〉))

This can also be written as follows. Put σi := 〈ei, ci,mi〉. Then

(3.75) I( f~c)(H(σ0),H(σ1), · · · ,H(σn−1)) := H(C( f )(σ0, σ1, · · · , σn−1))

Here the left hand side is defined if and only if the right hand side is; and in that
case the left hand side is defined to be whatever the right hand side is. This defines
the grammar K := 〈Ω, I〉.

We shall show that L(K) = H[L]. First: L(K) ⊇ H[L(G)]. To this effect, let
σ ∈ L(G). We show that H(σ) ∈ L(K). By assumption, there is a term t in the
signature Ω such that ιG(t) = σ. We shall construct a term t+ by induction on t
and show that ιK(t+) = H(ιG(t)) = H(σ). Base case. t = f , where f is a constant.
Then f + := f〈〉. Now, ιK( f +) = H(ιG( f )), by construction. Inductive case. t =

f s0s1 · · · sn−1. Ω( f ) = n > 0. Let ιG(si) = 〈ei, ci,mi〉. By induction hypothesis, for
every i < n there is a term s+

i such that ιK(s+
i ) = H(ιG(si)). Then C( f ) is defined

on the ιG(si), and therefore I( fc0,c1,··· ,cn−1) is defined on 〈ei,mi〉 = ιK(s+
i ) and yields

the value

(3.76)

ιK(t+) = I( f~c)(ιK(s+
0 ), ιK(s+

1 ), · · · , ιK(s+
n−1))

= H(C( f )(〈e0, c0,m0〉, · · · , 〈en−1, cn−1,mn−1〉))
= H(C( f )(ιG(s0), ιG(s1), · · · , ιG(sn−1)))
= H(ιG(t))
= H(σ)

Second: L(K) ⊆ H[L]. Let σ ∈ L(K). Then there is a term t such that ιK(t) = σ.
Put t− as follows:

(3.77) ( f~cs0 · · · sΩ( f )−1)− := f s−0 s−1 · · · s
−
Ω( f )−1

In particular, ( f〈〉)− = f . We shall show that H(ιG(t−)) = ιK(t); for then put γ :=
ιG(t−). It follows that H(γ) = σ. The remaining proof is by induction on t. Base
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case. Ω( f~c) = 0. In this case H(ιG(t−)) = ιK(t), by definition. Inductive case.
n := Ω( f ) > 0. Let ιG(s−i ) = ci and ~c = 〈c0, c1, · · · , cn−1〉. Then, using (3.75):

(3.78)

H(ιG(t−)) = H(ιG( f s−0 · · · sn−1))
= H(C( f )(ιG(s−0 ), · · · , ιG(s−n−1)))
= I( f~c)(H(ιG(s−0 )),H(ιG(s−1 )), · · · ,H(ιG(s−n−1)))
= I( f~c)(ιK(s0), ιK(s1), · · · , ιK(sn−1))
= ιK(t)

This had to be shown. �

We shall write H(G) for the grammar K, for future reference. Notice that the
base cases are actually redundant in both parts; they are covered by the induction
step!

This result is of some significance. It says that the categories are redundant.
More precisely, they can be removed from the signs at the cost of introducing more
modes of composition. The proof is completely general; it uses no assumptions
on the grammar. This applies to CFGs, but there are other cases too. Categorial
grammars in principle use an infinite number of categories. However, mostly only
a finite number of them is needed in a particular grammar. It may well be that the
lexicon allows to produce only finitely many categories in any case. Such is the
case in the Ajdukiewicz-Bar Hillel Calculus. The Lambek-Calculus is different
in that we can create and use infinitely many categories (for example, if we have
the product then we can form arbitrarily long categories). However, given that the
Lambek-Calculus yields a context free language (see [Pentus, 1997]) it therefore
enjoys a formulation using no categories whatsoever, by the above theorem.

It is worth pointing out why this theorem is actually not trivial. Suppose that
a language has nouns and verbs, and that these word classes are morphologically
distinct. Suppose further that there are roots that can be used as nouns and verbs.
English is such a language. Here are examples: /dust/, /walk/, /leak/, and so
on, are examples of words that can be either nouns or verbs. Dictionaries see
the matter as follows: the word /leak/ can be both a noun and a verb; if it is a
noun it means something, say m, if it is a verb it means something else, say m̂.
Thus, dictionaries use categories; they say that the language contains two signs:
〈leak, n,m〉 and 〈leak, v, m̂〉. For example, according to the Shorter Oxford En-
glish Dictionary ([Onions, 1973]), /leak/ as a verb means: “1. to pass (out, away,
forth) by a leak or leakage. 2. To let fluid pass in or out through a leak.” The
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noun has this meaning “1. A hole or fissure in a vessel containing or immersed in
a fluid, which lets the fluid pass in or out of the vessel [...] 2. action of leaking or
leakage.” These two meanings are clearly distinct. The latter is a physical object
(hole) while the former is a process.

If we eliminate the categories, we are left with the signs 〈leak,m〉 and 〈leak, m̂〉.
It seems that vital information is lost, namely that /leak/ means m only if it is a
noun, and likewise that it means m̂ only if it is a verb. On the other hand, we
still know that /leak/ means m and m̂. If we perform the construction above, the
following will happen. The function that forms the past tense applies to the sign
〈leak, v, m̂〉 but not to the sign 〈leak, n,m〉. It is the interpretation of some mode
f . This mode is now replaced among other by a mode fv, which takes as input
only the sign 〈leak, m̂〉 and forms the sign 〈leaked, past′(m̂)〉. It is not defined
on 〈leak,m〉. Similarly the other functions are described.

Notice that the elimination of categories results in a redistribution of gram-
matical knowledge. The morphological (or syntactic) information is placed else-
where. It used to be encoded in the categories of the signs. Now it is encoded
in the domain of the newly introduced functions. For example, the domain of the
function fv forming the past tense of verbs is the set of pairs 〈~x,m〉 where ~x is a
root and m the verbal meaning of that root. It is undefined on 〈~y,m〉 if ~y cannot be
a verbal root or otherwise does not have the meaning m; it is not defined on 〈~x, m̂〉
if m̂ is not a meaning of the verbal root ~x.

Although categories can be eliminated, this does not mean that they should
be eliminated. One reason is purely practical: in evaluating a term, the computa-
tion may be much easier if we carried along category information, since the cate-
gories can be made to fit the partial nature of the functions. This is quite clear in
Categorial Grammar, for example, which employs something that I have dubbed
categorial well-regimentation; it means that the categories alone can tell whether
a term is definite. To see whether a mode applies to certain signs it is enough to
check the categories. If we used the above definition, we would have to recompute
the category of the signs over and over. Additionally, we shall show below that
the elimination of categories can have the effect of removing desirable properties
from the grammar. Hence it may be desirable to keep the format in the usual way;
it is however essential to know that categories are theoretically redundant.

As I just said, eliminating categories might come at a price. For example,
we might lose compositionality of the grammar. To define compositionality for
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c-languages, we simply need to stipulate that µ(〈e, c,m〉) := m, and ε(〈e, c,m〉) :=
e, and then repeat Definition 3.6 almost verbatim. The following example now
shows that compositionality and autonomy can be lost under reduction.

Example 37. Our example is based on the grammar of Example 33. We in-
troduce a set C = {o, p, } of categories. For any given triple 〈e, c,m〉 we define

(3.79)

K( f1)(〈e, c,m〉) :=

〈eaa, p,m + 1〉 if c = p
undefined else

K( f2)(〈e, c,m〉) :=

〈eaa, o,m〉 if c = p
undefined else

This grammar is such that all component functions are independent. Thus it is in
particular independent. However, its reduction is not; it also is neither autonomous
(only extensionally autonomous) nor compositional (only extensionally composi-
tional). For the reduction is exactly the grammar of Example 33.

Notice that the language generated by this grammar is independent. However,
to generate it by an independent grammar we must choose a different signature.
o

Nevertheless, it is also possible to establish a positive result. Let L be a lan-
guage. Say that it allows to guess categories if the following holds. There are
functions p : E → ℘(C) and q : M → ℘(C) such that if 〈e, c,m〉 ∈ L then
p(e) ∩ q(m) = {c} and that if 〈e, c,m〉 < L then p(e) ∩ q(m) = ∅. This means that
if e and m are given then c is unique; and moreover, what can be inferred from e
by itself and by m itself is enough to guess c.

Proposition 3.13 Let L be a independent c-language that allows to guess cate-
gories. Suppose further than L has only finitely many categories. Then H[L] is
independent.

Proof. Let p : E → ℘(C) and q : M → ℘(C) be the guessing functions. Let G
be an independent c-grammar for L. By assumption, for every mode f there are
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three functions f ε, f κ and f µ such that

(3.80) I( f )(〈e0, c0,m0〉, · · · , 〈en−1, cn−1,mn−1〉)
= 〈 f ε(e0, · · · , en−1), f κ(c0, · · · , cn−1), f µ(m0, · · · ,mn−1)〉

Proceed as in the proof of Theorem 3.12. We create modes of the form f~c, where
~c is a sequence of categories of length Ω( f ). Pick an n-ary mode. If n = 0 and
I(F)() = 〈e, c,m〉 let I( f〈〉)() := 〈e,m〉. Now suppose that n > 0. For each n-ary
sequence of elements from C we introduce a new mode f~c. We set

(3.81) f ε~c (e0, · · · , en−1) :=


f ε(e0, · · · , en−1) if for every i < n: ci ∈ p(ei)

and f κ(~c) is defined
undefined else

Likewise we put

(3.82) f µ
~c (m0, · · · ,mn−1) :=


f µ(m0, · · · ,mn−1) if for every i < n: ci ∈ q(mi)

and f κ(~c) is defined
undefined else

This defines the grammar G+ over the signature Ω+. We show the following claim
by induction over the length of the term: (a) if 〈e,m〉 is the value of a term t of
length n then for the unique c such that 〈e, c,m〉 ∈ L, 〈e, c,m〉 is the value of t−;
(b) if 〈e, c,m〉 is the value of a term t of length n then 〈e,m〉 is the value of some
term u such that u− = t. This will then establish the claim. Notice first that (a) is
straightforward by construction, so we need to establish (b). For length 0 claim
(b) is certainly true. Now let t = f (u0, · · · , un−1), where n = Ω( f ), and let 〈ei,mi〉,
i < n, be the value of ui. Note right away that by assumption on L there can be
only one such sequence and hence the set is either empty (no new sign generated)
or contains exactly one member (by independence of the modes). Suppose first
that for some j < n there is no c such that 〈e j, c,m j〉 ∈ L. Thus p(e j) ∩ q(m j) = ∅.
Then for every sequence ~c either f ε

~c (e0, · · · , en−1) or f µ
~c (m0, · · · ,mn−1) is unde-

fined. Hence none of the functions I( f~c) are applicable on this input. Now sup-
pose that for every i there is a gi such that 〈ei, gi,mi〉 ∈ L. We have terms u+

i such
that 〈ei, gi,mi〉 is the value of u+

i for i < n. Then for ~g := 〈g0, · · · , gn−1〉 both
f ε
~g (e0, · · · , en−1) and f µ

~g (m0, · · · ,mn−1) are defined and they equal f ε(e0, · · · , en−1)
and f µ(m0, · · · ,mn−1), respectively. Since f κ(g0, · · · , gn−1) is also defined (by def-
inition of the functions f ε

~g and f µ
~g ) the following value exists

(3.83) 〈 f ε(e0, · · · , en−1), f κ(g0, · · · , gn−1), f µ(m0, · · · ,mn−1)〉
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This is the value of f~g(u+
0 , · · · , u

+
n−1), as is easily seen. (If ~c , ~g then either of the

functions f ε
~c (e0, · · · , en−1) and f µ

~c (m0, · · · ,mn−1) is undefined.) �

We close this section by some considerations concerning linguistic theories.
First, the notion of a grammar as opposed to a bigrammar has the drawback of
not distinguishing between syntactically well-formed input and semantically well-
formed input. Or, to phrase this in the technical language of this book, in a gram-
mar a term is semantically definite if and only if it is orthographically definite. It
has a semantics if and only if it has an exponent. By using bigrammars we make
these two notions independent. However, as much as this might be desirable, it
creates problems of its own. For now we have to decide which of the components
is to be blamed for the fact that a term has no value. We can see to it that it is
the syntax, or we can see to it that it is the semantics. If we add categories, there
is a third possibility, namely to have a term whose category does not exist. Lin-
guistic theories differ in the way they handle the situation. Categorial Grammar
is designed to be such that if a term is indefinite then it is categorially indefinite.
That means, as long as a term has a category, it is also syntactically and seman-
tically definite. This is not to say that there are no semantically indefinite terms.
To the contrary, it was based on typed λ-calculus, so there were plenty of seman-
tically ill-formed terms. But every time a term is semantically ill-formed it would
automatically be categorially ill-formed. In LFG, each level has its own well-
formedness conditions, so that one tries to explain the complexity of the output
by factoring out which level is responsible for which output phenomenon. The
theory is modular.

In generative grammar there is no separate level of categories. Technically,
the syntax operates before semantics. Syntax operates autonomously from se-
mantics. In the present formulation this just means that the syntactic functions
do not respond to changes in the meaning (whence the name autonomy above).
However, in our formulation there is no order in the way the terms are checked.
The components of the sign are formed in parallel.

3.5 Weak and Strong Generative Capacity

Say that two CFGs G and G′ are weakly equivalent if they generate the same string
set; and that they are strongly equivalent if they assign the same structure to the
strings. The question arises what we think to be the structure of the sentence. It
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turns out that ‘same structure’ depends on personal conviction. It could be, for
example, identical topology over the string, or identical tree structure, so that only
relabelling is allowed. (See [Miller, 1999] for an excellent discussion.) Typically,
it is assumed that structure means tree structure. To say that a language is strongly
context free is to assume that the language is given as a set of labelled (ordered)
trees. It is not enough to just consider sets of strings.

In standard linguistic literature it is assumed that syntactic structure is inde-
pendent of semantic structure. Of course this is an illusion, for all tests assume
that when we manipulate certain sentences syntactically we are also manipulat-
ing their semantics. For example, when we consider whether /can/ is a noun and
we coordinate it with, say, /tray/ to get /can and tray/, we are assuming that
we are dealing with it under the same semantics that we have chosen initially
(/can/ in the sense of metal object, not the auxiliary). And this should show in
the semantics of the coordinate expression. Hence, no syntactic test really can be
performed without a semantics. Hence, we shall in this section pursue a different
route to ‘structure’, namely this. We shall explore the idea that structure is in fact
epiphenomenal, driven by the need to establish a compositional grammar for the
language.

We have defined the associated string language ε[L] of an interpreted language
to be the set of all strings that have a meaning in L. We can likewise define for
a grammar G the associated string grammar Gε to consist just of the functions
f ε for f ∈ F. Since f ε may depend on the meanings of the input signs, this
makes immediate sense only for a bigrammar. Even in that case, however, it
may happen that L(Gε) , ε[L] precisely because there might be terms which are
orthographically definite but not semantically definite. (In general, only ε[L] ⊆
L(Gε) holds.)

Recall from previous discussions that in grammars the domain of f µ and f ε is
identical. In that case some of the distinctions that are of interest in this section
cannot be made, such as the distinction between weak dependency of f ε on expo-
nents and the weak dependency of f µ on the exponents. Therefore, in this chapter
we shall discuss bigrammars, and not grammars. Recall also from Section 2.3
the discussion of context freeness. There we have defined context freeness of a
string grammar intrinsically. The results in this section use the term the ‘context
free’ in this sense. The results often are more general, applying to concatenative
grammars as well. I occasionally point out where results can be generalised.
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Definition 3.14 Let L be an interpreted language and C a class of string gram-
mars. L is weakly C if the associated string language ε[L] has a grammar in C. L
is C if it has a weakly autonomous bigrammar whose associated string grammar
is in C. L is autonomously C if it has a strongly autonomous bigrammar whose
associated string grammar is in C.

Example 38. An example of an interpreted language that is weakly but not au-
tonomously CF. Let

(3.84) L := {〈an, i〉 : n ∈ N, i < 22n
}

Given a string ~x of length n the number of terms that unfold to ~x is exponential
in n. This means that there is a number p such that if |~x| = n then the number
of parses is bounded by 2pn, provided that n exceeds some number k. This means
that the number of meanings for the string ~x cannot exceed 2pn, if k < n. However,
in L ~x has 22n

meanings, and for all n such that 2n > p we have 22n
> 2pn. o

Theorem 3.15 Let L be unambiguous. Then if L is weakly C it is also autonomously
C.

Proof. By assumption, there is a function b : E → M such that 〈e,m〉 ∈ L iff
m = b(e) (in set theory, L is that function b). Also, by assumption there is a string
grammar G = 〈Ω, I〉 for ε[L], which is in C. Now put

(3.85)
Iε( f )(〈e0,m0〉, · · · , 〈eΩ( f )n−1,mΩ( f )−1〉) := I( f )(e0, · · · , eΩ( f )−1)
Iµ( f )(〈e0,m0〉, · · · , 〈eΩ( f )−1,mΩ( f )−1〉) := b(I( f )(e0, · · · , eΩ( f )−1))

The bigrammar G+ := 〈Ω, Iε, Iµ〉 is obviously strongly autonomous. Moreover, it
generates L. For by construction, if it generates 〈e,m〉 then (1) e ∈ L(G) = E and
(2) m = b(e). Moreover, if 〈e,m〉 ∈ L then m = b(e) and e ∈ L(G). It follows that
〈e,m〉 ∈ L(G+). �

We can strengthen this as follows.

Theorem 3.16 Let L be unambiguous and monophone. Then if L is weakly C it is
also strongly C.
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Proof. By the previous theorem, L is autonomous. So we already have f ε∗ in-
dependent of the meanings. The art is in defining the semantic functions. By
assumption, choosing E := ε[L] and M := µ[L], there is a bijection π : E → M
such that L = {〈e, π(e)〉 : e ∈ ε[L]}. With the help of this bijection put

(3.86) f µ∗ (m0, · · · ,mΩ( f )−1) := π( f ε∗ (π−1(m0), · · · , π−1(mΩ( f )−1)))

This defines a grammar that is compositional. �

Notice that most interesting languages fail to be monophone. Hence the no-
tions based on string grammars are not as interesting as they appear, despite the
fact that weak C does not imply strong C. A more interesting notion is provided by
restricting the set of grammars to independent bigrammars. In this case the seman-
tic functions are required to act independently of the string functions. This means
that the added semantic functions must give a unique value independently of the
strings. It is however possible to tailor the domain of the semantic functions using
the exponents. If the latter option is unavailable, we talk of superstrong generative
capacity. It means that the semantic functions do not need see the exponents nor
even know when they should be undefined.

Definition 3.17 Let L be a language and C a class of string grammars. L is
strongly C if it has a weakly independent bigrammar whose associated string
grammar is in C. L is superstrongly C if it has an independent bigrammar whose
associated string grammar is in C.

We shall see below an example of a language that is weakly CF but neither su-
perstrongly nor strongly CF and an example of a language that is strongly CF
but not superstrongly CF. Notice that by definition CF grammars are strongly au-
tonomous, so the distinction between strong and superstrong turns on the possi-
bility to have a weakly compositional or compositional CF grammar, respectively.

Example 39. (See also [Janssen, 1997].) This example shows that weakly equiv-
alent grammar classes may not be strongly equivalent. A CFG G is left regular
if it only has rules of the form A → Bx or A → x, A and B nonterminals and x
a terminal symbol. G is right regular if it only has rules of the form A → xB
or A → x, A and B nonterminals and x a terminal symbol. Let CL be the class
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of left regular grammars and CR the class of right regular grammars. The lan-
guage we look at is the language of binary strings and their ordinary denotations:
A := {O, L}. For nonempty ~x ∈ A∗ we put

(3.87)

n(O) := 0
n(L) := 1

n(~xO) := 2n(~x)
n(~xL) := 2n(~x) + 1

Finally,

(3.88) L := {〈~x, n(~x)〉 : ~x ∈ A+}

This language is weakly left regular and weakly right regular. It is super strongly
left regular, but not strongly right regular. Here is a left regular strongly au-
tonomous bigrammar (couched as a grammar). F := { f0, f1, f2, f3}, Ω( f0) =

Ω( f1) = 0, Ω( f2) = Ω( f3) = 1.

(3.89)

I( f0)() := 〈O, 0〉
I( f1)() := 〈L, 1〉

I( f2)(〈~x, n〉) := 〈~xaO, 2n〉
I( f3)(〈~x, n〉) := 〈~xaL, 2n + 1〉

There is however no independent left regular bigrammar for this language. Sup-
pose to the contrary that there is such a bigrammar. It has zeroary functions (to
reflect the terminal rules) and unary functions. The latter reflect the nonterminal
rules. Hence, they must have the form

(3.90) f ε(〈~x, n〉) = ~ya~x

where ~y is a single symbol.

I now give a combinatorial argument that is worth remembering. Consider the
following strings:

(3.91) LO, LOO, LOOO, LOOOO, · · ·

These strings must be obtained by adding /L/ to a string consisting of zeroes. We
do not know which function is responsible for adding the /L/ in the individual
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cases (we may have any number of modes) but what we do know is that there
is one mode f such that I( f ) creates two of them, say /LOOO/ and /LOOOOOOO/.
By definition, it creates them from the strings /OOO/ and /OOOOOOO/, respectively.
Now, these strings have the same meaning, namely 0. If the grammar is composi-
tional, f µ is independent of the exponent. However, we must now have f µ(0) = 8,
as well as f µ(0) = 256, a contradiction.

(3.92)
I(〈OOO, 0〉) = 〈LOOO, 8〉 = 〈 f ε(OOO), f µ(0)〉
I(〈OOOOOOO, 0〉) = 〈LOOOOOOO, 256〉 = 〈 f ε(OOOOOOO), f µ(0)〉

o

This argument is pretty robust, it precludes a number of strategies. For ex-
ample, making syntactic or semantic functions partial will obviously not improve
matters.

The example is useful also because it shows the following. Suppose that C and
D are classes of string grammars such that every string language that is C is also
D. Then it does not necessarily hold that a language that is superstrongly C is also
superstrongly D. For in the above example, we have two classes of grammars that
generate the same set of string languages, but they are not identical when it comes
to interpreted languages.

The proof in the previous example is somewhat less satisfying since CFGs also
use categories, though it works in that case as well. In order to include categories
we have to switch to c-languages. We shall not introduce special terminology here
to keep matters simple. Basically, L is a language of c-signs it is called weakly CF
if the associated string language is CF. It is called CF if there is an independent
c-grammar for it whose string and category part taken together is CF.

Example 40. We continue Example 39. Given the same language L we show
that there is no right regular c-language M whose projection to A∗ × M is L. This
is to say, allowing any classification M of string-meaning pairs into finitely many
categories, there is no independent right regular c-grammar for M. The argument
is basically the same. We look at unary functions. If f is unary, it has the form

(3.93) I(〈~x, γ, n〉) = 〈 f ε∗ (~x), f κ∗ (γ), f µ∗ (n)〉

for some f ε∗ , f κ∗ and f µ∗ . Furthermore, f ε∗ (~x) = ~ya~x. Look at the signs σp :=
〈LOp, γp, 2p〉. Let tp be the analysis term of σp. (Being a left regular grammar, we
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can assume that each sign has at most one analysis term.) Either tp = f for some
zeroary f , or tp = f sp for some unary f . In the latter case, f ε∗ (~x) = LOka~x for
some k which depends only on f and so sp unfolds to 〈Op−k, δp, 0〉. Now we look
at f µ∗ . We have f µ∗ (0) = 2p. It follows that if q , p then tq does not have the form
f s. There are however only finitely many functions. o

Example 41. An example to show that strong and superstrong CF languages
are distinct. Consider the number expressions of English. We may for simplicity
assume that the highest simple numeral is /million/. To keep this example small
we add just the following words: /one/, /ten/, /hundred/, /thousand/. It will be
easy to expand the grammar to the full language. Number expressions are of the
following kind: they are nonempty sequences

(3.94) ~xa0 (million )p0a~xa1 (million )p1a · · ·a (~xan−1million )pn−1

where p0 > p1 > · · · > pn−1, and the ~xi are expressions not using /million/,
which are nonempty sequences of the following form.

(3.95) ((one | ten | one hundred )thousand )?
(one | ten | one hundred )?

This language is not weakly CF. It does not satisfy the Pumping Lemma (see
Exercise 36). It can therefore not be superstrongly CF. However, it is strongly
CF. Here is a grammar for it. Call a block an expression containing /million/

only at the end. Say that ~x is m-free if it does not contain any occurrences of
/million/, and that it is t-free if it does not contain any occurrences of /million/

and /thousand/. The grammar is given in Figure 3.5. It has two modes of com-
position: ‘additive’ concatenation and ‘multiplicative’ concatenation. Since the
language is unambiguous, we can formulate a bigrammar using string functions
that are total, and semantic functions that are partial. Now let A(~x, ~y,m, n) hold if
and only if either (a) ~x is a block and m > n or (b) ~x is m-free but not t-free and
~y is t-free. Let B(~x, ~y,m, n) if and only if either (a) ~x is a block and ~y = million

or (b) ~x = one and ~y = hundred, thousand or (c) ~x = one hundred and
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Figure 3.5: Number Names

I( f0)() := 〈one, 1〉
I( f1)() := 〈ten, 10〉
I( f2)() := 〈hundred, 100〉
I( f3)() := 〈thousand, 1000〉
I( f4)() := 〈million, 1, 000, 000〉

I(a)(〈~x,m〉, 〈~y, n〉) :=


〈~xa a~y,m + n〉 if ~x is a block and m > n

or ~x m-free but not t-free,
and ~y is t-free

undefined else

I(m)(〈~x,m〉, 〈~y, n〉) :=



〈~xa a~y,mn〉 if ~x is a block, and ~y = million

or ~x = one, and
~y = hundred, thousand

or ~x = one hundred,
~y = thousand

undefined else

~y = thousand. (See Figure 3.5.) Then put

(3.96)

aε(〈~x,m〉, 〈~y, n) := ~xa a~y

aµ(〈~x,m〉, 〈~y, n) :=

m + n if A(~x, ~y,m, n)
undefined else

mε(〈~x,m〉, 〈~y, n) := ~xa a~y

mµ(〈~x,m〉, 〈~y, n) :=

mn if B(~x, ~y,m, n)
undefined else

Thus, the semantic functions are weakly independent of the exponents, but not
strongly independent.

Variations can be played on this theme. First, if we introduce the word /zero/

and allow the use of expressions /zero (million )k/ then the semantic condition
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‘m > n’ in A(~x, ~y,m, n) must be replaced by a syntactic condition involving the
number k. In that case it seems more consistent to say that the semantic functions
are total while the syntactic functions are restricted, and so the language is not
really CF. o

Example 42. Here is another example, see [Radzinski, 1990]. In Chinese, yes-
no questions are formed by iterating the VP. I reproduce the syntax of Chinese in
English. To ask whether John went to the shop you say

(3.97) John went to the shop not went to the shop?

The recipe is this. Given a subject ~x, and a VP ~y, the yes-no question is formed
like this

(3.98) ~x ~y not ~y?

The data for Chinese is not without problems, but I shall ignore the empirical
complications here and pretend that the above characterisation is exact. One anal-
ysis proceeds via copying. An alternative analysis is the following. Observe that
in Chinese, disjunctive statements are formed like this. To say that subject ~x ~ys or
~zs you may simply say

(3.99) ~x ~y ~z.

In particular, a disjunction between ~y and not ~z is expressed like this:

(3.100) ~x ~y not ~z.

In this case it is required that ~z , ~y. This suggests that we may also form the yes-
no question by concatenation, which however is partial. It is possible to construct
a weakly CF bigrammar, but not a strongly CF one. o

I shall now return to the question whether ambiguity can be removed from
a language. The question is whether there is a transform of a language into an
unambiguous language and how that affects the possibility of generating it with
a given class of grammars. It shall emerge that there are languages which are
inherently structurally ambiguous. This means the following. Given a language L
which is unambiguous, every derivation of a given exponent must yield the same
meaning. Thus, as one says, all structural ambiguity is spurious.
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Definition 3.18 Let G be a grammar. A G-ambiguity is a pair (t, t′) of noniden-
tical terms such that ιG(t) = 〈e,m〉 and ιG(t′) = 〈e,m′〉 for some e, m and m′. In
this case we call e structurally ambiguous in G. The ambiguity (t, t′) is spurious
if m = m′. Also, (t, t′) is a lexical ambiguity, where t ≈0 t′, which is defined as
follows:

(3.101)
f ≈0 g if Ω( f ) = Ω(g) = 0

f s0 · · · sn−1 ≈0 f t0 · · · tn−1 if n > 0, f = g and si ≈0 ti for all i < n

An ambiguity that is not lexical is called structural.

Alternatively, an ambiguity is a pair (t, u) where tε = uε. Let L be a language.
Then define the functional transform of L in the following way. For e we put
e◦ := {m : 〈e,m〉 ∈ L}.

(3.102) L§ := {〈e, e◦〉 : e ∈ ε[L]}

The functional transform of L is such that every e has exactly one meaning, which
is the (nonempty) set of meanings that e has in L.

Example 43. We let A := {p, 0, 1, ¬, ∧, ∨}. F := { f0, f1, f2, f3, f4, f5}, Ω( f0) := 0,
Ω( f1) := Ω( f2) := Ω( f3) := 0, Ω( f4) := Ω( f5) := 2. Meanings are sets of functions
from V := {0, 1}∗ to {t, f }. We define UBool as the language generated by the
following CFG GU . For a variable p~x, [p~x] = {β : β(~x) = t}. Given U = [p~x], it is
possible to recover ~x. Given U, let †U be the unique ~x for which [~x] = U. The set
of all valuations is denoted by Val.

(3.103)

I( f0)() := 〈p, [ε]〉
I( f1)(〈~x,U〉) := 〈~xa0, [(†U)a0]〉
I( f2)(〈~x,U〉) := 〈~xa1, [(†U)a1]〉
I( f3)(〈~x,U〉) := 〈¬a~x,Val−U〉

I( f4)(〈~x,U〉, 〈~y,V〉) := 〈~xa∧a~y,V ∩ U〉
I( f5)(〈~x,U〉, 〈~y,V〉) := 〈~xa∨a~y,V ∪ U〉

Notice that this language is like natural language in being highly ambiguous: there
are no brackets. Thus, the expression /¬p0∧p/ can be read in two ways: it has
the analysis terms f3 f4 f1 f0 f0, with negation having scope over conjunction, and
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f4 f3 f1 f0 f0, with conjunction having scope over negation. Clearly, the meanings
are different. o

Let us now try to see whether we can define a CFG for UBool§. We shall
keep the string part of GU from Example 43. Look at the strings /p~x∧¬p~x/, where
~x ∈ {0, 1}∗. As they are uniquely readable and they have no satisfying valuation,
their meaning in UBool§ is {∅}. On the other hand, /p~x∧¬p~x∨p~y/ has three analyses
corresponding to the following bracketed strings:

(3.104) /((p~x∧(¬p~x))∨p~y)/, /(p~x∧(¬(p~x∨p~y)))/, /(p~x∧((¬p~x)∨p~y))/

Thus the meaning is {[~y], [~x] ∩ [~y],∅}. Let us now look at one particular analysis.

(3.105) J( f5)(〈p~x∧¬p~x, {∅}〉, 〈p~y, [~y]〉)
= 〈p~x∧¬p~x∨p~y, {[~y], [~x] ∩ [~y],∅}〉

In this analysis, there are infinitely many results for this pair of inputs, so this is
a case of a grammar that cannot be strongly compositional. There is a possibility,
though, of making the result undefined for this analysis term. Another analysis is
this:

(3.106) J( f4)(〈p~x, [~x]〉, 〈¬p~x∨p~y, {(Val−[~x]) ∪ [~y],Val−([~x] ∪ [~y)]}〉)
= 〈p~x∧¬p~x∨p~y, {[~y], [~x][~y],∅}〉

Here, the arguments provide enough information to compute the result. Thus, it is
conceivable that an independent grammar exists.

Notice that we have so far only shown that there can be no compositional CF
grammar that uses the structure that the formulae ordinarily have. It is not ruled
out that some unconventional structure assignment can actually work. In fact,
for this language no compositional CF grammars exists. As a warm-up for the
proof let us observe the following. Let ϕ be a formula that is composed from
variables and conjunction. Then although ϕ may be ambiguous, all the ambigu-
ity is spurious: it has one meaning only. It is the set of assignments that make
all occurring variables true. Notice additionally that neither the order nor the
multiplicity of the variables matters. Thus the following have identical mean-
ing: /p∧p0∧p1/, /p1∧p0∧p1∧p/, /p0∧p∧p1∧p1/. Next we consider formulae of the
form α∨ϕ, where α is a variable, and ϕ is of the previous form. An example is
/p0∨p∧p1∧p1∧p2/. We assume that α does not occur in ϕ and that all occurrences



3.5. Weak and Strong Generative Capacity 127

of the same variable are adjacent. Up to spurious ambiguity this formula has the
following bracketing (conjunction binding stronger than disjunction):

(3.107)

(p0∨p∧p1∧p1∧p2)
(p0∨p)∧p1∧p1∧p2
(p0∨p∧p1)∧p1∧p2
(p0∨p∧p1∧p1)∧p2

The general form is (α ∨ χ) ∧ ρ, and its satisfying valuations make either α ∧ ρ
or χ ∧ ρ true. α is a single variable. It is easy to see that it makes no difference
whether a variable occurs twice or more, while it may matter whether is occurs
once or twice. If v occurs once, it has a choice to be in χ or in ρ. How often
it occurs in either of them does not matter. If v occurs twice, it may additionally
occur both in χ and ρ. However, even in that case there is no difference. Assuming
that v does not occur in α, χ or ρ, here are the choices if it occurs just once:

(3.108) (α ∨ χ) ∧ v ∧ ρ, (α ∨ χ ∧ v) ∧ ρ

Here are the choices if it occurs twice:

(3.109) (α ∨ χ) ∧ v ∧ v ∧ ρ, (α ∨ χ ∧ v) ∧ v ∧ ρ, (α ∨ χ ∧ v ∧ v) ∧ ρ.

The first reading of (3.109) is the same as the first reading of (3.108), the last
reading of (3.109) the same as the last reading of (3.108). The middle reading is
synonymous with the first. (This argument requires χ to be nonempty.) For the
purpose of the next theorem say that a bigrammar 〈Ω, Iε, Iµ〉 is a concatenation
bigrammar if 〈Ω, Iε〉 is a concatenation grammar. (Notice that the meaning func-
tions can be partial, too, and that their partiality is not counted in the definition,
since we take the string reduct of the grammar.)

Theorem 3.19 UBool§ has no independent concatenation bigrammar. Hence,
UBool§ is not strongly CF and also not superstrongly CF.

Proof. The proof will establish that there is no strongly independent concatenative
grammar that has no syncategorematic symbols. We leave the rest of the proof
to the reader. The grammar uses the alphabet of the language, the meanings as
specified, and a set C of categories. The functions on the exponents are total.
Partiality exists in the semantics. It will emerge from the proof, however, that
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introducing partiality will not improve the situation. For we shall show that for
given n there is an exponential number of formulae which have to be derived from
a polynomially bounded family of formulae via a one step application. This is
impossible. If the modes are partial, this remains impossible since it gives us less
definite terms not more. Superstrongly CF grammars do not allow any dependency
of the meaning on the strings. Thus, for every mode f and σi = 〈ei,mi〉, i < Ω( f ),
we have

(3.110) I( f )(σ0, · · · , σΩ( f )−1〉)
= 〈 f ε(e0, · · · , eΩ( f )−1), f µ(σ0, · · · , σΩ( f )−1)〉

Let us look at the following kinds of expressions, where V = p(0 | 1)∗ is the set of
variables:

(3.111) V∨(V∧)+V∨V

For ease of understanding, we shall first ignore the internal structure of variables
and present them as units. The more concrete structure of our formulae are as
follows, in ordinary notation:

(3.112) ϕ = p0 ∨ p2 ∧ p4(∧p4) ∧ p5(∧p5) · · · pn+3(∧pn+3) ∧ p3 ∨ p1

Let us say that ϕ has a cut at i if the letter pi is repeated twice. Let I be the set
of indices i such that pi occurs in ϕ; let R be a subset of I. Then by ϕR denote the
formula that is like ϕ having a cut exactly at those i that are in R. We show first
the following claim.

Claim. Let R, S ⊆ [4, n + 3] = [4, 5, · · · , n + 3]. If R , S then the
meaning of ϕR in UBool§ is different from that of ϕS .

Let’s look at the possible readings of such a formula. Pick a variable v = pi.
Bracketings are of several forms.

The first set is where the scopes of the disjunctions are nested: we consider the
case where the first disjunct takes scope over the second (the other case is dual).
(Here, ∧ binds stronger than ∨. γ1 may be empty; δ2 may not be.)

(Form 1) (p0 ∨ γ1 ∧ (γ2 ∧ pi ∧ δ ∨ p1)) or (p0 ∨ γ1 ∧ (γ2 ∧ pi ∧ pi ∧ δ ∨ p1))



3.5. Weak and Strong Generative Capacity 129

(Form 2) (p0 ∨ γ ∧ pi ∧ δ1 ∧ (δ2 ∨ p1)) or (p0 ∨ γ ∧ pi ∧ pi ∧ δ1 ∧ (δ2 ∨ p1))

(Form 3) (p0 ∨ γ ∧ pi ∧ (pi ∧ δ ∨ p1))

The two variants of Form (1) and (2) are equivalent. Form (3) is equivalent with
Form (2) with δ = δ2. Let us now consider the case where the scopes of the
disjunction signs do not intersect. We get the following list of forms, where it is
assumed that γ, δ1 and δ2 do not contain pi.

(Form A) (p0 ∨ γ ∧ pi) ∧ δ1 ∧ (δ2 ∨ p1) or (p0 ∨ γ ∧ pi ∧ pi) ∧ δ1 ∧ (δ2 ∨ p1);

(Form B) (p0 ∨ γ1) ∧ γ2 ∧ (pi ∧ δ ∨ p1) or (p0 ∨ γ1) ∧ γ2 ∧ (pi ∧ pi ∧ δ ∨ p1);

(Form C) (p0∨γ1)∧γ2∧ pi∧δ1∧(δ2∨ p1) or (p0∨γ1)∧γ2∧ pi∧ pi∧δ1∧(δ2∨ p1);

(Form D) (p0 ∨ γ1) ∧ γ2 ∧ pi ∧ (pi ∧ δ ∨ p1);

(Form E) (p0 ∨ γ ∧ pi) ∧ pi ∧ δ1 ∧ (δ2 ∨ p1); and

(Form F) (p0 ∨ γ ∧ pi) ∧ (pi ∧ δ ∨ p1).

(We allow δi and γ j to be empty.) The two variants of Forms (A), (B) and (C) are
equivalent. Forms (D), (E) and (F) only exist if the formula has a cut at i. Thus, it
is enough if we show that one of them has no equivalent formula of either of (A),
(B) and (C). It is easily seen that Form (D) is equivalent to Form (C) with δ2 = δ.
Similarly, Form (E) is equivalent to Form (C) with γ1 = γ. Finally, we turn to
Form (F):

(3.113)
(p0 ∨ γ ∧ pi) ∧ (pi ∧ δ ∨ p1)

=(p0 ∧ pi ∧ δ) ∨ (p0 ∧ p1) ∨ (γ ∧ pi ∧ pi ∧ δ) ∨ (γ ∧ pi ∧ p1)

Form (F) has a disjunct of the form p0 ∧ p1. This is only the case with Forms (1)
and (2), (A) with δ1 empty, and (B) with γ2 empty. Form (F) implies (¬p0) → γ,
as well as (¬p1)→ δ. In Form (1), we therefore must have γ1 = γ and in Form (2)
δ2 = δ. Form (F) implies ¬(p0∧ p1)→ pi. This is not a consequence of Forms (1)
and (2), (A) or (B). Thus, Form (F) is non equivalent to any of the previous forms.

It follows that if the formula has a cut at i, it has a reading different from the
formula obtained by removing this cut by removing one occurrence of pi. Now, i
was completely arbitrary. Thus the Claim is established.
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Now consider an analysis term of ϕR. The immediate constituents of ϕR can-
not contain two disjunction symbols. They can only contain one. In this case,
however, the cuts present in ϕR are not reflected in the semantics. To conclude
the argument, let us assume that the analysis term of ϕR is f s0 · · · sΩ( f )−1. We shall
look at all possible analysis terms for the ϕS , S ⊆ [4, n+3]. We look at (3.110) and
count how many meanings we can compose in this way. The syntactic function
is total. Let k∗ be the maximal arity of functions and p := card C the number or
nonterminal symbols. Choose a decomposition into parts; each part has a meaning
that is determined just by the subset of [i, j] ⊆ [2, n + 3] of indices for variables
that occur in it (and whether or not it contains p0, p1). For the category there is a
choice of p symbols. The meanings must exhaust the set [2, n+3]. They can over-
lap in a single number (since sometimes pi can occur twice). There are in total at
most (2p)k∗

(
n+2
k∗−1

)
ways to cut ϕR into maximally k∗ parts of different category and

different meaning. The combinations of category and meaning do not depend on
R. We have

(3.114) (2p)k∗
(

n + 2
k∗ − 1

)
< (2p(n + 2))k∗

Out of such parts we must form in total 2n different meanings to get all the ϕS ,
using our modes. Assume that we have µ modes. If n is large enough, however,
µ(2p(n + 2))k∗ < 2n. �

The proof has just one gap and it consists the question of variables. The vari-
ables cannot be simple and need to be constructed as well using some modes.
It is not difficult to see that here again just a polynomial number of choices ex-
ist, too few to generate the entire number of formulae that are needed. (See also
Exercise 37 below.)

There is an interesting further question. Consider in place of the meaning e◦

another one; given that meanings are propositions we can form the disjunctions of
all the possible meanings.

(3.115)
e∨ :=

∨
{m : 〈e,m〉 ∈ L}

L∨ := {〈e, e∨〉 : e ∈ ε[L]}

This leads to the language UBool∨. It is not clear whether this language is (su-
per)strongly CF.
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Exercise 35. Prove Theorem 3.15. Prove that the theorem can be strengthened
to languages where a string has boundedly many meanings.

Exercise 36. The Pumping Lemma says that if a string language L is CF then
there is a number k such that for every string ~x ∈ L of length > k there is a
decomposition ~x = ~u~y~v~z~w such that for all n (including n = 0): ~u~yn~v~zn~w ∈ L. (See
Section 3.4.) Show that the language in Example 41 does not satisfy the Pumping
Lemma.

Exercise 37. Look again at UBool. Call a formula a string of ε[UBool] that
contains /p/. (The remaining strings are indices.) Subformulae are (occurrences)
of formulae in the ordinary sense (for example, they are the parts defined by GU in
Example 43). We shall gain some insight into the structure of parts of a formula.
Show the following. Let ~x be a formula and ~y be a substring that is a formula.
Then there is an index ~z such that ~y~z is a subformula of ~x. Thus, any context free
grammar that generates the set of formulae proceeds basically like GU modulo
appending some index at the end of a formula.

Exercise 38. Use the previous exercise to show that there is no strongly inde-
pendent context free grammar avoiding syncategorematic rules for UBool§.

Exercise 39. Let L be a language with finite expressive power (that is, with µ[L]
finite). Then if L is weakly C, it is strongly C. Give an example of a language
that is weakly C but not superstrongly C. Remark. For the proof to go through we
need some trivial assumptions on C. I propose to assume that membership in C

depends only on the fact that all I( f ) have a certain property P.

3.6 Indeterminacy in Interpreted Grammars

This section is largely based on [Kracht, 2008]. We have considered in Section 2.4
the notion of an indeterminate grammar. I shall now pick up that theme again,
fulfilling my earlier promise to show that if we are serious about compositionality
then indeterminacy is not an option.
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Definition 3.20 Let E and M be sets of exponents and meanings, respectively. An
indeterminate interpreted grammar over E × M is a pair 〈Ω, I〉, where Ω is a
signature and for every f ∈ F, I( f ) ⊆ (E × M)Ω( f )+1. The language generated by
G, in symbols L(G), is defined to be the least set S such that for every f ∈ F and
all σi ∈ E × M, i < Ω( f ), and τ ∈ E × M:

(3.116) if for all i < Ω( f ) : σi ∈ S and if 〈σ0, · · · , σΩ( f )−1, τ〉 ∈ I( f ) then τ ∈ S

This is the broadest notion, allowing to form signs from signs. Now, as before
we have to change from grammar to bigrammar. The definition is completely
analogous. Instead of a pair of functions f ε and f µ we have a pair of relations

(3.117)
f ε ⊆ (E × M)Ω( f ) × E
f µ ⊆ (E × M)Ω( f ) × M

This is called an indeterminate (interpreted) grammar. G is autonomous if the
exponent of the output sign is independent of the meanings. We can explicate
this as follows. For every f and σi = 〈ei,mi〉 and σ′i = 〈ei,m′i〉 ∈ E × M (where
i < Ω( f ))

(3.118) If 〈~σ, e〉 ∈ f ε then 〈 ~σ′, e〉 ∈ f ε

This can be restricted to the language generated by the grammar, but we refrain
from introducing too many fine distinctions. Dually, compositionality is defined.
Let us draw some consequences. If G is indeterminate, we say that the indeter-
minacy of G is semantically spurious if for all σi ∈ L(G), i < Ω( f ) + 1, if
〈σ0, · · · , σΩ( f )−1, 〈e,m〉〉 ∈ I( f ) and 〈σ0, · · · , σΩ( f )−1, 〈e,m′〉〉 ∈ I( f ) then m = m′.
This means that G restricted to its own language actually has a semantically func-
tional equivalent (the exponents may still be indeterminate even inside the lan-
guage). Syntactically spurious indeterminacy would be defined dually.

Proposition 3.21 Let L be unambiguous and assume that G is an indeterminate
interpreted grammar for L. Then the indeterminacy of G is semantically spurious.

The proof is straightforward. If we generate two signs 〈e,m〉 and 〈e,m′〉 from the
same input (in fact from any input), then m = m′.

Thus, G is already autonomous (at least extensionally). For an unambiguous
grammar it may still be possible to write an indeterminate compositional (and
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hence independent) grammar. In the remainder of this section we study boolean
logic and give both a positive and a negative example. Recall from Example 22
boolean logic in Polish Notation and the unbracketed notation as given in Ex-
ample 43. Here we shall give yet another formulation, this time with obligatory
bracketing. The details are similar to those in Example 43. The only difference is
that the alphabet also contains the symbols /(/ and /)/ and that the formation rules
insert these brackets every time a new constituent is being formed:

(3.119)

I( f0)() := 〈p, [ε]〉
I( f1)(〈~x,U〉) := 〈~xa0, [†(U)a0]〉
I( f2)(〈~x,U〉) := 〈~xa1, [†(U)a1]〉
I( f3)(〈~x,U〉) := 〈(¬a~xa),Val−U〉

I( f4)(〈~x,U〉, 〈~y,V〉) := 〈(a~xa∧a~ya),V ∩ U〉
I( f5)(〈~x,U〉, 〈~y,V〉) := 〈(a~xa∨a~ya),V ∪ U〉

We call this language Bool. This grammar defines the semantics of a formula to
be a set of valuations. There is a different semantics, which is based on a particular
valuation β, and which is defined as follows.

(3.120) β(ϕ) =

1 if β ∈ [ϕ]
0 else.

Example 44. Let B be the string language of boolean expressions. Pick a valu-
ation β and let

(3.121) L := {〈ϕ, β(ϕ)〉 : ϕ ∈ B}

Consider an indeterminate string grammar G = 〈F,Ω〉 for it, for example the
grammar from Exercise 22. Put F2 := { f 0, f 1 : f ∈ F} and let Ω2( f 0) := Ω2( f 1) :=
Ω( f ). Finally, put

(3.122)

I( f 0) := {〈〈ei,mi〉 : i < Ω( f ) + 1〉 : 〈ei : i < Ω( f ) + 1〉 ∈ I( f ),
β(eΩ( f )) = 0,mΩ( f ) = 0}

I( f 1) := {〈〈ei,mi〉 : i < Ω( f ) + 1〉 : 〈ei : i < Ω( f ) + 1〉 ∈ I( f ),
β(eΩ( f )) = 1,mΩ( f ) = 1}

So the relations are split into two, where the first set contains the tuples whose
last member is a formula that is true under the valuation, and the second relation
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collects the other tuples. This is an indeterminate interpreted grammar. Call it G2.
It might be that the newly created symbols are actually interpreted by functions,
but this does not have to be the case. A case in point is Example 22, the grammar
for Polish Notation. A given string of length n may possess up to n adjunction
sites, thus making the resulting grammar G2 indeterminate again. Consider for
example the string /∧p∧p∧pp/. Assume that β(p) = 1. Then the value of that
formula is also 1. The string /∧p/ can be adjoined at several places, marked here
with ◦:

(3.123) ◦∧◦p◦∧◦p◦∧◦p◦p

In all cases the resulting formula has value 1, but it is clear that we do not even
need to know this. There are more than two output strings, so some of them must
have the same truth value. o

That the semantics is finite is used essentially in the proof. The example is
of course quite dissatisfying; the functions are undefined depending on what the
meaning of the string is. On the other hand, there may be a way to circumvent
the dependency on semantics, that is to say, the fact that the meaning figures in
the definition of the functions may just be an artefact of the way we defined them.
However, there are different examples to show that indeterminacy is not such a
good idea.

In what is described below I shall look into the possibility of defining a com-
positional adjunction grammar for the language of boolean expressions, where ϕ
has as its meaning the set of all assignments that make it true. The rest of this
section is devoted to the proof of the following theorem.

Theorem 3.22 There is no independent tree adjunction bigrammar (and hence no
compositional tree adjunction grammar) for Bool in which all meaning functions
are total.

Independence is of course essential. Since Bool is unambiguous, there can also
be no compositional grammar, for autonomy can be guaranteed at no cost: the
dependency of the exponents on the meanings is eliminable since we can recover
the meaning from the exponent.

Before we can embark on the proof, we have to make some preparations.
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Definition 3.23 Let L ⊆ E × M be an interpreted language and D ⊆ E. Then
L � D := L∩ (D×M) is the D-fragment of L. If E = A∗ and D = B∗ then we also
write L � B in place of L � B∗.

The case where we restrict to a subalphabet is the one which we shall use here.
We shall study the following fragments of Bool:

(3.124)
Var := Bool � {p, 0, 1}

Bool∧ := Bool � {(, ), 0, 1, p, ∧}
Bool¬ := Bool � {(, ), 0, 1, p, ¬}

Now assume G is a grammar for L. Then for every f , let

(3.125)
f ε � D := f ε � (D × M)
f µ � D := f µ � (D × M)

Finally,

(3.126) f � D := ( f ε � D) × ( f µ � D)

For this to be well defined we need to show that the functions stay inside D × M.
For a string ~x and a symbol a, let ]a(~x) denote the number of occurrences of a in
~x. For E = A∗, f : En → E is pseudoadditive if for every a ∈ A: either ]a(~xi) = 0
for all i < n and then ]a( f (~x0, · · · , ~xn−1)) = 0 or

(3.127) ]a( f (~x0, ~x1, · · · , ~xn−1)) ≥
∑
i<n

]a(~xi)

If equality holds, f is called additive. A grammar is additive if every function
is. (A combination of Structure Preservation and Syncategorematicity Prohibition
guarantees additivity, actually.) Now suppose further that our grammar is additive
and that D = B∗. Then if all the ~xi are in B∗, so is f ε(~x0, · · · , ~xn−1). Hence we have
a grammar

(3.128)
(I � B)( f ) := I( f ) � B

G � B := 〈Ω, I � B〉

Now, G � B generates a subset of L, by construction. Moreover, by induction on
the term t we can show that if ιG(t) ∈ (B∗ × M) then ιG�B(t) = ιG(t). It follows that
G � B generates exactly G � B.
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Proposition 3.24 Suppose that G is an additive compositional bigrammar for L.
Then G � B is an additive compositional bigrammar for L � B.

Thus if G is an adjunction grammar so is G � B.

Example 45. We look in some detail at the fragment Var. Syntactically, we
may generate this language by admitting adjunction anywhere except before the
letter /p/. Yet, for every weakly compositional grammar G there can only be a
bounded number of adjunction sites for most variables. Consider, for example,
the adjunction string 〈1, ε〉 and the variable

(3.129) p000000· · · 0

For simplicity we fix the adjunction sites to be of the form 〈p~x, ~y, ε〉. Depending
on ~x we get a different variable. Thus, for any given rule only one of the adjunction
sites from {〈p0m, 0k−m, ε〉 : m ≤ k}may be chosen for the rule. One way to achieve
this is to only use adjunction strings of the form 〈~x, ε〉 and adjunction sites of the
form 〈p, ~y, ε〉. o

Example 46. Another place where caution needs to be exercised when doing
adjunction is the following. Let ϕ be a formula consisting of variables and their
negations. Suppose that ϕ contains a variable and its negation, as in

(3.130) (p01∧(¬p01))

Then no valuation satisfies ϕ. In other words, we have 〈ϕ,∅〉 ∈ Bool. Consider
now what happens if we adjoin to one of them some string. Then one of the
occurrences disappears and the formula may suddenly have valuations that satisfy
it. Let us adjoin 1, for example:

(3.131) (p101∧(¬p01))

Any valuation mapping /p101/ to 1 and /p01/ to 0 satisfies this formula. Suppose
that G is compositional. (Weakness does not add anything interesting here.) As G
has only boundedly many rules, there can only be boundedly many values com-
puted from any given meaning. Thus, if G has k rules, card({ f µ(∅) : f ∈ G}) ≤ k.
It follows that adjunction can target only a restricted set of contradicting variables.
o
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Adjoining binary strings to variable names is a good case to show that the in-
dependence of syntax and semantics is actually useless for practical applications.
In the case of adjoining other strings, their adjunction is actually syntactically
heavily restricted, see [Kracht, 2008].

Let me now prove the central theorem. Assume that we have an independent
adjunction bigrammar G for Bool∧. Let ρ be the number of rules of G and κ be
the maximum number of symbol occurrences added by any rule. A tree is called
binary if it only contains occurrences of /0/ and /1/. Choose a formula of the
following form.

(3.132) ϕ = (p~x0∧(p~x1∧(p~x2 · · · ∧p~x2ρ+2)· · · )))

The length of the ~xi is subject to the following restriction. (a) |~xi| > (2ρ + 3)κ and
(b) for i < j < 2ρ + 3: ||~xi| − |~x j|| > κ.

Let ϕ be derived by G. Then it contains at most 2ρ + 2 occurrences of trees
with symbols other than /0/ and /1/. (It is not hard to see that for every occurrence
of /p/ one occurrence of /∧/, of /(/ and /)/ must be added as well, and similarly
for the other nonbinary symbols.) Thus, by Condition (a), each of the ~xi contains
occurrences added by a binary tree. Thus, in each of the variables we can some-
where adjoin a binary tree. There are 2ρ + 3 variables. As a single adjunction
can manipulate up to two variables, we have ρ + 1 different adjunction sites for
binary trees, each manipulating a different set of variables. As we have ρ many
rules, two of the adjunction sites must yield the same output semantically. (At
this point totality enters; for it says that whenever adjunction is syntactically licit
there is a corresponding semantic output.) Hence two of them must yield the same
syntactic output. Now, adjunction at ~xi can only enlarge the index by κ many sym-
bols, which by Condition (b) does not make it the same length as any other ~x j,
for j , i. Thus the sets of variables obtained by adjoining at different sites are
different. So is their semantics. We have ρ+ 1 sites and at most ρ different results.
Contradiction.
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Example 47. I give a letter by letter translation of Bool into English:

(3.133)

t(p) = /Jack sees a boy/

t(() = ε

t()) = ε

t(0) = /who sees a girl/

t(1) = /who sees a boy/

t(∧) = /who sees no one and/

t(∨) = /who sees no one or/

t(¬) = /it is not the case that/

Now define

(3.134)
s(ε) := /who sees no one./

s(aa~x) := t(a)a�as(~x)

This gives us, for example,

(3.135)
s((p0∧(¬p))) =/Jack sees a boy who sees a girl who sees

no one and it is not the case that

Jack sees a boy who sees no one./

Consider the set B = { j} ∪ {b~x : ~x ∈ (0 | 1)∗} ∪ {g~x : ~x ∈ (0 | 1)∗}. Here j is Jack,
b~x is the boy number ~x and g~x the girl number ~x. Let U ⊆ (0 | 1)∗. Define R(U)
as follows.

(3.136) R(U) :=


{〈b0~x, g~x〉 : ~x ∈ (0 | 1)∗}
∪ {〈g0~x, g~x〉 : ~x ∈ (0 | 1)∗}
∪ {〈b1~x, b~x〉 : ~x ∈ (0 | 1)∗}
∪ {〈g1~x, b~x〉 : ~x ∈ (0 | 1)∗}
∪ {〈 j, b~x〉 : ~x ∈ U}

What can be shown is that the translation of /p~x/ is true in 〈B, j,R(U)〉 (with R(U)
interpreting the relation of seeing and j interprets the constant “Jack”) iff ~x ∈ U.
Thus we have a translation into English that preserves synonymy. Though the
argument is not complete (for the reason that the English examples do away with
brackets and so introduce ambiguity), it does serve to transfer Theorem 3.22 to
English. o
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Exercise 40. Recall the definition of G× and G× from Page 89. Extend these
definitions to indeterminate grammars. Construct an indeterminate grammar G
for which (G×)× , G.

Exercise 41. Show Lemma ??.

Exercise 42. Write a compositional adjunction grammar for Var.

Exercise 43. Let G be additive. Show that if ιG(t) ∈ (B∗×M) then ιG�B(t) = ιG(t).

3.7 Abstraction

At the end of this chapter I shall return to a problem that has been central in the
development of modern linguistics: the definition of the unit. Units are abstract
objects and are related to concrete things via realisations. As de Saussure already
insisted, the linguist almost always deals with abstract objects. The letter /b/, the
sound [b], the genitive case—all these things are abstractions from observable
reality. Thus, on the one hand the sign 〈/mountain/, λx.mountain′(x)〉 is the
only thing that can be said to belong to langage as de Saussure defined it, on the
other hand it does not exist, unlike particular utterances of the word /mountain/

and particular mountains (the concept of mountainhood is an abstract object, the
only thing we take to exist in the physical sense are individual mountains). An
utterance of /mountain/ stands to the sequence of phonemes of /mountain/ in
the same way as a particular mountain stands to λx.mountain′(x). In both cases
the first is the concrete entity the second the abstract one, the one that is part of
language. The picture in Figure 3.6 illustrates this. The main aim of this section
is to give some mathematical background to the idea of abstracting units. Before
I do so, I shall point out that there is no consensus as to how abstract language
actually is. In earlier structuralism it was believed that only the abstract object
was relevant. It was often suggested that only the contrast matters, and that the
actual content of the contrasting items was irrelevant.

This view was applied to both phonology and semantics. It was thought that
nothing matters to linguistics beyond the contrast, or feature, itself. It would then
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Figure 3.6: Abstract Signs
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seem that the contrast between [p] and [b] could from the abstract viewpoint not
be distinguished from the contrast between [p] and [t]; the labels “voicing” or
“labial” are meaningless to phonology. Similarly, the meaning contrast between
“short” and “tall” is formally indistinguishable from the contrast between “cold”
and “hot”; all that can be said is that the contrasting items are different. This
position—though not without merits, as we shall see—is nowadays not so popular.
One reason among many is that it cannot explain how languages can change in a
quasi continuous way and yet be underlyingly discrete. Additionally, it gives us no
insight into why languages are the way they are, particularly when it comes to the
certain bias that they display (for example to devoice consonants in coda). Also,
the precise content matters more often in language than structuralists were willing
to admit. (The same predicament with respect to natural kinds and induction
is discussed in [Gärdenfors, 2004].) The idea that we propose here is that the
continuous change is the effect of a continuously changing surface realisation of
abstract units. The contrasts are a matter of the underlying abstract language, and
they get projected to the surface via realisation maps.

The picture that emerges is this. There are in total four domains:
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1. concrete exponents (utterances)

2. abstract exponents (phonological representations)

3. concrete meanings (objects, things)

4. abstract meanings (semantic representations)

There are many-to-one maps from the concrete to the corresponding abstract do-
mains. We take the pairing between concrete exponents and concrete meanings
as given; this is the data. The pairing between abstract exponents and abstract
meanings is postulated and likewise the correspondence concrete-to-abstract. In
this scenario it becomes clear why we can have on the one hand agreement about
the extensional language, say English, and yet disagreement about what the nature
of representations is. Moreover, it becomes clear why it is that different people
possess the same language yet possess a different grammar.

We take the notion of (concrete) language in the purely extensional sense: a
set of pairs between utterances and concrete relata. For concreteness, we shall
just assume the relata to be things. Thus let us be given a set U of utterances
and a set R of (physical) relata, that is, objects of the world. Language in the
extensional sense is a subset of U × R. A pair 〈u, r〉 is in L if and only if u means
r in that language. Thus, if a particular object h, say a house, can be referred to
by a particular utterance h′, eg of /house/, then 〈h′, h〉 is a member of English.
Some people may worry that R is potentially too big (something like the universal
class), but from a methodological point of view nothing much is lost if we suitably
restrict R. (In set theory one usually considers models of bounded size, the bound
being suitably high. In a subsequent step one looks at the dependency of the result
of the size of the bound.)

Both sets U and R are structured. The intrinsic structure of R is much harder
to establish, so we just look at U. To simplify matters again, we assume that U
consists of occurrences of sound bits (but see [Scollon and Wong Scollon, 2003]
for an eloquent argument why this is wrong). Then we may be justified in assum-
ing that only the intrinsic physical quality really matters, in other words: we can
shift u in time (and place) without affecting its signalling potential. Thus, from
now on we deal not with actual utterances but with what we call “sound bits”.
Sound bits are what you store in a file on a computer to play it to someone (or
yourself) any time you want. This is nowadays used a lot in talking machines (as



142 3. Compositionality

are installed in GPS systems, dialog systems, trains or elevators). Now let � be
the append operation on sound bits. Such an operation can easily be realised on
a computer, and this technique is also widely used in technical applications. �
restricted to U becomes a partial operation. This is because there are phonotactic
restrictions on the combinations of sounds. Given this operation � it is possible
to segment sound bits into smaller units. In this way an utterance h′ can be seg-
mented into a sequence of more primitive utterances, which are instances of some
sound bits corresponding to the basic sounds of English. Ideally, the correspond
to the sounds [h], the diphthong [aU] and [s]; or maybe the diphthong is disected
into [a] and [U]. So, we propose a set P of primitive sound bits. The set P is an
alphabet, and � the concatenation. P∗ is the closure of P under �. Further, U is a
subset of P∗. P is the set of phones. The choice of P is to some extent arbitrary;
for example, in phonetics, an affricate is seen as a sequence of stop plus fricative
(see for example [IPA, 1999]), but in phonology the affricates are often consid-
ered phonemes (= indecomposable). Similar problems are created by diphthongs.
Although segmentation is a problem area, we shall not go into it here and instead
move on to sketch the method of abstraction.

Both utterances and relata are concrete entities. My utterance u of /house/

at 11:59 today is certainly a concrete entity. We can record it and subsequently
analyse it to see if, for example, I really pronounced it in a proper English way or
whether one can hear some German accent in it. Technically, each time you have
the computer or tape recorder play u again you have a different utterance. Yet,
we believe that this difference is merely temporal and that the relevant physical
composition (pitch, loudness etc.) are all that is needed to make the two identical
for the purpose of linguistics. That is to say, there is, hidden in the methodology
at least, an underlying assumption that if u and u′ are acoustically the same they
are also linguistically the same. However, in our definitions we need not make any
such assumption. If u cannot be reproduced since it is unique, so be it. If acoustic
features really are sufficient this will actually be a result of the inquiry. Similarly,
this building opposite of me is concrete; I can ask English speakers whether it
qualifies to be called u (by playing them a copy of u). Again there is a question
whether calling this building a house today means that you will do so tomorrow;
and if not why that is. If the difference in time is large enough (some decades)
we cannot be sure that we are dealing with the same language again. If asking a
different person we are not sure that s/he uses the words just like the one we asked
before. And so on. Again, such difficulties do not affect so much the principles
of the methodology described below; they mainly delimit its factual applicability
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in concrete situations. However, once we know what the theoretical limitations of
this methodology are—independently of its practical limitations—we can know
better how to apply it.

The first tool in abstraction is the method of oppositions. We say that u and u′

are first degree L-equivalent, in symbols, u ∼L u′, if for all r ∈ R: 〈u, r〉 ∈ L ⇔
〈u′, r〉 ∈ L. Notice that this definition applies to entire utterances, and it tells us
whether or not two particular utterances denote the same thing. Similarly, we say
of two relata r and r′ whether they are first degree L-equivalent if for all u ∈ U:
〈u, r〉 ∈ L ⇔ 〈u, r′〉 ∈ L. It is possible to factor out first-degree equivalence in the
following way: let

(3.137) [u]1 := {u′ : u′ ∼L u}, [r]1 := {r′ : r′ ∼L r}

Finally, put

(3.138) L1 := {〈[u]1, [r]1〉 : 〈u, r〉 ∈ L}

Proposition 3.25 Let u′ ∼L u and r′ ∼L r. Then 〈[u]1, [r]1〉 ∈ L1 if and only if
〈u′, r′〉 ∈ L.

Proof. Assume that 〈[u]1, [r]1〉 ∈ L1. Then 〈u, r〉 ∈ L, by definition. Since u′ ∼L u,
we also have 〈u′, r〉 ∈ L; and since r′ ∼L r we have 〈u′, r′〉 ∈ L. This reasoning
can be reversed. �

We can formalise this as follows.

Definition 3.26 Let U and R be sets, L ⊆ U × R a language. Let f : U → V and
g : R→ S be maps such that the following holds:

1. If f (u) = f (u′) then u ∼L u′;

2. If g(r) = g(r′) then r ∼L r′.

Then with L′ := {〈 f (u), g(r)〉 : 〈u, r〉 ∈ L} the triple 〈 f , g, L′〉 is called an abstrac-
tion of L.
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In particular, with the maps ϕ : u 7→ [u]1 and ψ : r 7→ [r]1 the triple 〈ϕ, ψ, L1〉 is
an abstraction of L. This is the maximal possible abstraction. Its disadvantage is
that it is not ‘structural’. Consider a somewhat less aggressive compression which
works as follows. Assume a representation of utterances as sequences of phones
(so, U ⊆ P∗ for some P). Define p ≈L p′ if for all u � p � u′:

(3.139) If u � p � u′, u � p′ � u′ ∈ U then u � p � u′ ∼L u � p′ � u′

This can be phrased mathematically as follows: ≈L is the largest weak congruence
on 〈U,�〉 which is contained in ∼L (cf. Appendix A).

Standardly, the congruence ≈L is used to define the phonemes. We say that p
and p′ are allophones of the same phoneme. Even though p and p′ may not be
exchangeable in every context, if they are, exchanging them causes no difference
in meaning. In principle this method can also be applied to sequences of sounds
(or strings), but that is only reluctantly done in phonology. One reason is that
phonology likes the explanation for variability and equivalence to be phonetic: a
combination of two sounds is ‘legal’ because it can easily be pronounced, illegal
because its pronunciation is more difficult. Yet, with a different segmentation we
can perform similar abstractions. Suppose we propose two units, say /good/ and
/bett/, which occur in the gradation of the adjective ‘good’. In the positive we
find /good/ while in the comparative we find /bett/. Thus, given that gradation
proceeds by adding /∅/ in the positive and /er/ in the comparative we can safely
propose that the two are equivalent. All it takes is to assume that only /good/

can be concatenated with /∅/ and only /bett/ with /er/. There are two reasons
why this is not a phonological but a morphological fact. The first is that there is
no phonological law motivated by other facts that supports this equivalence. The
other is that we can assign meaning to all the four parts; furthermore, we shall
assume that /good/ and /bett/ have identical meaning, and with that the facts
neatly fall out. One problem however remains in all these approaches: they posit
nonexistent parts. To be exact: they are nonexistent as utterances in themselves;
however, they do exist as parts of genuine utterances. This contradicts our earlier
assumption that the set of valid forms of the language are only those that are first
members of a pair 〈u, r〉. For now we accept forms that are not of this kind. Notice
that the phonological abstraction did not require the units to be meaningful and
proceeded just by comparing alternatives to a sound in context. The abstract units
(phonemes) are not required to be in the language, nor are their parts. Thus the
abstracted image L1 is of a new kind, it is a language (langue) in de Saussure’s
sense. It is certainly possible to do morphology along similar lines.
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The language L can be identified with parole, while langue is L1. However,
we should be aware of the fact that while L is unique (given by experience), L1 is
not. The most trivial way in which we can make a different abstraction is by using
different abstract relata.

Definition 3.27 Let A = 〈ϕ, ψ, L1〉 and B = 〈η, θ, L2〉 be abstractions of L. We
call A and B equivalent if

À dom(ϕ) = dom(η) and dom(ψ) = dom(θ),

Á there is a bijection i : L1 → L2 such that η × θ = i ◦ (ϕ × ψ)

Put U = dom(ϕ) and R = dom(ψ). Then we have the following situation.

(3.140)

U × R
ϕ × ψ -L1

?
i

L2
η × θ

PPPPPPPPq

By definition there is an inverse map j : L2 → L1. Finally, given a grammar G =

〈Ω, I〉 for L = E×M and an abstraction A = 〈ϕ, ψ, L′〉we can define the abstracted
grammar G/A := 〈Ω, IA〉 for L′ via A as follows. For a sign σ = 〈e,m〉 ∈ E × M
let σA := 〈ϕ(e), ψ(m)〉, the abstraction of σ. Then for a function symbol define

(3.141) IA( f )(σA
0 , · · · , σ

A
Ω( f )−1) := (I( f )(σ0, · · · , σΩ( f )−1))A

This is a familiar definition in mathematics; given an equivalence of elements we
define the functions over the equivalence classes by picking representatives. This
definition is sound only if the definition is actually independent of the choice of
representatives. Otherwise the grammar becomes indeterminate.

Example 48. Here is an instructive example. Suppose

(3.142) L = {〈a,m〉, 〈b,m〉, 〈c, p〉, 〈ac, n〉, 〈bc, n′〉}



146 3. Compositionality

The grammar consists of the following operations:

(3.143)

I( f0)() := 〈a,m〉
I( f1)() := 〈b,m〉
I( f2)() := 〈c, p〉

I( f3)(〈e,m〉, 〈e′,m′〉) :=


〈ac, n〉 if e = a, e′ = c

〈bc, n′〉 if e = b, e′ = c

undefined else

/a/ and /b/ are L-equivalent. Put

(3.144) L1 = {〈α,m〉, 〈γ, p〉, 〈αγ, n〉, 〈αγ, n′〉}

Let ϕ : a, b 7→ α, c 7→ γ and 1M the identity on M = {m, p, n, n′}; then A :=
〈ϕ, 1M, L1〉 is an abstraction. However, the grammar is not deterministic. Basi-
cally, the output of IA( f3)(〈α,m〉, 〈γ, p〉) must be both 〈αγ, n〉 and 〈αγ, n′〉. o

It is important to note that the example does not show the impossibility of
delivering a grammar. It just shows that the original grammar cannot necessarily
be used as a canonical starting point. In general, (3.141) is a proper definition
only if the congruence induced by ϕ and ψ is strong. Formally, the congruence
induced by an abstraction is θA, where

(3.145) 〈x, y〉 θA 〈u, v〉 :⇔ ϕ(x) = ϕ(u) and ψ(y) = ψ(v)

However, the condition is far too strong to be useful. A far more interesting case is
when the congruence θA is only weak. In that case the function is not independent
of the choice of representatives; however, it is only weakly dependent. We will
then say that IA( f ) is simply the image of I( f ) under ϕ and ψ. Then in place of
(3.141) we say that IA(~σ) is defined if there are τi, i < Ω( f ), such that τi θA σi for
all i < Ω( f ) and I( f )(~τ) is defined. And in that case

(3.146) IA( f )(σA
0 , · · · , σ

A
Ω( f )−1) := (I( f )(τ0, · · · , τΩ( f )−1))A

Otherwise IA(~σ) is undefined.

Example 49. There are two sounds in the phoneme /ô/, namely the voiced [ô]
and the voiceless [ô

˚
]. They are mapped onto the same phoneme via ϕ. Now,
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in onset position, the combination [pô] does not exist in English, neither does
the combination [bô

˚
]. Only the combination [pô

˚
] and the combination [bô] are

possible. Consider the operation � of concatenation. [b] � [ô] is defined; [b] � [ô
˚

]
is not. However, ϕ([ô]) = ϕ([ô

˚
]). Thus, congruences associated with the standard

phonemicisation maps may are generally only weak congruences. o

Likewise, a grammar for the abstracted language does not give rise to a gram-
mar of the original language. In fact it may even be impossible to give one.

It is instructive to see that the combinatory restrictions on sounds do not nec-
essarily determine a strong congruence. In fact, they rarely do. This has conse-
quences worth pointing out. The most important one concerns the standard defini-
tion of a phoneme. In the classical definition, two sounds are members of the same
phoneme if they can be replaced for each other in any context without affecting
meaning. It is clear that this must be read in the sense that replacing s for s′ either
yields a nonexistent form or else a form that has the same meaning. Otherwise, [ô]
and [ô

˚
] might not be in the same phoneme for lack of intersubstitutability. How-

ever, that might not be enough to secure adequate phonemicisation. For it also
turns out that the definition requiring the substitutability of single occurrences is
also not enough if we have weak congruences.

Example 50. Let L := {〈aa,m〉, 〈bb,m〉}. In this situation it seems justified to
postulate a single phoneme α with ϕ(a) = ϕ(b) = α. The test which uses single
substitutions indeed succeeds: we can replace /a/ by /b/ at any of the places, and
the result is either undefined or has the same meaning. The abstracted language is
{〈αα,m〉}.

Now look instead at the language L′ := {〈aa,m〉, 〈bb, n〉}. Here the definition
based on single substitutions gives wrong results: if we change /a/ to /b/ once we
get /ab/, which is not in the language. But if we change both occurrences we get
/bb/, which however has different meaning. The abstracted language is the same.
This cannot be correct. o

As the previous example showed, it is not enough to do a single replacement.
It is not easy to come up with a sufficiently clear natural example. Vowel harmony
could be a case in point. Recall that vowel harmony typically requires all vowels
of a word to come from a particular set of vowels. In Finnish, for example, they
may only be from {ä, e, i, ö, y} or from {a, e, i, o, u}. Consider now a bisyllabic
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word containing two occurrences of /ä/. Exchanging one of them by /a/ results in
a nonharmonic string, which is therefore not a word. However, exchanging two or
more occurrences may yield a proper word of Finnish. (Notice however that there
are plenty of words that contain only one nonneutral vowel and so the logic of this
argument is not perfect. For the latter kind of words may be enough to exclude
those phonemicisations that are improper for the other words too.)



Chapter 4

Meanings

Meanings are the topic of this chapter. More precisely, it is abstract
meanings that we want to characterise. Unlike what is ordinarily as-
sumed we do not consider the structure of the space of meanings and
the functions on them a matter of arbitrary convention. Like with ex-
ponents we must ask what meanings actually are and how they can be
manipulated.

4.1 ‘Desyntactified’ Meanings

The present chapter is about what meanings are. Given the discussion of Sec-
tion 3.7 we have two kinds of meanings to worry about: concrete meanings and
abstract meanings. We shall for the most part consider a calculus of concrete
meanings, but most of the results are actually independent of which of the two
we study. Though much has been made of Putnam’s dictum that meanings (that
is, concrete meanings) cannot be in a speaker’s head ([Putnam, 1975], see also
[Gärdenfors, 2004]), the question whether or not that is so is actually peripheral
to the question we are raising, namely, what meanings are and how they can be
manipulated. For it threatens to focus the debate on questions of factual knowl-
edge rather than matters of principle. Whether or not my concept of gold is the
same as that of another person and who has the right concept is a question of fac-
tual detail. What matters in this book is what that concept of mine is and how I use

149
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it; and similarly for any other person. Language is therefore subjective, I make no
attempt at construction a language for a community of speakers. Communication
is effected only via common expressions and must rely on intersubjective identity
(or near identity) in their meaning.

We have said that meanings are given at the outset. It therefore seems to
be of no relevance to ask what meanings are. However, there is a larger issue
in the background that I cannot adequately treat in this book. The issue is that
we cannot access concrete meanings as such; the only thing we can access is
particular judgements. We have difficulties saying exactly what defines a book
whereas we seem to be completely reliable in our judgement whether this or that
thing is a book. And so there is a legitimate question as to whether the data we
can access is the one we actually need.

While sentences are concrete since we can make them appear on tape or on
paper, meanings are not directly observable. There is a long intellectual tradition
to assume that meanings are structured (see [King, 2007] for a recent exposition).
This position is adopted not only in philosophy but also in cognitive linguistics.
Unfortunately, it is in practice hard to assess which particular structure the mean-
ing of a given sentence has. In absence of a priori arguments the methodology
should be to try to discover that structure from the given data. For it very often
happens that our intuitions on meanings are obscured by our own language. What
appears to be a semantic fact often enough is just a syntactic (or morphological)
feature in disguise. In this way semantics is often infected with syntax. To coun-
teract this trend I shall try to ‘desyntactify’ meanings. (See [Erdélyi Szabó et
al., 2007] for a more radical proposal of desyntactification.) In particular, below
I shall identify some traits of semantic representations that I consider of purely
syntactic nature: hierarchy, order, and multiplicity. Hierarchy shows up in the
notion of a functional type; some meanings are functions, and therefore of a type
that can take some (lower) types as arguments. This introduces an asymmetry into
meanings that I claim does for the most part not exist in the meanings themselves.
Order shows up in the notion of a tuple. Predicate logic explicates the meanings
of formulae as relations, or sets of tuples. But where exactly the idea of a first
member in a tuple or a second member is to be found in the actual denotation is
unclear. Finally, although we can repeat a variable, we cannot repeat the same
object. It follows that repetition may exist in syntax, but not in semantics. We
shall look at these problem areas in more detail.

Frege is one of the proponents of the idea that there are ‘unsaturated’ expres-
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sions. For example, a function is unsaturated; it yields a value only when given an
argument. The function x2+5, in conventional notation, does not denote a number.
We only get a number when we assign to x some value, say 3. Likewise, Frege
argues, many words do not by themselves express a complete thought. They need
certain argument places to be filled before this is the case. In this view, the phrase
/Ate./ is unsaturated: it lacks a specification of the subject. Thus, only /John

ate./ is complete. It is precisely this idea that has been exploited in Montague
Grammar and Categorial Grammar. (Both of them diagnose this as a syntactic
failure that is at root a type mismatch.) Unfortunately, it is unclear whether the
incompleteness of /Ate./ is at all a semantic fact. There is an alternative line of
analysis, which treats meanings as intrinsically complete (that is, propositional)
and instead views the unacceptability of sentences such as /Ate./ as a purely
syntactic fact of English. On this view, /Ate./ means “someone was eating some-
thing”. There are several reasons why this is a better idea for natural languages.
The main one is that the correspondence between semantic arguments and syn-
tactic positions is at best weak. The notion of eating involves both a subject and
an object (and a time point, for that matter). An event of eating is constituted
minimally by something being eaten and someone eating it. In order to pin down
the exact meaning we need to know who ate what when. As it happens, /eat/ can
also be used without an object. The standard approach (even in syntactic theory)
has been to assume that in this case the sentence contains an empty object. Also,
there are ways to convey the same meaning and yet use a fully grammatical con-
struction, such as /There is eating./. What is or is not obligatorily expressed
in a sentence varies greatly between languages. Some languages allow the subject
to be dropped, for example. Finally, and relatedly, the analogy with the function
is misleading in one important respect: while the argument to the function is an
object, supplying a syntactic subject does not necessarily feed one. For should
we assume that /John or Mary/ denotes an object that we can feed to the verb,
say in /John or Mary ate./? Similarly, /Someone ate./ contains a quantifier
in subject position, something which is analysed not as an argument to the verb
but rather as a functor. In my view, a syntactic argument serves to specify the
identity of some object in question. This specification can be incomplete and thus
the function once again lacks any specific value.

Montague has been impressed by the idea that syntactic requirements are at
heart of semantic nature and has consequently endorsed the view that meanings
are objects of a typed universe of functions. To implement this we may either
choose a universe of the typed λ-calculus or some version of typed combinatory
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logic. A type is a term of the language with a single binary symbol→ (you might
want more type constructors, but that does not change the argument). There is a
set of basic types, for example e and t, and one formation rule: If α and β are
types, so is α → β. Each type α is associated with a set Mα of denotations. It
is generally required that Mα ∩ Mβ = ∅ whenever α , β. This means that every
object has at most one type. Furthermore, we require

(4.1) Mα→β := (Mβ)Mα := { f : Mα → Mβ}

This leaves us with fixing only the sets Mb for basic b.

At its core Montague Grammar uses only two modes of combination: forward
application and backward application.

(4.2)
A>(〈~x,m〉, 〈~y, n〉) = 〈~xa a~y,m(n)〉
A<(〈~x,m〉, 〈~y, n〉) = 〈~xa a~y, n(m)〉

For A>(〈~x,m〉, 〈~y, n〉) to be defined m must be a function that can take n as its
argument. This means that there are α and β such that m is of type α → β and n
of type α. The result is then an object of type β.

Montague Grammar inherits from λ-calculus a number of traits; one is that
functions cannot take their arguments simultaneously. A function can take only
one argument at a time. This can be eliminated either by allowing simultaneous
abstraction or by adding a pair constructor (as in the Lambek Calculus). How-
ever, linguists have supported the idea that functions take their arguments one by
one. For this means that syntax is binary branching. This has been one of the
central arguments in favour of Categorial Grammar. Thus, if we have a predicate
with several arguments, we bring it into the desired form by ‘Currying’, which
is to abstract the arguments one by one. Additionally, it assumes that when two
constituents are concatenated to form a new constituent, the meaning of the result
is already determined, at least in the basic calculus. Namely, if two constituents
can at all be put together into a single constituent then one of them will have type
α → β and the other the type α; the result will therefore be of type β. The idea
that constituent formation adds nothing to the meaning is also known as lexical-
ism. In this section I shall propose that rather than using functions we should use
relations; and that we should also abandon lexicalism.

The idea of higher order types makes sense only if it is unequivocally clear
what is argument and what is function. For if it is an intrinsic property of the
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meaning of a verb is that it takes something as its argument there should be no
doubt about that at all. Precisely this, however, has been a problematic issue for
Montague Grammar. For on the one hand a singular proposition like “John is sick”
is taken to be one where the verb denotes a semantic function taking the subject
as its argument. On the other hand, quantified expressions have been argued to be
structured in the opposite way: /everyone/ denotes a function in /Everyone is

sick./. In order to avoid this mismatch, Montague decided to raise the denotation
of /John/ so that it becomes a function over functions. But that was a technical
manoeuver. It was clearly not motivated from semantic considerations, but rather
from syntactic uniformity. From here, it is a small step towards the type changing
operations, which have been used extensively in [Landmann, 2004]. However,
they threaten to undermine the idea that we have an intuitive grasp over the se-
mantics of expressions.

Worse, it appears that the idea of the meaning of the syntactic subject as de-
noting the argument that is supplied to the function is generally unworkable. We
can only say that it predicates of that argument. Modern semantics has basically
adopted that latter view. However, if that is so, the whole function-argument asym-
metry becomes arbitrary. And if we are free to view the subject alternatively as
the argument to the verb or as the function I conclude that the distinction should
be dropped altogether. Indeed, some philosophers and linguists have pursued a
different semantics. One avenue is event semantics, which has been introduced to
overcome not only the rigidity of the typing but also that of predicate logic itself
(see [Parsons, 1994]).1 Yet not everyone may be convinced. Therefore, to settle
the matter we need empirical criteria. Additionally we need to see if there is a
way to replace the typed universe with something else. For if there is not, then
that in itself would weaken our position.

The preceding discussion can also be seen in a different light. Even if we grant
that the meaning of /eat/ is a function there might be a question as to how that
function is used in actual semantics. One camp holds that expressions are basically
closed expressions. There are no free variables. One exponent of this view is P.
Jacobson. The opposing view is that there is such a thing as free variables and
there is no need to quantify them away. Proposals to this effect have been made in

1The need to free semantics from syntactic ‘impositions’ is also felt in Minimal Recursion Se-
mantics ([Copestake et al., 2005]). However, the latter is driven purely by concerns of practicabil-
ity, and compensates for the lack of syntactic information by introducing labels. Such approaches,
though widespread in computational linguistics do nothing to answer the questions that I have in
mind here: namely whether semantics is independent of syntax.
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[Kamp, 1981] and [Staudacher, 1987], among others. The disadvantage of closed
expressions is that they make pronominal reference difficult (if not impossible).
(But see [Jacobson, 1999; Jacobson, 2000; Jacobson, 2002] for an opposing view.)

As a consequence, DRT went the opposite way, namely not to abstract away
arguments, but use formulae instead, with or without free variables. This however
comes at a price. For if variables are no longer quantified away we must take
proper care of them. There is a standard procedure to eliminate functions from
predicate logic. Likewise we shall show here that an approach based on func-
tions can be replaced by one that uses open propositions. An open proposition
is a proposition that still needs certain variables to be filled. (These are exactly
the ‘incomplete thoughts’.) Open propositions are the denotations of formulae. A
formula is an expression of the form ϕ(x0, x1, · · · , xn−1) of type t (= truth value),
where xi, i < n, are variables of any type. Thus, given an assignment of objects
of appropriate type to the variables this expression will yield a truth value. A
notable change to previous conceptions of truth, however, is that we consider an
open proposition true exactly when it has a satisfying assignment. Thus, /eat/

becomes true exactly when someone is eating something at some moment. This is
opposite to the standard conception in logic where an open proposition is consid-
ered true if there is no falsifying assignment; so /eat/ would be true if everyone
eats everything at every moment. In our approach free variables are inherently
existential, in standard predicate logic they are inherently universal. We should
note that one problem that besets the free variable approach is that the choice of
the actual variable inserted matters for the interpretation of the formula. However,
it is patently clear that whether we use x8 or x11 is a matter of convenience.2 Thus
we have to devise a method to interpret such formulae and manipulate them in
such a way that it does not make reference to the actual names of the variables. It
is often thought that algebraic semantics has provided a solution to this problem,
for example in the proposal by Quine. Here, meanings are relations, and there is
no talk of variable names. Yet, now we need to talk about positions in a relation,
which is not doing semantics either. We must namely also make explicit use of
substitutions based on indices (see [Ben Shalom, 1996]). So this does not fully
answer the complaint.

There is a well-known procedure to convert all meanings into open proposi-
tions. If m is a meaning of type α, α , t, then replace it with x = m, where x is

2[Fine, 2007] has addressed this issue and came to the conclusion that meanings are relational.
I will briefly discuss his proposal in 4.6.
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of type α. Consequently, signs of the form 〈~x,m〉 are now replaced by signs of the
form 〈~x, x = m〉. Now consider the rule of application:

(4.3) A>(〈~x,m〉, 〈~y, n〉) = 〈~xa a~y,m(n)〉

In the new semantics it becomes:

(4.4) U>(〈~x, u = m〉, 〈~y, v = n〉) = 〈~xa a~y, u = m ∧ v = n ∧ w = u(v)〉

This is however not always satisfactory. It introduces the idea of applying m to
n through the construction; and the construction still speaks of applying m to n.
There is an alternative, which runs as follows.

(4.5) U>(〈~x, u = m(w)〉, 〈~y, v = n〉) = 〈~xa a~y, u = m(w) ∧ v = n ∧ w = v〉

This rule simply conjoins the two meanings and unifies certain variables. The uni-
fication, by the way, is the semantic contribution of the rule itself, and cannot—on
pain of reintroducing the same problematic meanings—be pushed into the mean-
ings of the elements themselves. If m(w) is a function and has to be applied then
we also have to feed to m(w) these additional arguments. In this way we can see
to it that the generalised rule is as follows:

(4.6) U
i j
>(〈~x, ϕ(~u)〉, 〈~y, χ(~v)〉) = 〈~xa a~y, ϕ(~u) ∧ χ(~v) ∧ ui = v j〉

Eliminating the equation we can alternatively write

(4.7) U
i j
>(〈~x, ϕ(~x)〉, 〈~y, χ(~y)〉) = 〈~xa a~y, ϕ(~x) ∧ [xi/y j]χ(~y)〉

Thus we have the following result: the meaning of a complex constituent is a
conjunction of the meaning of its parts with some fixed open formula. This is a
welcome result. For it says that every meaning is propositional, and merging two
constituents is conjunction—up to the addition of some more constraints.

The standard rendering in predicate logic suffers from defects, too. Consider
the meaning of /eat/ again. It has, as we agreed, three slots: that of the subject,
the object and the time point. When we want to specify any one of the arguments
we must know which one that is. If we want to say who is eating we must be able
to connect the subject expression with the appropriate subject slot in the predicate.
In predicate logic this mechanism is ensured through a linear notation. That there
is eating of a sandwich by Steven at noon today is rendered in relational notation
as follows:

(4.8) eat(Steven, x, 12 : 00) ∧ sandwich(x)
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Recall that we agreed to read this existentially: it means that there is a value, say
s1, for x that is a sandwich and such that Steven eats it at 12:00. The order of
the three arguments, “Steven”, “x” and “12:00” is syntactic: the linear alignment
in the formula allows to assign them a particular slot in the relation. One may
disagree and claim that it is not the notation that achieves this but rather the deno-
tation: /eat/ denotes a three place relation, which in turn is a set of triples. If this
is so then we must ask what reality there is to these triples. In predicate logic, it
turns out, they have no reality. Compare the following pieces of notation:

(4.9) p(x, y, z) p(〈x, y, z〉)

On the left we have a ternary predicate p, and three arguments. On the right we
have a unary predicate p being applied to a single argument, the triple 〈x, y, z〉.
Standard models for predicate logic do not assume that triples exist. It is true
that the interpretation of relation symbols is given in the form of sets of tuples,
but these objects are not part of the domain. (First order set theory provides a
notable exception to this.) Technically, it is possible to install a domain for such
tuples; however, that seems to be a mere technical trick we are pulling. The
fundamental question to be asked is namely what makes the arguments come in
that particular order as opposed to another. I do not know of any reason to put the
subject first. But what is the significance of being the first member in the sequence
anyway? I know of no answer to that question. At best, the significance is not
objective but rather an artefact of the way we code meanings in predicate logic;
this in turn is simply a result of the language we speak. I am sure that speakers
of an OSV language would use a different encoding. But what difference would
that make in terms of the meaning as opposed to the encoding? In fact, [Dixon,
1994] translates Dyirbal verbs in active morphology by their passive counterparts
in English. [Mel’čuk, 1988] goes one step further and says that in Dyirbal the
syntactic subject is what is the object of the corresponding English verb.

Now, if it is possible to systematically exchange the first and the second po-
sition in the predicate logic encoding then we know that what counts is not the
actual position. Rather, what is first in one notation is second in the other, and vice
versa. Thus, if the meanings had these positions in them it should not be possible
to exchange the positions in this way. This avenue is to be explored. Suppose we
have a language just like English except that in transitive constructions all objects
and subjects are exchanged. Such a language is not so outlandish: it would be
the consistent ergative counterpart of English. Call this language Erglish. Thus,
for Dixon, Dyirbal is Erglish though with somewhat different pronunciation. The
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question is: to what extent can semantics tell the difference between English and
Erglish? The answer is: it precisely depends on whether it can tell the difference
between being subject and being object. Unless there is a semantic difference,
these languages look semantically exactly the same. It therefore appears that if
subjects and objects are different we ought to define our semantic rules in terms
of this semantic difference rather than an arbitrary label.

Kit Fine has argued in [Fine, 2000] that from a metaphysical point of view we
should better renounce the idea of a positionalist view of relations. The calculus
of concepts below is an attempt to provide such an account. It will do more than
that, as we believe there is more to the problem. Ultimately, we want to say that
a property is true not of a sequence (as in predicate logic), nor of a multiset, but
rather of a set of objects under a particular way of relating the members to a slot.
This means that we shall also eliminate repetitions in the sequence. It will follow
that the concept of self-loving is different from the concept of loving someone else
in that the first is unary and the second is binary.

4.2 Predicate Logic

Standard semantic theories assume that meanings are adequately described using
predicate logic, first or higher order. In this section I shall describe two semantics
for many sorted predicate logic. The present section does not introduce predicate
logic as an interpreted language; we leave that topic to Section 5.1. In this section
we shall concentrate on standard predicate logic, clarify the basic terminology and
definitions.

We assume that basic objects are sortal; we have, for example, objects, time
points, degrees, events, situations, regions, worlds, truth values, and so on. For
each of these sorts we assume that the meanings associated with it come from a
particular set. Thus we assume that we have a primitive set S of sorts. The sort s
is interpreted by a set Ms. Thus we have a family of sets M := {Ms : s ∈ S }. A
relational type is a member of S ∗, that is, it is a string of sorts. For a relational
type ~s, a object of type ~s is an element of the set M~s, which is defined inductively
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as follows.

(4.10)
M〈〉 := {∅}

M〈s〉 := Ms

M~s;t := M~s × Mt

Finally, a relation of type ~s is a set of objects of type ~s. The type 〈〉 is of special
importance. It corresponds to the set {∅}. This set has two subsets: 0 := ∅ and
1 := {∅}. These sets will function as our truth values: 1 is for ‘true’ and 0 for
‘false’. The way they do this is somewhat unorthodox. A predicate is true in a
model if it has a satisfying tuple (see Definition 4.3). Otherwise it is false. Thus,
it is true if its extension is not empty and false otherwise. So, denotations of
predicates of type ~s are subsets of M~s. Applied to ~s = 〈〉 this gives the desired
correspondence.

I also mention that functions are treated basically as relations; a function of
type 〈s0, s1, · · · , sn〉 is interpreted as follows. Its arguments are of sort si, i < n,
and the value is of sort sn. It is known that we can eliminate functions from a
first-order signature (see [Monk, 1976]), and so for simplicity we shall assume
that there are no functions.

A first-order (sortal) signature over a set S of sorts is a pair τ = 〈Rel, τ〉
such that Rel is a finite set, the set of relation symbols and Ξ : Rel → S ∗ an
assignment of relational types to relation symbols. Even though τ can in principle
be infinite, this is excluded here. The alphabet of PLτ consists of the following
symbols

1. variables xs
i , where i ∈ N, and s ∈ S ;

2. relation symbols R of type τ(R);

3. propositional connectives ∧, ∨,→, ¬;

4. for each i ∈ N, and sort s ∈ S , quantifiers ∃xs
i and ∀xs

i .

PLτ is infinite even if τ is finite. This will require creating a new type of index,
which is generated from a finite alphabet. From these symbols we can form for-
mulae in the following way:
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1. If ~s ∈ τ(R) and ~x is a sequence of variables of type ~s then R(~x) is an atomic
formula.

2. If ϕ and χ are formulae, so are ¬ϕ, ϕ ∧ χ, ϕ ∨ χ and ϕ→ χ.

3. If ϕ is a formula and xi
s a variable then ∃xi

s.ϕ and ∀xi
s.ϕ is a formula.

Notice that formulae have no type (or, more accurately, are all of the same type).
For each s ∈ S there is an identity =s, which we normally write =. Identity is
sortal; xt

i =s xu
j is true only if t = u = s (that is, if the sorts are identical). A

τ-structure is a pair M = 〈M, I〉, where M = {Ms : s ∈ S } and for every
relation symbol R, I(R) is a relation of type τ(R) over M, that is, I(R) ⊆ Mτ(R).
An assignment into M or a valuation is defined as a function β from the set
of variables into

⋃
M :=

⋃
s∈S Ms such that for every s ∈ S : β(xs

i ) ∈ Ms. The
pair 〈M , β〉 is called a τ-model. Ordinarily, a formula ϕ(x0, x1, · · · , xn−1) with
variables xi of type si is interpreted as a relation of type ~s := 〈s0, s1, · · · , sn−1〉.
We shall take a detour via the assignments. Write [ϕ]M for the set of assignments
making a formula ϕ true. It is defined inductively. For a given assignment β, write
β′ ∼xs

i
β if for all t , s and all j , i: β′(xt

j) = β(xt
j). V is the set of all assignments.

(4.11)

[R(~y)]M := {β : 〈β(y0), β(y1), · · · , β(yn−1)〉 ∈ I(R)}
[¬ϕ]M := V − [ϕ]M

[ϕ ∧ χ]M := [ϕ]M ∩ [χ]M
[ϕ ∨ χ]M := [ϕ]M ∪ [χ]M

[ϕ→ χ]M := (V − [ϕ]M ) ∪ [χ]M
[∃xs

iϕ]M := {β : there is β′ ∼xs
i
β : β′ ∈ [ϕ]M }

[∀xs
iϕ]M := {β : for all β′ ∼xs

i
β : β′ ∈ [ϕ]M }

This formulation makes predicate logic amenable to the treatment of this book.
Standardly, however, one prefers a different formulation. Let β be a valuation and
ϕ a formula. Then say that ϕ is true in M under the assignment β and write
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〈M , β〉 � ϕ, if β ∈ [ϕ]M . This notion is defined inductively by

(4.12)

〈M , β〉 � ϕ(~x) :⇔ β(~x) ∈ I(R)
〈M , β〉 � ¬ϕ :⇔ not 〈M , β〉 � ϕ

〈M , β〉 � ϕ ∧ χ :⇔ 〈M , β〉 � ϕ and 〈M , β〉 � χ

〈M , β〉 � ϕ ∨ χ :⇔ 〈M , β〉 � ϕ or 〈M , β〉 � χ

〈M , β〉 � ϕ→ χ :⇔ 〈M , β〉 2 ϕ or 〈M , β〉 � χ

〈M , β〉 � (∃y)ϕ :⇔ for some β′ ∼y β: 〈M , β′〉 � ϕ

〈M , β〉 � (∀y)ϕ :⇔ for all β′ ∼y β: 〈M , β′〉 � ϕ

For a formula ϕ the set of free variables, fr(ϕ) is defined as follows.

(4.13)

fr(R(~y)) := {yi : i < card(τ(R))}
fr(¬ϕ) := fr(ϕ)

fr(ϕ ∧ χ) := fr(ϕ) ∪ fr(χ)
fr(ϕ ∨ χ) := fr(ϕ) ∪ fr(χ)

fr(ϕ→ χ) := fr(ϕ) ∪ fr(χ)
fr((∃y)ϕ) := fr(ϕ) − {y}
fr((∀y)ϕ) := fr(ϕ) − {y}

Proposition 4.1 (Coincidence Lemma) Let β and β′ be valuations such that for
all y ∈ fr(ϕ) β(y) = β′(y). Then 〈M , β〉 � ϕ iff 〈M , β′〉 � ϕ. Alternatively,
β ∈ [ϕ]M iff β′ ∈ [ϕ]M .

A theory (or deductively closed set) in the signature τ is a set of formulae T ⊆ Lτ
such that

for every formula ϕ and every formula χ: if ϕ → χ ∈ T and ϕ ∈ T
then χ ∈ T

There is a calculus for predicate logic, whose nature we shall not elucidate (how-
ever, see [Monk, 1976] or [Rautenberg, 2006]). It specifies a relation ∆ ` ϕ
between sets ∆ of formulae and a single formula. With respect to this calculus,
we say that T is consistent if for ⊥ := (∃x0

s)¬(x0
s = x0

s) (any choice of s) we do
not have T ` ⊥.
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Theorem 4.2 (Completeness of Predicate Logic) For every consistent theory T
there is a model M and a valuation β such that for all δ ∈ T: 〈M , β〉 � δ.

Instead of interpreting a formula by sets of assignments, an alternative is to use
finitary relations. Since this gets us closer to our final interpretation (via concepts),
let us see how this approach might go. We assume that we have a slightly different
enumeration of the variables as before. Instead of enumerating the variables of
each sort separately, we enumerate all variables. The set of variables of all sorts
is V := {xi : i ∈ N}. Each of the xi has its sort, si, which we leave implicit in
the notation. For every formula ϕ we define the meaning to be a relation LϕMM .
Before we specify the precise nature of this relation we shall introduce an idea
by Kleene. Let the syntactic objects be pairs (ϕ, ~x), where ϕ is a formula and ~x
a sequence of variables. Then we let its denotation be the set of all tuples ~a of
same type as ~x such that there is a valuation which satisfies ϕ and sends xi to ai.
For example, (x0 + x1 = x3, x0) is a syntactic object and denotes over the natural
numbers the set {〈i〉 : i ∈ N}; (x0 + x1 = x3, x0, x3) is a syntactic object and it
denotes the set {〈i, j〉 : i ≤ j}. Finally, (x0 + x1 = x3, x0, x3, x1) denotes the set
{〈i, j, k〉 : i + k = j}. Call a syntactic object (ϕ, ~x) complete if every free variable
of ϕ is in ~x. (We may or may not disallow repetition of variables.) It is possible to
give a compositional semantics for complete syntactic objects (see the exercises).

The problem with predicate logic is that our strings are not pairs of formulae
and variables. But there is in fact no need to assume that. Namely, all we need
to assume is a canonical linear order on the variables. We then assume that the
meaning of the formula ϕ is what the meaning of (ϕ, ~x) is, where ~x is a specific
set containing the set of free variables of ϕ in canonical order. The sequence
we choose here is 〈x0, x1, · · · , xn−1〉 where xn−1 is the highest free variable of ϕ.
(Notice that the variables xi with i < n − 1 need not occur free in ϕ.) Thus the
relation codes the assignment of the first n variables xi, i < n, in the following way.
For a valuation β we define the partialisation βn := β � Vn, where Vn = {xi : i < n}
for some n. We translate the valuation γ into a sequence

(4.14) (βn)♥ := 〈βn(xi) : i < n〉 ∈ Xi<nMsi

Let `(ϕ) be the largest number such that x`(ϕ)−1 ∈ fr(ϕ). Then put

(4.15) LϕMM := {(β`(ϕ))♥ : β ∈ [ϕ]M }

Clearly,

(4.16) LϕMM ⊆ Xi<nMsi



162 4. Meanings

Now, instead of defining LϕMM via the set of satisfying valuations we can also give
an inductive definition. Let R→k be the expansion of R to a k-ary relation. This is
defined as follows. (a) If k is less that or equal to the length of R then R→k := R.
(b) If k is greater than the length of R then R→k+1 := (R→k) × Msk , where sk is the
sort of xk. For a tuple ~a let [i : b]~a denote the result of replacing ai by b. Given a
relation R of length n, put

(4.17) Ci.R :=

R if i ≥ n
{[i : b]~a : b ∈ Msi , ~a ∈ R} else

Finally, let Vk be the total relation of length k.

(4.18)

LR(xi0 , · · · , xin−1)MM := {~a : 〈ai0 , · · · , ain−1〉 ∈ I(R)}

L¬ϕMM := V`(ϕ) − LϕMM
Lϕ ∧ χMM := LϕM→`(χ)

M ∩ LχM→`(ϕ)
M

Lϕ ∨ χMM := LϕM→`(χ)
M ∪ LχM→`(ϕ)

M

Lϕ ∨ χMM := (V`(χ) − LϕM→`(χ)
M ) ∪ LχM→`(ϕ)

M

L∃xiϕMM := Ci.LϕMM

Example 51. It is worthwhile to mention a few facts about how we intend to use
this for natural language. First, we assume that the denotation of expressions is a
relation of some sort. To make this come about, we must eliminate all functions
and constants. This technique is known (see [Monk, 1976]). We show some
cases. The denotation of /John/ is the set of things being identical to John; we can
represent this by the formula x = j, where j is the constant denoting John. There
is no saturation; merge corresponds to conjunction. The sentence “John left.”
contains two pieces whose meaning we can paraphrase as “someone is John” and
“someone left”. The syntagma adds the meaning that the two people are the same.
o

In order to implement the previous idea it is necessary to revise our notion of
satisfaction.

Definition 4.3 We write M � ϕ(~x) and say that ϕ(~x) is true in M if 〈β(xi) : i <
n〉 ∈ LϕMM for some β.
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For comparison we shall say a few words about the type theoretic interpretation
chosen by Montague. Instead of using a ‘flat’ types (which we call sorts) he
introduces a hierarchy as follows. A functional type is (a) either an element of
s, or (b) a sequence →s0s1 where s0 and s1 are functional types. We use variables
α, β to denote functional types and also write α → β rather than using Polish
Notation, to keep within the standard notation. We associate with α → β the set
of all functions from Mα to Mβ. Montague uses e for objects and t for truth values.
A relational type 〈s0, s1, · · · , sn−1〉 is coded as the functional type

(4.19) s0 → (s1 → (· · · → (sn−1 → t)))

This allows to dispense with the original ‘flat’ types.

Exercise 44. Prove the Coincidence Lemma (Proposition 4.1).

Exercise 45. Spell out a compositional approach to the semantics of complete
syntactic objects. (You may consult Section 5.1 on this, but the solution should be
clear anyhow.)

Exercise 46. Show that there is no compositional semantics for syntactic objects
in general. (So, dropping the completeness requirement will not work.)

Exercise 47. Give an example to show why the semantics LϕMM cannot simply
be based on the pairs (ϕ, ~x) where ~x is exactly the set of free variables of ϕ in
canonical order.

4.3 Concepts

Standard semantic theories assume that meanings are adequately described using
predicate logic, first or higher order. In this section, however, I shall sketch a
different theory of meaning, which is based on concepts. A concept is a set of
relations which are in some sense variants of each other. A relation is a variant of
another relation if it can be obtained either by permutation of its arguments or by
contracting or expanding it. A precise definition is as follows.
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Let ~s = 〈s0, s1, · · · , sn−1〉 be a type and π : n → n be a permutation. Then
π(~s) := 〈sπ(0), sπ(1), · · · , sπ(n−1)〉 is a permutation of ~s. If t ∈ S then ~s · t is an
expansion of ~s. Given a relation R of type ~s, define

(4.20) π[R] := {π(~x) : ~x ∈ R}

This is a relation of type π(~s). A relation R′ is said to be a permutation of R if
and only if it is of the form π[R] for some permutation π. Furthermore, let

(4.21) E(R) := {〈x0, x1, · · · , xn−1, xn−1〉 : 〈x0, x1, · · · , xn−1〉 ∈ R}

This is a relation of type ~s · sn−1. A relation R′ is said to be a diagonal expansion
of R if and only if it has the form E(R). Finally, set

(4.22) Pt(R) := R × Mt

This is a relation of type t. A relation is said to be a product expansion of R (with
type t) if and only if it has the form Pt(R).

Definition 4.4 R′ is an immediate variant of R if and only if R′ is either a permu-
tation of R or R′ is a diagonal expansion of R or R is a diagonal expansion of R′

or R′ is a product expansion of R or R is a product expansion of R′. R′ is a variant
of R if there is a series 〈Ri : i < n + 1〉 such that R0 = R, Rn = R′ and for each
i < n, Ri+1 is an immediate variant of Ri. We write R ∼ R′ if R′ is a variant of R.

Example 52. Let S := {`, n}, M` := {a, b, c} and Mn := {0, 1}. The rela-
tion R = {〈a, 0〉, 〈b, 1〉} is of type 〈`, n〉. It has a nonidentical permutation R′ =

{〈0, a〉, 〈1, b〉}. This is also known as the converse of R, and written R`. The diag-
onal expansion of R is E(R) := {〈a, 0, 0〉, 〈b, 1, 1〉}. The diagonal expansion of R′

is E(R′) = {〈0, a, a〉, 〈1, b, b〉}. o

Even though the diagonal expansion repeats only the last column, R has many
more variants. Write

(4.23) Ei(R) := {〈x0, x1, · · · , xn−1, xi〉 : 〈x0, x1, · · · , xn−1〉 ∈ R}

Then Ei(R) is a variant of R. Namely, let π = (i n− 1) (see Appendix for notation)
and π′ = (i n). These are the permutations that exchange the items number i and
n − 1 in the case of π, and i and n in the case of π′. Then

(4.24) Ei(R) = π′[E(π[R])]



4.3. Concepts 165

We say that R′ is a generalised diagonal expansion of R if R′ = Ei(R) for some
i. Likewise, the generalised product expansion is defined by

(4.25) Pi
t(R) := {〈x0, x1, · · · , xn−1, xn〉 :

〈x0, x1, · · · , xi−1, xi+1, · · · , xn−1〉 ∈ R, xi ∈ Mt}

Notice the following. The identity relation of type 〈s, s〉 is defined as

(4.26) {〈x, x〉 : x ∈ Ms}

This is a diagonal expansion of type s of the total relation Ms of type 〈s〉. This
in turn is a product expansion of the relation M〈〉 = {∅} = 1. Thus the identity
relation is a variant of the ‘true’ relation. This has consequences we shall look at
in more detail later.

Definition 4.5 A concept is a set of relations of the form ~R� := {R′ : R′ ∼ R}.
Concepts are denoted by small Fraktur letters: c, d.

In principle we should write ~R�M since the concept depends on the structure;
however, I shall drop the reference to the structure since it will always be clear
from the context. There are two special concepts: the verum concept, denoted by
t, and the falsum concept, denoted by f. We have

(4.27) t := ~{∅}�, f := ~∅�

We employ the following convention. For a set M we take M to be the same as
1 × M, where 1 = {∅}. Thus, if Ms is the domain of elements of type s, since Ms

and 1×Ms count as the same, the set (= relation) Ms is a variant of 1. This is to be
kept in mind. M1 = {〈x〉 : x ∈ M} is technically different from M, but considered
here the same object.

Example 53. The concept generated by the empty relation is of course just the
set {∅}. This is the falsum concept. The verum concept is the concept of the form
t = ~{∅}�. If the universe has just one member, say {a}, then these are the only two
concepts. For let R be a nonempty relation. Then it has the form {〈a, a, · · · , a〉}.
Any two such sets are variants of each other. For example, {〈a, a, a〉} is a variant
of {〈a, a〉}, which in turn is a variant of {〈a〉}. The latter is a variant of 1. Thus,
every nonempty relation is a variant of every other nonempty relation, but not a
variant of the empty relation. o
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Example 54. We shall describe the concepts over a two element universe M :=
{a, b} (only one sort, with extension M). The zeroary relations are ∅ and {∅},
generating the concepts t and f. The unary relations are ∅, {〈a〉}, {〈b〉}, M =

{〈a〉, 〈b〉}. The first and the last are variants of zeroary relations, so we effectively
have only two new members, {〈a〉} and {〈b〉}. Next we turn to binary relations.
Here is a list of all 16:

(4.28)

R1 := ∅ R9 := {〈a, b〉, 〈b, a〉}
R2 := {〈a, a〉} R10 := {〈a, b〉, 〈b, b〉}
R3 := {〈a, b〉} R11 := {〈b, a〉, 〈b, b〉}
R4 := {〈b, a〉} R12 := {〈a, a〉, 〈a, b〉, 〈b, a〉}
R5 := {〈b, b〉} R13 := {〈a, a〉, 〈a, b〉, 〈b, b〉}
R6 := {〈a, a〉, 〈a, b〉} R14 := {〈a, a〉, 〈b, a〉, 〈b, b〉}
R7 := {〈a, a〉, 〈b, a〉} R15 := {〈a, b〉, 〈b, a〉, 〈b, b〉}
R8 := {〈a, a〉, 〈b, b〉} R16 := {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉}

R1 and R16 are variants of ∅ and {∅}, respectively. R2 and R5 are diagonal expan-
sions of {〈a〉} and {〈b〉}, respectively. R3 and R4 are permutations of each other.
R6 is {〈a〉} × M, so it is a variant of {∅}; R7 is a permutation of R6. R8 is the
identity on M, hence in turn a variant of verum. R9 is symmetrical; it generates a
concept different from the previous. R10 and R11 are diagonal expansions of unary
relations. R12, R13 and R15 are essentially new, while R14 is a variant of R13. Thus,
up to variants, there are only six relations: R3, R6, R9, R12, R13 and R15. o

Notice that the empty set is the empty n-ary relation for every n. It thus plays
multiple roles. This is not so for concepts. The empty concept has length 0.
The empty binary relation generates the empty concept, just as any other empty
relation, since they are the same set.

It is to be noted that identity, which plays such a big role in predicate logic,
denotes the diagonal ∆M := {〈a, a〉 : a ∈ M}. This set is the diagonal expansion
of M. Hence identity is a variant of 1, and therefore generates the concept t. This
reflects the fact that self-identity is trivially true of everything. To say that an
object is identical to itself is to issue a mere triviality. For this it does not matter
whether or not we take identity to be sortal. For example, the sortal diagonal
∆s := {〈a, a〉 : a ∈ Ms} is a diagonal expansion of Ms, which is an expansion of 1.

Let us now investigate the structure of the concept space somewhat. From now
on concepts are denoted by Gothic letters, such as c, d and so on.
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Definition 4.6 The length of a relation R is the length of any member of R. Let
c be a concept. A relation R ∈ c is minimal in c if it is of minimal length among
all members of c. The length of c is the length of any minimal member of c. The
length of c is denoted by `(c).

Minimal relations obviously exist; moreover, they are in an important sense unique.
For the purpose of the next proof, say in a relation R column i is independent if
for every tuple ~a ∈ R and b ∈ Ms of the appropriate sort s we have [i : b]~a ∈ M.
Say that column i is a replica of column j if the columns have the same sort s and
for every tuple ~a ∈ R we have ai = a j.

Proposition 4.7 Let R and R′ be minimal members of a concept c. Then R is a
permutation of R′.

Proof. We assume here that Ms has at least two members for each sort. (This just
eliminates trivial cases; for a one-element set is always redundant in a minimal
member.) Let R be a minimal relation of length n. Call an n-sequence is a se-
quence ~o over the set {?0, ?1, · · · , ?n−1} ∪ {◦s : s ∈ S }. ~o is full if every ?i, i < n,
occurs at least once. For each s ∈ S choose some ys ∈ Ms. Let ~o be of length k.
Given ~a ∈ R we can assign an element ~o(~a) as follows.

(4.29) ~o(~a) = 〈o0(~a), o1(~a), · · · , ok−1(~a)〉

where

(4.30) oi(~a) :=

a j if oi = ? j,
ys if oi = ◦s.

By induction, we shall assign an n-sequence to all variants R′ of R. These se-
quences will be full, as can easily be checked. Moreover, inductively it is checked
that ~o is an embedding of R into R′ (fullness is essential here). When R′ is mini-
mal, this embedding is actually a bijection, and so R′ is a permutation of R. And
this then concludes the proof.

R is assigned the sequence 〈?0, ?1, · · · , ?n−1〉. Assume that R′ has the se-
quence ~o and that R′′ is an immediate variant of R′. Case 1. R′′ is a permutation of
R′ via π. Assign to R′′ the sequence π(~o). If ~o is full then so is π(~o). The map π(~o)
is an embdding. Case 2. R′′ is a diagonal expansion of R′. Then assign to R′′ the
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sequence ~o · o, where o is the last member of ~o. If ~o is full so is the sequence ~o · o.
Case 3. R′′ is a product expansion of R′ by sort s. Then assign to R′′ the sequence
~o · ◦s. If ~o is full so is ~o · ◦s. Case 4. R′ is a product expansion of R′′ by sort s.
Two cases need to be considered. The first is that ~o = ~m · ◦s. Then assign ~m to R′′.
The second case is where the last member is ?i for some i < n. This case never
arises. For either ~m contains ?i and then the last column is a replica, contradicting
its independence. Or ~m does not contain ?i. And this would mean that the ith
column of R is independent of the other columns. In other words, R would not be
minimal. Contradiction. So, ~m is full and defines an embdding. Case 5. R′ is a
diagonal expansion of R′′. Then either ~o = ~m · ?i for some i < n or ~o = ~m · ◦s for
some s ∈ S . R′′ will be assigned the sequence ~m in both cases. ~m is also full, since
the last member of ~o also occus in ~m if it is of the form ?i. For suppose the last
member is ?i for some i < n. Again, being an expansion of R′′ the last column is
either independent of the other columns (which would contradict the minimality
of R) or it repeats some other column of R′′, say column h. Then oh is either ◦s or
? j. In the second case the jth column of R would be a replica of the ith column,
so R is not minimal, unless j = i. But then ~m is full. In the first case column k is
independent of the ith column of R, and so cannot depend on the last column. �

The proof reveals that the concept allows to define the generating relation up
to a permutation on condition that the generating relation is nonreducible, that is,
cannot be obtained from another relation by expansion.

Lemma 4.8 Let R,R′ be minimal members of c. If R ⊆ R′ then R = R′.

Proof. Suppose that R ⊆ R′. By the previous theorem, R′ = π[R] for some
permutation π. So, R ⊆ π[R]. From this we derive πi[R] ⊆ πi+1[R] for any i,
and by transitivity, R ⊆ πi[R] for any i. Now, since there is a k such that πk is
the identity, we can also derive πk−1[R] ⊆ πk[R] = R, and reasoning backwards
establish that πi[R] ⊆ R for all i < k. It follows that R′ = π[R] ⊆ R. �

We can use this to define the type of a concept. Suppose c is a concept and that
R ∈ c is minimal. Then R has a type ~s. This is a sequence. It defines a multiset
§(~s) in the following way: the sort s is contained in §(~s) exactly as many times as
it is contained in ~s. Thus we say that §(~s) is the type of c.

We define the following subsumption relation on concepts.

(4.31) c ≤ d :⇔ (∀R ∈ c)(∃S ∈ d)(R ⊆ S )
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Notice that R ⊆ S means that the relations are of same length and type. It turns out
that just one pair of sets is sufficient to establish an order between the concepts.

Lemma 4.9 c ≤ d if and only if there is R ∈ c and S ∈ d such that R ⊆ S .

Proof. Let R ∈ c and S ∈ d be such that R ⊆ S . Let π be a permutation. Then
π[R] ⊆ π[S ]. Also, R × M ⊆ S × M and E(R) = E(S ). So for any permutation
and expansion of R there is a corresponding set in d. If however R is itself an
expansion of T then T = Ci.R for some i. Now, Ci.R ⊆ Ci.S . Hence for all R′ ∼ R
there is a S ′ ∼ S such that R′ ⊆ S ′. �

Proposition 4.10 ≤ is an ordering relation. That is to say for all c, d and e:

À c ≤ c,

Á if c ≤ d and d ≤ e then c ≤ e, and

Â if c ≤ d and d ≤ c then c = d.

Proof. À is clear. For Á, suppose R ∈ c. Then by assumption there is S ∈ d
such that R ⊆ S ; again by assumption there is a T ∈ e such that S ⊆ T . So,
R ⊆ T for some T ∈ e. For Â let R be minimal in c. Assume first that there is a
minimal S ∈ d such that R ⊆ S . Then by assumption there is a R′ ∈ c such that
S ⊆ R′. Since R ⊆ R′, and both are of same length, R′ is not only minimal (by
Proposition 4.7), we also have R = R′, by Lemma 4.8. It follows that R = S , and
c = d. Now suppose that there is no minimal S such that R ⊆ S . Then d has lesser
length than c, for there is at least one S of length `(c) in d. Hence `(d) < `(c). Now
pick a minimal S ⊆ d. There is no R ∈ c for which S ⊆ R, contrary to assumption.
�

The concatenation of concepts plays the role of conjunction.

Definition 4.11 Suppose that c = ~R� and d = ~S �. Then we define

(4.32) c ∗ d := ~S × R�

This definition does not depend on representatives. We omit the proof. Notice
that even if R is minimal in c and S is minimal in d, R × S need not be minimal in
c ∗ d. This is easily seen if c = d.
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Proposition 4.12 ∗ is a semilattice operation. This means that for all c, d and e:

À c ∗ c = c.

Á c ∗ d = d ∗ c.

Â c ∗ (d ∗ e) = (c ∗ d) ∗ e.

Proof. Let c = ~R�, d = ~S � and e = ~T�. Then, as R × R ∼ R (using a series
of diagonal expansions), we have ~R × R� = ~R� = c. Further, since R × S ∼
S × R (using a suitable permutation) we have c ∗ d = d ∗ c. Finally, (c ∗ d) ∗ e =

~(R × S ) × T� = ~R × (S × T )� = c ∗ (d ∗ e). �

The concatenation is a kind of conjunction. It represents the conjunction with-
out any identification. In fact we can show that under the ordering ≤ defined
above, ∗ is exactly the greatest lower bound.

Proposition 4.13 c ∗ d ≤ c and c ∗ d ≤ d. Moreover, for every e such that e ≤ c and
e ≤ d we also have e ≤ c ∗ d.

Proof. The first assumption follows from the second. Assume therefore e ≤ c and
e ≤ d for some e. Pick R ∈ e. There is then S ∈ c and T ∈ d such that R ⊆ S and
R ⊆ T . Let R be of length n. Define the set R./ as follows.

(4.33) R./ := {〈a0, · · · , an−1, a0, · · · , an−1〉 : 〈a0, · · · , an−1〉 ∈ R}

R./ ∼ R (by repeated generalised diagonal expansion). Moreover, R./ ⊆ S × T . By
Lemma 4.9, e ≤ c ∗ d. �

There is no natural definition of disjunction, since this needs identification of
columns. We leave it to the next section to go deeper into the topic of identification
of columns across concepts.

Now we shall interpret formulae not by sets of assignments or finitary rela-
tions, but by concepts. The definition is as follows.

(4.34) �ϕ�M := ~LϕMM �

Recall that LϕMM delivers a relation (a subset of
∏

i<`(ϕ) Msi) based on the set of
free variables of ϕ.
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We can give a somewhat more compact version of this set. Notice namely that
LϕMM was based on a set that may properly include the set fr(ϕ). For if xi is not
free but there is j > i such that x j is free in ϕ, then ϕ does not depend on xi but
nevertheless the ith component of LϕMM records the values of xi. It is thus easily
seen that there are sets A ⊆

∏
j<i Msi and B ⊆

∏
i< j<`(ϕ) Ms j such that

(4.35) LϕMM ⊆ A × Msi × B

There is a set C ⊆ A × B such that

(4.36) LϕMM = {~x · y ·~z : ~x ·~z ∈ C, y ∈ Msi}

By the laws of concepts,

(4.37) ~LϕMM � = ~C × Msi� = ~C�

Thus, we can actually eliminate from LϕMM all columns referring to variables that
are not free in ϕ.

However, one should not be mislead to think that it is exactly the free variables
whose values need to be recorded for the formation of the concept. For sometimes
variables occur free but nevertheless make no significant contribution to the for-
mula. For example, for the formula χ := ϕ(~y)∧ xs

k = xs
k we get fr(χ) = fr(ϕ)∪{xs

k}.
If k ≥ `(ϕ) we have

(4.38) LϕMM , LχMM

On the other hand we have

(4.39) [ϕ]M = [χ]M

since both formulae are satisfied by the same assignments. We have �χ�M =
�ϕ�M . Thus the addition of ‘trivial’ variables has no effect on the concept.

Let us finally turn to elementarily definable concepts. Suppose that R =

Lϕ(x0, · · · , xn−1)MM for some ϕ(x0, · · · , xn−1). In this case R is said to be defin-
able. Then

À π[R] = Lϕ(xπ(0), · · · , xπ(n−1)MM .

Á R × M = Lϕ(x0, · · · , xn−1) ∧ xn = xnMM .
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Â E(R) = Lϕ(x0, · · · , xn−1) ∧ xn−1 = xnMM .

Hence, if one minimal member of a concept is definable, all members of the con-
cept are definable.

Proposition 4.14 Let c be a concept and R, S ∈ c. Then R is definable if and only
if S is.

Proof. It remains to be shown that if E(R) or R × M is definable, so is R. To this
end, let Lϕ(x0, · · · , xn)MM = E(R). Then L∃xn.ϕ(x0, · · · , xn)MM = R. Similarly, if
Lϕ(x0, · · · , xn)MM = R × M then L∃xn.ϕ(x0, · · · , xn)MM = R. �

Thus the variants of a relation can be obtained through adding some equation
or existentially quantifying a relation. But there is more. Notice, for example,
that the concept does not depend on the way we number the yi. The relation will
be a permutation of the original relation, which by definition is a variant of it.
Additionally, let χ(y1, y0) := ϕ(y0, y1). Then �χ�M = �ϕ�M . It is therefore the
case that

(4.40) �xe
0 < xe

1�M = �xe
0 > xe

1�M

In other words, for objects of sort e the concept of ‘being smaller than’ is the
same concept as ‘being bigger than’. This looks like a contradiction, but it is not.
The idea is that although the concept contains both relations, in the formation of
complex formulae just one of them is being used at a time. This is achieved by
the so-called linking aspect, to which we now turn.

Exercise 48. Show that c ≤ d does not hold if `(c) < `(d). However, give
examples where `(d) > `(c) and still c ≤ d.

Exercise 49. Show that �ϕ(x0, x1) ∧ x0 = x1� ≤ �ϕ(x0, x1)� need not hold.

Exercise 50. Show that if R ⊆ S then Ci.R ⊆ Ci.S and E(R) ⊆ E(S ).
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4.4 Linking Aspects and Constructional Meanings

The previous section has introduced the concatenation of concepts, which turned
out to be conjunction in the sense of the ordering. However, when we spell this
out in terms of defining formulae we get something slightly different.

Proposition 4.15 Let ϕ and χ be formulae. Let s be an injective substitution such
that fr(ϕ) ∩ fr(s(χ)) = ∅. Then

(4.41) �ϕ� ∗ �χ� = �ϕ ∧ s(χ)�

The proof is easy and left as an exercise. We just point out an example to show
why it is generally not the case that �ϕ� ∗ �ψ� = �ϕ ∧ ψ�. Let ϕ = x0 < x1 and
ψ = x1 < x0. Then ϕ ∧ ψ is unsatisfiable, hence �ϕ ∧ ψ� is the null concept.
On the other hand, the concatenation is not empty, so cannot be the null concept.
According to the theorem above it is �x0 < x1 ∧ x2 < x3�.

This is a welcome result. [Vermeulen, 1995] has made the point that the merge
operation to be employed for merging DRSs should not be done in the style of
[Zeevat, 1989], that is, simply taking all variables at face value. Recall that the
Zeevat-merge was defined like this, where 〈V,Γ〉 and 〈W,∆〉 are pairs of variable
sets and sets of formulae:

(4.42) 〈V,Γ〉 • 〈W,∆〉 := 〈V ∪W,Γ ∪ ∆〉

One of the problems that this faces is accidental capture:

(4.43) 〈{x},∅〉 • 〈∅, {ϕ(x)}〉 = 〈{x}, {ϕ(x)}〉

The left hand sides read “∃x” and “ϕ(x)”, respectively, and the right hand side
“∃x.ϕ(x)”. Such results can only be obtained by intelligent variable handling. On
occasion, though, we really do want variables to be identified. This is the case with
the phrase /a dog/, which is the concatenation of /a/ and /dog/, which translate
as 〈{x},∅〉 and 〈∅, {dog(x)}〉, respectively. The result we want is 〈{x}, {dog(x)}〉.
To get this effect, [Vermeulen, 1995] introduces names. Variables are optionally
paired with a name, which can be anything, even an index, and those variables that
have the same name will be identical after merge.3 Let [x 7→ 1] be the function

3The actual referent systems operated with a pair of such injections, but we can safely ignore
that complication.
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mapping the variable x to 1. Then with these stipulations we get

〈[x 7→ 1], 〈{x},∅〉〉 • 〈[x 7→ 1], 〈∅, {dog(x)}〉〉(4.44)
= 〈[x 7→ 1], 〈{x}, {dog(x)}〉〉

〈[x 7→ 1], 〈{x},∅〉〉 • 〈[x 7→ 2], 〈∅, {dog(x)}〉〉(4.45)
= 〈[x 7→ 1; y 7→ 2], 〈{x}, {dog(y)}〉〉

In this system the names of the variables are insignificant. Variables can be re-
named inside a representation as long as distinct variables are mapped to distinct
variables. Yet, the names of the variables are significant in the same way as the
variable was in the Zeevat-merge. Thus we have made not much progress, because
the names cannot be part of the meaning.

What we need to find is a definition of merge that does not assume that the
functions are part of the representation. Instead, we must be able to define them on
the basis of the concept itself. We show how to transform Vermeulen’s approach.
First, we simplify it by using numbers in place of names. It is clear that the names
can be absolutely anything, since the only thing that matters for merge is whether
names are equal or different. Now think of each number as naming a position
in a tuple. Then instead of using names to associate with variable, we associate
positions in a tuple, and the positions are simply numbers. Same number means
then that the variable will be associated with the same position in a tuple. This
leads directly to the idea of simply associating a relation with a concept. So the
idea is basically this. Assume that f and g are functions from concepts to relations
such that f (c) ∈ c for every c. Then put

(4.46) c? f ,g
d := ~ f (c) ∩ g(d)�

This is well-defined just in case f (c) and g(d) are relations of the same type.

Example 55. Transitive verbs can be coordinated to form transitive verbs. The
meaning of /fry and eat/ is again a 2-concept as witnessed by /fry and eat

a sausage/. Let f = g both be such that they assign to the 2-concept �fry′(x0, x1)�M

the set Lfry′(x0, x1)MM , and similarly to �eat′(x0, x1)�M the set Leat′(x0, x1)MM ,
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Then on the basis of this choice,

(4.47)

�fry′(x0, x1)�M ? f ,g
�eat′(x0, x1)�M

=~Lfry′(x0, x1)MM ∩ Leat′(x0, x1)M�M
=~Lfry′(x0, x1) ∧ eat′(x0, x1)M�M
=�fry′(x0, x1) ∧ eat′(x0, x1)�M

It is however also possible to coordinate concepts of different length, for example
/hit and run/. Here, /hit/ denotes a 2-concept and /run/ a 1-concept. In this
connection, /hit/ functions in the same way as /hit someone/. To make this
work, we need to select for �run′(x0)� not the set Lrun′(x0)M but the set Lrun′(x0)M×
M. Intersect this with the set Lhit′(x0, x1)M and one gets the set Lhit′(x0, x1)M ∩
Lrun′(x0)M of pairs 〈x, y〉 such that x hits y and runs. This is as desired. o

As concepts are defined (uniquely) by their minimal member, a slightly dif-
ferent approach to defining ? f ,g is by using a minimal member as a representative
of each concept. A linking aspect is a function that does the job of finding such
representatives.

Definition 4.16 A linking aspect is a partial function Y defined on some set of
concepts such that Y(c) is a member of c. Y is minimal if Y(c) is a minimal member
of c for every c.

A particular way to define a linking aspect is by means of critical sets.

Definition 4.17 Let c be a concept, R a minimal member of c. A critical set for R
is a set A such that for all minimal Q ∈ c: if A ⊆ Q then Q = R.

Instead of mapping concepts to relations we can map them to critical sets. Let V
be such a map. Then given c, YV(c) is defined to be the unique minimal member
of c containing V(c).

Example 56. Take the concept defined by < on the natural numbers. It has two
minimal members: {〈i, j〉 : i < j} and {〈i, j〉 : i > j}. The pair 〈0, 1〉 is in the first
and not the second. Therefore {〈0, 1〉} is a critical set. Similarly, suppose that John
is taller than Phil. Then the concept denoted by “is taller than” has two minimal
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relations, only one of which contains 〈John,Phil〉. Therefore, {〈John,Phil〉} is a
critical set. o

For a relation S let Π(S ) be the following partition of n: C ∈ Π(S ) iff for
all ~x ∈ S and all i, j ∈ C, xi = x j. It is not hard to see that A is critical for R
iff Π(A) = Π(R). Now, Π(∅) = {n}. We now define a ~xi ∈ R as follows. Put
Ai := {~x j : j < i}. If Π(Ai) , Π(R) then let ~xi ∈ R be chosen such that one of
the sets from Π({~xi}) is not a join of partition sets from Π(Ai). Such an element
must exist if Π(Ai) , Π(R). In that case, Π(Ai+1) , Π(Ai). Since the size of the
partition sets must decrease with every step it is easy to see that we can take only
n − 1 steps; that is, we need to choose at most n − 1 ~xi.

Proposition 4.18 Let c be of length n then for every minimal R ∈ c there is a
critical set of cardinality at most n − 1.

This dramatically improves the bound given by [Dorr, 2004] of n! − 1. This is the
best possible result. (We leave a proof of this claim to the exercises.)

Example 57. To see that it is not at all a weird idea to consider conjunction to be
ambiguous let us look at the notion of a syntactic pivot. In English the following
sentence implies that John fell:

(4.48) John kissed the woman and fell.

We say that /John/ is the pivot in the coordination. This is ordinarily attributed to
the fact that we have a VP coordination, and /John/ is the subject of both. There
are languages in which the same coordination will imply that the woman fell.
Such languages are invariably ergative (see [Dixon, 1994]); however, it is not the
case that ergative languages all function in this way. Thus we need to distinguish
between ergativity in case marking and ergativity in pivot choice. Similarly, some
languages indicate whether or not a clause uses the same subject. Thus it explicitly
marks part of the linking aspect to be used. o

Example 58. The linking aspect is responsible for dealing with pronouns.

(4.49) John saw the thief in his office.
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The pronoun /his/ may denote either John or the thief or a third person. In the
present case we can paraphrase its meaning by “belong to someone”. Thus, the
phrase /in his office/ has the meaning “in the office belonging to someone”.
We can interpret this someone as John, the thief or leave it unidentified. Again,
for that we need different linking aspects if we insist that the only operation we
want to use is conjunction. o

Linking aspects give great flexibility in handling coordination. Every concept
can be treated independently from the other. This might not be so desirable and
leads to results that may be surprising.

Example 59. It is possible to define reflexivization of 2-concepts through con-
cept conjunction. Namely, put Y(1) = {〈x, x〉}. Then let c be a 2-concept with
minimal member R.

(4.50) c?Y 1 = R ∩ {〈x, x〉 : x ∈ M}

o

Example 60. Let M = {a, b, c, d}. There are c and Y such that c ?Y 1 , (c ?Y

1) ?Y 1. Namely, let R = {〈a, a, a〉, 〈a, a, b〉, 〈a, b, a〉, 〈a, b, b〉, 〈a, a, c〉}, c = ~R�.
Further, let Y(1) = {〈x, x〉 : x ∈ M} × M and Y(c) = R. Then

(4.51) c?Y 1 = ~{〈a, a, a〉, 〈a, a, b〉, 〈a, a, c〉}� = ~{〈a, a〉, 〈a, b〉, 〈a, c〉}�

Finally, put Y({〈a, a〉, 〈a, b〉, 〈a, c〉}) := {〈a, a〉, 〈a, b〉, 〈a, c〉} and we get

(4.52)
(c?Y 1) ?Y 1 =(~{〈a, a〉, 〈a, b〉, 〈a, c〉}�) ?Y 1

= ~{〈a〉}�

o

?Y,Z is unfortunately somewhat inflexible. When we merge c and d via Y and
Z, this is defined only if Y(c) and Z(d) have same length. Thus if Y(e) has different
length as Y(d), then only one of c?Y,Z d and c?Y,Z e is defined. Thus this operation
is too unflexible. A better version is as follows. Let U be a function from pairs of
concepts to pairs of relations such that if U(c, d) = (R, S ) then R ∈ c and S ∈ d.
Then put

(4.53) c?U
d := [R ∩ S ], where U(c, d) = (R, S )
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This function offers more flexibility than might be needed in natural languages, but
that is another matter. We conclude with a useful characterization of the logical
strength of these operations.

Proposition 4.19 Let c = �ϕ(~x)� and c = �ψ(~y)� with ~x and ~y disjoint. Then there
is a formula χ, which is a conjunction of equations of the form xi = y j such that
(c?U d) = �ϕ(~x) ∧ ψ(~y) ∧ χ�.

I conclude this section with a characterisation of the admissible meanings. By an
admissible meaning I mean such a meaning that is not provided through a lexical
entry but is rather defined by the grammar. In Montague Grammar there was no
need to talk about admissible meanings. If a constituent is formed, its meaning
is completely determined by the meaning of its two parts. The introduction of
concepts, however, has not only made it possible to use different linking aspects
(and so to get different resulting meanings). The introduction of linking aspects
was actually also necessitated since linking of arguments places is not unique.
Additionally, the introduction of new intermediate variables has the drawback of
introducing discourse objects where sometimes none should exist. Thus, we also
need a mechanism to remove them. Section 4.7 will introduce a way to do this
without removing them. Here we shall revert to the standard way, namely quan-
tification. Thus we generalise the operation (4.53) once more. Let H be a set of
numbers. Define for a relation R the operation CH.R as follows.

(4.54)
C∅.R :=R
CH.R :=CH−{i}.Ci.R

In the equations above we assume that i is actually in H. (This is not strictly
required, but makes the definition well-founded.) The general scheme of con-
structional meaning is now this.

(4.55) c?U,H
d := [CH.(R ∩ S )], where U(c, d) = (R, S )

Exercise 51. Prove Proposition 4.15.

Exercise 52. Show that the bound of Proposition 4.18 cannot be improved.
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Exercise 53. Show that c ?Y c = c and that c ?Y,Z c = c ?Z,y c. Show that
(c?Y,Z c) = c does not generally hold.

Exercise 54. Show that c?Y d = d?Y c. Give an example to show that in general
c?Y,Z d = d?Y,Z c is false.

4.5 Concepts and Pictures

Up to now it looked as if concepts were a complicated sort of relations. However,
the intention is that in reality things are the other way around: that relations are
a complicated sort of concept. In this section I’d like to sketch a very different
approach to concepts using pictures; moreover, I shall show that concepts are not
at all difficult to use. The approach is just one among many, and only illustrates
the way things might go. We shall assume throughout that basic relations are
symmetric so that questions of ordering between the argument places is irrelevant.

We want to define all sentence meanings as certain sets of pictures; a picture
in turn is an array of coloured dots. Hence we construe pictures as functions
from arrays into the set of colours. A simple approach would be to say that an
array is a certain subset of, say, N2 (if the picture is planar) or N3 (for spatial
pictures). However, we prefer a slightly more abstract definition. We start with
a set L, the set of locations. A space is a pair S = 〈L, A〉 where A ⊆

(
L
2

)
is a

relation, the adjacency relation. Here,
(

L
2

)
is the set of 2-element subsets of L.

In what is to follow, relations will be identified through the two-elemnt subsets
rather than pairs. We define L+ to be the transitive closure of L. (It follows that
L+ is symmetric and reflexive (if card L > 1).) We assume that any two points are
related via L+. This means that S is connected.

Let us assume that L is a subset of N2, and that {(x0, x1), (y0, y1)} ∈ A iff |x1 −

x0|+ |y0 + y1| = 1. This means that either (a) x1 = x0 and y1 = y0 ± 1, or (b) y1 = y0

and x1 = x0 ± 1. Say that `′ is a neighbour of ` if {`′, `} ∈ A. It follows that any
` ∈ L has at most 4 neighbours. We shall assume that no points have exactly zero
or one neighbour; this excludes some trivial sets. From this we can define three
sets of points (see Figure 4.1):

1. Corners: have exactly two neighbours;
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Figure 4.1: Types of Points
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2. Sides: have exactly three neighbours;

3. Interior points: have exactly four neighbours.

If ` is interior, let n0, n1, n2 and n3 be its neighbours. We say that n1 is across
from n0 if there is exactly one p such that (1) {n0, p}, {p, n1} ∈ A and (2) p is not
a corner.. There is a exactly one point which is across from n0; let n1 be across
from n0 and n3 across from n2. In the space S , the relation of acrossness can
be used to define lines: a line is a maximal connected subset G ⊆ L such that
for any three points p, q, r such that {p, q}, {q, r} ∈ A, then p is across from r. It
is easy to see that if p and q are neighbours, there is a unique line that contains
them. In the plane N × N, lines are subsets that are either horizontal or vertical.
the vertical lines are parallel to each other, so are the horizontal lines. So we say
that two lines G and G′ are parallel if G ∩ G′ = ∅. If G and G′ are not parallel,
then we require that card(G ∩ G′) = 1. In the plane, if G and G′ are parallel and
H is not parallel to G, then it is also not parallel to G′. Now pick any line H and
let H := {H′ : H ∩ H′ = ∅}. This defines the set of horizontal lines; pick another
line V and put V := {H : H ∩ V = ∅}. This defines the set of vertical lines. Any
line is either horizontal or vertical.

I stress that there is no way to say in advance which line is horizontal; the map
./: (x, y) 7→ (y, x) maps L onto some different set L./ preserving the adjacency
but interchanging ‘horizontal’ and ‘vertical’. Furthermore, by symmetry of A,
the directions ‘up’ and ‘down’ cannot be distinguished; likewise, the directions
‘left’ and ‘right’. To fix them, we need to introduce extra structure. A coordinate
frame is a triple C = 〈o, r, u〉 in L such that {o, r}, {o, u} ∈ A, and u is not across
from r. The line containing o and r defines H, and the line containing o and u
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Figure 4.2: Pictures by Pixels
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defines the set V. Now pick any point p. It has four neighbours, q0 through q3.
Which one of them is ‘up’ from p? First, there is exactly one line in V through
p, and it contains, say q0. It also contains one more neighbour or p, say p1. Then
either q0 is ‘up’ from p or q1 is. To settle the problem which is which we need
to introduce more notions. First, the distance d(x, y) between x and y is n if n is
the smallest number such that there is a sequence 〈xi : i < n + 1〉 with x0 = x,
xn = y and for all i < n {xi, xi+1} ∈ A. p is between q and r, in symbols B(r, p, q)
if p, q and r are on a line, and d(r, p), d(r, q) < d(p, q). Using betweenness it is
finally possible to define what it is for two pairs (p, q) and (p′, q′) to be oriented
the same way. This is left as an exercise. It follows that q0 is up from p iff (p, q0)
is equioriented with (o, u).

Pictures are pairs 〈S , f 〉, where f : L → C is a function assigning each lo-
cation a colour. For simplicity we assume we have just two colours: black and
white. Black represents the points of matter; white points represent nonmatter or
‘air’. In that case, in place of f we may just name the set of black points. This
is a well known type of representations. For example, printers prints pictures by
means of little dots of ink placed at certain points of a grid. Letters can be suffi-
ciently clearly represented using a 5 by 7 grid (see Figure 4.2). Thus we represent
‘matter’ with a subset of the locations. A picture is a pair P = 〈S , B〉 where S
is a space and B ⊆ L. We shall continue to assume that S is a rectangular subset
of N × N. An object in P is a maximally connected subset of B. Here, C ⊆ B
is connected if for any two points p, q ∈ C we have {p, q} ∈ (A ∩

(
B
2

)
)+. (In plain

words: there is a sequence of pairwise adjacent points inside B.) O(S ) is the set
of objects of S . Objects are therefore defined through their location. An object
schema is a picture P = 〈〈P,N〉,C〉 containing a single object. We may for sim-
plicity assume that the picture is a minimal rectangle around the object. Then we
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may say that S contains an object of type P if there is a function f : P → L
such that (a) {x, y} ∈ N iff { f (x), f (y)} ∈ A, and (b) f [C] is an object of S . The
function f is also said to be a realisation of P in S . The same object of S can
realise an object schema in different ways. This is exactly the case if it possesses
internal symmetry.

Obviously, this is the most simple of all scenarios. We define an object schema
as an arrangement of pixels and then declare any pixel schema that has identical
arrangements (up to flipping it upside down or left-to-right) as an instantiation
of that object schema. Evidently, however, we may easily complicate the mat-
ter by allowing more fancy embeddings: those that keep distances ratios intact
(thus allowing to shrink or magnify the picture) or those that rotate the picture.
This makes full sense only if pictures are defined over the real plane, but nothing
essential hinges on that, except that there is no more adjacency relation and we
have to work with the topology and the metric. Let us remain with the scenario as
developed so far. It then is quite easy to see how object schemata can be learnt.
We need to be shown a single instance. Properties of objects (the denotations of
common nouns) are inferred from their instances. It is not our concern to see how
that can be done; this is the domain of cognitive science. Basically, it is done by
inferring a set from some of its members (for example by construcing so-called
Voronoi cells, see [Gärdenfors, 2004]).

The way such learning can take place in language is as follows. Let Paul be
our language learner. Paul is shown a picture containing a single object, say a
football, and is told that it is a ball. Thus, Paul will get the following data:

(4.56) 〈/This is a ball./, o 〉

To the left we have an utterance, to the right a picture. That the utterance is
paired with a specific picture is of some importance. Now, Paul will have to do
some inference here to arrive at the fact that /ball/ denotes the object schema
o rather than the picture. Once this achieved, however, he is able to identify the

concept denoted by /ball/. In a similar fashion he will learn other unary concepts
such as “flag”, “hut”, “tent”, “telephone”, and so on.

The next step from here is to learn the meaning of relational concepts. Let us
take the concept “to the left of”. Unlike the denotation of common nouns, it is
not identifiable by means of a single picture, since it is a relation between objects.
How then can it be learned? The answer is that it is learned in basically the same
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way. Paul is presented with a picture and a sentence

(4.57)
〈
/The scissor is to the left of the ball./, " o

〉
This picture allows to establish an association between the phrase /the scissor/

and the object to the left (since it is the only scissor) and between the phrase /the

ball/ and the object to the right. This requires only knowledge of the meaning of
the expressions. Similarly, Paul will encounter the following pair:

(4.58)
〈
/The square is to the left of the heart./, � ♥

〉
He may come to realise that the concept “left of” is independent of the shape
and size of the objects involved, and that it is about the location of the objects
with respect to each other. In that case it can be represented just like an object
schema, using a set of pictures. The burden is then entirely on the kinds of maps
(‘deformations’) that one is allowed to use to embed such pictures in others. It is
not our main concern to do that; rather we wish to point out that the learning of
the concept “left of” is no more complex using concepts than it is using relations.

How then is “right of” learnt? Basically the same way. It could be using the
following data.

(4.59)
〈
/The ball is to the right of the scissor./, " o

〉
Here we can appreciate for the first time that concepts really are simpler. The
picture shown is namely absolutely the same. However, in conventional represen-
tations we would write (4.59) as

(4.60) right′(ιx.ball′(x), ιx.scissor′(x))

By contrast, the sentences of (4.57) would be rendered as

(4.61) left′(ιx.ball′(x), ιx.scissor′(x))

The two formulae are not the same. The positional regime in the formulae forbids
us from treating them the same. To get an identical encoding we need to translate
“right” systematically as “left” and invert the linking. This is what the concepts do
anyway. Paul will learn that whatever is to the left of the occurrence of /right/

will be on the right in the picture of what is to the right of the occurrence of
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/right/. I should point out that it is certainly not necessary that the meaning
of (4.57) need not exactly be the same as (4.59). In that case /right/ denotes a
different concept than /left/. We shall worry no further about that possibility.
It should however be said that there can be concomitant differences in the choice
between (4.57) and (4.59) stemming from different sources. I mention here that
constructions of the form “X is in location Y” generally indicate that Y is more
stable, less movable, or bigger than X (see [Talmy, 2000]).

The bicycle is to the left of the house.(4.62)
?The house is to the right of the bicycle.(4.63)

Again, this issue seems to be orthogonal to the one at hand. (Notice also that
(4.63) is not false, just inappropriate.)

I shall now test Paul’s knowledge of English. We give him the picture (4.64)

(4.64) B

�

and ask him:

(4.65) Is the letter to the left of the phone?

Paul will perform the following steps:

À Compare the two arguments of /left/ in (4.65) in (4.57). The comparison
on the basis of form alone yields that /the scissor/ must be associated
with /the letter/ and /the ball/ with /the phone/.

Á Take the picture of (4.57) and do the following replacement: replace the
scissor by the letter and the ball by the phone.

Â Compare the resulting picture with the one given:

B � versus:
B

�

Ã If there is an admissible deformation to take us from left to right for the
concept “left” then the answer is “yes”.
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Thus, the entire burden is still in learning the correct meaning of the geometry of
“left”. Learning the associations with syntactic arguments is very easy by com-
parison. Moreover, a semantics based on relations offers no advantage.

We have deliberately picked the concept “left”. Unlike concepts denoted by
verbs, geometric notions do not allow to pick out one of the arguments by means
of intrinsic properties. For example, the sentence “John is pushing the cart.” is
true because it is John who exerts force on the cart and not conversely. Likewise, it
is known that directionals modify the mover in an event and no other constituent.
Thus “John threw the banana out of the window.” means that John threw the
banana and it went out of the window. If John decides to jump out of the window,
while tossing the banana onto the kitchen table, that does not make the sentence
true. The mechanism for learning such concepts is essentially the same. However,
while the linking in relational nouns and adjectives has to be learned on a case
by case basis, the linking on verbs sometimes allows to make big abstractions.
This just means that the knowledge of how linking is to be effected becomes more
abstract.

Let us finally turn to another complication, namely passive, or relation change
in general.

John throws the banana out of the window.(4.66)
The banana is thrown out of the window.(4.67)

It is obvious that a correct learning of English will consist in realising that there
are different verb forms, namely active and passive, and that what they signal is
that the linking has to be different in the two cases. From this point on there are
two choices: Paul might start acquiring two different linkings for the verbs, one
active and one passive; or Paul might develop a recipe of deriving the linking in
the passive sentences from the linking in active sentences. How he goes about is
to a large degree a question of how the languages are structured (in other words:
how systematic the active passive change really is).

I close this section with a few remarks about what we have done. We have
described sentences as properties of pictures. There was therefore only one entity
in semantics: that of a picture. To describe how it is that we arrive at the inter-
pretation of a sentence, however, we complicated the ontology. If a sentence has
subjects, something must correspond to them. Thus we introduced individuals,
concepts, and so on into the semantics. However, ontologically these were con-
sidered derived objects. I constructed a function that will derive from a picture P
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the set of its objects O(P). The next object we introduced are the object schemes;
an object scheme P is a picture Q together with a family F of admissible embed-
dings. An object o ∈ O(P) has a property P if there is an admissible embedding
f : Q →P that such that the image of the black points is exactly o.

Exercise 55. Define the relation of “having same orientation” using between-
ness in a plane. Hint. Start by defining it for pairs of points on the same line.
Then show it can be projected to other, parallel lines.

4.6 Ambiguity and Identity

We have shown earlier that sentences are ambiguous, and they can be so either
because the words have several meanings or because a given exponent has several
derivations. In view of this ambiguity we must reassess our notion of what it is
that makes a sentence true. Under the standard definitions in logic we declare a
sentence true if it denotes the value 1 or the true concept, whichever. However,
if a sentence is ambiguous this creates a difficulty. Consider the word /crane/. It
has two meanings: it denotes a kind of birds, and a kind of machine. This means
that the lexicon contains two signs, where crane1 is the concept of cranes (a type
of bird) and cranes2 is the concept of cranes (a kind of machine).

bcr := 〈crane, crane1〉(4.68)
mcr := 〈crane, crane2〉(4.69)

Consider now the following sentence.

(4.70) Cranes weigh several tons.

This sentence has two derivations. Unless partiality strikes, in a structure term
containing bcr we can replace bcr by mcr, and the new term unfolds to a sign
with the same exponent (but different meaning).

(4.70) is false if we interpret /cranes/ as talking about birds (that is, if we
take the structure terms to contain bcr rather than mcs), but true in the other un-
derstanding of the word. It is the converse with

(4.71) Cranes can fly.
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This creates a tension between the notion of ‘true under an understanding’ and
‘true simpliciter’. We shall propose (not uncontroversially) that a sentence is true
simpliciter if it has a structure term under which it is true. This is a matter of
convention, but for the cases at hand not far off the mark. It then is the case that
both (4.70) and (4.71) are true.

Now what about negated sentences? Here we must distinguish between two
kinds of negations. There is an inner negation and an outer negation. The inner
negation produces a negated sentence, while the outer negation denies the truth of
the sentence. Let’s look at negation formed by /it is not the case that/.

(4.72) It is not the case that cranes weigh several tons.

If taken as outer negation, this sentence is false (because (4.70) is true). If taken as
inner negation, it is true. To see this, let us imagine that we do not have the word
/cranes/, but in fact two: /cranes1/, denoting the birds, and /cranes2/, denoting
a kind of machines. Then (4.70) is true if either of the following sentences is true:

Cranes1 weigh several tons.(4.73)
Cranes2 weigh several tons.(4.74)

(4.70) is false if both (4.73) and (4.74) are false. It is possible through to negate
both of them individually:

It is not the case that cranes1 weigh several tons.(4.75)
It is not the case that cranes2 weigh several tons.(4.76)

The first is true while the second is false. In English, where the two concepts are
denoted by the same word, (4.75) and (4.76) are both expressed by (4.72). Since
(4.76) is true, so is therefore (4.72).

I should say, however, that the notion of outer negation cannot be implemented
in the present system without major changes. For if outer negation is a sign in its
own right, its meaning is a quantifier over structure terms. Semantically this is
not possible to implement. It is not clear to me whether or not outer negation can
be expressed in embedded sentences. If it cannot be expressed, the present theory
can obviously be adapted rather straightforwardly; but if it can be expressed, then
the adaptations are indeed major. They would require namely a grammar that uses
the language transform L§ of L rather than L itself (see Page 125 for a discussion
of L§).
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The previous can be used to shed light on identity statements as well. Consider
the sentence

(4.77) The morning star is the evening star.

It is true if and only if the star that is the morning star is the same star as the
evening star. It happens to be the case that they actually are the same. If John
however is unaware of this, then he believes that (4.77) is false and that (4.78) is
true.

(4.78) The morning star is the evening star.

This problem has been extensively dealt with in philosophy. We shall not go into
that discussion. Rather, we shall discuss how our definitions change the way in
which this puzzle must be discussed.

Example 61. Let M = {x}. Furthermore, we shall assume that our language has
the following basic signs.

I( f0) := 〈the morning star, {x}〉(4.79)
I( f1) := 〈the evening star, {x}〉(4.80)

And let it have one mode:

(4.81) I( f2)(〈e0,m0〉, 〈e1,m1〉) := 〈ea0 is ae1,m0 ? m1〉

Here, ? is defined as intersection of two 1-concepts by intersecting their minimal
members. Let L1 be the language defined by all definite terms. It is

(4.82)

L1 := {〈the morning star, L{x}MM〉, 〈the evening star, L{x}MM〉,

〈the morning star is the morning star, 1〉,
〈the morning star is the evening star, 1〉,
〈the evening star is the morning star, 1〉,
〈the evening star is the evening star, 1〉}

Now let N = {v,w}. We assume the same signature, but instead the following
interpretation:

K( f0) := 〈the morning star, {v}〉(4.83)
K( f1) := 〈the evening star, {w}〉(4.84)

I( f2)(〈e0,m0〉, 〈e1,m1〉) := 〈ea0 is ae1,m0 ? m1〉(4.85)
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Let L2 be the language defined by this interpretation. Then

(4.86)

L2 := {〈the morning star, L{v}MM〉, 〈the evening star, L{w}MM〉,

〈the morning star is the morning star, 1〉,
〈the morning star is the evening star, 0〉,
〈the evening star is the morning star, 0〉,
〈the evening star is the evening star, 1〉}

We have the following result: there are two languages, not one, whose correspond-
ing string language is the same, and we even have two string identical grammars.
But nevertheless, qua interpreted languages, L1 and L2 are different. o

The example has the following moral. Two languages cannot be the same if
the models are not the same. Thus, to say that John and Paul speak the same
language—in the sense of interpreted language, which we take to be the default—
requires that their interpretations are the same. If Paul is convinced that the morn-
ing star is the evening star and John thinks they are different then Paul and John
do not speak the same language. In order for them to speak the same language we
require that not only the expressions are the same, we also require that the expres-
sions have the same meaning. And ‘same’ must be taken in a strict sense: both
John and Paul would be required to take the expressions /the morning star/

to denote the same thing, and likewise /the evening star/. But they do not.
There are in fact two reasons why two people can fail to share the same language.
One is as just described: they disagree on the truth value of some sentences. An-
other more subtle case is described in the next example.

Example 62. L3 is like L1 except that y takes the place of x. Thus, for example,

(4.87)

L3 := {〈the morning star, L{y}MM〉, 〈the evening star, L{y}MM〉,

〈the morning star is the morning star, 1〉,
〈the morning star is the evening star, 1〉,
〈the evening star is the morning star, 1〉,
〈the evening star is the evening star, 1〉}
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Now let P = {y}. We assume the same signature, but instead the following inter-
pretation:

L( f0) := 〈the morning star, {y}〉(4.88)
L( f1) := 〈the evening star, {y}〉(4.89)

L( f2)(〈e0,m0〉, 〈e1,m1〉) := 〈ea0 is ae1,m0 ? m1〉(4.90)

The grammars 〈Ω, I〉 and 〈Ω,L〉 are naturally equivalent. o

The languages L1 and L3 are different, yet in an abstract sense identical. Now
picture the case where George speaks L3. We would like to say that George and
Paul speak the same language, but we cannot. In fact, this is as it should be. For
notice that we must distinguish (for natural language) two notions of language.
There is a private language, where expressions are interpreted as objects or con-
structs in a speaker; and a public language where expressions are interpreted with
real objects (if applicable). We think for example that the public meaning of /the

morning star/ is Venus, as is the public meaning of /the evening star/. The
private language of an individual speaker needs to be ‘connected’ to the public
language in the correct way. This is similar in the distinction between phonemes
and sounds. While two speakers can share the same phonemic system it may turn
out that the two systems are differently realized in terms of sounds. And likewise
it may happen that while Paul thinks that the morning star is the evening star and
both happen to be Venus, it may also happen that George thinks that the morning
star and the evening star are Mars. The private languages of Paul and George are
different for the trivial reason that the internal objects of both Paul and George
must be different; but we can easily establish a correspondence between them, an
isomorphism, that makes them the same. And so the private languages of Paul and
George are the same up to isomorphism, yet their public languages are different.
The puzzle is thus resolved by appeal to different de lingua beliefs, to use a phrase
of [Fiengo and May, 2006]. The idea of [Fiengo and May, 2006] is roughly that
what is behind many puzzles of identity is that speakers hold different beliefs con-
cerning the referent of expressions. In the theory proposed here, this is cashed out
as follows. The abstract language is language where meanings are identifiable
up to equivalence (as established in Section 3.7). Any two speakers can speak
the same abstract language, so the abstract language is not the private language.
Neither is it the public language. For that, we also need to ground a language
by providing translations into real world objects. Abstract language behaviour
can be established using logical connections between sentences, while concrete
language behaviour can be established by asking people about meanings in terms
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of observable facts. 4 This is just a sketch of a solution but it serves as a formal
explification of [Fiengo and May, 2006] who actually think that many sentences
also express what they call a de lingua belief. A de lingua belief is a belief about
what expressions denote. If the present is correct, it is a belief about the public
language.

One puzzle that Fiengo and May discuss at length is the Paderewski puzzle by
Kripke. It goes roughly as follows. Max goes to a concert by a musician named
Paderewski and comes to believe that he is a great musician. Later he visits a
political rally by a person named Paderewski. He comes to think that the latter
person is actually a bad musician. So he holds two beliefs.

Paderewski is a great musician.(4.91)
Paderewski is a bad musician.(4.92)

It so turns out that the two people are one and the same. The philosophical prob-
lems arise from the fact that under certain views of reference Max holds inconsis-
tent beliefs. Both [Fine, 2007] and [Fiengo and May, 2006] discuss this problem.
Again we need not go into the philosophical detail here. What interests us is
what may linguistically be said to go on. The idea is that for Pawel, who knows
(or believes) that both persons are the same, ‘Paderewski’ is unambiguous. For
Max it is not. So, the language of Max has two signs, say, 〈Paderewski, {x}〉
and 〈Paderewski, {y}〉, while the language of Pawel only has one such sign, say
〈Paderewski, {v}〉. Thus, for Max the expression /Paderewski/ is ambiguous,
for Pawel it is not. Given our notion of truth for ambiguous sentence, it is correct
for Max to hold both (4.91) and (4.92) true. There is no logical problem, since the
sentence is simply ambiguous. This contrasts with the idea of [Fiengo and May,
2006] who think that names are not expressions. They can only occur in the form
[1Paderewski], where the brackets are used to keep track of different objects.
In the theory proposed here there is no sense in disambiguation on the syntactic
level. This must be done in the semantics. Consequently, also the two occurrences
of the name in the sentence

(4.93) Paderewski is Paderewski.

4This is evidently a simplified scenario. The visible facts may not be the same across speakers,
thus accounting for a different layer of confusion. But it is important to note that the distinction
between what is abstract in a language and what is not is real. In a sense, the fact that Tully is
Cicero is not part of the abstract language.
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cannot simply be told apart by indexation so that one can distinguish between, for
example,

Paderewski1 is Paderewski1.(4.94)
Paderewski1 is Paderewski2.(4.95)

The reason, again, is that there is no surface indication of such a difference. In-
stead, in order to be clear, Max must use some expression that make the referent
unique. Notice that Max also agrees to the (inner!) negation of (4.93):

(4.96) Paderewski is not Paderewski.

The difference between this approach and [Fiengo and May, 2006] is brought
out also by the way in which Pawel can make Max aware that he is wrong about
Paderewski. For it is not enough for him to point out (4.96), for that is what is also
true for Max. Rather he must use a sentence that would not be true, for example

(4.97) There is only one Paderewski.

The problem is that Pawel cannot make himself understood to Max by using the
name simpliciter. He must in order to discriminate his beliefs from Max’s beliefs
use sentences that come out differently. What [Fiengo and May, 2006] have in
mind is that Pawel can also use a certain version of (4.93), for example

(4.98) But Max, Paderewski IS Paderewski.

But again, how is Max to interpret this if he cannot see which of the Paderewskis
is pointed to on each of the occasions?

Exercise 56. In Example 61 the word /is/ is syncategorematic. Show that this
syncategorematic use can be eliminated from the grammar.

4.7 Profiling

As I have indicated at many places there is a difference between what is commonly
referred to as modeltheoretic semantics and the more popular representational se-
mantics. It has not always been openly admitted by semanticists that the represen-
tations involved in many brands of formal semantics do not use meanings in the
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sense of truth conditions but that they rather are just pieces of notation. Such is the
case with DRT, minimal recursion semantics, semantics used in connection with
TAGs, underspecification semantics, continuations, and so on. If meanings only
contain truth conditions, then all these semantics could not ever claim to imple-
ment a compositional approach to meaning. However, such argumentation misses
a point. For one line of defense is still open and should be considered: that it is
not the only objective to account for truth conditional meanings but rather also
for internal meanings. Thus I believe that the justification for using such repre-
sentations cannot be found in the truth conditions that they formulate. Rather, it
must be in the fact that these objects are essentially what humans use. This is an
empirical question and will have to be left to empirical research. However, I shall
just add a few remarks about the necessity of considering internal meanings. If
we take, for example, the notion of a dog to be the set of all dogs, then that object
is not of the kind we can have in our head. We may say instead that the meaning
is a particular algorithm (for recognising dogs); but even that has a similar conse-
quence. The algorithm turns out to be abstract, too. The particular procedure that
one person uses to differentiate dogs from other animals might be different from
that of some other person in certain insignificant ways. We will then still say that
the two people have the same algorithm, though their implementation, that is, the
concrete procedures, are different.

The crucial fact about the concreteness of meanings is that to understand
whether or not two concrete meanings m and m′ instantiate the same abstract
meaning must be decided by explicit manipulation of the representations. This is
the same in logic, where we distinguish between two formulae representing the
same truth condition. Since truth conditions are too big to be stored directly we
rely instead on a calculus that manipulates representations up to truth conditional
equivalence. This picture undermines much of what I have said so far about se-
mantics since it moves us away from a static notion of meaning and towards a
dynamic semantics based on reasoning whose objects are symbolic in nature. I
shall not continue that line since it is too early to tell how such an account may
go.

It so turns out, however, that human languages are still different. There are
certain things that have been argued to exist in internal representations for which
there is no obvious external correlate. One such thing is profiling. Profiling is
the way in which objects in an array are distinguished from each other, by mak-
ing one more prominent than the others. We can explain the difference between
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“left” and “right”, for example, in terms of profiling. While they both denote the
same concept, the profile of “left” is inverse of that of “right”. How can this be
understood? In the pictures we can simply add a pointer to the profiled entity
(in cognitive grammar, prominent elements are drawn using thick lines). If we
denote concepts by formulae then we can use underlining to do the same: thus,
�left′(x, y)� and �left′(x, y)� are concepts in which different elements are profiled.
If we use concepts, we reserve, say, the first column for the profiled element and
restrict permutation in such a way that it does not permute the first column with
any other. There is a temptation to think of profiling as just another instance of
sort. But we have to strictly distinguish the two. The two objects involved in the
relation “left” (and “right”) are not sortally distinct. Moreover, one and the same
object can at the same time be to the left of an object, and to the right of another.
This cannot happen if a different profile means different sort. However, from the
standpoint of combining meanings profiling has the same effect, namely to reduce
the possibilities of combining two concepts.

In the first part of this section I shall outline a formalism for such meanings.
In the second half I show how this gets used in practice.

Let S be a set of sorts. So far we have construed concepts as sets of relations.
The minimal members of a relation had to be of similar type. Now we think of
the relations of a concept to be divided into subparts, each corresponding to a
particular profile. We allow individual sorts to be profiled independently.

Definition 4.20 Let and P be a set of profiles and M a set. A P-profiled relation
over M is a pair R = 〈~p,R〉 where R is a relation and ~p ∈ P∗ of length identical
to the length of R.

The relation R contains vectors 〈x0, x1, · · · , xn−1〉. When paired with the sequence
〈p0, p1, · · · , pn−1〉 this means that xi will have the profile pi. Since the profile is
paired with the entire relation, the profile pi is also given to yi in 〈y0, y, · · · , yn−1〉 ∈

R in R. One may or may not want to impose requirements on the profiling. For
example, suppose there is a label saying that the element is in focus; this label we
do not want to be distributed to more than one column. But such requirements can
always be added later.

A profiled concept is a set of profiled relations. We details are similar to those
of Section 4.3. The profiled concept generated by R, also written ~R�M , is the
least set closed both ways under the following operations.
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À π[〈~p,R〉] := 〈π(~p), π[R]〉, π a permutation of the set |~p| = {0, 1, · · · , |~p| − 1};

Á Es,q(〈~p,R〉) := 〈~p · q,R × Ms〉;

Â Di(〈~p,R〉) := 〈~p · pi, {~x · xi : ~x ∈ R}〉.

Notice that when duplicating a column we must also duplicate the corresponding
profile. It is therefore quite possible to have two identical columns, as long as they
have different profiles. Notice that full columns are discarded regardless of their
profile.

The deprofiling of 〈~p,R〉, δ(〈~p,R〉), is simply R. Similarly, we define the
deprofiling of a profiled concept.

(4.99) δ(~R�) := {S : there is ~q: 〈~q,R〉 ∈ ~R�}

So, δ(C) = δ[C]. The following gives the justification for this definition. Its proof
is left as an exercise.

Proposition 4.21 δ(~R�) is a concept.

There is a converse operation of introducing a profiling. While we could do that
on a concept-by-concept basis, there are more interesting methods.

Definition 4.22 Let Y be a linking aspect and f : N→ P a function. Then define
the profiled concept f Y(c) as follows.

(4.100) f Y(c) := ~〈 f � card(Y(c)),Y(c)〉�

In this definition, assume that card(Y(c)) = n. Then f � card(Y(c)) is the restriction
of f to n = {0, · · · , n−1}. This is then viewed as the sequence 〈 f (0), f (1), · · · , f (n−
1)〉. The idea is that all we need to specify is the way in which the positions are
profiled; the rest is done by the linking aspect, which lines up the columns of the
relation in a particular way.

The crucial difference between profiled concepts and ordinary concepts is that
we can use the profiles to define the linking; and that we can also change the profile
if necessary (unlike the typing). In principle, since the profiling is arbitrary, we
consider two profiled concepts as basically identical if they have the same profile.
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Definition 4.23 Two profiled concepts C and D are said to be homologous if
δ(C) = δ(D).

Any change from a profiled concept to a homologous profiled concept is thus
considered legitimate. There various methods to define such a change for the
entire space of concepts. Here is one.

Definition 4.24 Let S be a set of sorts and P a set of profiles. A reprofiling is a
family {ρs : s ∈ S } of maps ρs : P → P. The reprofiling of a profiled relation
〈~p,R〉 of type ~s is the relation ρ(R) := 〈ρR{~p},R〉 which is defined as follows.

(4.101)
ρR{pi} := ρsi(pi)
ρR{~p} := 〈ρR{pi} : i < card(R)〉

Notice that the type of the relation is recoverable from the relation itself (in con-
trast to its profile). So the reprofiling assigns to elements of type s and profile p
the new profile ρs(p), whereas the type remains the same.

Proposition 4.25 Let C be a profiled concept and ρ = {ρs : s ∈ S } a reprofiling.
Then ρ[C] is a profiled concept.

Again the proof is straightforward.

The simplification introduced by profiling is considerable. Suppose for ex-
ample we want to conjoin two concepts. Then we can only do this if we have a
linking aspect. However, linking aspects are not the kind of object that is finitely
specifiable. Thus, unlike syntactic rules, the semantic combination rules based
on concepts are arbitrarily complex. In Section 5.3 I shall give an example of a
grammar for a fragment of English that essentially uses linking aspects only for
the basic entries of the lexicon. If one wants to treat language in its full complex-
ity one will be forced to do either of two things: make the linking aspect dynamic,
that is, to be computed on the side; or introduce profiling. In this section I shall
explore the second option.

Now that we have profiled concepts we may actually take advantage of the
profiling in defining combinations of concepts. Our example here concerns the
definition of linking aspects.
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Example 63. Arbitrarily embedded relative clauses.

a dog that saw a cat that chased a mouse that ate(4.102)
a cheese

Let D = {di, ci,mi, hi : i ∈ N} be the domain. There is only one sort. Let us define
three binary relations:

(4.103)
E := {〈m0, h0〉} ∪ {〈di, hi+1〉 : i ∈ N}
C := {〈ci,mi〉 : i ∈ N} ∪ {〈ci, di+1〉 : i ∈ N}
S := {〈di, ci〉 : i ∈ N} ∪ {〈mi, d2i〉 : i ∈ N}

(4.104)

I(g0)() := 〈a, �>�〉
I(g1)() := 〈that, �>�〉
I( f0)() := 〈dog, ~{di : i ∈ N}�〉
I( f1)() := 〈cat, ~{ci : i ∈ N}�〉
I( f2)() := 〈mouse, ~{mi : i ∈ N}�〉
I( f3)() := 〈cheese, ~{hi : i ∈ N}�〉
I( f4)() := 〈saw, ~S �〉
I( f5)() := 〈chased, ~C�〉
I( f6)() := 〈ate, ~E�〉

There will be one mode of composition, which is binary. Let Y be the following
linking aspect. For every unary concept it picks the unique minimal member and
is defined on three binary concepts only, where Y(c) is that relation which contains
V(c), where V assigns the following critical sets to the concepts:

(4.105)
~E� 7→ {〈m0, h0〉}

~C� 7→ {〈c0,m0〉}

~S � 7→ {〈d0, c0〉}

(Recall V(c) is a set such that exactly one minimal member of c contains V(c). Y(c)
is defined to be that set.)

Now, γ(e, e′) is defined if and only if either of the following holds:

À e = /a/ and e′ begins with /cheese/, /mouse/, /dog/, or /cat/.



198 4. Meanings

Á e ∈ {/ate/, /saw/, /chased/} and e′ starts with /a /.

Â e = /that/ and e′ starts with /chased /, /saw / or /ate /.

Ã e ∈ {/cat/, /mouse/, /dog/, /cheese/} and e′ starts with /that /.

(4.106) I(m)(〈e,m〉, 〈e′,m′〉) :=

〈ea ae′,m ?Y m′〉 if γ(e, e′)
undefined else

So, the syntax is right regular. Without specifying too much detail let me note the
first steps in the derivation.

(4.107)

〈cheese, ~{hi : i ∈ N}�〉
〈a cheese, ~{hi : i ∈ N}�〉
〈ate a cheese, ~{〈di, hi+1〉 : i ∈ N} ∪ {〈m0, h0〉}�〉

〈that ate a cheese, ~{〈di, hi+1〉 : i ∈ N} ∪ {〈m0, h0〉}�〉

〈mouse that ate a cheese, ~〈m0, h0〉�〉

〈a mouse that ate a cheese, ~〈m0, h0〉�〉

At this point we get stuck; for we must now be able to combine two binary con-
cepts. If we combine them the wrong way, instead of interpreting /a cat that

chased a mouse that ate a cheese/ we interpret /a cat that chased a

cheese that ate a mouse/. As the embedding depth of relative clauses is un-
bounded there is no recipe for defining the linking aspect using critical sets as
long as they do not exhaust the entire relation. So, we have to use a linking aspect
instead. o

Example 64. We come to the first repair strategy. Leave everything as is with
one exception. In the interpretation of m, quantify away the lower elements, al-
ways retaining a 1-concept. M is the domain of the model.

(4.108) I(m)(〈e,m〉, 〈e′,m′〉)

:=


〈ea ae′, ~C1.(Y(m) ∩ (M × Y(m′))�〉 if γ(e, e′) and m is binary
〈ea ae′,m ?Y m′〉 if γ(e, e′) and m is unary
undefined else



4.7. Profiling 199

The derivation now goes as follows.

(4.109)

〈cheese, ~{hi : i ∈ N}�〉
〈a cheese, ~{hi : i ∈ N}�〉
〈ate a cheese, ~{di : i ∈ N} ∪ {m0}�〉

〈that ate a cheese, ~{di : i ∈ N} ∪ {m0}�〉

〈mouse that ate a cheese, ~{m0}�〉

〈a mouse that ate a cheese, ~{m0}�〉

The step from the second to the third line is the crucial bit. We invoke the link-
ing aspect on both concepts. The right hand side is unary, so we get the unique
minimal member. The left hand side is the concept associated with one of the
verbs, and by using the cricitical sets we align them such that the first column is
subject and the second is object. We identify the object with the unary relation
and quantify it away.

Thus, when we have processed one embedding we are back to a unary concept
and can continue:

(4.110)

〈chased a mouse that ate a cheese, ~{c0}�〉

〈that chased a mouse that ate a cheese, ~{c0}�〉

〈cat that chased a mouse that ate a cheese, ~{c0}�〉

〈a cat that chased a mouse that ate a cheese, ~{c0}�〉

Thus, when we have processed one embedding we are back to a unary concept
and can continue: The problem with this approach is that the intermediate objects
are gone and cannot be referred to any more (say, with /the mouse that ate

a cheese/). o

Example 65. The second strategy uses profiling. Let P := {t, b}. The rule of
combination is this. We assume that the subjects of verbs are assigned the profile
t; all other arguments are assigned b. When a verb is combined with an object, the
object position is identified with the object with profile t, upon which the profile
of this element is set to b. On the assumption that only one column has label t, we
define the following linking algorithm. Let 〈t·~b1,R〉 ∈ C of length m, 〈x·~b2, S 〉 ∈ D
of length n. Then we put

(4.111) R⊗S := {x · ~y ·~z : x · ~y ∈ R and x ·~z ∈ S }
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This is almost like the Cartesian product, except that we take only the tuples that
share the same first element, and elminate its second occurrence. With respect to
the profile, we proceed slightly differently. On the assumption that 〈t · ~b1,R〉 ∈ C
and 〈t · ~b2,D〉 ∈ D we put

(4.112) C?t D := ~〈t · ~b1 · ~b2,R⊗S 〉�M

This is defined only if: (a) when both the concepts are at least unary, (b) when
both profiles contain exactly one t. We extend this definition to the truth concept
T by putting

(4.113) T ?t D := D?t T := D

All nouns denote concepts where the one minimal relation has profile t. And so
we put

(4.114) I(m)(〈e,m〉, 〈e′,m′〉) :=

〈ea ae′,m ?t m′〉 if γ(e, e′)
undefined else

We denote the column with label t by underlining. The derivation begins as fol-
lows.

(4.115)

〈cheese, ~{hi : i ∈ N}�〉

〈a cheese, ~{hi : i ∈ N}�〉

〈ate a cheese, ~{〈di, hi+1〉 : i ∈ N} ∪ {〈m0, h0〉}�〉

〈that ate a cheese, ~{〈di, hi+1〉 : i ∈ N} ∪ {〈m0, h0〉}�〉

〈mouse that ate a cheese, ~〈m0, h0〉�〉

〈a mouse that ate a cheese, ~〈m0, h0〉�〉

We have only one privileged member. We continue the derivation.

(4.116)

〈chased a mouse that ate a cheese, ~{〈c0,m0, h0〉}�〉

〈that chased a mouse that ate a cheese, ~{〈c0,m0, h0〉}�〉

〈cat that chased a mouse that ate a cheese,

~{〈c0,m0, h0〉}�〉

〈a cat that chased a mouse that ate a cheese,

~{〈c0,m0, h0〉}�〉



4.7. Profiling 201

The next step is to merge with /saw/:

(4.117) 〈saw a cat that chased a mouse that ate a cheese,

~{〈d0, c0,m0, h0〉}�〉

And so on. Thus, the relations are growing in length but retain only one distin-
guished member. o

The idea of profiling is not new. In formal semantics, referent systems (see
[Vermeulen, 1995]) formalise a variant of profiling. Also Centering Theory im-
plements a notion of profiling (see for example [Bittner, 2006] and references
therein).

Exercise 57. Prove Proposition 4.21.



202 4. Meanings



Chapter 5

Examples

This section will present some examples. The first example will be
standard predicate logic. It will be shown that if semantics is based on
concepts and not on relations then there must be a limit on the number
of free variables. The second example will be a fragment (Montague
size) of English. Finally, we shall indicate how the present approach
allows to get insights into sentence structure.

5.1 Predicate Logic

This chapter is devoted to applications as well as examples. We begin by present-
ing standard predicate logic. In the section we shall give a grammar for predicate
logic together with its standard interpretation(s), using sets of valuations or using
relations. Then we shall turn to concept based interpretations. This will then be
applied to natural language. Later in the chapter we shall show how the present as-
sumptions on semantics (and syntax) allow to predict facts about sentential struc-
ture.

Recall from Section 4.2 the basic facts about predicate logic and its structures.
In contrast to that section we do not deal with sorts; they do not add anything
of significance. We start with a signature 〈Rel, τ〉, Rel a finite set of relation
symbols and τ : Rel → N. We shall as usual write τ in place of 〈Rel, τ〉. The
alphabet is then the following set: A := {(, ), ,, 0, 1, x, →, ¬, ∨, ∧, ∃, ∀} ∪ Rel. We
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assume that there are no function symbols. The arity of R ∈ Rel is given by τ(R).
We shall first describe informally the formation rules of well-formed expressions
and their meanings and then present a grammar of the interpreted language. The
interpretation is based on a fixed structure M = 〈M,I〉, where M is a set and I
a function sending a relation symbol R to a set I(R) ⊆ Mτ(R). A valuation is a
function β : {0, 1}∗ → M. The set of all valuations is denoted by V .

In Section 4.2 we have provided meanings only for formulae. However, our
alphabet is finite and we need an infinite array of variables. There is thus no other
way than generating the set of variables from a finite base. This means, however,
that we need to give some meaning to the variables. An index is a member of
(0|1)∗, that is, string of /0/ and /1/. The meaning of an index is the index itself.
A variable is a sequence /x~y/, where ~y is an index. The meaning of the variable
is the function ~y∗ : β 7→ β(~y). An atomic formula is an expression of the form
/Ra(a~va0,

a~va1 · · ·
a ,a~vτ(R)−1

a)/, where the ~vi are variables. Its meaning is the set
m(R) := {β : 〈m(~v0)(β),m(~v1)(β), · · · ,m(~vτ(R)−1)(β)〉 ∈ I(R)}. Complex formu-
lae are of the form /(¬ϕ)/, /(ϕ∧χ)/, /(ϕ∨χ)/, /(ϕ→χ)/, /(∃x~v)ϕ/, /(∀x~v)ϕ/,
where ~v is an index, ϕ and χ are formulae. The meaning of formulae has been
spelled out earlier in Section 4.2. Thus the full language is Lτ.

(5.1)
Lτ := {〈~v,~v〉 : ~v ∈ (0|1)∗}

∪{〈x~v,~v∗〉 : ~v ∈ (0|1)∗}
∪{〈ϕ, [ϕ]M 〉 : ϕ ∈ PLτ}

(See (4.11) for a definition of [·]M .) Now we shall present a grammar for that Lτ.
We shall use the following modes:

(5.2) F := { f∅, f0, f1, fv, f¬, f∧, f∨, f→, f∃, f∀} ∪ { fR : R ∈ Rel}

The signature is Ω : f∅ 7→ 0, f1 7→ 1, f2 7→ 1, fv 7→ 1, f¬ 7→ 1, f∧ 7→ 2, f∨ 7→
2, f→ 7→ 2, f∃ 7→ 2, f∀ 7→ 2, fR 7→ τ(R), where R ∈ Rel. First, we shall define the
modes that build up variables. Recall that e∗(β) = β(e), the function that is defined
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on assignments and applies the assignment to the index.

(5.3)

C( f∅) := 〈ε, ε〉

C( f0)(〈e,m〉) :=

〈ea0,ma0〉 provided that e is an index
undefined else

C( f1)(〈e,m〉) :=

〈ea1,ma1〉 provided that e is an index
undefined else

C( fv)(〈e,m〉) :=

〈xae,m∗〉 provided that e is an index
undefined else

The last rule seems dangerous since it seemingly converts any object m into a
function m∗ on assignments. However, the rules can only generate the pairs 〈~v,~v〉.

Next we turn to relations. Let R be a relation:

(5.4) C( fR)(〈e0,m0〉, · · · , 〈eτ(R)−1,mτ(R)−1〉)

:=


〈Ra(ea0,

a · · ·a ,eτ(R)−1
a), {β : 〈m0(β), · · · ,mτ(R)−1(β)〉 ∈ I(R)}〉

if the ei are variables
undefined else

Finally we introduce the modes for the connectives. No difficulties arise with the
booleans:

(5.5)

C( f¬)(〈e,m〉) :=

〈(a¬aea),V − m〉 if e is a formula
undefined else

C( f∧)(〈e0,m0〉, 〈e1,m1〉) :=


〈(aea0∧

aea1),m0 ∩ m1〉

if e0 and e1 are formulae
undefined else

C( f∨)(〈e0,m0〉, 〈e1,m1〉) :=


〈(aea0∨

aea1),m0 ∪ m1〉

if e0 and e1 are formulae
undefined else

C( f→)(〈e0,m0〉, 〈e1,m1〉) :=


〈(aea0→

aea1), (V − m0) ∪ m1〉

if e0 and e1 are formulae
undefined else
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Finally the quantifiers. They are introduced by binary modes, one responsible for
the handling of the variable and the other responsible for the scope. The definition
is somewhat tricky. We assume that M has at least two elements, say a and b.
Given an index ~y, let β~ya be the valuation that assigns a to ~y and b to every other
variable. If m has the form v∗ for some variable v then we can find the index of that
variable by looking at the unique ~y such that ~y∗(β~ya) = a. We denote the variable
with index ~y by v(m).

(5.6) C( f∃)(〈e0,m0〉, 〈e1,m1〉)

:=


〈(a∃aea0)

ae1, {β
′ : exists β ∼v(m0) β

′ : β ∈ m1}〉

if e0 is a variable and e1 a formula
undefined else

If M contains just one element then we put

(5.7) C( f∃)(〈e0,m0〉, 〈e1,m1〉) :=


〈(a∃aea0)

ae1,m1〉

if e0 is a variable and e1 a formula
undefined else

The universal quantifier is quite similar. This finishes the definition of the gram-
mar. Let us notice that this grammar is actually independent. The functions on the
exponents and the functions on the meanings are independently formulated. In
this case what needs to be checked is that the domains for these functions (which
are partial) are independently specifiable. As we have spelled out the grammar,
the functions on the exponents are partial, and the conditions on the mode are
spelled out as conditions on the exponents. Hence this is unproblematic. Now,
the functions on the meaning are de facto partial. Yet in case the functions on
the exponents are defined, the meanings can also be composed, and therefore no
supplementary condition needs to be added.

Intermission 2. One may have noticed that the grammar adds syncategorematic
symbols other than brackets. In fact, all occurrences of logical and relation sym-
bols are syncategorematic. This is unavoidable given the language Lτ. For if /r/

is a unary relation symbol /r(x)/ is a formula, but the only part of it that is an ex-
pression is /x/, while /r/ itself is not. This is a common dilemma. Montague has
basically opted to make logical words in natural language syncategorematic. The
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price is that it is thus unable to explain the meaning of /John walks and Pete

talks./ in terms of the meaning of /and/ and the constituent sentences, but rather
makes /and/ signal the application of a rule whose effect is to coordinate the sen-
tences. o

I should mention here that [Fine, 2003] has claimed that there is no compo-
sitional semantics for predicate logic. The above grammar suggests that this is
false. Indeed, what Fine has in mind is a different language of predicate logic by
which we do not use variables that consist of, say, a letter and an index. Rather,
he has in mind a semantics where the name of the variable is arbitrary and not
fixed in any way in advance (like it is in mathematical logic, for example); this
corresponds to the factual use of predicate logic in everyday discourse, even in
logic. Careful texts admit that what they are using are not actual variables but
metavariables. (To my knowledge, the book [Monk, 1976] is a rare exception in
actually using variables rather than metavariables.) If we want to give a semantics
of predicate logic in terms of metavariables we must change the definitions rather
substantially. Notice that the same issue arises in connection with programming
languages. It used to be the case that variables had to have a specific format to
make them distinct from other expressions. In many modern programming lan-
guages this is no longer required. Any expression that is not predefined can be
used. Since the programmer is also free to define a host of other things, it turns
out that it is highly context dependent whether or not a given sequence of letters
actually denotes a variable.

There is certainly nore than one way in which we can implement the semantics
of predicate logic. Thus, Lτ is one in many other formulations of predicate logic.
Another way is described in Section 4.5. Let S := 〈M , β〉 be a model. Based on
the model S , we perform a reduction of the formulae in the following way: write
ϕ ≡S χ if

(5.8) 〈M , β〉 � ϕ↔ χ

This is an equivalence relation. Moreover, this is a congruence with respect to the
standard boolean operations. This means that for ◦ ∈ {∨, ∧, →}:

(5.9)
ϕ ≡S χ

(¬ϕ) ≡S (¬χ)

ϕ1 ≡S χ1 ϕ2 ≡S χ2

(ϕ1 ◦ ϕ2) ≡S (χ1 ◦ χ2)

However, it is checked that the following does not hold.

(5.10)
ϕ ≡S χ

(∃xi)ϕ ≡S (∃xi)χ
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Similarly, given just M , write ϕ ≡M χ if for all β

(5.11) 〈M , β〉 � ϕ↔ χ

This is equivalent to saying that for all β:

(5.12) 〈M , β〉 � ϕ⇔ 〈M , β〉 � χ

This, in turn, is the same as [ϕ]M = [χ]M . Finally, the denotation of a formula is
not the set [ϕ]M but rather the set {χ : ϕ ≡M χ}. This time not only the laws (5.9)
hold (with ≡M replacing ≡S ) but we also have

(5.13)
ϕ ≡M χ

(∃xi)ϕ ≡M (∃xi)χ

I seize the opportunity to broaden the scope of the semantics somewhat. Let
W be a set, the set of worlds. For every w ∈ W assume a model M (w) =

〈M(w),I(w), β(w)〉. This gives us an indexed family W := {M (w) : w ∈ W}
of models. We write ϕ ≡W χ if for all w ∈ W: ϕ ≡M (w) χ. The laws (5.9) hold, but
(5.10) need not hold.

The rationale behind this is that the family W represents the space of all pos-
sibilities. We say that ϕ is necessary (in W ) if ϕ ≡W >. (Here, ⊥ is any tautology,
say, (∀)x=x). ϕ is merely possible if ϕ .W ⊥. Let Λ be a first-order logic in the
chosen signature τ. Then for every formula ϕ ∈ Lτ two choices arise: either it
is inconsistent, that is, its negation is in Λ; or it consistent, in which case there
is a structure M and a valuation β such that 〈M , β〉 � ϕ. (See Chapter 4.2.) We
can sharpen this somewhat. Say that a theory T is maximally consistent if T is
consistent but there is no consistent U properly containing T . Let W be the set of
maximally consistent sets and 〈M (w), β(w)〉 be a model such that for every δ ∈ w:
〈M (w), β(w)〉 � δ. With this choice of W we have that ϕ ≡W χ if and only if
ϕ ↔ χ is a theorem of predicate logic. In this model, ϕ is a necessary if it is
logically true; and possible if logically consistent.

Definition 5.1 A structure S = {〈M (w), β(w)〉 : w ∈ W} is canonical for a logic
L if ϕ is necessary in S if and only if ϕ is L-equivalent to >, impossible in S if
and only if ϕ is L-equivalent to ⊥, and possible otherwise.

This construction and result can be extended to other logics extending predicate
logic. A particular case are meaning postulates.
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Example 66. It is standardly assumed that /bachelor/ and /unmarried man/

are synonymous (ignoring presuppositions). There are two ways to implement this
logically. One is to insert two unary predicate symbols, /r/ and /m/ and define

(5.14) b(x) := ((¬r(x))∧m(x))

This is basically a metalinguistic convention: it says that the string /b/ (which is
not a relation symbol of our language), when followed by /(x~v)/ is to be replaced
by the sequence on the right, where /x/ is replaced by /x~v/. Another way is to
introduce three one place relation symbols, /b/, /m/ and /r/, and add the meaning
postulates

(5.15) (∀x)(b(x)→((¬r(x))∧m(x))) (∀x)(((¬r(x))∧m(x))→b(x))

This means that our logic—call it L+—is no longer predicate logic but a stronger
logic. It is the least logic containing predicate logic and the two formulae of
(5.15). The canonical structure for this logic consists in all models of the canoni-
cal structure for predicate logic in the new signature minus all the models where
(5.15) does not hold. o

Another point of extension is modal logics. Introduce a relation C on the set
W. Then pick w ∈ W and write

(5.16) 〈W ,w〉 � ϕ :⇔ 〈M (w), β(w)〉 � ϕ

Introduce a unary � operator on formulae and define

(5.17) 〈W ,w〉 � (�ϕ) for all u: if w C u then 〈W , u〉 � ϕ

This is the way in which Montague Semantics analyses propositional attitudes
and tense, for example. We shall not have much to say on that topic, though. An
alternative approach to intensionality is to add a new sort, that of a world, and
make predicates relative to worlds.

Exercise 58. Spell out a grammar for the language {〈ϕ, LϕMM 〉 : ϕ ∈ Lτ}, adding
interpretations for indices and variables as given in this section.

Exercise 59. Let L+ be the logic of Example 66. Let A be the set of formulae
in (5.15). Say that a theory T is L+

τ -consistent if T ∪ A is consistent. Use the
Completeness Theorem to derive that there is a canonical structure S for L+.
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Exercise 60. Define the following order on indices:

(5.18) ε, 0, 1, 00, 01, 10, 11, 000, . . .

So, ~x comes before ~y, in symbols ~xl~y, if and only if either ~x is shorter than ~y or ~x
and ~y are of equal length and the binary number of ~x is less than that of ~y. Describe
an algorithm to calculate from a number k the string ~x, where ~x has position k in
the order l. Describe also the algorithm of the inverse to this mapping.

5.2 Concept Based Predicate Logic

In this section we shall explore the question how one can write a compositional
grammar for predicate logic based on concepts. It will turn out that this is possible
only if we restrict the language to a fragment based on finitely many variables.
Whether or not the language is sorted is of no importance. Thus we ignore sorts
and look at the following language:

(5.19) CLτ := {〈ϕ, �ϕ�M 〉 : ϕ ∈ PLτ}

There is a trivial sense in which this is possible: what we need to do is use the
formation rules of the previous section and define the meaning functions f µ simply
by

(5.20) f µ(〈e0,m0〉, · · · , 〈eΩ( f )−1,mΩ( f )−1〉) := 〈 f ε∗ (~e), � f ε∗ (~e)�M 〉

In plain words: we first form the exponent (which we can do since the grammar
of the previous section is autonomous) and then simply take as the meaning the
concept defined by the exponent. The problem is that this grammar is not compo-
sitional. The question therefore is whether we can give a compositional grammar
for the language of concepts.

The principal result of this section is that for boundedly many variables this
can be done, while for unboundedly many variables this is impossible in general.
To start, let us assume that we use only the formulae with up to n free variables,
for some n. It is not necessary that they are called x0 through xn−1. However, to
keep matters simple we shall remain with the language PLn

τ, which is the fragment
of predicate logic with relations in τ, and variables from {xi : i < n}. Functions
will be omitted. Now fix a structure M = 〈M,I〉. We put

(5.21) �ϕ�M := ~LϕMM �
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We shall present an independent grammar for

(5.22) CLn
τ = {〈ϕ, �ϕ�M 〉 : ϕ ∈ PLn

τ}

Define C := {�ϕ�M : ϕ ∈ PLn
τ}, the expressive power of CLn

τ. It is clear that
no relation of length > n can be minimal for any member of C. This is because
there are only n different free variables to choose from, so they generate only n-
ary relations. However, C not only contains concepts of length n but concepts of
length k < n as well.

Let f : C → PLn
τ be a function such that c = � f (c)�M . Thus, f picks for each

concept a formula defining it. For an arbitrary χ ∈ PLn
τ the type tp(χ) is a subset

of Πn, the set of permutations of n (see Appendix). It is defined by

(5.23) π ∈ tp(χ(~x)) :⇔M � χ(xπ−1(0), · · · , xπ−1(n−1))↔ f (�χ(~x)�M )

We may write each formula as ϕ(x0, · · · , xn−1) even if some of the variables do not
appear in it. A formula may thus have several types, since nonoccurring variables
can be permuted freely (also it may happen that a relation is symmetric in some
columns). Given a type π and a concept c we define

(5.24) fπ(c) := [xπ(i)/xi : i < n] f (c)

Together with (5.23) this gives us for every ϕ ∈ CLn
τ and π ∈ tp(ϕ):

(5.25) M � ϕ↔ fπ(�ϕ�M )

Example 67. Here is an example. Suppose we have a binary relation symbol r
and we are looking at the language PL2

τ. The variables are called x0 (written here
x0) and x1(written here x1). Let c := �r(x0,x1)�M . Then we also have

(5.26) c = �r(x1,x0)�M

Let f (c) = r(x0,x1). Then the type of r(x0,x1) is the identity permutation,
written (). However, the type of r(x1,x0) is the permutation π = (0 1). For we
have

(5.27) fπ(c) = [x1/x0, x0/x1]r(x0,x1) = r(x1,x0)
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And so we evidently have

(5.28) M � r(x1,x0)↔ fπ(�r(x1,x0)�M )

Similarly for more variables. A particular case to look at is where we have more
variables than occur free in the formula, for example, PL4

τ. Here the type of
r(x0,x1) consist both in () and in (2 3), because the action on nonoccurring
variables is irrelevant. Similarly, the types of r(x1,x0) are (0 1) and (0 1)(2 3).
o

This finishes the preparations. We are ready to spell out the modes. They are
given in Figure 5.1. In the definition, the followig functions are being used. For
the existential quantifier we introduce the functions

(5.29) ∃i
π(c) := �(∃xi) fπ(c)�M

For the universal quantifier we use

(5.30) ∀i
π(c) := �(∀xi) fπ(c)�M

Now for the booleans.

(5.31)

N(c) := �(¬ f (c))�M

Aπ;ρ(c, d) := �( fπ(c)∨ fρ(d))�M

Cπ;ρ(c, d) := �( fπ(c)∧ fρ(d))�M

Iπ;ρ(c, d) := �( fπ(c)→ fρ(d))�M

The modes are as follows: for every relation symbol R and every map τ : n → n
(not necessarily injective) we pick a 0-ary mode f R

τ . For every i < n and every
π ∈ Πn we pick a unary mode f ∃i,π and a unary mode f ∀i,π. There will be a unary
mode f ¬ and for every π, ρ ∈ Πn (not necessarily distinct) binary modes f ∧π,ρ, f ∨π,ρ,
and f→π,ρ. This defines the set Fn and the signature Ωn. The interpretation Jn is
shown in Figure 5.1. Notice that i ranges over (not necessarily bijective or even
injective) functions from n to n.

Theorem 5.2 The grammar Gn = 〈Ωn, Jn〉 is independent, context free and L(Gn) =

CLn
τ.

Proof. It is easy to see that Gn is independent. The functions on the concepts
are defined, and the functions on the exponents are partial, with conditions that
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Figure 5.1: The modes for CLn
τ

(5.32)

Jn( f R
i ) := 〈Ra(axi(0)

a,a · · ·a ,axi(a(R)−1)
a),

�Ra(axi(0)
a,a · · ·a ,axi(a(R)−1)

a)�M 〉

Jn( f ¬)(〈e,m〉) := 〈(a¬aea),N(m)〉

Jn( f ∃i,π)(〈e,m〉) :=

〈(a∃axi
a)ae,∃i

π(m)〉 if π ∈ tp(e)
undefined else

Jn( f ∀i,π)(〈e,m〉) :=

〈(a∀axi
a)ae,∀i

π(m)〉 if π ∈ tp(e)
undefined else

Jn( f ∨π,ρ)(〈e,m〉, 〈e
′,m′〉) :=


〈(aea∧ae′a), Aπ,ρ(m,m′)〉 if π ∈ tp(e)

and ρ ∈ tp(e′)
undefined else

Jn( f ∧π,ρ)(〈e,m〉, 〈e
′,m′〉) :=


〈(aea∨ae′a),Cπ,ρ(m,m′)〉 if π ∈ tp(e)

and ρ ∈ tp(e′)
undefined else

Jn( f→π,ρ)(〈e,m〉, 〈e
′,m′〉) :=


〈(aea→ae′a), Iπ,ρ(m,m′)〉 if π ∈ tp(e)

and ρ ∈ tp(e′)
undefined else

are completely independent of the meaning. (This is because the concept of a
formula is uniquely determined anyway, so any mention of meaning of a sign can
be eliminated.) It remains to be shown that the grammar generates CLn

τ. This is
done by induction. The inductive claim is that for every formula ϕ there is a term
t such that ι(t) = 〈ϕ, �ϕ�M 〉. The base case is

(5.33) ϕ = R(x j0, · · · ,x ja(n)−1)

Put j(k) := jk if k < a(R) and j(k) := 0 else. Then

(5.34) ϕ = R(xi(0), · · · ,xi(a(n)−1))

and so

(5.35) I( f R
i ) = 〈ϕ, �ϕ�M 〉
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I perform only two of the inductive steps. Suppose for example that the formula
has the form /(e∨e′)/. By inductive hypothesis there are analysis terms t and t′

that unfold to 〈e,m〉 and 〈e′,m′〉, respectively. Let π be a type of e and ρ a type
of e′. (Every formula has at least one type.) By inductive hypothesis, m = �e�M

and m′ = �e′�M . Then f ∨π,ρtt
′ is defined and has exponent /(e∨e′)/. Then for the

meaning we have by definition

(5.36)
Aπ,ρ(m,m′)

=�( fπ(m)∨ fρ(m′))�M

=�(e∨e′)�M

Next we deal with f ∃i,π. Suppose we have generated the sign 〈e,m〉 using the term
t. The induction hypothesis is that m = �e�M . Assume that e has type π. Then
from (5.25) we get

(5.37) M � (∃xi)e↔ (∃xi) fπ(�e�M )

and so

(5.38) �(∃xi)e�M = �(∃xi) fπ(�e�M )�M = ∃i
π(m)

Then f ∃i,π can be applied to the sign and we get

(5.39) Jn( f ∃i,π)(〈e,m〉) = 〈(a∃axi
a)ae,∃i

π(m)〉

This completes the proof. �

The formulation of the semantics did not use linking aspects. They could in
principle also be used, but it was easier to perform a definition by returning to the
language CLn

τ. We were taking advantage of the fact that CLn
τ is unambiguous. In

general, it is not possible to trade the linking aspect for functions to the exponents.

Let us discuss now the case where we have infinitely many variables. As I
noted in Intermission 2, the language with infinitely many variables has the disad-
vantage that it must insert nontrivial syncategorematic symbols. Let us ignore that
problem. Let us consider the language with Rel = {r} and τ(r) = 2. The model is
N = 〈N,I〉, with I(r) = {〈i, i + 1〉 : i ∈ N}. We have three modes, f∅ (zeroary),
f1 and f0 (unary). Their interpretation is this (recall the definition of the verum
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concept t as ~{∅}�):

I( f∅)() := 〈x, t〉(5.40)

I( f0)(〈e,m〉) :=

〈ea0,m〉 if e is a variable
undefined else

(5.41)

I( f1)(〈e,m〉) :=

〈ea1,m〉 if e is a variable
undefined else

(5.42)

Notice that we have this time generated variables from variables, to show that
alternatives to introducing indices are possible. In fact, we are now generating the
following language:

(5.43) CLτ ∪{〈x~u, t〉 : ~u ∈ (0|1)∗}

This language has two types of expressions: formulae and variables. The inter-
pretation of variables is their range, and therefore the ‘truth’. Now we introduce
the relation symbol by means of a binary mode:

(5.44) fr(〈e,m〉, 〈e′,m′〉)

:=


〈r(aea,ae′a), �{〈i, i + 1〉 : i ∈ N}�N 〉 if e , e′ are variables
〈r(aea,ae′a), �∅�N 〉 if e = e′ are variables
undefined else

Define the following formulae.

(5.45)

ϕ0 := r(x,x0)

ϕ1 := (r(x,x0)∧r(x1,x00))

ϕ2 := ((r(x,x0)∧r(x1,x00))∧(r(x00,x01)∧r(x10,x11)))

ϕ3 := (((r(x,x0)∧r(x1,x00))∧(r(x01,x10)

∧r(x11,x000)))∧((r(x001,x010)

∧r(x011,x100))∧(r(x101,x110)∧r(x111,x0000))))

Also, define the following sets:

(5.46) S n := {〈i, i + 1, · · · , i + n − 1〉 : i ∈ N}

For example, S 1 is N, S 2 consists of the pairs 〈0, 1〉, 〈1, 2〉, 〈2, 3〉, and so on, and
S 3 consists of the triples 〈0, 1, 2〉, 〈1, 2, 3〉, 〈2, 3, 4〉, and so on. The meaning of ϕ0
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is �S 2�N , the meaning of ϕ1 is ~S 2 × S 2�N . The set of formulae we are interested
in is a bit larger; it consists of all substitution instances of the ϕn. The following
is easy to see.

Lemma 5.3 Let χ be a substitution instance of ϕn. Either χ is unsatisfiable in
N or �χ�N is the concept generated by a nontrivial product Xk<pS n(k) for some
numbers n(k) > 1.

Proof. Clearly, some formulae are unsatifiable, for example

(5.47) ((r(x,x0)∧r(x0,x1))∧(r(x,x1)∧r(x,x1))).

Now, let x ≺ y if and only if χ contains the clause r(x,y). Say that x is of height
0 if there is no y such that y ≺ x; and of height n + 1 if there is a y of height n such
that y ≺ x. Now we shall characterise all satisfying assignments. Suppose that
x ≺ y, y′ and β a satisfying assignment; then β(y) = β(x) + 1, and β(y′) = β(x) + 1
from which β(y) = β(y′). Similarly, if x, x′ ≺ y then β(x) = β(x′). Let ≈0 be the
identity. And let x ≈n+1 x′ if for some y, y′ such that y ≈n y′ either (a) y ≺ x
and y′ ≺ x′ or (b) x ≺ y and x′ ≺ y′; x ≈ x′ is the union of all ≈n. This is an
equivalence relation. For ≈-equivalence classes A and B write A ≺ B if there are
x ∈ A and y ∈ B such that x ≺ y. The relation ≺ is linear on the classes. For
assume A ≺ B, B′. Then there are x, x′ ∈ A and y ∈ B, y′ ∈ B′ such that x ≺ y
and x′ ≺ y′. Since x ≈ x′, we have y ≈ y′, by definition of ≈. Similarly we can
show that if A, A′ ≺ B then A = A′. A valuation is now constructed as follows. For
each class A which has no ≺-predecessor, pick a representative and assign to it any
value. Then the values of the members of A must all be the same. Suppose that
the values to members of A are known and are all identical to k; let A ≺ B. Then
the value of every member of B is k+1. By this recipe, the valuation is completely
determined. Now let us turn to the concept defined by χ. It is clear that when we
pass to the concept all equivalence classes of ≈ can be shrunk to one. All factors
of the form S 1 can be dropped. This gives the product representation. �
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In particular, consider the following substitution instances.

(5.48)

ϑ0 := r(x,x0)

ϑ1 := (r(x,x0)∧r(x0,x1))

ϑ2 := ((r(x,x0)∧r(x0,x1))∧(r(x1,x00)∧r(x00,x01)))

ϑ3 := (((r(x,x0)∧r(x0,x1))∧(r(x1,x00)

∧r(x00,x01)))∧((r(x01,x10)

∧r(x10,x11))∧(r(x11,x000)∧r(x000,x001))))

The meaning of these formulae is exactly ~S 2n+1�N .

If ġ = 〈g(0), · · · , g(k − 1)〉 is a vector of numbers, we put S ġ := Xi<kS g(i).
Let us look at the possible ways to assemble such formulae. We shall show that
there is no way in which this sublanguage can be generated by a compositional
context free interpreted grammar. This shall suffice for the following reason. The
sublanguage is closed under taking subformulae; so if there is a grammar for the
full language it must generate these formulae by means of other formulae of this
kind. Hence if that is impossible, no grammar for the entire language exists.

Basically, for any context free grammar, the modes of composition must be to
assemble some formulae and add some bounded material.

(5.49) I( f )(〈e0,m0〉, · · · , 〈en−1,mn−1〉)
:= 〈~xa0 ea0 ~x

a
1 · · ·

a ~xan−1ean−1~xn, h f (m0, · · · ,mn−1)〉

We may assume that mi = ~S ġ(i)�N and that h f (m0, · · · ,mn−1) = ~S ġ(n)�N , where
ġ(0), · · · , ġ(n) are vectors of natural numbers. In that way, the function h can be
coded by the assignment

(5.50) h♠f : 〈ġ(0), · · · , ġ(n − 1)〉 7→ ġ(n)

Now the following can easily be verified.

Lemma 5.4 Suppose that ni are numbers and that h♠f (n0, · · · , nk−1) also is a num-
ber. Then h♠f (n0, · · · , nk−1) can be any number between max{ni : i < k} and
(
∑

i<k ni) − (k − 1).

We now turn to an investigation of the morphology.
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Lemma 5.5 Assume that I( f ) is as in (5.49). Then for given e′ there is at most
one vector ~e = 〈ei : i < Ω( f )〉 such that f ε(~e) = e′.

Proof. Let n = Ω( f ). Assume that f ε(~e) = f ε(~c) for some vector ~c = 〈ci : i < n〉.
Then we have

(5.51) ~x0e0~x1e1~x2 · · · ~xn−1en−1~xn = ~x0c0~x1c1~x2 · · · ~xn−1cn−1~xn

From this it follows that

(5.52) e0~x1e1~x2 · · · ~xn−1en−1~xn = c0~x1c1~x2 · · · ~xn−1cn−1~xn

Suppose first that e0 and c0 are formulae. It is a property of this language that no
prefix of a formula is a formula. Hence e0 = c0 and so

(5.53) ~x1e1~x2 · · · ~xn−1en−1~xn = ~x1c1~x2 · · · ~xn−1cn−1~xn

Now assume that e0 is not a formula. Then it is a variable and so of the form
x~u, where ~u is a binary string. In this case, since also e1 is either a variable or a
formula, ~x1 must contain a prefix that finishes the occurrence of the variable that
e0 begins. It does the same with c0; thus, e0 = c0. Repeat this argument n − 1
times. �

Finally, let 〈~u,~v〉 be an occurrence of ~x in ~z = ~u~x~v. The embedding depth
of this occurrence of ~x is defined as the number of opening brackets minus the
number of closing brackets in ~u. Notice that in ϕn every atomic subformula has
embedding depth n.

Lemma 5.6 Let χ be a formula with an occurrence of depth d in ϕn. Then χ is a
substitution instance of ϕn−d.

Proof. By induction on n − d. Let n = d. Since no formula has embedding depth
> n, the formula is atomic and so a substitution instance of ϕ0. Now let the claim
be shown for n − d. We show it for n − d + 1. Let us be given an occurrence
〈~u,~v〉 of χ. Then χ begins with an opening bracket (since no atomic formula has
embedding depth n− d + 1). Thus, it is easily seen that χ = (~z0∧~z1), where ~z0 and
~z1 are subformulae of embedding depth n − d. By inductive hypothesis, they are
substitution instances of ϕn−d. Then χ is a substitution instance of ϕn−d+1. �
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Thus, with I defined as in (5.49) let µ f be the largest of the bracket balances of
~x0~x1 · · · ~xi, i < n. Now, if f ε(e0, · · · , en−1) = ϕn, we conclude that the embedding
depth of the occurrences of the ei in ϕn are less than or equal to n−µ f . By choosing
n large enough we can make the ei to be of any minimal length we want.

Let now G be any context free compositional interpreted grammar for the lan-
guage. Define

(5.54) µG := max{µ f : f ∈ F} αG := max{Ω( f ) : f ∈ F}

Make n large enough so that n∗ := 2n−µG + 1 > αG + card F. For every f ∈ F, let
v̇ f := h♠f (n

∗, · · · , n∗). By choice of n∗ there is a number j∗ between n∗ and 2n∗ − 1
which is not of the form v̇ f . (If v̇ f is not a number, that is anyhow the case.) Next
let ψk be the substitution into ϑn−µG such that the names of the variables are shifted
by k in the order l (see Exercise 60). Since this shift is injective, the meaning
of ψk is the same as that of ϑn−µG , which is ~S 2n∗�. Now we define the following
sequence of formulae:

(5.55)
χ◦(0) := ψ0 χ•(0) := ψ j∗−n∗

χ◦(n + 1) := (aχ◦(n)a∧aχ◦(n)a) χ•(n + 1) := (aχ•(n)a∧aχ•(n)a)

Finally, let ζ := (χ◦(µG)∧χ•(µG)). Its meaning is ~S j∗�. (For χ◦(µG) contains the
first n∗ variables, and χ•(µG) contains this set shifted by j∗−n∗ (which is a number
< n∗). Their conjunction therefore contains the first j∗ variables.

We show that 〈ζ, �ζ�N 〉 cannot be generated in G. For assume that it is the
value of the term f t0 · · · tn−1. Then ζ has a decomposition as follows.

(5.56) ζ = ~x0e0~x1e1~x2 · · · ~xn−1en−1~x

As we have seen, the ei must be subformulae. Now, we may assume that ei , ζ (or
else ζ = e0, and then we must obviously find a way to generate e0 using another
function). And so the ei are subformula of either χ◦(µG) or of χ•(µG). As they
are of embedding depth at most µG they have the form χ◦(d) or χ•(d) for some
d. Hence their meaning is ~S n∗�. The denotation of the term f t0 · · · tn−1 is of the
form ~S k� where k = h♠f (n

∗, · · · , n∗). However, ζ has the meaning ~S j∗�, which is
not of this form. This completes the proof.

Theorem 5.7 There are models and signatures for which CLτ has no composi-
tional interpreted context free grammar.
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It is perhaps worthwhile saying something about the significance of this result. In
generative grammar it has been observed that there are constituents that serve as
a bottleneck in syntax, called phases. In the earlier fragment of [Chomsky, 1986],
the CP- and DP-constituents had the property that, unlike VPs, they could not be
adjoined to arbitrarily. While the existence of phases has always been a mystery,
here we find an indication as to why such bottlenecks must exist. Since meanings
are not of kind we saw in the previous section, but rather have the combinatorics
of concepts, there is a limit on how many elements we can have in storage. One
way of calibrating the idea of storage is to calculate the number of free variables
occurring in a formula.

Exercise 61. The function for concept negation did not depend on the type of the
formula, while the disjunction, conjunction and implication depended on the types
of both arguments. A closer analysis reveals that for an n-ary boolean operator the
concept function depends on all n types; it is however enough to assume functions
that depend only on n − 1 arguments. Can you give a general solution how to lift
an n-ary operator to concepts using n − 1 type parameters rather than n? Perform
this reduction for Aπ;ρ, Cπ;ρ and Iπ;ρ. Can you see why negation is independent of
its unique argument?

Exercise 62. What happens if we allow functions in the primitive vocabulary of
predicate logic?

Exercise 63. Modify the above proof of Theorem 5.7 to the case where the lan-
guage is as follows (cf. the definition of Lτ of the previous section):

(5.57) CLτ ∪{〈~v,~v〉 : ~v ∈ (0|1)∗}

Exercise 64. Show that Theorem 5.7 would also hold if we allowed to introduce
an arbitrary finite set of categories. (Assuming, of course, that the grammar is
independent in all three components.)
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Exercise 65. Here is a variation on the formulae defined above. Define ηn as
follows.

(5.58)

η0 := r(x,x0)

η1 := (r(x,x0)∧r(x1,x00))

η2 := ((r(x,x0)∧r(x1,x00))∧r(x01,x10))

η3 := (((r(x,x0)∧r(x1,x00))∧r(x01,x10))∧r(x11,000))

Show that no compositional context free interpreted grammar exists that gener-
ates all the pairs 〈s(ηn), �s(ηn)�〉, where s is a substitution (together with all pairs
〈x~v, ~{∅}�N 〉).

5.3 A Fragment of English

In this section we shall show by way of examples in which way one can over-
come the limitations of concepts. The first strategy is to use thematic roles. The
idea is that in an event of some sort the participants can be distinguished by some
property that they have as opposed to the others. For example, the standard, rela-
tion based, meaning of the verb /hit/ may—in standard notation—be a relation
hit′(t,w, x, y) where t is a time point, w is a possible world or situation, and x and
y are things. In this case it is already possible to distinguish the variable t from
the others due to the fact that all variables are sortal. A time variable can never
be identical to a world variable or an entity variable; and the things that these
variables denote are completely separate, too. Likewise w is uniquely identifiable
through its sort. Only x and y are sortally identical. Nevertheless, we can dis-
tinguish them by observing that in an act of hitting there is one participant that
exerts force on the other. It is this one that performs an action, while the other can
be completely at rest. Thus, there is a formula α(t,w, x) such that in our standard
model M

(5.59) M � hit′(t,w, x, y)→ α(t,w, x), M 2 hit′(t,w, x, y)→ α(t,w, y)

This is essentially the theory proposed by [Wechsler, 1995]. Wechsler uses modal
notation, so it would look more like

(5.60) M � �(hit′(x, y)→ α(x)), M 2 �(hit′(x, y)→ α(y))
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But these differences are superficial. Let us suppose that something like (5.59)
holds. However, as the model we are using is characteristic (all that is logically
true is true in it, all that is logically false is false in it), we should rather require
the following (with π(23) the permutation interchanging the third and the fourth
column; for better readability I write π[ϕ]M in place of the more correct π([ϕM ])):

(5.61)
[hit′(t,w, x, y)]M ⊆ [α(t,w, x)]M × Me

π(23)[hit′(t,w, x, y)]M * [α(t,w, x)]M × Me

The formula α(t,w, x) does not suffer from the same combinatorial ambiguity.
Thus, the concept �α(t,w, x)�M has only one minimal member in its type. The
task of picking out the correct representative has become trivial. So, we pick
the minimal member R and then return to hit′(t,w, x, y). The concept has two
minimal members, say S and T . According to the above, we have R × Me ⊆ S
and R × Me * T or R × Me * S and R × Me * T . Thus, there is a way to find out
which minimal member to pick.

Example 68. There are three sorts, e, w and t. Assume that Me = {a, b, c},
Mw = {w0,w1}, and Mt = {t0, t1}.

(5.62)
[α(t,w, x)]M ={〈t0,w0, a〉, 〈t0,w0, b〉, 〈t0,w0, c〉, 〈t0,w1, a〉,

〈t1,w0, b〉, 〈t1,w0, c〉}

(5.63)
[hit′(t,w, x, y)]M ={〈t0,w0, a, a〉, 〈t0,w0, a, b〉, 〈t0,w0, b, a〉,

〈t0,w0, a, c〉, 〈t1,w0, c, a〉, 〈t1,w0, c, b〉}

In this model (5.61) is satisfied. This means that we can discriminate the two
minimal members T0 and T1 of the concept:

(5.64)

T0 :={〈t0,w0, a, a〉, 〈t0,w0, a, b〉, 〈t0,w0, b, a〉,
〈t0,w0, a, c〉, 〈t1,w0, c, a〉, 〈t1,w0, c, b〉},

T1 :={〈t0,w0, a, a〉, 〈t0,w0, b, a〉, 〈t0,w0, a, b〉,
〈t0,w0, c, a〉, 〈t1,w0, a, c〉, 〈t1,w0, b, c〉}
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Indeed, T1 contains 〈t1,w0, a, b〉, and this is not contained in the set [α(t,w, x)]M ×
Me.

(5.65)

[α(t,w, x)]M × Me = {〈t0,w0, a, a〉, 〈t0,w0, a, b〉, 〈t0,w0, a, c〉,
〈t0,w0, b, a〉, 〈t0,w0, b, b〉, 〈t0,w0, b, c〉, 〈t0,w0, c, a〉,
〈t0,w0, c, b〉, 〈t0,w0, c, c〉, 〈t0,w1, a, a〉, 〈t0,w1, a, b〉,
〈t0,w1, a, c〉, 〈t1,w0, b, a〉, 〈t1,w0, b, b〉, 〈t1,w0, b, c〉,
〈t1,w0, c, a〉, 〈t1,w0, c, b〉, 〈t1,w0, c, c〉}

Notice how the intensionality does real work. For in w0 at t0 every object has
property α. If we had to define our minimal member only here, there would
be no way to distinguish the arguments. For example, suppose that at w0 and
t0, everybody is such that he or she is moving and exerting some force. Still it
should not follow that everybody is hitting someone. They could, for example,
push a car uphill. Thus, we need to make reference to other worlds. Additionally,
of course, in the entire space of worlds there must be one where the concepts
really is nonsymmetrical, otherwise (5.61) could not be used to discriminate the
arguments. o

We shall display a primitive grammar. It has five modes: F = { f0, f1, f2, f3, f4}.
Ω( f0) = Ω( f1) = Ω( f2) := 0, Ω( f3) := Ω( f4) := 2. For the purpose of the
next definition, let σ = 〈e, c,m〉 and σ′ = 〈e′, c′,m′〉. Further, let dk

i j be the
relation {〈a0, · · · , ak−1〉 : ai = a j}. (This relation is only defined if sorts match.
For simplicity we suppress mentioning sorts.) Y is a linking aspect based that
extends the aspect in the previous example. What is important below is only that
it orders the arguments like this: time, world, patient, actor. Let σ = 〈e, c,m〉 and
e′ = 〈e′, c′,m′〉.

(5.66)

D( f0)() := 〈John,NP, {a}〉
D( f1)() := 〈Paul,NP, {b}〉
D( f2)() := 〈hits,V, �hit′(t,w, x, y)�M 〉

D( f3)(σ,σ′) :=


〈ea�ae′,VP, �C2.C4.(Y(m) × Y(m′) ∩ d5

24)�M 〉

if c = V and c′ = NP
undefined else

D( f4)(σ,σ′) :=


〈e′a�aea.,S, �C0.C1.C2.C3.(Y(m) × Y(m′) ∩ d4

23)�M 〉

if c = VP and c′ = NP
undefined else
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The resulting meaning of a sentence is true if there is a time point and world
such that the sentence is true in that world at that time. Let us see how that
works. The sentence /John hits Paul./ can be generated only as the exponent
of f4 f3 f2 f1 f0. Let us do this step by step.

(5.67)

ιG( f3 f2 f1) = D( f3)(〈hits,V,R〉, 〈Paul,NP, {b}〉)

= 〈hitsa�aPaul,VP, �C2.C4.(Y(m) × Y(m′) ∩ d5
24)�M 〉

= 〈hits Paul,VP, �{〈t0,w0, a〉, 〈t1,w0, c〉}�M 〉

Here is how the concept in the last step is derived. First, we apply the linking
aspect Y to the concept of hitting, whereupon we get

(5.68)
Y(m) ={〈t0,w0, a, a〉, 〈t0,w0, b, a〉, 〈t0,w0, a, b〉,

〈t0,w0, c, a〉, 〈t1,w0, a, b〉, 〈t1,w0, b, c〉}

Also, Y(m′) = {b}, since there is nothing to order. We take the product:

(5.69)
Y(m) × Y(m′) ={〈t0,w0, a, a, b〉, 〈t0,w0, b, a, b〉, 〈t0,w0, a, b, b〉,

〈t0,w0, c, a, b〉, 〈t1,w0, a, b, b〉, 〈t1,w0, b, c, b〉}

Next we intersect with the set d5
24. That is to say we take the subset of all vectors

〈x0, x1, x2, x3, x4〉 such that x2 = x4.

(5.70) Y(m) × Y(m′) ∩ d5
24 ={〈t0,w0, b, a, b〉, 〈t1,w0, b, c, b〉}

Finally, we remove the columns 2 and 4:

(5.71) C2.C4.Y(m) × Y(m′) ∩ d5
24 ={〈t0,w0, a〉, 〈t1,w0, c〉}

And then we form the concept, which just means that we forget the order of the
columns. Call that concept m. We are ready to continue (with Y(m) defined be-
low):

(5.72)

ιG( f4 f3 f2 f1 f0) =D( f4)(ιG( f3 f2 f1), ιG( f0))
=D( f4)(〈hits Paul,VP, �{〈t0,w0, a〉, 〈t1,w0, c〉}�M 〉,

〈John,NP, {a}〉)
=〈Johna�ahits Paula., S,

�C0.C1.C2.C3.(Y(m) × Y(�{a}�M ) ∩ d4
23)�M 〉

=〈John hits Paul.,S, {∅}〉
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The way to get there is as follows. The linking aspect orders the minimal members
of the concept m. Assume that it does that on the basis times < worlds < entities.
(This does not follow, by the way, from our assumption on how it orders the
minimal members of the concept of hitting!) Then

(5.73) Y(m) = {〈t0,w0, a〉, 〈t1,w0, c〉}

It also orders the unique minimal member of the concept of John and gives us {a}.
We take the product

(5.74) Y(m) × Y(�{a}�M ) = {〈t0,w0, a, a〉, 〈t1,w0, c, a〉}

Next we intersect with d4
23:

(5.75) Y(m) × Y(�{a}�M ) ∩ d4
23 = {〈t0,w0, a, a〉}

And then we eliminate the columns 0, 1, 2, and 3:

(5.76) C0.C1.C2.C3.Y(m) × Y(�{a}�M ) ∩ d4
23 = {〈〉}

The sentence is true in the model.

When we move to more complex cases, for example relations involving 3
entities (arising in the meaning of ditransitives, for example) we do not need to
come up with an α such that, say,

(5.77)
[ϕ(t,w, x, y, z)]M ⊆ [α(t,w, x)]M × Me × Me

π(23)[ϕ(t,w, x, y, z)]M * [α(t,w, y)]M × Me × Me

π(24)[ϕ(t,w, x, y, z)]M * [α(t,w, z)]M × Me × Me

It is enough if we first find a concept that allows to separate two variables from a
third and then continue as before.

The formulae above do not always exist. A case in point is the relation <.
If taken as a relation on the natural numbers, we can use the formula α(y) :=
(y , 0). For there is no x such that x < 0, it is through this property that we
can discriminate the positions. However, matters change when we look at it as a
relation between integers. For the projection of < onto both of its components is
the set Z of integers. This means that for every x there is a number y that is bigger
than x, and for every y there is a number x that is smaller than y. Thus we have to
use a different tool. One idea that actually always works is this.
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Definition 5.8 A sampler is a function S from concepts to finite sets of tuples such
that if c is a concept, then there is exactly one minimal R ∈ c with R ⊇ S(c).

Samplers always exist. For let c be a concept; fix a minimal member c of R.
Let Ξ be the set of permutations such that π[R] , R. (In fact, we can skip all
permutations that are not sortally trivial. Here, a permutation π is sortally trivial
if for the sequence ~s or sorts: π(~s) = ~s.) For every π ∈ Ξ pick a tuple ~xπ such that
~xπ ∈ R but ~xπ < π[R]. By assumption for every π ∈ Ξ such a tuple exists. Let

(5.78) S(c) := {~xπ : π ∈ Ξ}

If we want to use a sampler to pick out a different minimal member U from c, then
since that member is a permutation of the original set R, say U = ρ[R], we can
use in place of S(c) the set ρ(S(c)).

Example 69. In the example above, the following is a sampler for �hit′(t,w, x, y)�M

picking out R := [hit′(t,w, x, y)]M : it is {〈t0,w0, a, c〉}. This is because the only per-
mutations that are sortally correct are the identity π() and π(23). Thus, Ξ := {π(23)}

is enough. For the permutation π(23) we have π(23)(〈t0,w0, a, c〉) = 〈t0,w0, c, a〉
which is not in the relation. The set {〈c, a, t0,w0〉} instead picks out the member
π(0213)[R], or if you will, the set [see′(y, x, t,w)]M . o

Example 70. Assume one sort e, and Me = {a, b, c}. Let

(5.79) R = {〈a, b, c〉, 〈a, c, b〉, 〈b, a, b〉, 〈b, b, a〉}

Then it turns out that Ξ = {π(01), π(02)}, because the permutation (12) transforms R
into itself. To fix �R�M to R, we use {〈a, b, c〉}. o

5.4 Concepts and LF

It seems that the introduction of concepts actually made matters worse. To get
meanings in a compositional way is not at all straightforward. When we compare
that with other approaches (Montague Grammar, or DRT based approaches such
as [Kamp and Reyle, 1993]) we ask ourselves whether it is really warranted to
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replace, say, DRSs by concepts. To see that one is virtually compelled to assume
concepts, look at what the algorithm of [Kamp and Reyle, 1993] factually does. It
translates the sentence (5.80) not directly, but via surface indexing.

(5.80) A big man sees a small cat.

A surface indexing is an assignment of indices to the free variables of the corre-
sponding DRS. Such indices were once assumed to be distributed by the parser
in terms of annotations to the words of the surface string. Thus the input to the
translation algorithm is (5.81) rather than (5.80). Note that the indices are also
written using typewriter fonts. This highlights the fact that they are really there,
and they also have to be written using some characters of the alphabet. Making
this absolutely clear is essential.

(5.81) A1 big1 man1 sees(1,7) a7 small7 cat7.

Based on the input the translation is unique. The problem with this notion of
syntax is that it uses material that is not in the actual surface string, namely indices.
The indices in turn determine the translation into a DRS, or for that matter, into
some predicate logical formula. It turns out that /man0/ has a different translation
than /man1/. Therefore, in order for the proposed algorithm to work, we must
assume that the grammar generates entries of the following form:

(5.82) 〈man0,man′(x0)〉, 〈man1,man′(x1)〉, 〈man2,man′(x2)〉, · · ·

It does not necessarily mean that the above entries are in the lexicon. For the
indices may be taken to be, say, decimal strings; in that case we need a base entry

(5.83) 〈man0,man′(x0)〉

and ten unary functions (to append a digit to the index) to successfully generate
all of these entries.

For a transitive verb we will have

(5.84)

〈sees(0,0), see′(x0, x0)〉, 〈sees(1,0), see′(x1, x0)〉,
〈sees(2,0), see′(x2, x0)〉, · · ·

〈sees(0,1), see′(x0, x1)〉, 〈sees(1,1), see′(x1, x1)〉,
〈sees(2,1), see′(x2, x1)〉, · · ·

〈sees(0,2), see′(x0, x2)〉, 〈sees(1,2), see′(x1, x2)〉,
〈sees(2,2), see′(x2, x2)〉, · · ·

· · · · · ·
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This is where our principles come in. Recall that we have explicitly ruled out
deletion. If there is no index on the surface, there has never been one in the be-
ginning. So, on the deep phonological level we also have just /man/ and /sees/.
Given that we allow compositionality at the deep phonological level and not the
surface it might be deemed that we only need to propose a regular relation that
deletes the indices. However, such an operation lacks any phonological motiva-
tion. In particular, since the symbols we use (smaller font size lowered numbers)
do not appear in ordinary language, their use is ruled out by the fact that none of
the symbols actually exists in the language itself. It is therefore excluded. Thus
we rather have the following signs

(5.85) 〈man,man′(x0)〉, 〈man,man′(x1)〉, 〈man,man′(x2)〉, · · ·

(5.86)

〈sees, see′(x0, x0)〉, 〈sees, see′(x1, x0)〉, 〈sees, see′(x2, x0)〉, · · ·
〈sees, see′(x0, x1)〉, 〈sees, see′(x1, x1)〉, 〈sees, see′(x2, x1)〉, · · ·
〈sees, see′(x0, x2)〉, 〈sees, see′(x1, x2)〉, 〈sees, see′(x2, x2)〉, · · ·
· · · · · · · · ·

This means that the name of the actual variable has become immaterial. This is
essentially what is meant by the Principle of Alphabetical Innocence. 1

Principle 6 (Alphabetical Innocence) Suppose a formula ϕ represents the mean-
ing of a natural language string. Let s be a substitution that is injective on the
variables of ϕ; and let s(ϕ) be the result of replacing every occurrence of xi by
s(xi). Then s(ϕ) is equivalent to ϕ.

It is possible to derive this from our postulates on meaning. However, it is worth
stating on its own because it allows us to decide in a simple way whether a seman-
tics is properly desyntactified. We shall apply the principle to the case at hand. It
means that none of the predicate logical formulae properly capture the meaning
of /man/ or /see/. For if the meaning of /man/ was expressed by, say, man′(x0),
then we should have

(5.87) man′(x0)↔ man′(x1)

1This name is due to Kit Fine, which he used during a lecture at UCLA.
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But this is false in the standard semantics for predicate logic. Notice that even
a formula such as

∨
i∈Nman′(xi) is no good, since it is not invariant under shift:

s : xi 7→ xi+1.

(5.88) 2
∨
i∈N

man′(xi)↔ s

∨
i∈N

man′(xi)

 =
∨

i∈N−{0}

man′(xi)

We can now see why an approach of the sort advocated in generative grammar
is no solution. Take, for example, the semantics of [Heim and Kratzer, 1998]. For
the purposes of presentation, I take a very simple example. The analysis of the
sentence /every man runs/ proceeds as follows. The LF associated with this
sentence is

(5.89) every man [8 [t8 runs]]

This is interpreted bottom up. Notice that man′ is the same as λx0.man′(x0), and
run′ the same as λx0.run′(x0):

(5.90)

λP.λQ.∀x0.P(x0)→ Q(x0) man′ λP.λx8.P x8 run′

λQ.man′(x0)→ Q(x0)
... run′(x8)

... λx8.run′(x8)
∀x0.man′(x0)→ run′(x0)

Essentially, the semantics does two things in sequence: first, the functions are
applied to some variables, in this case x8. The net effect of this is that the vari-
able is displayed. In generative grammar this is done because variables are the
interpretation of traces. This is the step of VP formation. The VP then has as its
interpretation an open formula. Next, a step of function abstraction is performed.
The element denoted by ‘8’ does nothing but to abstract the variable x8. Finally,
the quantifier, being a function, takes the abstracted form as its argument.

The success of this proposal lies in the possibility to display and (re)abstract
variables at each step of the derivation. This however demands sychronisation of
these two steps in semantics. For example, had we given the variable x7 in place
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of x8, the result would have been much different.

(5.91)

every man [8 [t7 runs]]

λP.λQ.∀x0.P(x0)→ Q(x0) man′ λP.λx8.P x7 run′

λQ.man′(x0)→ Q(x0)
... run′(x7)

... λx8.run′(x7)
∀x0.man′(x0)→ run′(x7)

For in the last step we have

(λQ.∀x0.man′(x0)→ Q(x0))(λx8.run′(x7))
= ∀x0.man′(x0)→ (λx8.run′(x7))(x0)
= ∀x0.man′(x0)→ run′(x7)

Thus only if the binder abstracts the same variable that the trace denotes do we
get the correct quantification. The problems evidently get worse if we have more
than one quantifier.

In light of Alphabetical Innocence we can now see why this project is bound
to fail. For the meaning of [t8 run] and [t7 run] must be the same. Thus, move-
ment has the side effect of displaying the variable. Now, quantifier movement was
originally done to obtain alternate scopings (it was used to this effect by Mon-
tague, too, though not under that name). The idea was that different readings are
the effect of a different structure beyond the level of VP.

Every man loves some woman.(5.92)
every man [8 [some woman [7 [t8 t7 loves]]]](5.93)
some woman [7 [every man [8 [t8 t7 loves]]]](5.94)

The underlying theme in generative grammar has been to make movement be the
central device by which different readings are obtained. We can see however that
this has nothing to do with movement, only with the order of quantification. For
once we have displayed the variables Alphabetic Innocence strikes and we must
be in a position to reabstract the correct variable. But how does the quantifier
remember which variable it is supposed to bind?

The generativist will point to the indices in the syntactic structure to answer
that question. However, we have also said that notational additions such as num-
bers cannot be part of the syntactic structure. Additionally, as we have just said,
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even if the indices are present in the syntax, they have no meaning in the semantics
and therefore the idea of exposing and then abstracting a variable cannot work. If
we therefore eliminate all numbers the material relevant for interpretation is only
this:

[every woman [some man [t t loves]]](5.95)
[some man [every woman [t t loves]]](5.96)

(I hasten to add that even this contains information that the surface string does
not show, for example, the number and places of occurrence of traces.) Now,
suppose we were to interpret the LF directly. Then we would have to make sure
we know (apart from the scopes of the quantifiers) that /every man/ is the subject
and /some woman/ is the object. Unfortunately, we lose precisely that information
once we decide to move the quantifier. We are lost.

The impasse has been created by thinking that the interpretation of the quan-
tified NP can and must somehow be delayed. What is apparent, however, is that
quite to the contrary the quantified NP must be interpreted immediately, upon in-
serting it into the structure. One way out of the dilemma (not the only one) is to
allow the subject to combine first with the verb. Thus, one way to account for
the difference in quantifier scope is to assume that the sentence has the following
structures.

some man [loves every woman](5.97)
[some man loves] every woman(5.98)

All that is required is to have two rules of quantification for a transitive verb. One
where one binds the subject, and the other where it binds the object.

This may be hard to digest, but it has been observed that in certain construc-
tions we actually do find the subject-verb constituent (see for example [Steedman,
1990]).

(5.99) Some man loves and the children adore every woman.

While generative grammar has insisted that the observed subject-verb constituent
is just a constituent containing the object as well, we have rejected such analyses
on two grounds. One is that syntax is not allowed to delete material. The other is
that the empty material is of no actual help in establishing the correct semantics.
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I should emphasize that in the literature on compositionality one rarely finds
people taking offense at the use of free variables. The reason is that the issue
of compositionality is often confused with offering just any sort of algorithm to
compute the right meanings. The Tarskian truth conditions, formulated in terms
of sets of assignments as values for propositions, is perfectly intelligible and rig-
orously formalized. It therefore passes that test. But is it appropriate? Is the set
of assignments sending x8 (as opposed to x7) to some man really the meaning of
/man/? Indeed, one of the few advocates of bound variables, Pauline Jacobson, is
actually more worried about how variables are properly administrated rather than
whether the Tarskian semantics is a proper choice. Similarly, the literature in Cat-
egorial Grammar is full of proposals where free variables are used. If I am right,
all these approaches are on the wrong track if they make use of variable names as
opposed to linking aspects.

5.5 The Structure of Dutch

In this section we shall look at arguments in favour of syntactic structure. The
previous section already gave a glimpse of the idea that sentence structure can be
motivated from purely semantic considerations. In the remainder of the chapter
we shall develop this idea further. Traditionally in linguistics, arguments in favour
of a particular syntactic structure were backed mostly by syntactic tests (substitu-
tion, movement and so on). These tests were surface tests. The tests themselves
are based on certain background assumptions. Let us take the example of trans-
formations.

It is easy to please John.(5.100)
To please John is easy.(5.101)

The correlation between (5.100) and (5.101) were taken to show that the sentence
(5.100) contains a constituent /to please John/. The argument was that we
can apply a movement transformation to (5.100) to get (5.101). As much as this
sounds like a reasonable proposal, there is no reason to assume that (5.101) is de-
rived from (5.100). Technically, we just have two different sentences. (Present day
transformational grammar actually does not derive (5.101) from (5.100).) What
makes this argument at all acceptable is the fact that there is not just a syntactic
correlation; the transformation would not have been proposed to derive (5.101)
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from (5.100) if it had not been for the fact that they mean (approximately) the
same thing. Indeed, the idea that gave rise to transformations in the first place
was that they can capture meaning correspondences on the basis of syntactic reg-
ularities. Even though Chomsky has changed the concept of transformation, the
idea that they should not interfere with meaning has been an underlying theme all
along. I give two examples that show how semantics is relevant.

There is a systematic syntactic correlation between a transitive sentence and
one where subject and object are exchanged (ignoring subject verb agreement):

John sees Mary.(5.102)
Mary sees John.(5.103)

This does not work if one of them is a pronoun for reasons of case; and in other
languages it might not work for case reasons. (Making the transformations suit-
ably complex is a way to deal with that problem, however.) Yet in English this
correlation is systematic. However, no one proposes a transformation that does
this. Similarly, the well known attachment paradoxes do not lead to the proposal
of a transformation, to derive, say, (5.106) from (5.105):

The police saw a man with a telescope.(5.104)
The police saw [a man with a telescope].(5.105)
The police [[saw a man] with a telescope].(5.106)

The fact that the interpretation of passive sentences is different from their active
counterparts has in fact in the 70s been used to argue against deriving passive from
active sentences: 2

Everyone in this class speaks two languages.(5.107)
Two languages are spoken by everyone in this class.(5.108)

While in (5.108) the universal quantifier has a narrow scope (however only pref-
erentially) (5.107) it has wide scope only.

2It is a subtle matter to see in what ways such meaning facts can at all bear on the question
whether one sentence is derived from another. Because interpretation happens only once in a
derivation. The argument would roughly be this. Suppose that meaning is established at the
beginning of the derivation (at deep structure). Now suppose that S ′ is (more precisely: must be)
derived from S through a transformation. Then the derivation that yields S ′ from its deep structure
also derives S on the way. Same deep structure, same meaning. (A dual argument can be used if
interpretation is established at LF.) Hence if the two sentences have different meaning they cannot
stem from the same deep structure.
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It should be clear that the same remarks apply to the use of the substitution
method to discover the tree structure of a sentence in a context free language. All
these tests assume in one way or another a semantic correlation. It is interesting
to note in this connection that the standard understanding of ‘strong generative
capacity’ was only the fact that a grammar could generate a language together
with the right kind of structure without reference to any semantics. But how do
we know that a language has that structure in the first place?

In may view, the answer lies in the fact that these languages are interpreted.
The structure turns out to be necessary in order to derive the interpreted language
not just its string part. We have met arguments of this sort before in Section 3.5.
In this section I shall present cases from the literature, some of which have been
the cause of intense debate. I shall show that the semantic theory developed in the
previous chapter allows us to say something quite nontrivial about the syntactic
structure of natural languages.

The first case is that of Dutch infinitives. Here is what they look like.

Ik zeg dat de kinderen zwemmen.(5.109)
I say that the childern swim.
Ik zeg dat Marie de kinderen leert zwemmen.(5.110)
I say that Mary teaches the children to swim.
Ik zeg dat Piet Marie de kinderen laat leren zwemmen.(5.111)
I say that Piet lets Mary teach the children to swim.
Ik zeg dat Jan Pier Marie de kinderen ziet laten leren(5.112)

zwemmen.

I say that Jan sees Piet let Mary teach the children to swim.

The order in which the elements appear in the Dutch sentences is quite different
from English. All the NPs come first, followed by the verbs. Within the verbs we
find first a finite verb and then infinitives. Second, the verbs line up in the same
way as in English and not in reverse order. Thus we do not have

∗Ik zeg dat Marie de kinderen zwemmen leert.(5.113)
∗Ik zeg dat Piet Marie de kinderen zwemmen leren laat.(5.114)
∗Ik zeg dat Jan Pier Marie de kinderen zwemmen leren(5.115)

laten zag.
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This word order is the order of German. But in Dutch this order is ungrammatical.
However the reason it is ungrammatical is only that the finite verb is at the end and
the nonraising verb at the beginning. Thus, to make any of the above grammatical,
we just have to flip the verbs at either end of the sequence of verbs. But even if
we were to do this, we would get grammatical sentences but their meaning would
be different from that of the German sentence in that same order. Thus we have to
keep in mind that the difference between Dutch and German runs deeper than the
surface order would make us believe. It will turn out that under our conception of
strong generative capacity Dutch is not strongly context free, but German is. How-
ever, Dutch still is weakly context free. Let us see how we can establish this. First
notice that the methods of Section 3.5 cannot be directly applied without inquir-
ing into the nature of semantics. The reason is Theorem (3.16). It seems plausible
that the construction of Dutch is both unambiguous and monophone. Hence the
reason for the impossibility cannot just be combinatorial. It must have to do with
the way semantics works. We shall show below what that extra property is. Let
us mention here that the claim that Dutch is not weakly context free is originally
due to [Huybregts, 1984], which came at a time when Gazdar and Pullum were
revisiting arguments by Chomsky and others concerning the trans context freeness
of languages. This culminated in the book [Gazdar et al., 1985], which presented
an elaborate unification based context free grammar mechanism for natural lan-
guage. This book provoked the idea that human languages are universally context
free, and this is why there was renewed interest in the question. Huybregts was
aware of the semantic flavour of his argument, and it took [Shieber, 1985] to get
the point home that some languages are non context free after all. What Shieber
showed was however that Swiss German (more exactly Züritüütsch, the dialect
spoken in Zurich) was not even weakly context free. Thus, the argumentation
remained strictly confined to form (be it syntax or morphology).

To be able to actually prove some facts about Dutch we are going to simplify
and formalize matters somewhat. The simplification consists in ignoring tense,
using only singulars, and no finite forms. It is a trivial matter to extend the ac-
counts below to the less simplified case. I trust that the reader has knowledge of
a few facts concerning CF languages (see [Harrison, 1978] or [Kracht, 2003]).
These are that if L ⊆ A∗ is a CF string language, and R ⊆ A∗ a regular string
language, then L ∩ R also is CF. Another is that if ϕ : A→ B+ is an arbitrary map
and L ⊆ A∗ is CF then ϕ[L] also is CF. (Notice that ϕ(a) must be nonempty for
all a ∈ A!) These techniques are used to infer that the fragment below ‘scales’
up to the full language, that is to say, can be used to infer that Dutch as a whole,



236 5. Examples

and not just this selected fragment, is not CF. I shall not perform that argument
since it is essentially requires syntactic arguments (and more empirical facts about
Dutch), and we are more interested in the issue of compositionality. But to make
the sentences more realistic would be to obscure the problems that occur at a more
fundamental level.

I shall in fact present various different formalisations, all leading basically to
the same conclusion but different from each other in subtle but crucial respects.

I shall use predicate logic with constants for names and basic predicates. There
are two sorts: individuals, and events. To include events is to make the formal
semantic account less trivial. It would similarly be possible to use time points or
intervals, but events are actually easier to use. The arities of the verbs is different
according to their meaning. The base verbs are unary, and the raising verbs take
two arguments of each sort. For example, let′(e0, e1, x0, x1) means ‘e0 is an event
of letting, whose subject is x0, who is granting x1 to perform e1’. Since x1 is then
also the subject of the embedded event e1 (x1 is said to ‘perform e1’) there is some
nontrivial argument identification going on under merge. We shall also assume
to have argument roles to further decompose the meanings of the verbs. Thus we
actually regard let′(e0, e1, x0, x1) as an abbreviation:

(5.116) let′(e0, e1, x0, x1) :=
let′(e0) ∧ thm′(e0, e1) ∧ agt′(e0, x0) ∧ ben′(e0, x1) ∧ agt′(e1, x1)

The reason for this assumption will soon become apparent.

Thus, in addition to the standard vocabulary, the predicate logic will contain:
constants of type o (‘object’) for each name, constants of type e for each verb,
constants of type 〈e, o〉 and 〈e, e〉 for argument roles, and identity.

Example 71. We now present our first language. Our basic vocabulary is as
follows:

(5.117)

〈Piet, �x0 = p′�〉 〈zwemmen, �swim′(e0, x0)�〉
〈Jan, �x0 = j′�〉 〈let, �let′(e0, e1, x0, x1)�〉
〈Marie, �x0 = m′�〉 〈leren, �teach′(e0, e1, x0, x1)�〉
〈het kind, �x0 = c′�〉 〈zien, �see′(e0, e1, x0, x1)�〉

This is to say that the exponents are considered minimal units (if you will, letters
of an alphabet), and their meanings are as given. For each of them there is a
constant f~x with exponent ~x, and it is interpreted as given above.
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We assume that the only constituents are of the form, where m = n or m = n+1:

(5.118) NP0 NP1 · · · NPn−1 V0 V1 · · · Vm−1

The meaning of such an expression is the one that it ordinarily has in Dutch. If
n = m it is a concept of type 〈e, o〉, involving an event variable and an object
variable. If n = m + 1 it is a concept of type 〈e, o, o〉.

First we present a grammar of Dutch that generates this language. Constituents
are either strings or pairs of strings. NPs by themselves as well as Vs are strings.
All other exponents are analysed as pairs 〈~x, ~y〉 where ~x is a sequence of NPs and
~y a sequence of Vs. Thus they have the form (5.118). We shall use two functions:
one integrates a verb, and the second an NP.

We start with the base case. Let c?d be defined as follows. (a) It is partial and
requires that c is a 1-concept of type 〈o〉 and d a 2-concept of type 〈e, o〉, that is,
it is a function of an object and an event; (b) the result is obtained by identifying
the object of c with that of d. Since there is only one of each sort, we do not even
need a linking aspect for this to be well-defined.

I(c)(〈~x, c〉, 〈~y, d〉) :=


〈〈~x, ~y〉, c? d〉 if ~x is an NP and ~y a nonraising

verb.
undefined else.

(5.119)

Now we deal with the recursion in the construction.

Say that a pair 〈~x,~z〉 is of Type A if ~x is a sequence of n NPs and ~z a sequence
of n Vs, and n > 0.

(5.120) I(v)(〈〈~x,~z〉, c〉, 〈~y, d〉)

:=

〈〈~x,~z ~y〉, c?′ d〉 if 〈~x,~z〉 is of Type A and ~z a raising verb.
undefined else.

Here, c ?′ d is defined if and only if c is of type 〈e, o〉 and d of type 〈e, e, o, o〉.
It identifies the event variable of c with the second event variable of d, and the
object variable of cwith the second object variable of d; then it quantifies the event
variable away. To do this, we need to have a linking aspect that defines the notions
‘first’ and ‘second’ for concepts denoted by raising verbs in the appropriate way.
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This can be done by simply listing the critical sets for each of the raising verbs.
The other strategy is semantic. We choose a linking aspect for thm′ (since this is
of type 〈e, e〉). This allows to distinguish first and second event variable. For the
object variables we actually take advantage of the thematic predicates agt′ (giving
us the first variable) and ben′ (giving us the second).

Thus we get the following meaning of (English) ‘let Mary swim’:

(5.121) �let′(e0, e1, x0, x1)�?′ �swim′(e0, x0) ∧ x0 = p′�

= �∃e1.let′(e0, e1, x0, x1) ∧ swim′(e1, x1) ∧ x0 = p′�

The last function needed is the one that incorporates the NP. 〈~x,~z〉 is of Type B if
it is a sequence of n NPs followed by n + 1 Vs. Define a function ?′′ as follows.
It is defined if and only if c is of type 〈e, o, o〉 and d of type 〈o〉. It identifies the
object of d with the second object of c and the quantifies that away. Notice that we
can define first and second object using the thematic predicate agt′ (picking out
the ‘first’ argument). This will be the meaning of (English) ‘Piet let Mary swim’:

(5.122) �∃e1.let′(e0, e1, x0, x1) ∧ swim′(e0, x0) ∧ x0 = m′�?′′ �x0 = p′�

= �∃x1.∃e1.let′(e0, e1, x0, x1) ∧ swim′(e1, x1) ∧ x0 = p′ ∧ x1 = m′�

With this definition we put

(5.123) I(n)(〈〈~x,~z〉, c〉, 〈~y, d〉)

:=

〈〈~y ~x,~z〉, c?′′ d〉 if 〈~x,~z〉 is of Type B and ~z an NP.
undefined else.

Let us now see why a context free grammar for this language cannot be given. Let
us take a look at the sentence we just derived:

(5.124) Jan Marie Piet laten leren zwemmen

In line with the assumptions that strings must contain the same number of NPs
and Vs or at most one more V than NP, we can only propose the following parts
(in addition to the words themselves):

(5.125)

Jan Marie Piet laten leren zwemmen,

Marie Piet laten leren zwemmen,

Marie Piet laten leren,

Piet laten leren,

Piet laten
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Figure 5.2: A Derivation

ι(n fJanvn fMarievc fPiet fzemmen fleren flaten)
= I(n)(〈Jan, �x0 = j′�〉, I(v)(I(n)(〈Marie, �x0 = m′�〉, I(v)(I(c)(〈Piet, �x0 = p′�〉,

〈zwemmen, �swim′(e0, x0)�〉), 〈leren, �teach′(e0, e1, x0, x1)�〉))
〈laten, �let′(e0, e1, x0, x1)�〉))

= I(n)(〈Jan, �x0 = j′�〉, I(v)(I(n)(〈Marie, �x0 = m′�〉, I(v)(〈〈Piet, zwemmen〉,
�swim′(e0, x0) ∧ x0 = p′�〉, 〈leren, �teach′(e0, e1, x0, x1)�〉))
〈laten, �let′(e0, e1, x0, x1)�〉))

= I(n)(〈Jan, �x0 = j′�〉, I(v)(I(n)(〈Marie, �x0 = m′�〉, 〈〈Piet, leren zwemmen〉,
�∃e1.swim′(e1, x1) ∧ x1 = p′ ∧ teach′(e0, e1, x0, x1)�〉,
〈laten, �let′(e0, e1, x0, x1)�〉)))

= I(n)(〈Jan, �x0 = j′�〉, I(v)(〈〈Marie Piet, leren zwemmen〉,
�∃x1.∃e1.swim′(e1, x1) ∧ teach′(e0, e1, x0, x1) ∧ x0 = m′ ∧ x1 = p′�〉,
〈laten, �let′(e0, e1, x0, x1)�〉)))

= I(n)(〈Jan, �x0 = j′�〉, I(v)(〈〈Marie Piet, leren zwemmen〉,
�∃e1.swim′(e1, p′) ∧ teach′(e0, e1, x0, p′) ∧ x0 = m′�〉,
〈laten, �let′(e0, e1, x0, x1)�〉)))

= I(n)(〈Jan, �x0 = j′�〉, 〈〈Marie Piet, laten leren zwemmen〉,
�∃e0.∃e1.swim′(e1, p′) ∧ teach′(e0, e1, x0, p′) ∧ x0 = m′ ∧ let′(e2, e0, x2, x0)�〉)))

= 〈〈Jan Marie Piet, laten leren zwemmen〉,
�∃x0.∃e1.swim′(e1, p′) ∧ teach′(e0, e1, x0, p′) ∧ x0 = m′ ∧ let′(e2, e0, x2, x0)
∧x2 = j′�〉)))

= 〈〈Jan Marie Piet, laten leren zwemmen〉,
�∃e0.∃e1.swim′(e1, p′) ∧ teach′(e0, e1,m′, p′) ∧ let′(e2, e0, x2,m′) ∧ x2 = j′�〉)))

In this case we are done: only the first two strings contain a raising verb. It is easy
to see that this argument works in the general case, too. o

This example worked because we had fixed the language to be in a certain
way. Whether or not it is that way, is an empirical issue. Linguists have had
serious difficulties assessing the nature of the constituents in the sentences above
(from a syntactic viewpoint). If we make the choice as above, there is not much
chance for a CFG. Yet, one may complain that we have been biased: coordination
facts indicate, for example, that the verb sequences can be constituents, too (see
[Groenink, 1997]), and we have just excluded them. Therefore, we shall now ease
the constituency of Dutch somewhat by admitting more subconstituents. There is
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another point where we might have made an arbitrary decision. The meaning of
a sentence or complex expression is a function of the meanings of its parts. We
have admitted this function to do only the following:

À identify some columns (= add an identity of the form xi = x j), and

Á cylindrify (= apply an existential quantifier ∃xi).

There does not seem to be much room for choices when to apply À. After all, iden-
tifying two variables is to say something significant. On the other hand, applying
Á seems to be negotiable from a meaning point of view. The difference between
various choices seems to be rather of technical nature. When a variable has been
quantified away it is not available any more for identification. On the other hand,
the more free variables we have the more difficult the job of identifying the right
one gets.

Example 72. We shall extend the set of meaningful constituents to include all
strings of NPs followed by Vs which are substrings of sentences. This means,
effectively, that all sequences of names and verbs are licit which contain at most
one nonraising V, and where the NPs precede the Vs and the raising Vs precede
the nonraising Vs. This, by the way, is a regular language. As interpretation
we choose the one induced by these strings as parts of some sentence. In each
combination of a V ~x and a V ~y following it, we shall identify the theme of ~x with
the event nontheme of ~y; we shall also identify the benefactor of ~x with the agent
of ~y. No existential quantification. This is a variant of ?′′ above. With respect to
the NPs, matters are different. Consider the string /Jan Piet leren/. Is Jan the
one who teaches? It depends. For the string could be embedded in the following
different sentences:

Jan Piet leren zwemmen(5.126)
Marie Jan Piet leren laten zwemmen(5.127)

In (5.126), Jan is doing the teaching, and Piet the swimming. In (5.127), Jan is not
doing the teaching, it is Marie. However, if Jan is doing the teaching, Piet is the
one who is being taught. (This is because they are adjacent, and in Dutch the next
NP is the beneficiary of the action carried out by the agent.) Thus, we assume that
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our language contains the following signs:

〈Jan Piet leren, �teach′(e0, e1, x0, x1) ∧ x2 = j′ ∧ x3 = p′�〉(5.128)
〈Jan Piet leren, �teach′(e0, e1, x0, x1) ∧ x0 = j′ ∧ x1 = p′�〉(5.129)

The more NPs we have in our string, the more signs we seem to get in this way.
However, there are some more restrictions. The verb following the rightmost NP
is certainly the highest. So in the following example we cannot make Piet the
beneficiary of the teaching. Still, three signs remain:

〈Marie Jan Piet leren,(5.130)
�teach′(e0, e1, x0, x1) ∧ x2 = m′ ∧ x3 = j′ ∧ x4 = p′�〉

〈Marie Jan Piet leren,(5.131)
�teach′(e0, e1, x0, x1) ∧ x0 = m′ ∧ x1 = j′ ∧ x2 = p′�〉

〈Marie Jan Piet leren,

�teach′(e0, e1, x0, x1) ∧ x1 = m′ ∧ x2 = j′ ∧ x3 = p′�〉

To show this, look at the following sentences containing them.

Marie Jan Piet leren laten leren laten zwemmen(5.132)
Marie Jan Piet leren laten leren zwemmen(5.133)
Marie Jan Piet leren laten zwemmen(5.134)

And so, with n NPs and 1 V we have n choices in general. Notice, however, that if
the last V is nonraising, the number of different readings is just 1. This is because
the subject of the nonraising verb must be the last NP, and the subject of the verb
before it the second last NP, and so on.

The only exception to this is when the string does not contain an NP. This
case deserves some attention. In the case of raising verbs we need to take care
of two event variables and two object variables. Each verb clearly identifies an
order between its variables. Let the first verb introduce e0 and e1 and the second
e2 and e3. Then we have to identify e1 and e2; after that we can quantify away
e1/e2. The complex concept has only two free event variables. On the other hand,
we do not really need to quantify any variable. The concept establishes an order
between the three variables (e0, e1 and e3). For example, in /leren laten/ we
have to combine �let′(e0, e1, x0, x1)� with �teach′(e0, e1, x0, x1)�. Let us rename
the variables in the second formula and return to ordinary predicates:

(5.135) let′(e0, e1, x0, x1) ∧ teach′(e2, e3, x2, x3)
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The result we want is (up to renaming)

(5.136) let′(e0, e1, x0, x1) ∧ teach′(e1, e3, x1, x3)

Furthermore, given that we can identify a linear order on the event variables it
is also possible to define a linear order on the object variables. This is because
we can identify via the thematic roles which of the variables is actually the agent
(beneficiary) of which event variable. In this way the newly formed concept can
be effectively merged with any new concept. The effect is that the constituency in
the verb cluster is completely free.

Let us see how we can derive the meanings of the sentences using these signs.
In view of the last remark it appears that there is no other choice but to start
by assembling the entire V cluster. For suppose we did not do that. Then we
build signs of the form NP sequence followed by V sequence. These are multiply
ambiguous, yet only one of the readings is the one needed in the sentence. It
is just that as long as we do not have the last V, we do not know which one we
should choose. Now, if we do not make a choice then we simply postpone the
choice. However, if we do that we discard information about the relative order of
the NPs (since this is not recorded in the semantics, only in the string). Thus the
requirement we get is this: the NP cluster is right branching, while the V cluster
has any structure we please. The easiest structure (but not the only one) is a right
branching structure:

[Jan [Piet [Marie [het kind [zien [laten [leren(5.137)
zwemmen]]]]]]]

Once again, however, Dutch is not context free. To see this one must appeal to
Ogden’s Lemma. Instead, I shall just point out that since the verb clusters each
form a constituent, there must be infinitely many categories (one for each number
of Vs). o

I conclude this discussion with the following remarks. The structure is in basic
agreement with CCG. It has indeed been proposed that the structure of Dutch
involves a verbal cluster. [Groenink, 1997] has also argued from coordination
data that the verbal cluster is more flexible in Dutch and German.
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5.6 Arguing for Syntactic Structure

The previous section has shown that Dutch (or at least some ‘purified’ version
thereof) is indeed not weakly context free. The book [Gazdar et al., 1985] seems
to have shown, however, that at least English is CF. Many syntactic theories seem
to agree on this (see [Rogers, 1994] and [Kracht, 1995] for a demonstration that
generative grammar of the 80s was saying precisely this). In this section we shall
look at some constructions of English that indicate that also English is not CF.

John, Mary and Phil sang, danced, and played drums,(5.138)
respectively.

This sentences is to be interpreted as follows: it is a conjunction of “John sang”,
“Mary danced” and “Phil played the drums”. Without the word /respectively/

it could be interpreted as saying that John, Mary and Phil each sang, danced and
played drums.

(5.139) John, Mary and Phil sang, danced, and played drums.

The interpretation of (5.139) requires only a basic sentential structure: we have
a plural NP /John, Mary and Phil/ and a VP /sang, danced and played

drums/. Each has a coordinated structure. However, (5.138) is much different. To
make the argumentation self-contained we consider the following data.

Example 73. The language contains the following signs (compare the grammars
P1 to P3 of Section 3.2). We choose a domain U of individuals. Intransitive verbs
and nouns denote sets of individuals. There are n intransitive verbs vi, i < n, and
2n nouns. Verb forms are in the past, so that number distinctions do not exist. For
every combination of vi (or their negation) we assume that there is exactly one
name n j such that n j satisfies that combination. The legitimate strings are defined
by S (where V denotes any verb, N any name):

(5.140)
Y :=(N · )+and · N
Z :=(V · )+and · V
S :=Y ∪ Z ∪ N ∪ V ∪ Y · · Z · (, respectively)? · .

Additionally we assume that if /respectively/ is present, the number of names
and the number of verbs is the same. This defines a context free language (we
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leave the proof as an exercise). What we shall show here however is that no
compositional CFG exists.

The interpretations are as following. (a) Strings from Y denote the sets of
all denotations of occurring names, (b) strings from Z denote the intersection of
all the sets denoted by the individual members; (c) strings from YZ denote the
intersection of what Y denotes and what Z denotes; (d) finally, let ~yi, i < n + 1 be
some names and ~zi, i < n + 1, some verbs. Then the denotation of

(5.141) ~y0 · · ·~yn−1 and ~z0 · · ·~zn−1 and , respectively.

is the intersection of the denotations of /~xi ~yi./ for all i < n + 1.

Let us see what happens if we attempt to interpret (5.138) using the same
structure as for (5.139). In that case the following happens. The phrase /John,

Mary and Phil/ is synonymous with /John, Phil and Mary/ and also /Mary,

John and Phil/ and so on. However, this synonymy does not exist between
(5.138) and (5.142) and (5.143).

John, Phil and Mary sang, danced, and played drums,(5.142)
respectively.

John, Phil and Mary sang, danced, and played drums,(5.143)
respectively.

It follows that we cannot assume that /John, Mary and Phil/ is a constituent
in (5.138). Similarly we argue that neither /John, Mary/ nor /John, Phil/ nor
/Mary and Phil/ can be a constituent. And we can do the same with the verbs.
The only constituents that we can form without running a risk of conflation are
/John sang/, /Mary danced/ and /Phil played drums/.

It follows that in a construction involving /respectively/ we are forced to
assume what is known as crossover (crossing) dependencies.

(5.144) NP0NP1 · · ·NPn−1VP0NP1 · · · and VPn−1 respectively.

We can assume that we get these structures as follows. One method is to assume
that exponents are pairs of strings 〈~x, ~u〉 such that ~x is an NP and ~v an agreeing
VP. Let Case A be the following property.

(5.145) Case A : ~v does not end with /respectively/



5.6. Arguing for Syntactic Structure 245

Furthermore, let ? be the “obvious” conjunction of concepts. Assuming that NPs
and VPs denote sets of individuals, ? is intersection of its minimal member, ac-
companied by existential closure (thus we get a 0-ary concept, also known as a
truth value). For two 0-ary concepts, ? is set intersection. (If that presents diffi-
culties, you may replace concepts with standard relations.)

(5.146) r(〈〈~x, ~u〉,m〉, 〈〈~y,~v〉, n〉)

:=

〈〈~xa a~y, ~ua and a~v, respectively.〉,m ? n〉 Case A
〈〈~xa a~y, ~ua ~v〉,m ? n〉 else

This makes NPi and VPi in (5.144) into a constituent, which we form as follows.

(5.147) s(〈~x,m〉, 〈~u, n〉) :=

〈〈~x, ~u〉,C0.m ? n〉 if ~x is an NP and ~u a VP
undefined else

Another is to assume that the NP-VP constituents are not even formed. In that
case we use a modified version of r:

(5.148)

r∗(〈〈~x,m0〉, 〈~u,m1〉, 〈~y, n0〉, 〈~v, n1〉)

:=


〈〈~xa a~y, ~ua and a~v, respectively.〉,

C0.(m0 ? m1) ? C0.(n0 ? n0)〉 Case A
undefined else

r∗∗(〈〈~x,m0〉, 〈〈~u,m1〉, 〈~y,~v〉, n0〉) :=〈〈~xa a~y, ~ua a~v〉,C0.(m0 ? m1) ? n0〉 not Case A
undefined else

The first variant is more elegant. o

Intermission 3. The grammar and interpretation of sequences of NPs is inter-
esting in its own right.

John, Paul and Mary(5.149)
John, Paul or Mary(5.150)

Assume that coordination requires the presence of either /and/ or /or/. Assume
further that meanings are concepts. Finally, the interpretation of a name is as-
sumed to be a singleton set. There are then two choices for us. We can either
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interpret the coordinated NP as a relation between the named people, or as the set
of all of them. Either of them satisfy the basic laws of conjunction and disjunction
(commutativity, associativity and idempotence). It is clear that the overall struc-
ture of a conjunction is not unique, even with all this being given. It is trivial to
observe that we could in principle design ternary rules, for example. Or we may
use wrapping. But we should not dismiss any of these options either, despite the
fact that they are more complicated than the obvious right regular grammar.

In a compositional grammar this has noteworthy consequences. If one wishes
to make /John and Mary/ a subconstituent of a sentence, then this can only be
done if either /Mary and John/ cannot be substituted for it or else the resulting
sentence has the same meaning. If you choose to have categories, one can of
course discriminate a number of different coordinations, for example, by giving
/John and Mary/ a different category than /Mary and John/. Apart from being
rather unsatisfactory, the Principle of the Equality of Indiscernibles (see Page 56)
rules this out as well. (It does not under certain circumstances, however. One is
agreement in languages where a conjunct controls the same agreement as its last
member. Latin is such a case. In such circumstances, since /John and Mary/

controls feminine agreement and /Mary and John/ masculine agreement, they
have different category.) o

Notice that /respectively/ has more syntactic possibilities than given in this
example. The preceding argument assumes that we are forming a compositional
grammar. Alternatively, and interestingly, even if one does not assume composi-
tionality, the result follows. This has to do with the fact that we have restricted the
semantic functions.

English provides yet another construction that is quite problematic in phrase
structure terms, namely gapping. This phenomenon is illustrated in the following
sentence.

(5.151) John gave Mary a kiss and George Susan a flower.

We understand this as the conjunction of two sentences:

John gave Mary a kiss.(5.152)
George gave Susan a flower.(5.153)

What is problematic about this construction is that it forces us to assume that we
have a discontinuous constituent /John Mary a flower/. Let us see why this
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is so. Like the previous example, we assume that the meaning of sentences is a
truth value. (That assumption can of course be modified, though the argument
would not work as easily.) Suppose, we first fully compose the sentence (5.152).
This will have as its meaning, say, a truth value. In this case it is impossible to
interpolate the meaning of the verb so that it can be used to derive the meaning of
(5.153). For notice that rather than having the full (5.153) we are actually missing
the verb. It follows that (5.151) does not contain the constituent (5.152)!

Instead we are led to assume that (5.151) contains the constituents /John

Mary a kiss/ and /George Susan a flower/. More precisely, it contains the
pairs 〈John, Mary a kiss〉 and 〈George, Susan a flower〉. The verb /gave/

is inserted into both of them. Since gapping is like conjunction in allowing any
number of parts, we propose a solution similar to the one offered for respectively.

Example 74. Here is a sketch of gapping. The constituents of the form /George

Susan a flower/ are seen as pairs 〈George, Susan a flower〉. These pairs
are coordinated via the mode c. After all of them are coordinated, the verb is
linked with the conjunctive meaning and inserted between the first subject and the
first object.

I(c)(〈〈~x, ~y〉,m〉, 〈〈~u,~v〉, n〉) := 〈〈~x, ~ya~ua~v,~v,m ∪ n〉(5.154)

I(i)(〈〈~x, ~y〉,m〉, 〈~v, n〉) := 〈~xa~va~y,m ?3 n〉(5.155)

This accounts for this type of gapping. o

It may seem to be disappointing that the syntactic structures are so irregular.
Syntactic theories sometimes give the impression that syntactic structure (at least
of English) is a matter of a few universal principles. This seems to be an artefact
of the data that the theories wish to explain. No one theory succeeds in giving us a
satisfactory account of all known phenomena and typically they tend to do well in
a few areas and badly in others. I should also point out that in the literature there
are no essentially different solutions to the problems shown above. Respectively-
constructions have been used in [Kac et al., 1987] to show that English is not
context free. Where the latter authors use the distribution of pronouns to show
that the string language of English is not context free, here we have used of the
meanings to derive the same conclusion.

Exercise 66. Write a CFG to generate S from Example 73.





Chapter 6

Conclusion

In this book I have tried to build a theory that lets us ask (and answer) questions
concerning the structure of languages. Some of the results plainly validate some
of our intuitions; others have been surprising (at least to me). The road has been
fairly difficult not the least because exact results are difficult to obtain, and because
new techniques had to be found.

We are now at the end of our journey. Many questions have been answered,
and many new ones arose. I shall summarise this work with a few remarks.

P There are tangible results that have been established. For example, it has
been established that it is not possible to reduce all ambiguous languages to
unambiguous ones (at least if we want to keep the syntactic complexity). Or
that concept based predicate logic with infinitely many variables does not
have a compositional context free grammar. These results seem to be pretty
robust. They cannot be made to disappear if minor changes are made to the
languages.

P The study of interpreted languages really has just begun. We need to under-
stand better in what ways the shift from string languages to interpreted lan-
guages changes our outlook on various issues. Mathematically, new combi-
natorical methods need to be developed. They might help us to understand
better in what ways semantics determines syntactic structure.

P On the way I have tried to make progress also concerning the overall struc-
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ture of language. For example, notions such mophological transparency,
realphabetisation, and abstraction were attempts at understanding why nat-
ural language apparently has more structure (in the sense of architecture in
terms of levels or strata) than the present frameworks (and others) make
believe.

P Negative results are typically hard to obtain. This contrasts with a lot of
claims in the literature that suggest that certain phenomena force us to adopt
or abandon a specific framework because of compositionality. Most of these
results either follow because quite specific assumptions are made at the out-
set or because the authors simply are not imaginative enough about coun-
terstrategies. For example, I have not been able to show conclusively that
there is no TAG for boolean logic if we allow the semantic functions to be
partial, though it seems certain that this claim is true.

P The results established here make use of some additional hypotheses about
language some of which are indispensable such as the hypothesis that rules
do not destroy any structure. Others might be more controversial, for exam-
ple that syntactic structures are sequences of strings and nothing else.

P The literature in formal semantics operates with high powered tools. Often
however the justification in using them is only that they provide a func-
tioning algorithm without clarifying whether or not that algorithm deserves
the label ‘compositional’. Our approach has been not to rely on particu-
lar mechanisms but rather to clarify identity criteria of meaning (such as
alphabetic innocence) and see how much follows from them.



Appendix A

Useful Mathematical Concepts and
Notation

For a set S we write card S for the cardinality of S (which is to say the number
of elements of S ). A number n is the set of all numbers i (including 0) such that
i < n. Thus, 3 = {0, 1, 2}. (The interested reader may check that therefore 0 = ∅,
1 = {0} = {∅}, 2 = {∅, {∅}}, and 3 = {∅, {∅}, {∅, {∅}}}.) Thus, i < n and i ∈ n are
synonymous. Writing f : k → n means that f is a function defined on all numbers
< k, with values < n.

We shall write 〈x0, x1, · · · , xn−1〉 for the tuple of length n consisting of x0, x1,
etc., in that order. We make no commitment about the real nature of tuples; you
may think of them as functions from the set n to the domain. (In that case they are
the same as strings.) The length of ~x := 〈x0, · · · , xn−1〉 is denoted by |~x|. We write
x0 in place of 〈x0〉 even though they are technically distinct. Tuple formation is not
associative. So, 〈x0, 〈x1, x2〉〉 is not the same as 〈〈x0, x1〉, x2〉. If ~x = 〈x0, · · · , xm−1〉

and ~y = 〈y0, · · · , yn−1〉 are tuples, the concatenation is denoted as follows.

(A.1) ~x · ~y := 〈x0, · · · , xm−1, y0, · · · , yn−1〉

Repetitions are not eliminated, so this is a sequence of length m + n.

Given two sets, A and B, A × B is the set of pairs 〈a, b〉 such that a ∈ A, b ∈ B.
Given an indexed family Ai, i ∈ I, of sets, Xi∈IAi is the set of functions from I to
the union of the Ai such that f (i) ∈ Ai for all i ∈ I. (Thus, technically, A0 × A2

is not the same as Xi∈2Ai, though the difference hardly matters.) Let A and B be
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sets. A relation from A to B is a subset of A × B. We write x R y in place of
〈x, y〉 ∈ R. A partial function from A to B is a relation from A to B such that
x R y and x R z implies y = z. A function from A to B is a partial function from
A to B where for every x ∈ A there is a y ∈ B such that x R y. We write f : A→ B
to say that f is a function from A to B and f : A ↪→ B to say that f is a partial
function from A to B. If f : A → B and g : B→ C then g ◦ f : A → C is defined
by (g ◦ f )(x) := g( f (x)). We write dom( f ) for the set of all a ∈ A such that f is
defined on a. If f : An ↪→ B and S ⊆ A then we write f � S for the following
function

(A.2) ( f � S )(~x) :=

 f (~x) if ~x ∈ S n and f (~x is defined
undefined else

A somewhat simpler definition is

(A.3) f � S := f ∩ S n × A

If X ⊆ A is a set we write f [X] := { f (a) : a ∈ X, a ∈ dom( f )}. This is the
direct image of X under f . In particular, rng( f ) := f [A] is the range of f . f is
surjective or onto if rng( f ) = B. f is injective or into if for all x, y: if f (x) and
f (y) are defined then either x = y or f (x) , f (y). A permutation is a surjective
function f : n→ n. It is easily seen that if f is surjective it is also injective. There
are n! := n(n − 1)(n − 2) · · · 21 permutations of an n element set.

When f : A × B → C is a function, we say that it is independent of A if for
all x, x′ ∈ A and y ∈ B, f (x, y) = f (x′, y). Pick x ∈ A and define f̂ : B → C by
f̂ (y) := f (x, y). If f is independent of A, f̂ is indepent of the choice of x. For
partial functions there are some subtleties. We say that f is weakly independent
of A if for all x, x′ ∈ A and y ∈ B, if f (x, y) and f (x′, y) exist, they are equal. f
is strongly independent of A if for all x, x′ ∈ A and y ∈ B, if f (x, y) exists then
so does f (x′, y) and they are equal. By default, for partial functions we say that
it is independent of A if it is weakly independent. Independence of B is defined
similarly. Similarly, if f has several arguments, it may be weakly of strongly
independent of any of them.

If f : A → C and g : A → D are functions, then f × g : x 7→ 〈 f (x), g(y)〉 is
a function from A to C × D. Every function from A to C × D can be decomposed
into two functions, in the following way. Let πC : 〈x, y〉 7→ x and π2 : 〈x, y〉 7→ y
be the projections from C ×D to C and D, respectively. Then we have the general
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equation

(A.4) f = (πc ◦ f ) × (πD ◦ f )

and so the functions πC ◦ f and πD ◦ f are the decomposition. This picture changes
when we turn to partial functions. From a pair f : A ↪→ C and g : A ↪→ D we can
form the partial function

(A.5) ( f × g)(x) :=

〈 f (x), g(x)〉 if both f (x) and g(x) are defined
undefined else

Unfortunately, f × g does not allow to recover f and g uniquely. The problem is
this: we have

(A.6) dom( f × g) = dom( f ) ∩ dom(g)

However, from an intersection it is not easy to recover the individual sets. If
A = {0}, f = {〈0, c〉} and g = ∅ (the empty partial function) then f × g = ∅.
However, also ∅ × ∅ = ∅.

If n is a number a bijective function f : n → n is called a permutation of n.
Πn denotes the set of all permutations of n. Permutations are most conveniently
described using the following notation. Pick a number i < n. The cycle of i is the
largest sequence of the form i, f (i), f ( f (i)), · · · in which no member is repeated.
The set {i, f (i), f 2(i), · · · } is also called the orbit of i under f . We write this cycle
in the form (i f (i) f ( f (i)) · · · f k−1(i)). An example is (2567), which says that f maps
2 to 5, 5 to 6, 6 to 7 and 7 to 2. The order of the cycle is k. It is not hard to see
that f k(i) = i. For if f k(i) = f m(i) for some m < k then also f k+1(i) = f m+1(i)
(since f is a function), and f k−1(i) = f m−1(i) (since f is bijective, so its inverse
is a function, too). It follows that f k−m(i) = i, and since m < k, we must have
m = 0. (Else we have found a number j > 0 smaller than k such that f j(i) = i.)
Cycles can be cyclically rotated: for example, (2567) = (5672). It is easy to
see that any two distinct orbist are disjoint. A permutation thus partitions the
set n into orbits, and defines a unique cycle on each of the orbits. In writing
down permutations, cycles of length 1 are omitted. Cycles permute and can be
cyclically rotated. Thus we write (2567)(3)(1)(04) and (2567)(04), (5672)(40)(3),
(04)(2567) interchangeably. The permutation that changes nothing is also denoted
by ().

A group is a structure G = 〈G, 1,−1 , ·〉, where 1 ∈ G, −1 : G → G and
· : G ×G → G are such that for all x, y, z ∈ G:
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1. 1 · x = x · 1 = x.

2. x−1 · x = x · x−1 = 1.

3. x · (y · z) = (x · y) · z.

We say that x−1 is the inverse of x, and that x · y is the product of x and y. The
set Πn forms a group. The product is defined by ( f · g)(x) := f (g(x)). The unit
is the permutation (). The inverse is obtained as follows. The inverse of a cycle
(i0i1 · · · ik−1) is the cycle (ik−1ik−2 · · · i1i0). The inverse of a series of disjoint cycles
is obtained by inverting every cycle individually. (Note that if c and d are disjoint
cycles, then c · d = d · c.) A subgroup of G is a triple H = 〈H, 1∗,−1∗ , ·∗〉 where
H ⊆ G, 1∗ = 1, x−1∗ = x−1 and x ·∗ y = x · y. It is stated without proff that if H is
a subgroup of G then |H| divides |G|.

A signature is a pair 〈F,Ω〉 (often written simply Ω) where F is a set (the
set of function symbols) and Ω : F → N a function, assigning each function
symbol an arity. An Ω-algebra is a pair A = 〈A, I〉 such that for every f ∈ F,
I( f ) : AΩ( f ) → A. We also write f A for I( f ). A partial Ω-algebra is a pair
A = 〈A, I〉 where for each f ∈ F, I( f ) : AΩ( f ) ↪→ A. A weak congruence on A is
an equivalence relation Θ ⊆ A2 such that the following holds.

If ai Θ bi for every i < Ω( f ) and both I( f )(a0, · · · , aΩ( f )−1) and
I( f )(b0, · · · , bΩ( f )−1) exist then they are equal.

Θ is strong if whenever ai Θ bi for all i < Ω( f ) then I( f )(a0, · · · , aΩ( f )−1) exists iff
I( f )(b0, · · · , bΩ( f )−1) exists as well. If Θ is a strong congruence we can construct
the so-called quotient algebra A/Θ.

(A.7)

a/Θ := {b : a Θ b}
A/Θ := {a/Θ : a ∈ A}

(I/Θ)( f )(a0/Θ, · · · , aΩ( f )−1/Θ) := ( f (a0, · · · , aΩ( f )−1))/Θ
A/Θ := 〈A/Θ, I/Θ〉

It is to be observed that (I/Θ)( f ) is well defined; the value of the function does not
depend on the choice of representatives. Moreover, whether or not it is defined is
also independent of the choice of representatives, since the congruence is strong.
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A homomorphism between partial algebras A = 〈A, I〉 and B = 〈B, J〉 is a
function h : A→ B such that for all f ∈ F and all a0, · · · , aΩ( f )−1 ∈ A:

(A.8) h(I( f )(a0, · · · , aΩ( f )−1)) = J( f )(h(a0), · · · , h(aΩ( f )−1))

If A = 〈A, I〉 and C = 〈C, J〉 are partial algebras then the product of A and C
is defined by

(A.9) (I × J)( f )(〈a0, c0〉, · · · , 〈aΩ( f )−1, cΩ( f )−1〉) := 〈I( f )(~a), J( f )(~c〉

We write A × C for the product.

In the domain of algebra, the term functions and polynomial functions are very
important. Their definition is notoriously difficult since one is often required to
use variables where this creates problems due to choices of alphabetical variants.
Instead, I offer the following definition, which only uses functions and composi-
tions.

À All projections pn
i : An → A defined by pn

i (a0, · · · , an−1) := ai are term
functions.

Á If gi : Ami → A, i < Ω( f ), are term functions and p :=
∑

i<Ω( f ) mi, then
f ◦ 〈g0, · · · , gΩ( f )−1〉 : Ap → A is a term function where

f ◦ 〈g0, · · · , gΩ( f )−1〉(~c0, · · · , ~cΩ( f )−1) := f (g0(~c0), · · · , gΩ( f )−1(~cΩ( f )−1))

is a term function.

Â If g : An → A is a term function and i < j then g◦∆n
i j : An−1 → A defined by

(g ◦ ∆n
i j)(a0, · · · , an−2) := g(a0, · · · , a j−1, ai, a j, a j+1, · · · , an−1) also is a term

function.

(For a partial algebra, replace “function” everywhere by “partial function”). Term
functions are often described by means of terms such as (x + y) · z, but this is
inaccurate. A polynomial is defined to a term function over the expanded algebra
AA, where for each a ∈ A we have added a constant a to the language, whose
interpretation is fixed to A. (Alternatively, it is the closure under À – Â of the set
of functions containing A0 → A : ∅→ a for each a.



Symbols

~x, ~xa~y, / · /, 20
A∗, A+, 20
S | T , S · T , S T , S n, S ∗, S +, 20
:digit:, 22
Ω, 25
N, 25
:eq:, 27
TmΩ(V), 28
ιG(t), 29
L(G), 30
:bool:, 31
:blet:, 34
C(~y), 35
ιG(·)(s), 40
[~x/x], 41
∼G [· · · ]G, 44
ε(·), κ(·), 45
ε[·], κ[·], 45
~u⇒R ~v, ~u⇒n

R ~v, 46
A `G ~x, 46
L(G), Lw(G), 47
[A]G, 47
G�, 48
Lc(G), 50
pA∗ , 54
Gb, 63
occ(~y, t), 65

ε(·), µ(·), 86

ε[·], µ[·], 87
L(G), 87
f ε, f µ, 88
f ? g, 89
Iε, Iµ, 89
G×, G×, 89
f µ∗ , 96
>
=, 96
f ε∗ , 98
H(γ), 109
G×, 110
e◦, 125
L§, 125
e∨, L∨, 130
Bool, 133
L � B, 135
]a(·), 136
G � D, 136

Mα, 156
A>, A<, 156
M~s, 162
Ξ, 162
β, 163
∼V , 163
[·]M , 163
fr(·), 164
`(·), R→k, 165
L·M, 165

256



Symbols 257

Ci, 165
π[·], 167
E(·), 167
Pt(·), 167
~·�, 169
t, f, 169
`(·), 170
§(· · · ), 172
c ≤ d, 172
�·�, 174
? f ,g, 178(

L
2

)
, 183

L+, 183
δ(R, δ(C), 199
f Y(c), 199
ρR{~p}, 200

Lτ, 208
l, 214
CLn

τ, 215
tp(χ), 215

card, 255
|~x|, 255
~x · ~y, 255
Xi∈IAi, 255
f � S , 256
A/Θ, 258
A × C, 259



Index

a-term, 22
abstraction, 146

equivalent, 148
additivity, 136
adjacency, 183
adjunction rule

string, 59
algebra, 258

partial, 258
allophone, 147
alphabet, 20
ambiguity

lexical, 125
spurious, 125
structural, 125

analysis, 31
arity, 25
assignment, 163
autonomy, 110

bigrammar, 89
balanced, 89

c-grammar, 109
c-language, 109
c-sign, 109
c-string, 44
categorial autonomy, 110
category, 44, 109
CFG

left regular, 119
right regular, 119

compositionality, 110
direct, 83
rule-to-rule, 83

concatenation grammar, 54
concept, 169

type, 172
congruence

strong, 258
weak, 258

connectivity property, 55
constant, 25
context, 35, 58
context free grammar

bottom up, 45
converse, 168
coordinate frame, 184
crossover dependencies, 248
cycle, 257

order, 257

degree of embedding, 138
denotation, 87
deprofiling, 199
depth

embedding, 222
derivability, 260
derivation, 46, 47, 51
distance, 184

258



Index 259

duality, 98

expansion, 167
diagonal, 167
generalised diagonal, 168
product, 168

exponent, 87
expression

comple, 80
simple, 80

expressive power, 87

falsum concept, 169
first degree equivalence, 146
formula, 131, 162

atomic, 162
formula atomic, 208
fragment, 135
function, 256

partial, 256
polynomial, 41
term, 41

function symbol, 25

generation, 59
grammar, 26

ambiguous, 31
autonomous, 98
bottom up context free, 56
c-string, 45
concatenation, 54
context free, 45, 56
extensional independent, 98
extensionally autonomous, 98
extensionally compositional, 95
independent, 98
interpreted, 87
language, 47, 87
language of, 26, 58

primitive, 69
semiautonomous, 98
semicompositional, 95
standard, 66
string adjunction, 59
syntactically well regimented, 106
transparent, 65
unambiguous, 31

group, 257

homology, 199
homomorphism, 24

image
direct, 256

independence, 256
strong, 256
weak, 256

independent, 110
indeterminacy

semantically spurious, 132
indeterminate grammar, 58
index, 131, 208
indi2, 94
interpretation, 26
interpreted grammar

autonomous, 132
compositional, 132
indeterminate, 132
language of, 132

inverse, 258

language, 20
abstract, 194
autonomous, 98
c-string, 45
compositional, 83
context free (CF), 47
grounding, 194



260 Index

independent, 99
interpreted, 87
interpreted compositional, 96
monophone, 87
narrow sense, 30
string, 86
strongly C, 119
strongly context free, 119
superstrongly C, 119
superstrongly context free, 119
transparent, 65
unambiguous, 87
wide sense, 30

langue, 148
lexicon, 26, 58
line, 184
linking aspect, 179
locale, 59
location, 183

main symbol, 138
meaning, 87
mode, 26, 58

lexical, 26
nonlexical, 26

model, 163
morphological transparency, 86

necessity, 212

object
realisation, 185

object schema, 185
occurrence, 35

accidental, 65
constituent, 65
syncategorematic, 66

opposition, 146
orbit, 257

parole, 148
part, 33, 35
permutation, 167, 256, 257
phases, 224
phone, 145
phoneme, 147
picture, 185
pivot, 180
polynomial, 41, 259

linear string, 54
string, 41

possibility, 212
product, 258, 259
pseudoadditivity, 136

quotient algebra, 258

range, 256
realphabetisation, 24
relata, 144
relation, 256
reprofiling, 200
rule, 26, 58

sampler, 230
set

critical, 179
deductively closed, 164
definable, 175

signature, 25, 258
first-order, 162

signifié, 87
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