
Kracht/Sportiche 214, Winter 2003: Combi-

natory Categorial Grammar

Basic Asssumptions

A syntactic object (alias sign) is a triple E :: C :: M , where

1. E is its phonetic/phonological form.

2. C is its syntactic category.

3. M is its meaning.

A syntactic theory has to specify (a) the basic entities (lexicon), and (b)
the modes of combination.

Combinatory Categorial Grammar (CCG) is a particular theory
inside categorial grammar that assumes surface compositionality. This is
to say that on the side of phonetic form, the mechanism for combination is
concatenation. Moreover, it inherits from categorial grammar a tight coupling
between categories and meanings. Once the rule of combination is specified in
the syntactic categories, its semantics is completely determined. The reason
that this theory is called combinatorial CG is that the particular syntactic
modes of combination correspond to certain combinators on the semantic
side.

Categories and Meanings

Definition 1 (Types) Let B be a set of basic types. We denote by Typ(B)
the smallest set which contains B and α → β for every α, β ∈ Typ(B).

We assume the basic types e (entities) and t (truth values). Although there
may be more (say, worlds and time points), we shall not need them here.

Definition 2 (Interpretation) Fix for every α ∈ B a set pαq. Then for
every nonbasic type

pα → βq := pαq → pβq := {f : dom(f) = pαq, rg(f) ⊆ pβq}

Definition 3 (Categories) Let C be a set of basic categories. We denote
by Cat(C) the smallest set which contains C and α/β as well as α\β for every
α, β ∈ Typ(C).

1

Steedman uses in particular V, VP, NP, S as basic categories (this list is not
exhaustive). The map from categories to types is a homomorphism. This is
to say, one needs to fix a map v : C → Typ(B). Then, for complex categories:

v(α/β) := v(α\β) := v(β) → v(α)

Warning: There are two conventions in CG. One is to write β\α when α
is the resulting category, and β the argument (which is used by the major-
ity) the others (including Mark Steedman) write α\β in this case, so that
the resulting category is always to the left. We follow his practice here for
compatibility. Neither notation is actually always superior.

We remark here that we do not require C and B to be equal. This allows
to introduce separate syntactic categories for the same semantic type. It also
allows to assign a complex type to a basic category. This is, although not
always acknowledged, the standard practice. Notice that when an expression
has category α, its type is v(α), and therefore its meaning should be in
pv(α)q.

Basic Categorial Grammar

Assume the following are entries of the lexicon.

walks :: S\NP :: λx.walk′(x)
watches :: (S\NP)/NP :: λx.λy.watch′(x)(y)
gives :: ((S\NP)/NP)/NP :: λx.λy.λz.give′(x)(y)(z)
Dominique :: NP :: d′

Paul :: NP :: p′

the fish :: (S\NP)\((S\NP)/NP) :: λQ.Q(ιx.fish′(x))

Here, x, y, and z are variables of type e, Q a variable of type e → (e → t).
Notice that λx.walk′(x) is the same as walk′. The introduction of the

λ–operator is of no real service here, except to please the eye. Standard
categorial grammar (the so–called Ajdukiewicz–Bar Hillel Calculus) has the
following rules:

A>(E1 :: α/β :: M1, E2 :: β :: M2) = Ea
1 E2 :: α :: M1(M2)

A<(E1 :: β :: M1, E2 :: α\β :: M2) = Ea
1 E2 :: α :: M2(M1)

Here, EaF is the concatenation of E with F (with an interspersed blank).
A> is called forward application, A< backward application. Given a

2

lexicon, the language generated is simply the set of all syntactic objects
that can be created from the lexicon using these two rules. In particular, it
contains the object

Paul walks :: S :: walk′(p′)

In categorial grammar, one typically uses this representation:

Paul walks

NP S\NP
S

Montague basically used the AB–Calculus, although he added special pho-
netic functions (such as transforming the pronouns hen into something else).
By and large, however, the function used is concatenation. Steedman follows
Montague in paying only minimal attention to agreement.

Combinators

The central idea of CCG is the insight that A> and A< can be given a precise
semantics as well. Their interpretation is that of a combinator, by which
we may simply understand a closed λ–term. All combinators can be built
from these two basic ones: S, and K. These symbols are treated as proxy for
the following terms:

K = λx.λy.x
S = λx.λy.λz.(xz)(yz)

Warning: While particular lexical entries have particular types, these com-
binators are polymorphic. They exist in all consistent types. For example, if
x has type α and y has type β, the type of K must be α → (β → α) (“weak-
ening” in logic). In natural language, typically only the coordinators are
polymorphic. For example, and and or have any type of the form (α\α)/α,
while not has any type of the form α/α. The semantics needs to match the
type in each case. We ignore the issue of typing of combinators henceforth.

The basic idea is that language(s) employ combinators to serve their
basic need to build denotations for complex expressions. Since combinators
are actually immensely powerful, the work consist in finding the right base
of combinators.

3

The Principle of Combinatory Type Transparency. All syntactic
rules are type–transparent versions of one of a small number of
simple semantic operations over functions. ((Steedman, 2000),
Page 37.)

Steedman basically uses the following combinators. (Notice the absence of K
— since it is destructive!)

B := λx.λy.λz.x(yz)
S := λx.λy.λz.(xz)(yz)
T := λx.λy.yx

B (bluebird, see (Smullyan, 1985)) is used to compose functions: ((BM)N) =
λz.M(N(z)) is otherwise written M ◦ N . This is the most frequently used
combinator. The syntactic rule based on this combinator has effectively been
proposed by Geach in order to create some flexibility in using the categories.
S (starling), is needed in parasitic gap constructions, and T is nothing but
type raising (when applied to one argument only).

The combinator is a semantic operation, and its syntactic counterpart is
actually not unique. We have seen this with function application: a functor
may look for its argument to its right or to its left. Steedman assumes that
a syntactic operation is compatible with the combinator only if (a) the type
assignment matches it, (b) the argument is found to the right of the functor
if the functor contains /α, and to the left otherwise and (c) the principle of
directional inheritance is adhered to: it says that the directionality of the
argument is specified by the functor. Directionality is not free as long as the
argument has not been cancelled in the syntax. For example: B allows the
following syntactic counterparts.

(+ + +) α/β β/γ ; α/γ
(+ +−) α/β β/γ ; α\γ
(+−+) α/β β\γ ; α/γ
(+−−) α/β β\γ ; α\γ
(−+ +) α\β β/γ ; α/γ
(−+−) α\β β/γ ; α\γ
(−−+) α\β β\γ ; α/γ
(−−−) α\β β\γ ; α\γ

Of these, (+ + −), (+ − +), (− + +), (− + −), (− − +) and (− − −) are
ruled out. (b) rules out (− + +), (− + −), (− − +) and (− − −), (c) rules

4

out (++−), (−+−), (+−+), and (−−+). Likewise, when we interchange
the order of the categories above, six out of eight combinations are ruled out.
Thus, B adds the following four rules to the syntax:

B>(E1 :: α/β :: M1, E2 :: β/γ :: M2) = Ea
1 E2 :: α/γ :: BM1M2

B<(E1 :: β\γ :: M1, E2 :: α\β :: M2) = Ea
1 E2 :: α\γ :: BM2M1

Bx>(E1 :: α/β :: M1, E2 :: β\γ :: M2) = Ea
1 E2 :: α\γ :: BM1M2

Bx<(E1 :: β/γ :: M1, E2 :: α\β :: M2) = Ea
1 E2 :: α/γ :: BM2M1

B> and B>x are called forward composition and mixed forward com-
position, B< and B<x backward composition and mixed backward
composition. To see that this strengthens the language generated from the
lexicon, let us give this example (see (Geach, 1972)). Assume that nonre-
lational nouns (elephant, car) have category N, relational nouns (father)
category N/PP, and adjectives (tall, heavy) have category N/N. Then
tall elephant is a phrase in AB, but not tall father. However, adding
composition works:

B>(tall :: N/N :: λQ.λx.tall′(x) ∧ Q(x),
father :: N/PP :: λy.λx.father-of′(y)(x))

= tall father :: N/PP :: λy.λx.(tall′(x) ∧ father-of′(y)(x))

The combinator B allows us to delay feeding an argument; we put it ‘on hold’
so to speak.

We remark here that to make this theory fully satisfactory, a parametrized
family of combinators is needed, where basically any number of arguments
can be put on hold. Syntactically, the generalized forward composition rule
is as follows:

α/β (β/γ)/$1 ; (α/γ)/$1

(Analogously, generalized backward composition and the mixed composition
rules are defined.) Here the following convention is at work ((Steedman,
2000), Page 42):

The $–convention. For a category α, {α$} (respectively {α/$},
{α\$}) denotes the set containing α and all functions (respec-
tively, leftward functions, rightward functions) into a category in
{α$} (respectively, {α/$}, {α\$}).

This is not the best of all definitions. What it means typographically is that
$1 above abbreviates a sequence of category symbols separated by slashes

5

(left associativity assumed) (see (Kracht, 2003)). The semantics is defined
accordingly.

T gives rise to the following rules otherwise known as type raising.

T β
>(E :: α :: M) := (E :: β/(β\α) :: Tv(β)M)

T β
<(E :: α :: M) := (E :: β\(β/α) :: Tv(β)M)

Notice that the resulting category contains β, so we cannot not simply write
T> or T<, for the result is then not unique. The type of Tv(β)M is that v(β) →
v(α). This precaution is actually necessary: otherwise there is no guarantee
that the syntax and semantics match as required. It is assumed that type
raising is restricted to prevent infinite loops. Moreover, language particular
restrictions apply. Type raising gives us that the following sentences are
grammatical.

Fred likes and I eat beans

NP
...

... NP
...

...

S/(S\NP) (S\NP)/NP
... S/(S\NP) (S\NP)/NP

...

S/NP (α\α)/α S/NP
...

... (S/NP)\(S/NP) NP
S/NP S\(S/NP)

S

In this derivation, α must be set to S/NP. (Steedman, 2000), Page 45,
assumes that case markers are responsible for type raising. If case markers
actually did the type raising, then the rules T> and T< above would actually
not be necessary. However, the identity of the category over which we raise
differs from construction to construction, so case markers would actually not
have a unique type. In the example above, the object raises over transitive
verbs that already have a subject: observe, namely, that S/NP is not the
category of intransitive verbs (which is S\NP!

Finally we look at S. Again, there are four possibilities:

S>(E1 :: (α/β)/γ :: M1, E2 :: β/γ :: M2) = Ea
1 E2 :: α/γ :: SM1M2

Sx>(E1 :: (α/β)\γ :: M1, E2 :: β\γ :: M2) = Ea
1 E2 :: α\γ :: SM2M1

S<(E1 :: β/γ :: M1, E2 :: (α\β)\γ :: M2) = Ea
1 E2 :: α\γ :: SM1M2

Sx<(E1 :: β/γ :: M1, E2 :: (α\β)/γ :: M2) = Ea
1 E2 :: α/γ :: SM2M1

6

(articles) which I will file without reading

(N\N)/(S/NP) S/VP VP/NP (VP\VP)/VPi VPi/NP
...

...
... (VP\VP)/NP

...
... VP/NP

... S/NP
N\N

To create the constituent file without reading we need the rule of back-
ward crossed substitution (Sx<).

Gapping and Coordination

The particular strength of CCG lies in the fact that for a given sentence
one may have several constituent analyses. However, while Lambek Calculus
allows any constituent structure for a given sentence if it has at least one,
CCG may reject some. The particular claim of CCG is that anything that is
a constituent can be coordinated, so that if something cannot be coordinated
it ought not to be a constituent and vice versa. Consider the sentence (1).
(1a) – (1f) suggest that the only subsequence that is not a constituent is ate
the and Fred ate the.

(1) Fred ate the beans.

(1a) Fred ate and Harry liked the beans.

(1b) ∗Fred ate the and Harry had some beans.

(1c) ∗Fread ate the and liked some bananas.

(1d) Fred ate the beans and Harry liked the beans.

(1e) Fred ate the beans and liked some bananas.

(1f) Fred ate the beans and some bananas.

Warning: Some of the constructions above might not be called coordination
in other theories. Here, the distinction between, say, coordination and right
node raising is not made. Hence, the following structures (2a,b) coexist,
while (2c,d,e) do not.

(2a) Fred (ate (the beans))
(2b) (Fred ate) (the beans)
(2c) ∗((Fred ate) the) beans
(2d) ∗(Fred (ate the)) beans
(2e) ∗Fred ((ate the) beans).

7

CCG achieves this goal as follows. Noun phrases are systematically type
raised before they combine with the verb. (We will not display the step of
typeraising to avoid showing too many steps.) This means that in English,
both SV and VO can both be constituents, though not in one and the same
structure. S(VO) constituent structure is derived as follows.

Fred saw Paul

S/(S\NP) (S\NP)/NP (S\NP)\((S\NP)/NP)
... S\NP

S

And (SV)O constituent structure is derived thus.

Fred saw Paul

S/(S\NP) (S\NP)/NP
...

S/NP S\(S/NP)
S

Likewise, for other basic constituent orders different constituent structures
are available. For example, Dutch and German are SOV in subordinate
clauses, so the verb has category (S\NP)\NP, and by type raising into a
suitable category, we get either S(OV) or (SO)V. However, the type raising
does not depend on the structure. Call V0 := S and Vn+1 := Vn\NP. Then
transitive verbs are V2, subjects will be V0/V1 and objects V1/V2. Now SO
is a constituent of category V0/V2, by forward composition. By application,
OV is a constituent. So, both S(OV) and (SO)V are constituents of category
S. Finally, in Irish (which is VSO), we find that both (VS)O and V(SO) are
available. However, notice the different types for subject and object:

Chonaic Eoghan Siobhán

saw Eoghan Siobhán
(S/NP)/NP (S/NP)\((S/NP)/NP) S\(S/NP)

... S\((S/NP)/NP)
S

This predicts the following gapping patterns:

SOV : ∗SOV and SO SO and SOV
VSO : VSO and SO ∗SO and VSO

8

This is basically what has been observed for these languages. Steedman
claims that to the extent that they can be violated this reflects alternative
serializations in the claus, thus do not counterexemplify the scheme above.

The troublemaker is the SVO type (English!). In English, SO can be a
constituent. However, the principle of adjacency forbids the formation of a
SO constituent in an SVO structure. Steedman therefore assumes an ex post
reanalysis of the SVO clause as a VSO clause:

Virtual conjunct revealing rule.

α ; β α\β

where β = S/$.

With this rule, the gapping pattern for SVO languages become that of an
VSO language.

SVO : SVO and SO ∗SO and SOV

Language Particulars

CCG not only assumes that the lexicon varies from language to language. It
is also the rules that change. Moreover, rules may be restricted to particular
instance of categories. For example, forward composition (B>) is restricted
to two cases: (a) β = S−sub/$, where S−sub is the category of a tensed main
clause, or (b) β = S (tensed clause or IP), and γ = (β\δ). Similarly for the
other rules.

The contrast between subjects and objects in extraction in English is
attributed to the unavailability of the rule B>x in English, which is needed
to generate (b). For (a) only B> is required.

(a) (a man who(m) [I think that]S/S [Dexter likes]S/NP
(b) ∗(a man who(m) [I think that]S/S [likes Dexter]S\NP

On the other hand, B<x is available in English, though only with the β
restricted to S$.

Theme–Rheme Articulation and Prosody

Consider the sentence (1) again.

9

(1) Fred ate the beans.

We have seen that it may have several constituent analyses. Once we add
the intonational contour, however, the ambiguity disappears (at least for
this sentence). Moreover, different contours indicate different theme–rheme
articulation. Steedman assumes an autosegmental approach (so that contours
can be added as if they are segmental markers but then spread over the
structure) and additionally the theory by (Pierrehumbert, 1980). Of the six
pitch accent tones, only two will be studied: H∗ and L + H∗. Although it is
the intention to keep tones separate from the lexicon, the theory at present
compiles them into the lexicon, so that we get three (!) lexical entries for a
given word:

ate :: (Sθ\NPθ)/NPθ :: ∗ate′
L + H∗

ate :: (Sρ\NPρ)/NPρ :: ∗ate′
H∗

ate :: (S\NP)/NP :: ate′

This requires comment. First, the tone is annotated below the word; there
are the two tones mentioned above plus a null tone. The semantics of the
tones is as follows. The pitch accent tones identify whether the intonational
phrase is a theme or a rheme. Correspondingly, each basic category b is split
into two variants: bθ and bρ, denoting the theme part and the rheme part,
respectively. Categories are now formed as usual, but now they carry the
additional features. The instantiation of the feature depends on the identity
of the pitch accent: H∗ for rheme, L + H∗ for theme. Within theme and
rheme, the word carrying the accent tone is the focus, the other words being
the background. Focus marking is done by an asterisk, for want of a better
notation (the semantics of theme and rheme as well as topic and focus is not
worked out in CCG). A word that has zero tone can be either thematic or
rhematic. (Steedman uses techniques from unification categorial grammar:
no tone means the symbol for theme/rheme is unspecified and unifies with
either.)

Finally, there are three boundary tones. They constitute the following

10

signs.
L :: S$ϕ\S$η :: λx.η′x
LL% :: S$ϕ\S$η :: λx.η′x
LH% :: S$ϕ\S$η :: λx.η′x

Here, the $–convention is used again. Furthermore, η is a variable ranging
over the set {θ, ρ}. ϕ is a new symbol. (So, we should actually have three
basic categories for each b ... It seems to me [MK] that this can be avoided
by viewing ϕ as a variables just like η.) Notice that $ϕ results from $η by
systematically changing bη to bϕ, b ∈ C.

FRED ate the BEANS

L+H∗ LH% H∗ LL%

Sθ/(Sθ\NPθ) (S\NP)/NP
... NP/N Nρ

...

Sθ/NPθ S$ϕ\S$η NPρ
...

Sϕ/NPϕ Sρ\(Sρ/NPρ) S$ϕ/S$ρ
... Sϕ\(Sϕ\NPϕ)

Sϕ

This sentence has a unique analysis — by virtue of its intonation contour.
Here are two more examples.

(3) Q: What about FRED? What did HE do to the beans?
A: (FRED) (ATE the beans.)

L+H∗LH% H∗ LH%
Theme Rheme

(4) Q: I know who COOKED the beans. But then, who ATE them?
A: (FRED) (ATE the beans.)

H∗L L+H∗ LH%
Rheme Theme

It is not always the case that intonation contours disambiguate the phrases.
Here is an example:

(the green) BEANS
H∗ LL%

the (green BEANS)
H∗ LL%

11

Discussion

CCG uses a unification categorial backbone, with language specific rules
drawn from a small set of universally available rules. CCG has the following
features:

• It shares with CG the tight connection between syntax and (type the-
oretic) semantics.

• It uses a small number of rules to account for the syntactic behaviour
of languages.

• In attributing several structures for sentences it can basically unify
many construction types (gapping, right node raising) as coordination
of constituents. Basic gapping patterns are predicted solely on the basis
of the surface order in the main clause.

• Intonation contours can be given precise categories as well as seman-
tics. In addition to contributing to the theme–rheme and the focus–
background articulation of the sentence they serve to narrow down the
choice of analyses.

• Parsing can be done ‘lazily’, assuming left bracketing whenever pos-
sible. There exist polynomial algorithms ((Vijay-Shanker and Weir,
1990)) and CCGs have been shown to be weakly equivalent to TAGs.

On the other hand, there are several problematic aspects.

• While the verb still encodes the basic sentence order, it is the arguments
that have to also encode it through type raising. This is a problematic
aspect of all categorial grammars: the organisation of the structure is
basically encoded several times.

• The reanalysis rule for English is problematic semantically. If the
resulting meaning is known, it is not always clear that we can ex-
tract the verb from it (such a function is anyway not given by the
λ–calculus). Thus, if Fred sold the car to Mary. means the same
as Mary bought the car from Fred. then (a) may mean either (b)
or (c). (The surface realisation of the argument relations are not visible
in the semantics.)

12

(a) Fred sold the car to Mary and the bicycle to John.

(b) Fred sold the car to Mary and Fred sold the bicycle to

John.

(c) Fred sold the car to Mary and Mary bought the bicycle

from John.

References

(Geach, 1972) Peter Geach. A Program for Syntax. In Donald Davidson and
Gilbert Harman, editors, Semantics for Natural Language, number 40 in
Synthese Library. Reidel, Dordrecht, 1972.

(Kracht, 2003) Marcus Kracht. Mathematics of Language. Mouton de
Gruyter, Berlin, 2003?

(Pierrehumbert, 1980) Janet Pierrehumbert. The Phonology and Phonetics
of English Intonation. PhD thesis, MIT, 1980.

(Smullyan, 1985) Raymond Smullyan. To Mock a Mocking Bird. Knopf, New
York, 1985.

(Steedman, 2000) Mark Steedman. The Syntactic Process. MIT Press, Cam-
bridge (Mass.), 2000.

(Vijay-Shanker and Weir, 1990) K. Vijay-Shanker and David J. Weir. Poly-
nomial time parsing of combinatory categorial grammars. In Proceedings
of the 28th Annual Meeting of the Association for Computational Linguis-
tics, Pittsburgh, 1990.

13

