
Syntactic Codes and Grammar Refinement

Marcus Kracht

II. Mathematisches Institut
Freie Universität Berlin

Arnimallee 3
D-14195 Berlin

kracht@math.fu-berlin.de

1 Introduction

This paper is an introduction into the method of syntactic coding. Syntactic coding
is quite simply a method to convert descriptions of syntactic trees or syntactic prin-
ciples into a rule based grammar – preferrably context-free—which does nothing
else but produce exactly those trees which conform to that description. The gain
of this method is considerable. First, it is completely algorithmic in nature and
so can be implemented in a computer if necessary. Thus the working linguist can
concentrate on stating the conditions or principles rather than worry about their
possible implementation. Secondly, it can be used to show that certain grammars
are context-free just by appealing to the basic properties of this method. Thirdly,
it shows quite clearly what powers and limitations of the  grammar style are
and in what ways  is related to other grammar systems.

This essay will be rather hardgoing; in order to keep this paper reasonably
short we cannot give an introduction into the mathematical tools which we use.
Instead I refer to the literature. The techniques used here are from formal language
theory, boolean algebra and dynamic logic. For formal languages consult any
book, for example [Harrison, 1978], for boolean algebras [Davey and Priestley,
1991] and for dynamic logic consult [Harel, 1984].



2

I wish to thank Noam Chomsky, Axel Kleinlein and an anonymous referee for
helpful discussions and Patrick Blackburn for suggesting to me to write this paper.

2 Technical Preparations

2.1 Boolean Algebras

The two main ingredients of this paper are boolean algebras and context-free
grammars. We assume that the reader has standard knowledge of them. Here we
will only introduce some notation and also lesser known techniques. Throughout
this paper, all objects are assumed finite, although most methods have an infinite
analogue.

A boolean algebra is an object B = 〈B, 0, 1,−,∩,∪〉 where B is a set, 0 and 1
elements, − a unary operation and ∩ and ∪ binary operations. The operations have
the usual interpretation. Recall that an atom is an element a which sits directly
above 0, that is, if 0 ≤ x ≤ a then x = 0 or x = a. In the finite case, a boolean
algebra is always isomorphic to an algebra of subsets of some set X (which turns
out to be the set of atoms of the algebra) with 0 interpreted as ∅, 1 interpreted
as X, − being the relative complement, ∩ and ∪ the intersection and union of
sets. We denote this algebra by 2X. Its carrier set is the set of functions from
X to 2 = {0, 1}, a typical construction of the powerset of X. A homomorphism
of boolean algebras A,B is a map h : A → B such that h(0) = 0, h(1) = 1,
h(−c) = −h(c), h(c ∩ d) = h(c) ∩ h(d) and h(c ∪ d) = h(c) ∪ h(d). From two
boolean algebras, A and B, we can form the product, A ×B, as follows

A ×B = 〈A × B, 〈0, 0〉, 〈1, 1〉,−,∩,∪〉

where −〈a, b〉 = 〈−a,−b〉, 〈a, b〉 ∩ 〈c, d〉 = 〈a ∩ c, b ∩ d〉 and 〈a, b〉 ∪ 〈c, d〉 =
〈a∪c, b∪d〉. Important to know is that the atoms of A×B are exactly the elements
〈a, 0〉 with a an atom of A and 〈0, b〉 with b an atom of B. As a consequence, if A
has m atoms andB has n atoms, then the product has exactly m+n atoms. Another
construction is that of the tensor product. Using the representation theorem we
can say that for finite algebras if A is the set algebra 2X and B the set algebra 2Y

then the tensor product, denoted by A⊗B, is isomorphic to 2X×Y ; consequently, it
has m · n atoms if A has m atoms and B n.



3

Given a set X of arbitrary propositional variables or constants the set TmB(X)
of boolean X-terms is simply the set of all terms which can be produced from X
with the help of the standard connectives, such as >, ⊥, ¬, ∧, ∨, etc. The X-terms
modulo boolean equivalence form a boolean algebra which we denote by Fr(X).
Using disjunctive normal form one can show that the atoms of this algebra are
exactly the (equivalence classes of) formulas

AtC =
∧
F∈C

F ∧
∧
F<C

¬F

where C ⊆ X. Hence, Fr(X) has exactly 2n atoms, where n = ]X.

A concept related to boolean algebras and the representation theorem is that
of a classification scheme. We call a triple C = 〈F,O, γ〉 a classification scheme
if F and O are sets and γ ⊆ F × O a binary relation. F is called the set of features
and O the set of objects. The principal idea behind classification schemes is that
we cannot access the objects by way of pointing at them with a unique label but
by describing them with a boolean feature term instead. For example, whereas we
have the traditional syntactic categories n, np, c or cp as primitives, we can analyse
them as feature bundles by introducing the features nom, comp and lex, phr with
obvious meaning, and the following classification table

σ n np c cp
nom ∗ ∗

comp ∗ ∗

lex ∗ ∗

phr ∗ ∗

This scheme will be called Cat. Classification schemes are not the same as con-
texts (for a definition of the latter see [Davey and Priestley, 1991]), although there
is a strong similarity. Unlike contexts, classification schemes are imbalanced in
the role of the features and the role of the objects. We associate different boolean
algebras with them. Naturally, for objects we take the algebra 2O of sets of objects,
while for the features we take the boolean algebra Fr(F). There are two natural
maps that can be associated with γ. For each feature term t we can ask for the
set of objects satisfying t; this set is the extension of t and is denoted by tγ. It is



4

computed as follows.

fγ = {o : f γ o}
(¬t)γ = O − tγ

(t ∧ u)γ = tγ ∩ uγ

(t ∨ u)γ = tγ ∪ uγ

(−)γ will be called the canonical map of C. For example, for Cat the canonical
map is

nomσ = {n, np}
compσ = {c, cp}
lexσ = {n, c}
phrσ = {np, cp}

Likewise, with each set Y of objects we can ask for the (equivalence class of)
the most specific term containing Y . This is defined by putting Oγ = {F : FγO};
then

Yγ =
∨
O∈Y

AtOγ

Notice that Y ⊆ (Yγ)γ but that equality need not hold. This is so because there
can be objects which cannot be discriminated by features, and if Y contains only
one of them, (Yγ)γ must contain both. In the finite case (which we assume here),
there is a largest number k such that there exist k different objects with identical
classification. This number is denoted by µ(C) and is called the multiplicity of
the classification scheme. µ(C) = 1 iff the homomorphism (−)γ : Fr(F) → 2O is
surjective iff every set of objects is the extension of some F-term (at least in the
finite case). There is also a counterpart on the side of the features; if there are
features whose extension can be expressed by means of other features we call C
redundant. The redundancy can be quantified by the number of features that can
be eliminated in the sense that after elimination the same sets are extensions of
terms. We call this number ρ(C). Our example has ρ(Cat) = 2 since phrσ = −lexσ

and nomσ = −compσ. Notice that even if a classification scheme is nonredundant
it might still be inefficient in using too many features. It can be made efficient,
however, only by rearranging the primitives of the classification itself, namely the
features.

Classification schemes can be extended by enlarging the feature set or the
object set. The most elegant way to perform this is by combining a scheme with



5

another. Let C = 〈E,O, γ〉 and D = 〈F,O, δ〉 be classification schemes over the
same objects. Then we can form the feature addition C�D by taking the disjoint
union E + F of the features and the sum γ + δ of the relations. To be explicit,
g(γ + δ)o for g ∈ E + F and o ∈ O iff g ∈ E and g γ o or g ∈ F and g δ o. Then

C �D = 〈E + F,O, γ + δ〉

Suppose that F has k elements; then we call C�D a k-extension of C. Now assume
that C = 〈F,O, γ〉 and that D = 〈F,P, δ〉. We can then add D to C in a similar way
by taking the disjoint union of the object sets; let then γ⊕ δ be defined by f γ⊕ δ o
iff o ∈ O and f γ o or o ∈ P and f δ o.

C ⊕D = 〈F,O + P, γ ⊕ δ〉

Alternatively, we can form pairs 〈o, p〉 with o ∈ O and p ∈ P. In this case, how-
ever, it would be most natural to assume as classifying features pairs of features.
If, however, we insist on having the original features, we have to eliminate all
those pairs which receive different classification in C and D. To be exact, let

O ×F P = {〈o, p〉 : oγ = pδ}

Next, put tγ⊗δ = tγ × tδ. Then

C ⊗D = 〈F,O ×F P, γ ⊗ δ〉

The notation is not accidental; the construction C ⊕ D yields on the object side
the algebra 2O+P � 2O ⊕ 2P while C ⊗D yields a construction known as the fibred
tensor product. The latter is isomorphic to a quotient of the algebra 2O×P �
2O ⊗ 2P. Without proof we state the following laws for multiplicites.

µ(C ⊕D) ≤ µ(C) + µ(D)
µ(C ⊗D) ≤ µ(C) · µ(D)

2.2 Grammars

A context-free grammar (cfg) is a quadruple G = 〈Sy,Σ,Ω,R〉 where Sy is a
finite set, the set of symbols, Σ ⊆ Sy the set of start symbols, Ω ⊆ Sy the set
of terminal symbols and R ⊆ Sy × Sy∗ a finite set, the set of rules. Notice that
this deviates from the standard definition in that there is a complete parallelism



6

between start symbols and terminal symbols. There is a set of start symbols,
and terminal symbols may appear on the left hand side of a rule. Typically, only
a single start symbol is allowed. However, at the cost of introducing a special
start symbol S together with rules S → T for each T ∈ Σ we can reduce the
grammar to a cfg with only a single start symbol. Secondly, the terminal symbols
correspond more to preterminal symbols in standard cfgs. To get a standard cfg
from cfgs as defined here one has to specify a lexicon in addition; a lexicon is
a pair 〈L, c〉, where L is a finite set and c : L → Ω a map. c is also called the
syntactic classification map because it tells us what syntactic category a word or
lexical entry belongs to. An (ordered) tree is an object T = 〈T, r, <,@〉, where T
is a finite set and < ⊆ T 2 a tree order with r being the root, and @ a precedence
ordering. If one thinks of the nodes as representing events (e. g. the event of
uttering the constituent denoted by that node), < then is the ordering of proper
subevents and @ that of (strict) precendence. A labelled tree with labels in Sy is
a pair 〈T, `〉 where ` : T → Sy returns a label from Sy for each node from T. A
cfg generates 〈T, `〉 just in case (1) the root has a label from Σ, (2) the leaves have
labels from Ω and (3) if x immediately dominates y1, . . . , yn (in that order) then
`(x)→ `(y1) . . . `(yn) ∈ R. Clause (3) is called the local admissiblity condition.

Context free grammars form the underlying machine of feature grammars. A
feature grammar is a pair G = 〈G,C〉 where G is a cf-grammar over the set Sy
of symbols and C a classification scheme over Sy. Given that C = 〈F,Sy, γ〉 we
also say that G is an F-grammar. The structures generated by feature grammars
are not simply labelled trees but feature trees. Feature tree as pairs 〈T, φ〉 where
φ : T → Fr(F); thus, each node is assigned an F-term. In some sense we use the
cf-grammar as a machine to distribute the features over the trees. Throughout this
paper it is feature-grammars we are dealing with as opposed to ordinary cfgs. This
might seem an unnecessary complication, but the additional twist is that when
the classification scheme has multiplicity > 1 there are symbols in Sy which are
undifferentiable with the help of the features. They will play a central role in the
theory of codes. To give an example, suppose that we have a single feature f; it
is possible to write an {f}-grammar which distributes f on exactly one node in the
tree. For example this binary branching grammar.

�
�

�
�

@
@

@
@
b

n b
�

�
�
�

@
@

@
@
b

b n
�

�
�
�

@
@

@
@
b

n p



7

�
�

�
�

@
@

@
@
b

p n
�

�
�
�

@
@

@
@

n

n n
�

�
�
�

@
@

@
@

p

n n

Here Σ = {p, b} and Ω = {p, n}. Put fσ = {p}. Then first of all, f can appear only at
the root or as a daughter of a b-node. The b-nodes on the other hand are filed along
a single branch until a p-node is reached. Since a p-node only has n-daughters,
no p-node can dominate another p-node. Together this shows that there is at most
one p-node. With n < Σ we make sure that any tree we start can be completed
to contain a p-node and by b < Ω we make sure that it must be completed in this
way. Thus exactly one p-node appears, which had to be proved. It is not hard to
show that two symbols cannot guarantee the correct distribution of f. Since this
is the case, no grammar exists generating the required trees in which the symbols
can be differentiated by means of the distributed symbol f alone. We say in this
case that the grammar needs a memory. To be precise, let us state the following
definitions.

An n-extension of an F-grammar 〈G,C〉 is a F ∪ E-grammar 〈G,C �D〉 where
D is a classification scheme over E = {e1, . . . , en}. So, an n-extension differs only
with respect to the features; the underlying cfg is completely identical. The ex-
tending grammar has an additional resource of n features which might be used to
discriminate more symbols than in the original grammar. A grammar can always
be extended, but this only makes sense if the canonical map of the classification
scheme, (−)γ, is not surjective. If that is the case, it is clear that there is a finite
number of extra features that need be added to make the feature map surjective.

Definition 1 A feature-grammar 〈G,C〉 is called rational if the map (−)γ : Fr(F)→
2Sy is surjective. The smallest number k such that there exists a rational k-
extension is called the memory of a feature-grammar. Thus, a feature-grammar is
rational iff it has memory 0.

There are explicit ways to calculate the memory. Namely, the memory is p2 logµ(C)q
where µ(C) is the multiplicity of the classification scheme and pkq denotes the
smallest integer ≥ k. This follows from the fact that r features allow to discrim-
inate 2r symbols. Explicit examples of memory can be found in connection with
long-distance dependencies. In  the device of the slash-feature takes care of
the distribution of empty categories; in , this slash-feature is not explicit in the



8

trees. Feature-grammars offer a way to uphold the -analysis while retaining a
cf-grammar underneath.

Finally, let us remark that if a feature grammar is rational the underlying cfg
can in effect be presented via the feature system, since every element of Sy can
be singled out by a feature term. This is the way we will present grammars here
in sequel, to save space (and mental energy). The memory will be instatiated
via auxiliary features. Analogously, we can pretend that our grammar produces
feature trees directly. This requires adapting the definition of generation. The
grammar generates a feature tree if (1′) the root has label a and a ≤ s, where s
is the start term, (2′) the terminal nodes have label b with b ≤ o, o the stop term,
(3′) If x dominates y1 . . . ym then there is a rule a → b1 . . . bm such that `(x) ≤ a
and `(y j) ≤ b j for all j ≤ m.

3 Grammars and Logic

There is a special language for describing facts about trees which is perfectly
fitted to the study of codes. This language is a certain fragment of dynamic logic.
Chiefly, this language allows to introduce a battery of binary relations over trees
which can be used to express both local and nonlocal dependencies between nodes
of the trees. The fundamental relations with which we start are the relations in a
local tree. They are in particular ^ daughter of, ^ mother of, ^ immediate right
sister of and ^ immediate left sister of.

1

2 3 4

�
�

�
�

@
@

@
@

^ = {〈2, 1〉, 〈3, 1〉, 〈4, 1〉}
^ = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉}
^ = {〈2, 3〉, 〈3, 4〉}
^ = {〈4, 3〉, 〈3, 2〉}

From these relations we can form complex relations with the help of the set-
theoretic union ∪, the composition ◦ and the Kleene Star ∗. The reader may check
the correctness of the following list of relations. (Recall that R+ is defined by
R ◦ R∗.)



9

R T

^
∗ dominates
^
+ properly dominates
^
∗ is dominated by
^
+ is properly dominated by
^
+
∪ ^

+ sister of
^
∗
◦ ^

+
◦ ^

∗ precedes
^
∗
◦ ^

+
◦ ^

∗ succeeds
^
∗
∪ ^

∗ overlaps with
^
∗
◦ (^+ ∪ ^+) ◦ ^∗ ∪ ^+ ∪ ^+ is different from

Suppose now that we want to describe F-trees. Then first of all we take a constant
fi for each Fi ∈ F in addition to the usual variables p1, p2, . . .; we grant ourselves
the usual boolean connectives ¬,∧,∨,→, . . .. And, finally, we allow a relation
R and a proposition φ to combine to the proposition Rφ which is true at a node
x exactly if there exists a y standing in relation R to x which also satisfies φ. 1

There is at last another connective, namely ?, the so-called test, which applies to
propositions and returns a relation. We have 〈x, y〉 ∈ φ? iff x = y and φ holds at
x. The collection of all propositions which can be formed in this way using the
fundamental relations is called the orientation language and denoted by Olt(F).
Its expressive power is quite large, allowing to state non-local dependencies along
regular paths, and in fact anything that typically is required in linguistic theories.
In this language one can also capture finite F-trees axiomatically; the resulting
logic will be called Φ. The precise content of the axioms is of no importance here.
The reader is referred to [Harel, 1984] for details. In the sequel, the following
theorems of dynamic logic will be made use of.

(d◦) R ◦ S φ .↔ . R (S φ)
(d?) φ?ψ .↔ . φ ∧ ψ
(d∪) (R ∪ S )φ .↔ . R φ ∨ S φ
(d ∗) R∗ φ .↔ . φ ∨ R ◦ R∗ φ

1W confuse pograms and modal operators here. In dynamic logic one has to write 〈R〉φ instead
of just Rφ.



10

Another useful operator, usually not present in dynamic logic, is the relational
converse. We define R` = {〈y, x〉 : 〈x, y〉 ∈ R}. The following then holds.

(cc) (R`)` = R
(c )̂ ^

` = ^
(c )̂ ^

` = ^
(c◦) (R ◦ S )` = S ` ◦ R`

(c?) (φ?)` = φ?
(c∪) (R ∪ S )` = R` ∪ S `

(c ∗) (R∗)` = (R`)∗

These postulates show that if the converse operator is added it does not increase
the power of the orientation language.

A rational F-grammar can be transformed into an axiom in the orientation
language as follows. First, note that by rationality each rule ρ = u → v1 . . . vm

can be rewritten as u → v1 . . . vm, where u, vi are suitable boolean F-terms such
that uγ = {u} and vγi = {vi} for i ≤ m, (−)γ the canonical map induced by the
classication scheme of G. Now put

λ(ρ) = u ∧ (̂¬^> ∧ v1 ∧ (̂v2 ∧ (̂. . . ∧ (̂vm ∧ ¬^>) . . .)))

There exists a s such that sσ = Σ and a o such that oσ = Ω. We can express the
boundary conditions on the trees by

λΣ = ¬^
∗(¬^> ∧ ¬s)

λΩ = ¬^
∗(¬^> ∧ ¬o)

Finally, for G = 〈G, σ〉 let

λ(G) = λΣ ∧ λΩ ∧ (¬o→
∨
ρ∈R

λ(ρ))

The local admissibility condition is captured by the third conjunct as is readily
checked. In this way, a rational F-grammar corresponds to a single axiom extend-
ing Φ, which is variable free. We call λ(G) the characteristic axiom of G.

4 Grammar Manipulations

If we take the analogy of grammars and axiomatic descriptions of trees literally,
there should be constructions on grammars which mirror the usual logical connec-



11

tives, in particular conjunction and disjunction. Indeed, there are such construc-
tions and they will turn out to be central tools in grammar refinement. To begin,
let us introduce certain constructions for context-free grammars. Given a single
cfg G = 〈Sy,Σ,Ω,R〉 and a set C ⊆ Sy we write

G � C = 〈C,Σ ∩C,Ω ∩C,R ∩C ×C∗〉

and call G � C the restriction of G to C. We also say that G � C is obtained
from G by cutting Sy −C, the complement of C in Sy. The intended effect is that
we remove all symbols from the grammar which do not belong to C and all those
rules which employ these symbols.

Given two cfgs, G1 = 〈Sy1,Σ1,Ω1,R1〉 and G2 = 〈Sy2,Σ2,Ω2,R2〉 let us define
the grammar G1 ×G2. It operates on the set Sy1 × Sy2, thus pairs of symbols, one
from G1 and the other from G2. The start symbols are simply those of Σ1 ×Σ2, the
terminal symbols those from Ω1 ×Ω2 and the rules are a straightforward marriage
of the respective local conditions:

(∗) 〈u1, u2〉 → 〈v1
1, v

2
1〉 . . . 〈v

1
m, v

2
m〉 ∈ R1 × R2 iff

u1 → v1
1 . . . v

1
m ∈ R1 and u2 → v2

1 . . . v
2
m ∈ R2

The trees generated by this grammar are of the form 〈T, `1 × `2〉, where `i : T →
Syi.

Proposition 2 〈T, `1 × `2〉 is generated by G1 × G2 iff 〈T1, `1〉 is generated by G1

and 〈T, `2〉 is generated by G2. �

The proof is by straightforward checking of the definitions. Notice, for example,
that (∗) says exactly that the local admissibility condition for G1 × G2 is the con-
junction of the local admissibility conditions for G1 for the left factor and for G2

in the right factor. Now we lift this construction to feature-grammars. Given two
F-grammars G1 = 〈G1,C1〉 and G2 = 〈G2,C2〉 we want as a result an F-grammar.
Thus we put

G1 ⊗G2 = 〈G1 × G2 � (Sy1 ×F Sy),C1 ⊗ C2〉

Proposition 3 LetG1,G2 be F-grammars. Then the memory ofG1⊗G2 is at most
the sum of memories of G1 and G2. In particular, G1 ⊗ G2 is memory free if both
factors are. Let T be an F-tree. Then G1 ⊗ G2 generates T iff both G1 and G2

generate T. �



12

Similarly, a grammar G1 +G2 can be defined which uses as symbols the set Sy1 +

Sy2 and is defined by

G1 + G2 = 〈Sy1 + Sy2,Σ1 + Σ2,Ω1 + Ω2,R1 + R2〉

Proposition 4 Suppose that G1 and G2 are grammars over disjoint sets of sym-
bols. Then G1 + G2 generates T iff either G1 generates T or G2 does. �

Adding the classifying component is as straightforward. We put

G1 ⊕G2 = 〈G1 + G2,C1 ⊕ C2〉

Proposition 5 LetG1,G2 be F-grammars. Then the memory ofG1⊕G2 is at most
1 plus the sum of memories of G1 and G2. Let T be an F-tree. Then G1 ⊕ G2

generates T iff either of G1 and G2 generates T. �

Notice that as regards the size of the memory we might need an additional feature
that tells apart the symbols from G1 from those of G2.

5 The Coding Theorem

Standard syntactical theories proceed in the definition of languages or grammars
in the following way. They first specify a rather rudimentary grammar, for exam-
ple X-syntax and then add a set of principles or conditions, which further restrict
the possible trees. This strategy can be mirrored by the method of grammar re-
finement. We start with the same rudimentary grammar X = 〈X,C〉 and take the
first principle, P1. Assuming that P1 uses no features unknown to X, which can
always be achieved by passing from X to a suitable extension, we then try to write
a grammar which produces as output exactly the trees conforming to P1. If we
succeed, call this grammar P1. Now form X ⊗ P1; this is called the refinement of
X by P1. Proceed with P2. And so on. Having succeeded for all principles we
end up with a grammar which is correct for X and all principles. The success of
this strategy rests on the possibility to define such grammars Pi. Thus we are in-
terested in the question of which principles allow to be converted into grammars.
It is the case, however, that the possibility of doing this varies with the grammar
into which we want to code the principle.



13

Definition 6 Let P be a condition on F-trees and let G be an F-grammar. We say
that G codes P if G generates T exactly if T satisfies P.

The problem of codability will be attacked in a slightly different way. We begin
with the set F and take a disjoint setX = {x1, . . . , xm}. AnX-spread over F-trees is
a condition on how to distribute the features fromX over the F-trees. Alternatively,
a spread is a set ofX-extensions of F-trees. A spread is Olt-definable if there exist
φ1, . . . , φm ∈ Olt(F) such that

(†)

x1 .↔ . φ1(x1, . . . , xm)
x2 .↔ . φ2(x2, . . . , xm)

. . .
xm .↔ . φm(x1, . . . , xm)

Even though such a definition can be made for all trees, we cannot write a simple
grammar coding this spread into all grammars in the sense discussed above. Nev-
ertheless, if we restrict ourselves to at most k-branching trees there will be such
a grammar as asserts the next theorem. Moreover, if Ck codes such a spread into
at most k-branching trees and C` codes it into the at most `-branching trees with
` ≤ k then C` results from Ck by removing all rules which produce more than `
daughters. This is easy to see. Thus, let us restrict now the attention to at most
k-banching trees, k a natural number. For the problem mentioned at the beginning
this is naturally satisfied because starting with a grammar means restricting the set
of trees to trees with bounded branching number.

Theorem 7 (Coding Theorem) Let k be a natural number. Any Olt(F)-definable
spread over at most k-branching trees is codable.

The proof proceeds by simplifying the definitional schema for the spread by intro-
ducing additional variables. Let us attack, for example, the first equivalence of the
schema. Assume φ1 is a boolean function f of the propositions ψ1(x), . . . , ψk(x).
(For example, φ1 = ¬(ψ1 ∨ (ψ2 ∧ ψ3)).) Introduce new variables y1, . . . , yk and
rewrite the first equivalence into

(‡)

x1 .↔ . f (y1, . . . , yk)
y1 .↔ . ψ1(x1, . . . , xm)
y2 .↔ . ψ2(x1, . . . , xm)

. . .
yk .↔ . ψk(x1, . . . , xm)



14

If we replace the first line in (†) by the system (‡) then we obtain a system in
which the complexity of the formula φ1 is reduced.

Suppose next that φ = (R ◦ S )ψ. Using (d◦) we can rewrite this into

x1 .↔ . Ry
y .↔ . Sψ(x1, . . . , xm)

Similarly with φ = (R ∪ S )ψ, which is equivalent to Rψ ∨ Sψ, by (d∪). And with
φ = (ψ?)χ which is equivalent to ψ ∧ χ by (d?). Finally, let φ = R∗ ψ. By (d ∗),
R∗ ψ is equivalent to ψ ∨ R ◦ R∗ ψ. Thus we can rewrite x1.↔ .R∗ψ(x) into

x1 .↔ . y ∨ Rx1

y .↔ . ψ(x1, . . . , xm)

We are now down to a few basic cases; we need to show that the basic relations
can be coded and that booleans can be coded, and we are done. The booleans,
however, are codable; consider, namely, the spread x1. ↔ . f (x1, . . . , xm) where f
is boolean function. Then this spread is coded simply by restricting the grammar
to the set of nodes satisfying x1. ↔ . f (x1, . . . , xm). Moreover, notice that it does
not matter whether x1 appears to the right. So, the definition of the spread can be
downright circular but the argument works nevertheless.

Finally, consider the basic relations ,̂ ,̂ ^ und .̂ Below we list the gram-
mars coding the spreads x.↔ .Ry for all four relations. For the sake of simplicity
we assume a grammar which is at most binary branching. Furthermore, for ease
of understanding we write Ry rather than x.

Left. Σ = ¬^y, Ω = >. The rules are

>

¬^y
�

�
�
�

@
@

@
@

>

y ∧ ¬^y ^y
�

�
�
�

@
@

@
@

>

¬y ∧ ¬^y ^¬y

Right. Σ = ¬^y, Ω = >. The rules are



15

>

¬^y
�

�
�
�

@
@

@
@

>

^y y ∧ ¬^y
�

�
�
�

@
@

@
@

>

^¬y ¬y ∧ ¬^y

Above. Σ = ¬^y, Ω = >. The rules are

y

^y

¬y

^¬y
�

�
�
�

@
@

@
@

y

^y ^y
�

�
�
�

@
@

@
@

¬y

^¬y ^¬y

Below. Σ = >, Ω = ¬^y. The rules are

^y

y

¬^y

¬y
�

�
�
�

@
@

@
@
^y

y y
�

�
�
�

@
@

@
@
^y

y ¬y

�
�

�
�

@
@

@
@
^y

¬y y
�

�
�
�

@
@

@
@

¬^y

¬y ¬y

The proof of the theorem is now complete. �

Let us spell out some consequences of the Coding Theorem. Recall that a cf-
grammar is called linear if all rules are of the form A → w with A < Ω and w
containing at most one occurrence of a symbol not from Ω; and that a cf-grammar
is right regular (left regular) if all rules are of the form A → wB (A → Bw)
with A < Ω and w ∈ Ω∗. A grammar is regular if it is either left-regular or
right-regular. Suppose now that G is linear (left-regular, right-regular); then G⊗H
is linear (left-regular, right-regular) as well. Let G be an F-grammar and φ be
a Olt(F)-expressible condition on G. Let us now denote by G ↓ φ the result of
coding φ into G, that is, of writing a grammar that satisfies exactly the condition
φ and the condition of G.



16

Corollary 8 Let G be a linear (left-regular, right-regular) F-grammar and φ a
constant Olt(F)-term. Then G ↓ φ is linear (left-regular, right-regular) as well. �

For a proof we simply note that G ↓ φ is isomorphic to G ⊗ H for an F-grammar
H.

Moreover, let k be a natural number. Let us denote the set of all rational F-
grammars with branching number at most k by Gramk(F). There is a least specific
grammar, 1k, with Σ = >,Ω = > and all possible rules (there are only finitely
many). There is a most specific grammar, with no rules at all. Call this grammar
0k. On Gramk(F) we can define a conjunction by ⊗, a disjunction by ⊕ and even
a negation. Namely, let λ(G) be the characteristic axiom of G. It is a constant
Olt(F)-term; so is the negation ¬λ(G). Hence the latter is codable into 1k and
yields a grammar 	G. Let us furthermore observe that

λ(G ⊕ H) .↔ . λ(G) ∨ λ(H)
λ(G ⊗ H) .↔ . λ(G) ∧ λ(H)
λ(	G) .↔ . ¬λ(G)

Define now the grammar space as follows

Gramk(F) = 〈Gramk(F), 1k, 0k,	,⊗,⊕〉

Theorem 9 Gramk(F) is a boolean algebra. �

Let us return to the example of a feature grammar distributing a feature at a single
point. There we can also write down the following formula

f.↔ .¬^
∗
◦ (^+ ∪ ^+) ◦ ^∗ ∪ ^+ ∪ ^+f

A tree satisfies this formula iff f is true at a single node. Despite the fact that there
is no memory free grammar coding this spread, there is a formula containing only
f and no auxiliary symbols. It is tempting to believe that it is always possible
to write down a charactistic formula for a feature grammar only emplyoing the
features of that grammar. However, this conclusion is premature. We sketch a
counterexample. Consider a grammar generating ternary branching trees that dis-
tributes a symbol x at the leaves of a binary branching subtree and f at the leaves of
that subtree. Now remove the feature x, creating a grammar with memory. There
is no formula in the constant f that can distribute f exactly at the leaves of a binary
branching subtree.



17

6 Applications of the Coding Theorem

G   F G. From the perspective of the Coding Theorem we
can understand  as the result of coding certain principles for local and non-
local dependencies. In this chapter we will analyse how one can make sense of
 in this way and gain a deeper understanding of the relationship between 
and grammars based on principles and parameters. We begin by giving a sketch
on how  can be reduced to a feature grammar. Given the actual shape of 
this is almost straightforward.

The logical engine of  allows both so called atomic-valued features and
features which take a feature-complex—or, as we prefer to say, a feature term—as
a value. The former are called type 0 features, the latter type 1 features. Further-
more, many type 0 features are quite simple in that they allow an a priori fixed
number of alternatives, while the others, such as (agr and slash), are slightly less
straightforward. They are, however, not iterable and so in effect there are only a
finite number of non-equivalent terms—though this number is quite large. This
means that although syntactically  has a language which is richer than that
of boolean logic, it can be reduced to the latter. It should be noted, though, that
the feature language allows a more concise definition of categories and rules. Af-
ter categories are defined,  names a number of constraints which delimit the
space of categories. These constraints are simply axioms—boolean axioms after
reduction. Moreover, there exist certain defaults on feature specification; in our
context there is no room for defaults – they have to be unravelled into ordinary
boolean conditions.

The next step is the definition of the rules. There are two kinds of rules.
The first kind are the usual rules; the second type, the so-called metarules state
that if a rule of certain type is admitted so is a rule of another type. Metarules
have the flavour of transformations; however, while transformations are part of the
syntactic derivation itself, metarules are not. Metarules do not simply correspond
to axioms since they produce rules, and rules are used in disjunction while axioms
are used in conjunction. But  allows to unravel rules plus metarules into a set
of rules since the resulting set is finite.

X- S. The short rundown of  illustrates that it fits rather well into the
schema of feature grammars. More illuminating than this is the converse stategy
of taking a -like grammar and produce a -style equivalent grammar. To



18

start we show how to produce X-syntax. To begin, we need four different features,
hd (head), sp (specifier), co (complement) and ad (adjunct). Now the following
grammar can be defined.

Centricity Grammar. Σ = hd, Ω = hd.

>

hd
�

�
�
�

@
@

@
@

>

hd −hd
�

�
�
�

@
@

@
@

>

−hd hd

The centricity grammar does nothing but distribute the roles of head, specifier,
complement and adjunct. The latter three cannot really be distinguished in terms
of rules but will play their respective role later on. There is a list of features, called
head features, which obey the following postulates, called head feature conven-
tions.

 . For all head-features f: f ∧ ^>.→ . (̂hd ∧ f)
 . For all head-features f: hd ∧ f ∧ ^>.→ . f̂

These conventions that a head feature that is instantiated at the mother is instanti-
ated at the head daughter and conversely. Instead of head features we could speak
of a head term, which is a feature term over the head features. The s stated
here are pretty much those implicit in  but different from those in , which
are more complex in character. Also, unlike  the notion of a head is not meta-
grammatical but inbuilt. It is rather delicate to say exactly what the head is when
given a local tree, so one is advised to take the head as a primitive.

Next we introduce the levels. There are three levels, bar:0, bar:1 and bar:2;
they are mutually exclusive.

Level Grammar. Σ = bar:2, Ω = bar:0. There is an axiom −hd. → .bar:2 and
the following rules.



19

bar:2

bar:1

bar:1

bar:0

�
�

�
�

@
@

@
@

bar:2

hd ∧ bar:2 ad
�

�
�
�

@
@

@
@

bar:2

ad hd ∧ bar:2

�
�

�
�

@
@

@
@

bar:2

hd ∧ bar:1 sp
�

�
�
�

@
@

@
@

bar:2

sp hd ∧ bar:1

�
�

�
�

@
@

@
@

bar:1

hd ∧ bar:1 ad
�

�
�
�

@
@

@
@

bar:1

ad hd ∧ bar:1

�
�

�
�

@
@

@
@

bar:1

hd ∧ bar:0 sp
�

�
�
�

@
@

@
@

bar:1

sp hd ∧ bar:0

Notice that there is no recursion for bar:0. All that needs to be done in order to
get a full X-syntax is to define the set of basic categories. In the barriers system
of [Chomsky, 1986], the following set would have sufficed {n, v, p, adj, adv, i, c},
but currently there is no observable agreement about the basic set of categories.

S-H-A. In , agreement phenomena are assumed to be the effect
of spec-head-agreement. This means that in a phrase xp the specifier carries the
same agreement features as the x0 head. Suppose, for the sake of the argument,
that we want to code spec-head-agreement without assuming that agreement fea-
tures are head-features (which they are). Then, as the head of a phrase and the
specifier are never in the same local tree there is no a priori reason to believe that



20

spec-head-agreement is codable without a memory. Indeed, one can show that a
memory is strictly necessary. Just consider the problem of how the head knows
the particular agreement features the specifier has selected if this assigment is not
signalled to the x0-head by its x-mother. If the mother agrees with the x0 as part of
the  then the head knows what to do; otherwise, if agreement on the mother is
independent from that of the x0-head, we need a memory of sufficient size to trans-
mit the agreement information via the mother to the daughter. With this memory,
what one has to do is to transmit the agreement information from specifier to its
sister and let it percolate just like a head-feature down to the x0-head. Instead of
this longwinded description we may issue the following convention.

S-H-A. For all agreement terms a

hd.→ .[a.↔ .((¬(^∪ )̂sp)? ◦ )̂∗ ◦ (^∪ )̂a]

The costs of coding are calculated as follows. Horizontal modalities are free of
cost; likewise (¬(^∪ )̂sp)?. Only the upward operator ^ in combination with the
star introduces the need for a memory. Its size depends on the number of possible
agreement situations. Given k atoms for agreement, we need κ = p2 logkq basic
features as memory. If we add the s, the need for this memory no longer arises
and spec-head-agreement is for free.

R M. According to [Rizzi, 1990] the conditions on movement
are subject to a principle called Relativized Minimality. Roughly speaking, it says
that a trace must be associated with the nearest accessible element in a position
which is functionally similar to that of the trace. To make this precise we have
to specify first the notion of functional similarity. Two positions are functionally
similar exactly when they are both A-positions or both A-positions or both (zero-
level) heads. 2 To avoid complications we assume that we have a boolean feature
arg telling us which node is an A-position and a boolean feature n-arg identifying
the A-positions. 3 Next we need to specify accessibility. In [Rizzi, 1990], x is
accessible for y if (i) x c-commands y (ii) no barrier intervenes. Here, c-command
is the relation (^∪ )̂ ◦ ^∗. A barrier is a node not directly selected by a verbal

2An A-position in a projection of a basic category b is a position that is θ-selected by at least
one lexical head of category b. So while θ-positions are not fixed in a tree and can vary with the
particular lexical entry in that tree, A-positions are fixed independently of the particular lexical
entries.

3It is not the case that positions which are not A-positions are A-positions; rather, this division
holds of the maximal projections only. Thus the following is valid arg ∨ n-arg. ↔ .bar:2 and, of
course, arg ∧ n-arg.↔ .0.



21

category, thus in first approximation a node not sister to c ∨ i ∨ v ∨ adj which
selects a complement. 4 Again we avoid unnecessary complications by assuming
a boolean ba to specify the barriers. We say that between x and y intervenes a
barrier if there exists a barrier b > y with ¬ (x < b). The accessibility relation is
now specified as

(^∪ )̂ ∪ (^ ◦ (¬ba ?))∗ ◦ (^∪ )̂

Moreover, immediate sisters are excluded so that the right form of relation is

acc = (^ ◦ (¬ba ?))∗ ◦ (^∪ )̂

Finally, we have as an effect of the general principle of Relativized Minimality
several axioms; for example, that an np-trace in A-position needs an accessible
antecedent

RM (- ).

np ∧ arg ∧ trace.→ .acc (np ∧ arg)

In the language of  we are allowed to use variables for categories. So we can
summarize the full principle by

RM ( ).

trace ∧ arg: β ∧ head:α.→ .acc (head:α ∧ arg: β)

Here α ranges over head-features and β over {+, 0,−} with [arg:+] representing
arg, [arg:−] representing n-arg and [arg: 0] collecting the rest, i. e. the non-
phrasal nodes.

The following important point needs to be considered. Up to now we have
secured the existence of an accessible antecedent; but it is possible that an an-
tecendent is accessible from several positions. Since the idea behind movement
is that only one of the accessing positions can be the origin of the constituent in
question,  uses indices (among other things) to mark those elements which are
in a movement chain of a single constituent from its -structure position to its -
structure position (-position). In our language there is no room for indices and

4We simplify matters here by not considering possible complications due to adjunction.



22

one may wonder whether we need them at all for syntactic purposes.  has
shown with a particular example that we might get away without them. Here we
will show that nothing in [Rizzi, 1990] forces us to assume indices. The problem
in the sketch above is that it is consistent to have two nodes y1, y2 for which x is
accessible and functionally similar. We need to exclude this. Two solutions offer
themselves. The first is to specify a relation co-acc which holds of nodes y1 and y2

if they are functionally similar but different and are acc-related to a functionally
similar x. Then add the following axiom

U A.

trace ∧ head:α ∧ arg: β.→ . ¬co-acc (trace ∧ head:α ∧ arg: β)

The second solution is to monitor directly the distribution of the traces that can
be associated with an antecedent. To this end introduce two (!) type 1 features,
acc and p-acc with range {head, arg} (corresponding to finitely many boolean
atoms!). Let p-acc:α be initiated on a node exactly when it has a sister of type α.
p-acc:α is passed on as acc:α to the daughters exactly as is acc:α. acc:α per-
colates downwards from mother to at most one daughter, all others get ¬(acc:α).
If the mother is a barrier it fails to pass on its acc-feature; the value of the acc-
feature on the daughter then depends on the presence of an antecedent among the
daughters themselves. The complication in the introduction of p-acc lies in the
fact that sisters of ancedents cannot access them via acc – only their daughters and
offsprings can. The following then expresses Relativized Minimality with Unique
Association.

RM ().

trace ∧ head:α ∧ arg: β.→ .acc:[head:α ∧ arg: β]

Finally, let me say that this type of approach is only possible under the condition
that subsequent derivations do not destroy the configuration that justified the pre-
vious derivation. This is the case. Head-movement is an exception, however. For
example, if v adjoins to infl and the complex [v infl] adjoins to comp then after the
second adjunction the link between the first trace and its antecedent is broken and
the resulting structure fails the condition on head movement for that trace. For
these cases a different approach is called for. 5

5This is in essence the example with which Chomsky demonstrates the difference between



23

7 Conclusion

The Coding Theorem and the machinery surrounding it can be used to analyze a
wide variety of syntactic theories. I have exemplified this with  and some vari-
ant of . It turned out that feature grammars provide just the right kind of object
with which to compare the two prima facie quite distinct formalisms. Many ques-
tions then arise. First, is it possible to collapse the different levels of representation
of  into a single one in a similar mechanical way as with syntactic codes, that
is, is there a way to reduce  to an essentially monostratal theory? If so, the main
obstacle in comparing  with other theories is removed. Secondly, we have seen
that grammars can also be equated with a axiomatic theories, via the characteristic
axiom. If a full -theory is treated this way this characteristic axiom cannot be
constant in case the generated language is not context-free. Thus, for any suit-
able pair of syntactic theories is it possible to compare them just by looking at the
characteristic axiom? A first step has been made. If this axiom is equivalent to a
constant axiom then by the Coding Theorem the grammar generates a context-free
language. However, what happens in other cases is largely unexplored. It might
be worthwile to investigate whether we can measure the complexity problems of
the language (e. g. the parsing problem) via the characteristic axiom analogous to
descriptive complexity theory.

In sum, this may be a way to replace the by now standard approach to formal
language theory via rule systems by another which is more in line with the current
developments in linguistics. As the rules move out of focus and get replaced by
principles we need ways to analyse the content of a theory phrased not with rules
but with principles. At the same time it would be unwise to just start from scratch.
Rather, one wants a way to connect one way of thinking with the other. Coding
Theory is a way to do that.

References

[Chomsky, 1986] Noam Chomsky. Barriers. MIT Press, Cambrigde (Mass.),
1986.

purely representational accounts of movement and a derivational one.



24

[Davey and Priestley, 1991] B. A. Davey and H. A. Priestley. Introduction to Lat-
tices and Order. Cambridge University Press, Cambridge, 2 edition, 1991.

[Harel, 1984] David Harel. Dynamic logic. In Dov M. Gabbay and Franz Guen-
thner, editors, Handbook of Philosophical Logic, volume 2. Reidel, 1984.

[Harrison, 1978] Michael A. Harrison. Introduction to Formal Language Theory.
Addison-Wesley, Reading (Mass.), 1978.

[Kracht, 1993] Marcus Kracht. Mathematical aspects of command relations. In
Proceedings of the EACL 93, 1993.

[Rizzi, 1990] Luigi Rizzi. Relativized Minimality. MIT Press, Boston (Mass.),
1990.

[Stabler, 1992] Edward P. Stabler. The Logical Approach to Syntax. Founda-
tion, Specification and Implementation of Theories of Government and Bind-
ing. ACL-MIT Press Series in Natural Language Processing. MIT Press, Cam-
bridge (Mass.), 1992.


