
The Grammar of Code Switching

MARCUS KRACHT & UDO KLEIN

Abstract. The idea that language is a homogeneous code is a massive simpli-
fication. In actual fact, we constantly use a wide array of codes, be they other
languages, dialects, registers, or special purpose codes (for bank account num-
bers, book numbers, shoe sizes, and so on). In this paper we provide a formal
analysis of code switching.

1. Introduction

Formal linguistics studies one language at a time; hence utterances are consid-
ered to be produced with the help of a single grammar. It is of course known that
this is just a simplified picture of reality. Monolingualism is certainly not the norm
across the world, see [1]. In recent years multilingualism has become a new focus
of research. It opens up new avenues of studying cultural and linguistic diversity;
but in addition, multilingualism challenges our picture of language rather substan-
tially. Think about the so called language faculty. If language is a relation between
signifiers and signified, what is then two languages? It must be two such relations,
for sure. But how do we distinguish them? How do we know which is which?
How can and should the language faculty deal with these two languages? And if
people can speak several languages, which ones are they using at a given moment?
How do the interlocutors find out which one they are hearing? And how do they
understand them?

As it has turned out, multilingualism is not just the command of several lan-
guages. It does not simply consist in several relations between sounds and mean-
ings. Or in the possession of several separate language faculties. Speakers tend to
mix two or even more languages in their utterances. The switch between languages
may occur even within a single sentence. This is the phenomenon of code switch-
ing. Any community of bi- or multilingual speakers shows code switching to a
great extent. We are thus led to assume that there is a uniform language faculty that
is somehow metalinguistic. It seems to be—to some extent at least—independent
of any particular language. In fact, we do not even have to look far to become aware
that things have to be so. For there is a number of phenomena that are metalinguis-
tic in the same sense: they make use of several languages within one utterance.
One such phenomenon is borrowing: speakers use a word or phrase from another
language (before it has become fully native, of course). This phenomenon is pretty
widespread. Any language we know of is the result of borrowing from other lan-
guages, and the process of borrowing must begin with a phase where the borrowed

1

2 MARCUS KRACHT & UDO KLEIN

words are introduced via code switching. Of course, there often is a change in form
and/or meaning involved. That however is not part of the story told here.

The term “code switching” is typically reserved for the phenomenon of changing
an entire language (dialect, register, etc.) in the middle of an utterance. However,
in this paper we shall argue that the phenomenon is far more widespread. We shall
show that ordinary discourse contains many such points at which speakers switch
from one code to another; where by “code” we mean anything from a language, a
dialect to a code in the original sense of the word, for example bar codes, ISBN
numbers, and so on. Although it clashes somewhat with the established intuitions
to use the term “code switching” in this way, we shall argue that this is because
linguists do not generally consider codes as part of the language proper. However,
we find it hard to draw any boundary between languages and codes. At a closer
look, what is taken to be a uniform language (English, French, German and so on)
in practice is a vast array of codes or—sometimes highly specialized—languages.
And this is not only because there exist different dialects. Technical jargon, for
example, can and should be seen as a separate language. This however calls for
a thorough analysis. Dictionaries list technical usage side by side with ordinary
usage as if these were just different signs belonging to the same language. How-
ever, we may alternatively think of the technical jargon as a separate code, though
a very impoverished one. Normally, technical languages are too poor to even form
a single sentence, and so they are always in need of being embedded in a natural
language. So why think of them as separate languages?

The answer is that every code or language has some mechanism by which the
code itself is being reified and maintained; this gives the code a certain unity so that
it is not just an arbitrary collection of signs. While languages are self-evolving (no
one is in control of what words there are and what they mean), technical jargon is
the result of a specific subgroup taking care of it, nowadays even by issuing norms
(ISO, DIN and so on). Also, there often are several concurrent terminological
systems (for example, metrical and nonmetrical units of measurement, including
different extensional meanings for the basic units such as the word “mile”) and
changing them arguably does not affect the language, only a specialized code.

But there is much more. When we talk about shoe sizes, bank accounts, book
orders, internet communication and so on, we are often using highly specialized
codes (for example IBAN, ISBN, IPv6 and much more). It is certainly not helpful
to consider them part of a natural language, as their origin and functioning is really
much different. Not only are speakers of English not in control of the composition
of ISBN numbers, no one thinks of your competence of English as being somewhat
less than native if you do not master ISBN numbers. Finally, the ISBN code is not
tied to any language and can be used in any other language as well (though in
spoken language the numbers may come out differently). When someone orders a
book in France using ISBN numbers it would be strange to declare that he is talking
English. ISBN numbers therefore look more like a code that can be imported into
any given language.

All this warrants a new perspective on formal semantics. Rather than viewing
our linguistic competence as mirrored by a single grammar, we should think of

The Grammar of Code Switching 3

it as a bundle of grammars of varying complexity, with the possibility (or even
necessity) of producing utterances with any number of them in parallel. This raises
interesting formal questions. First and foremost, if we allow for multiple codes or
grammars to be used then it becomes harder to see how we can make ourselves
understood. Expressions will become ambiguous to a massive extent.

This problem is pervasive. To a certain extent it is even a necessary ingredient
of our discourse. Consider a textbook of nonclassical logic. One and the same
formula can be read in many ways, depending on what logic you are using. “p →
q” means something different to an intuitionist than to a classical logician. Not
only do they disagree in what formulas are tautologies, also the meaning of these
symbols is different. But if that is so, how is it possible to read this textbook? We
shall show below that there are ways to rein in this ambiguity; but as always, a
price must be paid.

It may be worthwhile to put the present research into perspective. We do not
aim at dealing with code switching in the classical sense. Rather, we wish to elab-
orate on the possibilities that the technique of code switching itself offers, and the
problems that it also incurs. Suffice it to say that there are many details to be
considered about the exact way in which code switching happens (see [9] for an
attempt at formalizing the underlying grammar of code switching). Our approach
is therefore similar to that of Joseph Goguen, in particular the idea of algebraic
semiotics, see [5]. However, the implementation is quite different. [5] does not
spell out semiotic systems as relations, and keeps an overall abstract view of sign
systems. The connection between signs and their meanings is provided by some
morphisms. Here it is inbuilt in the notion of the sign itself. Among other things
this allows to treat codes as relations rather than functions between expressions and
meanings. In effect, our notion of sign is Saussurean, whereas Goguen seems to
lean towards a Peircean notion. Morphisms will be introduced here as structural
maps of actual sign systems (and hence cannot be used to introduce metaphor, for
instance). They provide the glue for the various codes and show how to switch
between them, without however altering the signification relation as such. 1

2. Formal Prerequisites

A language or code (these two words will be used interchangeably throughout
this paper) is a set L of pairs σ = 〈e,m〉, called signs, where e is called the expo-
nent and m the meaning of σ. Hence, a language is a subset of E × M, where E
and M are the sets of exponents and meanings, respectively. There are no further
requirements. Formal languages usually are required to satisfy that L is a partial
function; that is, if 〈e,m〉, 〈e,m′〉 ∈ L then m = m′. However, for natural languages
this does not hold.

1This work has been conducted as part of the project A8 of the Sonderforschungsbereich 673
“Alignment in Communication”. We gratefully acknowledge the financial support of the Deutsche
Forschungsgemeinschaft. We wish to thank two reviewers for useful comments.

4 MARCUS KRACHT & UDO KLEIN

Given two languages L and M, also L ∪ M, L` and L · M are languages, where

(1)
L` = {〈m, e〉 : 〈e,m〉 ∈ L}
L · M = {〈e, n〉 : there is m such that 〈e,m〉 ∈ L and 〈m, n〉 ∈ M}

Here, L · M is a cascade of L and M. Think, for example, of L as the numeral
names of English (containing, say, the pair 〈twenty-six, 26〉) and M the binary
code (containing the pair 〈11010, 26〉). Then M` is a language, where the nat-
ural numbers are the exponents standing for (= signifying) sequences of binary
digits. Then L · M` also is a language, relating expressions of English with bi-
nary sequences representing the same number; it contains for example the pair
〈twenty-six, 11010〉.

A generating system for L is a finite set Σ of partial functions on E × M such
that L is the least set closed under these functions. The lexicon of Σ is the subset
of 0-ary functions. If g is zeroary, we have g() ∈ L. (We also write g in place of
g().) The lexicon is effectively a finite list of signs from L. It is easy to see that L
is non-empty just in case the lexicon of Σ contains at least one element. A member
of Σ that is not lexical is called a rule. A grammar is a pair G = (Ω, I) such that
Ω : F → N is a finite signature (that is F is finite and Ω is a function from F to N),
and I a function assigning to each function symbol f an Ω(f)-ary partial function
I(f) on E × M. G is a grammar for L iff the image of F under I is a generating
system for L. If G is a grammar for L, we say that L is the language generated by
G and write L = L(G). Terms for the signature Ω are defined as follows.

[a] A variable ξi, i ∈ N, is an Ω-term.
[b] If u0, · · · , uΩ(f)−1 are Ω-terms and f ∈ F, then f (u0, · · · , uΩ(f)−1) also is an

Ω-term.
[c] Nothing can be an Ω-term that is not produced using the two previous rules.

A term unfolds to a sign in the following way. Let β be a function from variables
to signs. Then

[a] [ξi]β := β(ξi).
[b] [f (u0, · · · , uΩ(f)−1)]β := I(f)([u0]β, · · · , [uΩ(f)−1]β).

Notice that the value does not always exist due to the partiality of I(f). A constant
term is a term without variables. For a constant term, the value does not depend on
the assignment; but it need not exist. A constant term is definite if its value exists.
Notice that it is not guaranteed that the value of a term t is in L(G). For the values
of variables may be outside of L(G). If t is constant, though, we have [t]β ∈ L(G)
on condition that t is definite.

A grammar G is compositional if the meaning of the sign

(2) I(f)(〈e0,m0〉, · · · , 〈eΩ(f)−1,mΩ(f)−1〉)

does not depend on the choices of ei, i < Ω(f), for given mi, i < Ω(f). (We ignore
here certain details due to the partiality of the functions. See [7] for an extensive
discussion.) G is autonomous if the exponent of the sign

(3) I(f)(〈e0,m0〉, · · · , 〈eΩ(f)−1,mΩ(f)−1〉)

The Grammar of Code Switching 5

does not depend on the choices of the mi, i < Ω(f), for fixed choices of ei, i < Ω(f).
G is independent if it is both autonomous and compositional. An independent
grammar can also be formulated with the help of two functions in the following
way.

A bigrammar is a triple B = (Ω, Iε, Iµ) such that Ω is a signature and Iε a
function assigning to each f a partial Ω(f)-ary function on E; and Iµ assigns to
each f a partial Ω(f)-ary function on M. The grammar associated with B is the
pair (Ω, J) where

(4) J(f)(〈e0,m0〉, · · · , 〈eΩ(f)−1,mΩ(f)−1〉)

:= 〈Iε(f)(e0, · · · , eΩ(f)−1), Iµ(f)(m0, · · · ,mΩ(f)−1)〉

with the right hand side being defined if and only if the left hand side is defined.

3. UsingMultiple Languages

The preceding definitions cover the case of a single language with a single gen-
erating system. The main challenge of using multiple codes or languages lies in
the following. We do not generally use one code per utterance or text. Rather,
codes may be embedded in other codes. For example, when talking about shoes
we use a code for expressing shoe sizes; when talking about some topic of interest
we may use a special purpose language. And, more radically, multilingual speak-
ers may embed entire chunks of one language into another and vice versa. The
same happens in computers. One can embed code of one language (say, PHP) into
expressions of another language (HTML).

Several questions now arise:
[a] How is the use and the change of code signalled?
[b] How can we understand utterances composed by switching between codes?
[c] What is required of a language to be open for code switching?

Take the first problem. In its simplest form the problem is this. Consider an expres-
sion e used as an utterance. Suppose that it belongs to a single language. (Thus,
no code switching takes place in it.) How is it possible to know what language is
being used in uttering e? The answer may be easy: if two English speakers talk
to each other, it is English. If two French people talk to each other it is French.
But what if a Frenchman talks to an English person? Will he be using French or
English? How can we know? 2

Often, the choice of language can be left implicit. For a short piece of the utter-
ance may suffice to determine what language this utterance is in. So, in presence of
several languages, the algorithm is to first determine what language the utterance
is in and then parse it accordingly. In the worst case we need to buffer it so as not
to lose out on the initial part. In casual conversations, this is what we do and it is

2The first author recalls the following incident. At one conference he was asking Hans Kamp a
question at the end of a lecture. However, all he got in return was a blank stare. He made one more
attempt with the same result. Then, at the third time, Hans suddenly exclaimed: “Oh, you are talking
German to me! I thought you were talking in French.” So his “parser” had been expecting French
and could not make head nor tail from the input.

6 MARCUS KRACHT & UDO KLEIN

sufficient. But in general this strategy is problematic. Consider a technical jargon.
Typically, jargons use a mixture of new words and existing ones. In mathematics,
for example, there are plenty of uses of the words “normal”, “canonical” and so
on. And they mean very different things depending on what objects we are talking
about; each of the meanings is precise, but which one we have to choose depends
on the context. In this case, it is not possible to judge the language from the occur-
ring words alone, we also need to understand part of what is being said before we
can make a decision which jargon we have to use. If that sounds circular then that
is because it is circular.

It is interesting to compare this to computer science. In programming, any am-
biguity should be avoided. Yet there are many programming languages and highly
specialized codes. The situation is therefore quite analogous. There simply is no
single language, in fact, there are dozens and dozens being used by a single ma-
chine. The solution however is different. In programming, we avoid ambiguity
at all costs. Hence, whenever the machine is about to parse some code it chooses
a specific one, and there are precise rules for doing that. For example, computer
languages often use envelopes that contain information as to what language is be-
ing used. This information is given right at the beginning (as in executable files
containing a single line indicating what shell is to be used to interpret them). Other
information is provided by file name suffixes (.pdf, .js, .html, .tar and so on) that
indicate to the system how to process or display the data.

Standardly, we think of the preamble as metadata. That could be for example
the line “#!bin/bash” in a bash-shell telling the computer what program is to be
used to interpret that program, or it is the line “<?xml version=1.0?>” in an
XML-file. However, it is a very special kind of metadata. There is a reason why it
is has to be given right before every other data. It shows the machine what it needs
to do in order to parse the remainder. It announces the code or language used in the
sequel. For this to be successful, though, the machine needs to understand how to
read these files in the first place at least when it comes to the first line. There has
to be some kind of metacode if you like that specializes in how to set the code in
the first instance.

4. Joining two Codes

The preceding discussion showed how we can make sure a message is under-
stood provided it belongs to the set theoretic union of the languages. However,
there is also the possibility of producing messages that are entirely new, that is,
that belong to none of the languages. To see how this works, we need to begin
with a definition. Let G = (Ω, I) and H = (Ψ, J) be grammars. The fusion,
G ⊕ H = (Ω ⊕ Ψ, I ⊕ J), is defined as follows. Let Ω : F → N and Ψ : G → N.
Assume that F and G are disjoint (if not, change to a disjoint signature).

(5) (Ω ⊕ Ψ)(f) =

Ω(f) if f ∈ F,
Ψ(f) if f ∈ G.

The Grammar of Code Switching 7

Similarly,

(6) (I ⊕ J)(f) =

I(f) if f ∈ F,
J(f) if f ∈ G.

We call this the fusion of the two codes. Notice that the function symbols are
arbitrary, so it does not matter if we rename them. It may be the case, for example,
that G and H contain some symbols f and g such that I(f) = J(g). If f , g then
the new grammar contains both f and g, but we still have (I ⊕ J)(f) = (I ⊕ J)(g).
If f = g, however, we replace f by f 1 and g by g2, say, and then proceed as in
the first case. Either way we get two abstract function symbols that have the same
interpretation. This is however completely harmless.

The language generated by G ⊕ H contains L(G) and L(H). (It is in general not
the union defined in [9], since we do not work with nonterminals.) However, it
may contain new signs not generated by either of them. When mixing G and H
we obtain a signature Ω ⊕ Ψ. The terms of this signature are obtained by applying
symbols of Ω and Ψ indiscriminately to each other. We may look at these terms
as terms in their own right, of a newly formed grammar. Or we may look at them
with respect to the origin of the function symbols. Say that a term t is Ω-headed if
it has the form

(7) t = f (u0, · · · , un−1)

where f ∈ dom(Ω); and that it is Ψ-headed otherwise, i.e. when f ∈ dom(Ψ). Say
that t is a (Ω,Ψ)-switch (or simply a switch when the identity of the signature is
clear) if it is Ω-headed but contains an immediate subterm that is Ψ-headed or if it
is Ψ-headed but contains an immediate subterm that is Ω-headed. Switches contain
an immediate subterm of a different signature. In principle, we can have switches
inside switches. The terms where this does not happen, however, are of interest in
their own right. A term t is called layered if it does not contain two switches u and
v that are proper subterms of each other; that is, if u and v are subterms of t and
switches, then neither is u a proper subterm of v nor is v a proper subterm of u. In
that case, t results from substituting Ψ-terms for some variables into some Ω-term
or Ω-terms for some variables into some Ψ-term (see [3] for a specific example).
They are interesting because they allow to think of the term as belonging to a single
language with certain subexpressions “imported” from some other language. This
is often assumed to be the general type of expressions in code switching. But see
[9].

Code switching is often done without importing a full grammar. For example,
one may use some English words or Latin idioms when speaking French. Still
the construction applies to these cases as well. It turns out that the fusion of two
grammars produces in the worst case only the union of the languages. The result-
ing language of the fusion is not predictable from the languages of the individual
grammars that are being fused.

Proposition 1. L(G ⊕ H) ⊇ L(G) ∪ L(H). Equality need not hold. Furthermore,
there are grammars G, G′ and H such that L(G) = L(G′) but L(G⊕H) , L(G′⊕H).

8 MARCUS KRACHT & UDO KLEIN

The proof is simple. Take G = (Ω, I), G′ = (Ω′, I′) and H = (Ψ, J), where
F = { f0, f1, f2, f3, f4, f5}, F′ = { f ′0 , f ′1 , f ′2}, and K = {g} with Ω : fi 7→ 0, Ω′ :
f ′0 , f ′1 7→ 0, f ′2 7→ 2, and Ψ : g 7→ 0.

(8)

I(f0)() = 〈a, 0〉
I(f1)() = 〈b, 1〉
I(f2)() = 〈aa, 0〉
I(f3)() = 〈ab, 1〉
I(f4)() = 〈ba, 2〉
I(f5)() = 〈bb, 3〉

(9)
I′(f ′0)() = 〈a, 0〉
I′(f ′1)() = 〈b, 1〉
I′(f ′2)(〈e,m〉, 〈e′,m′〉) = 〈eae′, 2m + m′〉

where the condition on e and e′ is that they each contain just one letter. Finally, let
J(g)() = 〈c, 2〉. Then G ⊕ H allows to form only the terms fi (i < 6) and g, and so
L(G ⊕ H) = L(G) ∪ L(H). However, L(G′ ⊕ H) produces the sign 〈cc, 6〉, which is
neither in L(G′) nor in L(H). Its term is f ′2(g, g).

What this says is that the mixing of codes is determined only in part by their
language; the other part is the generating system. Hence, the more abstract the
generating system the more signs it may generate under fusion with some other
grammar.

Here is another example to show that abstractness alone is not enough. Consider
a third grammar, G′′ just like G′ but where I′′(f ′2) is defined only for the signs 〈a, 0〉
and 〈b, 1〉 (that is, for e, e′ ∈ {a, b}). Then once again L(G′′ ⊕ H) = L(G′′) ∪ L(H)
even though G′′ shares with G′ a more abstract analysis. The crucial point to note
is that G′′ is an extensional variant of G′, where H′ is defined to be an extensional
variant of H if L(H′) = L(H). In addition to being an extensional variant of G′,
the interpretations of the function symbols in G′′ is the same when restricted to the
language generated by G′ ([7]).

Proposition 2. Let G and H be grammars. Then there are extensional variants G′

and H′ of G and H, respectively, such that L(G′ ⊕ H′) = L(G) ∪ L(H).

Simply take I′(f) = I(f) � L(G) for a function symbol of G, and J′(f) = J(f) �
L(H) for a function symbol of H. The definite terms of this union G′⊕H′ are either
terms of G or terms of H (up to inessential variations, see below).

These facts show that for every language there is a grammar that does not toler-
ate any extension via code fusion except for the trivial union. Think for example of
mixing ISBN numbers and shoe sizes. Both codes are “closed”. The ISBN num-
bers are not made of parts, since an ISBN number must be of fixed length, namely
13. Thus no parts have meaning in and of themselves. The code consists only in
those 13 digit numbers with a correct check digit. (The last digit is determined by
the previous 12 and serves to check for the correctness of the input; this is why
it is called a check digit.) Despite its simplicity, it is a very complex code since
it consists only of those 13 digit numbers that have been issued. Hence, what we
described is only the shape of correct ISBN numbers, not the entire code. For that

The Grammar of Code Switching 9

we would have to add for each published book b the pair consisting of its ISBN
number and b.

Definition 3. A grammar G = (Ω, I) is called closed if for all f , I(f) � L(G) =

I(f).

Closed grammars effectively allow the use of their constructions only for those
signs that are in the generated language. It is tempting to conclude that the definite
constant terms for a closed grammar can only consist of function symbols of its
own signature. But this is not exactly true.

Proposition 4. Let G = (Ω, I) and H = (Ψ, J). If G is closed, then for every definite
constant term of G ⊕H there is a definite constant term with identical value that is
obtained from a Ψ-term by substituting Ω-terms for some variables.

We cannot conclude that every definite constant term is layered, more specifi-
cally that it is the result of putting Ω-terms inside Ψ-terms. Think of the possibility
that some Ω-term t and some Ψ-term u have the same value. Then we may freely
substitute t and u for each other in a definite term and get a definite term. So, if t is
a subterm of a definite Ω-term, we may substitute u for t and thus obtain a layered
term of the other kind: an Ω-term containing some Ψ-term as a subterm. However,
this is the only exception to the rule.

Definition 5. A spurious ambiguity for a grammar G is a pair of constant terms t
and u such that t , u but they unfold to the same sign.

Given this definition we can say that if G is closed, any definite term for G ⊕ H
is up to spurious ambiguity a layered term, where Ψ-terms may be contained inside
Ω-terms.

5. Code Identifiers

The fusion of grammars can look radically different from either of the two gram-
mars. First, fusing two grammars can introduce massive ambiguity. We shall first
study a formal case before discussing natural languages.

Consider representations of numbers in a system of base n. If n = 2 we speak
of binary representations. Our ordinary representation is a base 10 system. For
each of them we postulate a grammar Bn = (Ωn, In) of the following kind. We
have Ωn : Fn → N, where Fn = { f0, · · · , fn−1, cn}. Ωn(f n

i) := 0 and Ωn(cn) := 2.
In is defined as follows. The value will be In(f n

i)() = 〈i, i〉. (So we consider the
digit i to be the same as the number it denotes.) Since this is uniform across the
grammars, we shall drop the superscript. Furthermore, each grammar for base n
numbers contains an additional binary function symbol cn whose interpretation is
as follows.

(10) In(cn)(〈~x, p〉, 〈~y, q〉) :=

〈~xa~y, np + q〉 if ~y has length 1
undefined else

Furthermore, assume that the concatenation is restricted to sequences that contain
only digits with value < n. Consider now the sequence “7010”. This sequence is

10 MARCUS KRACHT & UDO KLEIN

multiply ambiguous. Here are some terms and their values:

(11)

(I10 ⊕ I8)(c10(c10(c10(f7, f0), f1), f0)) = 〈7010, 7010〉
(I10 ⊕ I8)(c8(c8(c8(f7, f0), f1), f0)) = 〈7010, 3592〉
(I10 ⊕ I8)(c10(c8(c10(f7, f0), f1), f0)) = 〈7010, 5610〉
(I10 ⊕ I2)(c10(c2(c2(f7, f0), f1), f0)) = 〈7010, 290〉
(I10 ⊕ I8 ⊕ I2)(c2(c10(c8(f7, f0), f1), f0)) = 〈7010, 1122〉

The first term reads this as a base 10 number expressions, the second as octal. Both
are also terms of the original grammars. The third reads the first two digits as
belonging to a base 10 code, then adding 1 to it as if it were a base 8 expression,
which gives 〈701, 561〉, because in base 8 shifting means multiplying by 8, not
10. Finally, the expression is reinterpreted as a base 10 expression, and the sign
computed is 〈7010, 5610〉.

Undefined terms include c2(f7, c2(f0, c2(f1, f0))) for the reason that I2(c2) is not
defined on strings containing the digit “7”.

We see that switching between codes opens too much freedom. What can be
done? The first remedy that comes to mind is to recall that the function symbols
were originally disjoint, so maybe reintroducing the distinction will restrict the
fusion accordingly. This is not the case. The problem is that f 2

1 denotes the same
sign as f 8

1 or f 10
1 , and so if In(cn) is defined on one, it is defined on the other. In

other words, we create spurious ambiguities.
The next thing we can try is to change the interpretation of the function symbols.

Recall the definition of a closed grammar (Def. 3). It is possible to define the codes
in such a way that mixing is impossible (up to spurious ambiguity).

(12) In(cn)(〈~x, p〉, 〈~y, q〉) :=


〈~xa~y, np + q〉 if ~y has length 1,

and 〈~x, p〉 ∈ L(Bn)
undefined else

This has several drawbacks, however. The main one is that this is not an au-
tonomous grammar. In order to understand whether or not we can apply the func-
tion In(cn) to the pairs 〈~x, p〉 and 〈~y, q〉 we cannot just look at whether we can
combine ~x and ~y, and—independently—whether we can combine p and q. Rather,
the combination is licit only in the circumstance that ~x is the Bn-expression for p.
This is effectively a measure to enforce layering. Though this is a perfectly viable
option, we shall now turn to a solution that is much different.

The idea we shall pursue here is to regiment the analysis term. This is tanta-
mount to regimenting the places of code switching. We can say, for example, that a
number term may not embed a number term for a number expression of a different
base. This is a homogeneity assumption. Notice that it is necessary to have such
a restriction since the place of code switching is otherwise unrecoverable, unlike
the case of code switching between languages where often the words reveal their
language of origin.

Even so a given string is still multiply ambiguous. For example, “10101101”
can be seen as a string in base 2, 3, 8, 10 and so on. And here the regimentation

The Grammar of Code Switching 11

is of no use: when we are writing down a string we have to change into some
grammar for the number to interpret the expression. When we read a sequence we
have to decide what the base is. For most languages the choice is clear: we take
a base 10 grammar. However, notice that there are enough contexts in which such
an expression must be read differently. In computer science, it may also be the
representation in binary. Or in octal. Indeed, to guard against misunderstanding,
some metainformation must be issued. One such information is to add the base
at the end of the number. We write “101011012” to indicate that the sequence
“10101101” is to be read in binary; and we write “101011018” to say that it is to
be read in octal. And so on.

We call this digit at the end a code identifier. Notice that in books these code
identifiers are introduced as well. There are two ways to think of them. One is
as a syntactic device to signal the switches (as defined earlier). In this case they
are strictly metasymbolic: there is no term that issues them, they are devices to
recover the term in the first place. So, when we see the subscript “2” we know
that the sequence of digits is to be read in binary. However, the subscript will be
thrown away. Thus, there is no term that returns the sequence “101011012”. All
terms will yield “10101101”. However, the code identifier excludes most terms as
terms for the particular sequence.

Another way to think of them is as part of a fusion of the codes. When we
introduce binary numbers we also introduce a special constant s2. Given a term
t, s2t is another term specifying that the function symbols of t must belong to the
grammar of binary expressions. Here is how this symbol is interpreted. We shall
say that I(s2)(〈~x, n〉) is defined only if ~x is the binary representation of n, and if that
is the case, its value is 〈~x, n〉.

As it turns out, introducing this symbol makes the grammar strictly noncom-
positional. The argument is simple. Take the sequence “10101”. It can be read
among other in binary or in octal. In binary it represents 21, in octal 4161. We
expect therefore that the syntactic functions Iε(s2), Iε(s8) must be defined on both
of them. Since every natural number has a code in each of the systems, Iµ(s2) and
Iµ(s8) must be defined on all numbers. Therefore, I(s2) as well as I(s8) are both
defined on 〈10101, 21〉 and 〈10101, 4161〉. But that is not how they were originally
defined.

We conclude the following.

Code identifiers are in general non-compositional. They defy an
integration into a unitary compositional grammar.

Actually, a similar result obtains if we pursue the following merger of these
grammars. Take a single binary symbol c and let its interpretation be the following.

(13) I(c)(〈~x, p〉, 〈~y, q〉) :=


〈~xa~y, pn + q〉 if ~y has length 1 and p is the base n

value of ~x
undefined otherwise

12 MARCUS KRACHT & UDO KLEIN

This allows to consider all base n grammars as one single grammar with one func-
tion to represent the addition of a digit; the price however is loss of compositional-
ity.

We conclude the following. If we want to have code identifiers and maintain
compositionality there is no way around the regimentation of analysis terms. In
other words, one must assume that switching points are subject to regimentation at
the level of structural analysis. 3

6. Code Embedding

There is a special case to be considered, namely when the first code allows
to embed expressions of the second code but requires them to be transformed in
a special way. In that case the expressions of the second code do not appear in
their original form but in a somewhat distorted form. An example is provided by
words borrowed into a language with a different syllabic structure. Japanese for
example does not allow branching onsets and generally prefers CV syllables. In
order to import words from other languages, Japanese speakers inserts vowels to
make them pronounceable (“miruku” ‘milk’, “arubeitu” ‘short term job’, from
German “Arbeit” ‘work’).

Another example is regular expressions. Many programming languages offer to
use regular expressions but do not themselves resolve them. Rather, whatever they
are being used for, the expressions are being passed on to the host system which
uses its own mechanism for regular expressions. (The programmers obviously do
not like to double their effort by providing the same functionality again in more or
less the same way.) For that to work, a regular expression must be tunneled through
the syntax of the host language so that it can be used by the host system. For
example, in the standard language for regular expressions (see [4]), the period is a
special metacharacter that matches any alphabetic symbol. It must be distinguished
from the alphabetic character “period”. To do that, the latter is written using a
backslash as a general escape character: “\.”. However, regular expressions are
built from strings in OCaml, and the syntax of strings also uses the backslash as
an escape character. If we were to write just “\.”, OCaml would understand that
we pass on the alphabetic character ‘escaped period’, which does not exist. But
we want the actual sequence of two characters “backslash” followed by “period”
to be communicated. Hence, to make the backslash survive this process, we need
to write “\\.”. A somewhat different mechanism is used in Python. In a similar
manner, think of XPath expressions being passed on to XSLT. The symbols for
less-than and greater-than have such a special meaning to the XML parser that it
is often necessary to ‘protect’ them by writing “<” instead of “<” and “>”
for “>”, lest they are misunderstood as being part of a tag. Once you know what to
look for, this phenomenon suddenly becomes pervasive.

3One reviewer rightly pointed out that there are explicit ways to regiment code switching. Con-
sider phrases like “For the rest of this paper X will be assumed to denote ...”. This is clearly meant to
remove all ambiguity as to whether certain code switches may take place. Thus, languages contain
more than just code identifiers. There are also expressions that could be called “switching regulators”.

The Grammar of Code Switching 13

What is characteristic of code embedding is that the host code does not provide
any mechanism to interpret the expressions of the embedded code; they are passed
on to the embedded code for interpretation. The process of embedding is rather
widespread. We mention here the fact that in logic variables are usually thought of
as being single expressions of the form “pi”, where i is a so-called index. Indices
are not further analyzed. However, on further inspection it is assumed that indices
are some kind of number expression. There are of course several; the choice of
the code for number expressions is however considered immaterial for the ‘main
code’. Moreover, some transparent indication of code embedding is used such as
writing the number as an index or a superscript.

Often, the embedding of code takes a harmless form. In HTML, embedding
PHP code is done by wrapping it as follows. Begin with “<?php” followed by
the undistorted PHP code, and end with “?>”. Sometimes one can even toggle
between two codes. This is exemplified by OCamlDuce, which integrates CDuce
and OCaml and uses double set braces (“{{” and “}}”) to mark the switch between
codes.

7. Code Flexibility

It is known that codes change, either by explicit ruling or by tacit convention.
Languages evolve not only via sound changes but also by constant innovation.
One such innovation is the creation of special terminology. In mathematics it is
customary to define new terms for example to create shorthands for complex con-
cepts. This means that codes and grammars are actually fluid rather than static. A
reflection of this is the fact that predicate logic is actually not a single language but
rather a scheme to define an infinity of languages. Here we shall not discuss change
in time of a given code or grammar. Rather, we shall focus on the mechanism of
explicitly changing between grammars on need.

Formally, define a morphism of grammars G = (Ω, I) and H = (Ψ, J) to be a map
ι, where ι : F → G is such that for all f ∈ F, Ψ(ι(f)) = Ω(f) and J(ι(f)) = I(f).
So, the signature of G is translated into the signature of H in such a way that the
interpretation of the symbols remains the same. An example is the expansion of a
language by some constants or some function symbols. Expanding a language in
this way is commonly considered in logic, for example. It is vital that the expansion
does not change the interpretation of existing symbols. Grammars form a category
G with these morphisms. The fusion turns out to be the product. A more general
construction is the so-called pushout construction, where the grammars share a
fragment. (If that fragment is the empty grammar, we get the product.) If G and H
share a language K, that is, if we have morphisms µ : K → G and ν : K → H, then
the pushout of the embeddings is well-defined, and it consists in a signature which
is like G ⊕ H except that no distinction is made between modes g and h if there is

14 MARCUS KRACHT & UDO KLEIN

an f such that µ(f) = g and ν(f) = h.

(14)

K
µ

−−−−−→ Gyν y!

H
!

−−−−−→ G ⊕K H

(This diagram says that there is a unique map from G to G ⊕K H, say α, and a
unique map from H to G ⊕K H, call it β, such that the diagram “commutes”, that
is, such that α · µ = β · ν.) This generalization would allow to define the grammars
for Bn along a unified set of constants fi, since their values are the same in gram-
mars wherever they exist in the signature. Suppose O is the empty signature, ie
O = (∅,∅). Then for each grammar G = (Ψ, J) there is a unique map ε : O → G,
namely the empty map. This is the initial object in the category G. Then, as indi-
cated above, G ⊕ H � G ⊕O H, which is to say that they are isomorphic.

The basic scenario is that natural discourse occasionally involves changing the
grammar by incorporating new elements or dropping them. A simple mechanism
is that of baptism. We find an individual, a particular object or kind and name it.
That naming expands the grammar by a new symbol whose meaning is fixed by the
act of initial baptism. Whenever that symbol is used, it is used with than meaning
until it is retracted from the grammar.

This scenario allows to shed light on a problem noted in [8]. Roughly, it is
argued there that the semantics of propositional logic and predicate logic cannot
be compositional since variables are ambiguous and there is no guarantee that two
occurrences of the same variable will have to be given the same value (see also
[2] for a similar complaint). For example, if “p” is a genuine variable, “p→p” will
not be a tautology, for the values of the two occurrences of “p” are independent of
each other, as they are ambiguous between having value 0 and having value 1. This
is of course highly problematic since it undermines the usefulness of variables.
(Notice that there are interesting connections to 3-valued logic of uncertainty or
undefinedness. In Łukasiewicz’ logic, the value of “p→q” and “p→p” are the same,
namely u (= uncertain), when the value of “p” and “q” are both u as well. However,
from a supervaluation point of view, the value of “p→p” should be 1. Evidently, the
semantics has no use for the fact that the two occurrences of the variable “p” are
coordinated.) In [8] it was proposed to treat variables as schematic expressions for
constant propositions. They are therefore metalinguistic expressions, to be filled
by actual expressions. Since actual expressions cannot use variables, they must be
constant. This means that the logic becomes an artefact of the expressibility of the
underlying language, not of the actual semantics. For the semantics determines
a potentially larger range for the variables than can be covered by the constant
expressions of the language. More precisely, it was proposed that the propositional
variables function as indicators of the schematic term into which we substitute
constant terms for term variables. Thus “p→p” just indicates that the actual term is
f→(ξ0, ξ0), say, where f→ is the function symbol of implication-formation and ξ0 a
variable over constant Ω-terms.

The Grammar of Code Switching 15

The solution proposed here is the following. Variables are schematic over poten-
tial constant expressions. Thus we consider the possibility to extend the language
by some constant, say “c”, whose interpretation can be anything we please, but
only until that constant is introduced into the language. Once it is there, its value
is fixed. This constant is therefore introduced, and “p” is replaced by that constant
throughout. The formula “p→p” now becomes “c→c”. There is then no risk of am-
biguity, as the constant will have one and only one value, by definition. The crux
is that the value of “c” could have been anything. So we say that “p→p” is true
if, regardless of the constant expansion we choose, and regardless of the constant
we use to replace “p” by, the resulting formula is true. It is interesting to note
that this is the way in which variables are treated in functional programming (see
[6]). In XSLT, you can assign a value to a variable only once. That value cannot
be changed. One needs to first wait until the scope of the variable is closed (upon
which the variable name is discarded) and then reintroduce the variable with an-
other value. In XSLT, therefore, the difference between variables and constants has
been obliterated, as is the case here. Or rather, XSLT knows no variables in the
standard sense of the word.

Viewing it this way, however, raises new issues. First, if variables are schematic
over languages yet to be built, there is no grammar to parse expressions contain-
ing them. Hence, it is easier to think of variables as arbitrary constants. That
is, introducing a variable means introducing an array of languages, where in each
variant the variable is interpreted differently. If the domain is the natural numbers,
for example, one language may interpret “x1” as 7, another as 11, and so on. The
language thus assimilates the variables into constants, so to speak. However, the
difference between variables and constants shows up in the fact that for variables
we can choose between languages that give them different values, while for con-
stants this is not the case.

8. Coordination

The present discussion sheds some more light on the problems highlighted in
[2]. Fine notes that whenever we use a particular name for a variable we must
make it clear what other occurrences of the same variable name it is to be coordi-
nated with. This problem is pervasive. Think of a database or a program full of
formulae and expressions that use certain variable names. It becomes clear that we
cannot assume that two occurrences of the same name are coordinated. However,
there appear to be rules governing the interpretation. Some of them are explicit
such as the rules of quantification. Others are rather implicit, as in the case of two
formulae versus one. Ordinarily, the occurrences of the same propositional vari-
able in a given formula are coordinated (we are assuming no quantification over
propositional variables). However, whether or not two occurrences of the same
variable in different formulae are coordinated is a matter of convention. We do
agree, for example, that in a statement such as “p;p→q`q”, the variables must be
coordinated. In the present schema this says that there may be no code switching

16 MARCUS KRACHT & UDO KLEIN

inside this expression. In interpreting it, we choose a single grammar which re-
places the variables by some constants and interpret that expression. Outside these
constituents, however, we are free to proceed to whichever grammar we like. It
is in this way that another occurrence of the variable “p” can take on a different
interpretation. When one tracks the use of variables in mathematical texts, one be-
comes acutely aware that there are subtle signals which give away what variables
must be freed when. The regime of variable is very much as in functional program-
ming (see [6]). In XSLT, a variable once defined must keep its value for the rest
of its lifespan. The lifespan is defined by the constituent it occurs in. Once the
constituent is complete, the variable disappears together with its value.

9. Openness of Language

Let us briefly return to natural languages. The reality of grammar (in the sense of
syntax) and its independence of semantics has been stressed by Chomsky over and
over. What this means is that grammars should be autonomous in the sense above.
Furthermore, semanticists often make compositionality their priority. Hence we
wind up with the condition that grammars are independent, or better, that we have
bigrammars. Each function symbol is interpreted on the expression side and on
the meaning side independently. The rationale is that as experiments have shown
(for example the so-called wug-test) it is possible to introduce new words into a
language even without meaning and ask what the plural of them is. Similarly, given
a concept of some sort, we can ask what it means for there to be several of them
independently of how we would call them. In sum, plural formation appears to be
the combination of two functions, one for the form and the other for the meaning.

A particular application that comes to mind is the problem whether to think of
Malay as a context free language (we owe this problem to Alexis Manaster-Ramer).
In Malay, to form the plural you simply reduplicate the noun. So, “anak-anak”
means “children”, because “anak” means “child”. This sounds as if Malay really
must be a copying language of some sort. But since Malay has only finitely many
roots, we may as well list all the plural forms independently. Thus, doing the
wug-test in Malay will provide some evidence that plural formation in Malay is
some function that is defined on more input than the language provides in and of
itself. And it may provide evidence that that function really is reduplication. Thus,
languages are open as opposed to closed. This allows them to incorporate new
expressions.

It is however quite another matter for Malay to be open and to actually take in
a new word. Think of a Malay speaker introducing the English word “car” into
the language. What will be its plural? There is no unique answer. On the face
of it we would expect it to be “car-car”, but it could also be “cars”. If it is
the latter, it does not mean that the system of Malay is compromised, as long as
we think of both words as idioms, that is, as long as we do not attempt to derive
“cars” from “car” in Malay. This is exactly the situation of learned vocabulary
items in English (and German). The plural of “formula” is sometimes given as
“formulae” (as it is in Latin) or as “formulas” — the regular form in English.

The Grammar of Code Switching 17

That it can be the latter indicates that plural formation in English does not have to
be restricted to its own nouns (using the wug-test that has generally been shown).
This openness is the key to the flexibility of languages. However, that languages
can follow potentially several trajectories speaks to the freedom of humans who
actually make the languages in the first place. Humans are free to choose and form
the languages that they speak. In fact, if we are correct, this freedom gets exercised
far more often than one is tempted to think.

10. Conclusion

Viewing our communicative powers as not defined by a single language with a
fixed grammar, but rather by a multitude of changing and interleaving grammars
and languages brings us closer to the observed reality. There are formal tools to
deal with this situation. They allow to solve some troubling aspects of semantics,
namely how to deal with variables.

As it stands, though, the new approach raises many new questions. Breaking
the unity of the code, so to speak, forces us to study the metalinguistic faculty in
much more detail. We can no longer rely on the language to be an expression of a
fixed code given in advance, but have to make use, often in a multiply interleaving
way, of many different codes. There must therefore be rules of when to choose
what code. This is what the literature on code switching tries to answer if only for
the interleaving use of different human languages. Moreover, as we have seen, the
fusion of codes may result in various different codes depending on the generating
system we choose for the individual languages. This is a substantial point. It shows
that productivity of language can also be understood in a novel way: it can integrate
other languages in such a way so as to produce expressions that can be found in
neither of the individual languages. Which ones it will produce however is not
determined by the individual languages alone, only by their grammars. We expect
therefore that different individual grammars of speakers will give rise to different
code switching behaviour, for example.

References

[1] Nicholas D. Evans. Dying Words. Endangered Languages and What They Have To Tell Us.
Wiley-Blackwell, Oxford, 2010.

[2] Kit Fine. Semantic relationism. Blackwell, London, 2007.
[3] Marcello Finger and Dov M. Gabbay. Adding a Temporal Dimension to a Logic System. Journal

of Logic, Language and Information, 1:203–233, 1993.
[4] Jeffrey E. F. Friedl. Regular Expressions. O’Reilly, 2002.
[5] Joseph Goguen. An introduction to algebraic semiotics, with an Application to User Interface

Design. In C. Nehaniv, editor, Computation for Metaphors, Analogy and Agents, number 1562
in Springer Lecture Notes in Artificial Intelligence, pages 242–291. 1999.

[6] Michael Kay. XSLT 2.0 and XPath 2.0. A Programmer’s Reference. Wrox, 4 edition, 2008.
[7] Marcus Kracht. Interpreted Languages and Compositionality. Number 89 in Studies in Linguis-

tics and Philosophy. Springer, 2011.
[8] Marcus Kracht. Are Logical Languages Compositional? Studia Logica, 2013.
[9] David Sankoff and Shana Poplack. A Formal Grammar for Code Switching. International Jour-

nal of Human Communication, 14:3–45, 1981.

18 MARCUS KRACHT & UDO KLEIN

Fakultät Linguistik und Literaturwissenschaften, Universität Bielefeld, Postfach 100131, D-
33501 Bielefeld, Germany, {udo.klein,marcus.kracht}@uni-bielefeld.de

