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1 Introduction

This essay is an analysis of the use of logic in the context of syntax. The specific
question I want to ask is whether there is such a thing as logic in syntax and whether
among the many proposals made in the literature there are discernible and significant
differences. Moreover, I will seize the opportunity to point at some misunderstandings
about using logic as a tool in syntax in general. As the title suggests I am specifically
concerned with attribute-value structures. So, nothing will be said in the sequel about
logic in connection with categorial grammar. There are two reasons for this. First,
I lack the qualification to judge the specific developments in this area. Second, as
regards the general concerns about the use of logic, they apply mutatis mutandis to
that area as well (as far as I am aware of the current developments).

I became interested in attribute value logic through [Gazdar et al., 1988]. [Kracht,
1989] was intended more or less as a technical note proving a theorem about the logic
of category structures alias attribute value matrices (s henceforth). This was taken
up in [Blackburn, 1993] and developed. Others have also found uses of modal logic
in that area, and the subject itself has gained some territory in the reserach on feature
structures. However, as much as I am sympathetic to this development, it has remained
unclear to me what significant new insights the use of modal logic would bring in this
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context. I have on several occasions insisted that what has been identified as the logic
of feature structures may only be a weak sublogic of the the logic of feature structures
once the features were given a specific interpretation. For example, if [ : dual] is
taken to mean the number of this item is dual, then there is every reason to believe that
[ :  : dual] is an illegimate expression (which might be equated here with being
false). Yet the current research still treats this as a non-issue. Moreover, the particular
properties of the concrete operators in a logic can suggest a different logical analysis
than the one originally chosen. In particular, what seems to be a perfect case of an
analysis in terms of attribute and value might in face of its concrete behaviour just an
ordinary attribute, i. e. it might quite naturally be analyzed as a simple propositional
constant. Both will be argued for in great detail with specific, non-trivial examples.
This will also be a case study in formalization within linguistic theory. It has been
suggested to me by Noam Chomsky that formalizing is an easy exercise, that anybody
can do it, and that there is no progress made in science by doing it. Looking at the
literature in linguistics one might get the impression that this is indeed so. However,
I strongly disagree. On the contrary, formalization is an art. If not, it would not
matter much if we used predicate logic or second-order logic or modal logic. Anything
goes. However, comparing the various formalizations (for example, comparing the one
advanced here with [Stabler, 1992]) one will very soon learn the difference. There is a
case to be made for formalizations that are intellectually better digestable for humans.
Any mathematics text will be rendered unreadable if written in strict first-order logic.
So even notation matters a great deal. A very illuminating case is Leibniz’ notation
for the derivative. It was designed to suggest exactly what is correct, by exploiting an
analogy with arithmetic. For a linguist one might, for example, compare encodings
in categorial grammar with standard ones to appreciate the insistance on intellectual
digestibility. From that point of view I will hold that modal logic in connection with
s is the right choice.

In addition to pointing at what seems to be a priori reasons to use modal logic,
it still has to be seen whether things are as promised. This requires developing this
approach to some extent to see whether it bears the fruit we are longing to eat, whether
the formalizations yield decidable logics, or logics with other desirable properties.
Feature structures, however, are barren land as it turns out. The margin between de-
cidability and undecidability is so small that much of the effort is consumed in trying
to design languages which are expressively strong but yet weak enough not to yield
undecidability results. We will show here that it does not make much sense to look
for such languages. The crux is the following. No matter what language we choose,
we will use it to describe certain facts of natural languages. These facts have a certain
inherent complexity that cannot be avoided by changing the metalanguage. We can
only change the power of the metalanguage. Namely, after fixing the metalanguage
we must axiomatically describe the possible structures. However, the possible struc-
tures are just the thing we are after when we study linguistics – at least if we adopt
Chomsky’s view here. The questions are of empirical nature and cannot be decided by
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some logical tricks. Chomsky’s often repreated criticism of formalizations stems from
the fact that before we actually know what the structures are there is little gain in strict
formalizations. The life of a framework may be longer than that of a theory, but it too
has a limited lifespan (approximately ten years).

This paper is formal and quite difficult for readers untrained in modal logic; I have
no illusions about this and I apologize in advance if I fail to make things as clear
and simple as I should. I do believe, however, that much of the complexity in this
paper is unavoidable and anything that is simpler will be so at the cost of precision.
Almost everything will be defined here, so that the discussion will on the whole be
self-contained. But this is really not to say much when it come to mathematical topics.
The reader who is seriously interested should perhaps read an introductory book on
modal logic and the lucid survey article [Bull and Segerberg, 1984] to get enough
background. I can also recommend [Blackburn, 1993] as an introduction into modal
logic in connection with s. It is impossible to go through all technical proofs in
great detail; this would be tantamount to writing a book on this topic. But, I hope, the
line of argumentation can be understood even without a proper understanding of the
technical points. For the message is of wider importance. If I am right, then modal
logic, where it fails, fails necessarily—and no other framework I know of will not
under these circumstances. Secondly, it provides enough technical apparatus to allow
to prove significant results. To those who remain unimpressed I can only appeal to
their sense of beauty and naturalness.

Among the persons who have quite generally helped to shape my views on syntax
and logic I wish to thank explicitly those who have contributed to the present paper.
These are Mark Ellison and two anonymous referees, who had the questionable plea-
sure of reading an earlier version of this paper. Moreover, the results on modal feature
logics have been obtained in collaboration with Carsten Grefe. The errors in this paper
have been obtained by myself alone.

Part I: Logical Theory

2 General Considerations

Logic may be described as the art of reasoning. Taking this as a definition, anything
that is vaguely related to forms of reasoning may be called logic. This implies that there
may be different uses of logic because there may be different ways of reasoning, as is
now a widespread view among logicians. To wit, there is a distinction here between
logic as a generic term and a logic, a technical entity. We will see that there is every
reason to believe that there is a multitude of different logics each of which arises from
a particular interpretation of the symbols as well as empirical facts connected with
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this interpretation. It is the main purpose of this section to motivate the appearance
of rich classes of logics in the context of science rather than just one or a handful, as
is most commonly the case in the literature. It is not intended as an introduction into
logic as such, and I assume my readers to have a rudimentary understanding of logic.
Nevertheless, given the complexity of the technical arguments that will follow it will
be useful to motivate the necessity of going through such complicated arguments in
detail. Specifically, it is helpful to understand the distinction between logic in general
and a particular logic. Consider as a very simple example a propositional language
with just one connective, the symbol ∧, which we will read as wegde. Formally, ∧ is
just a binary connective and no interpretation has been given as yet. In transliterating
this symbol as and, however, we are not only indicating a way of reading this symbol
(other than calling it wedge) – we are also indicating what this symbol actually means.
By saying that it does mean and we are drawing on an intuitive understanding of what
and means (in whatever terms that might be expressed), and specifically, in what ways
the symbol ∧ may be used in reasoning, drawing here on an understanding of how
and is used in reasoning. This example may be utterly simplistic, but even at this
level we encounter typical problems. They are twofold. (a) It is not clear that we
are in perfect agremeent as to what and means; and (b) It is not clear that we are in
perfect agreement as to how to reason with and. Not only is and often claimed to be
noncommutative (thus giving rise to a disagreement according to (a)), but also we are
not in perfect position to say how we humans actually reason with and. Moreover, it
is not always clear that we know how we should reason with and once we have agreed
on its meaning. (This might be less obvious with and, but painfully clear with modal
operators such as believe, know etc.)

This might be deemed more a problem with the informal meaning of and than
with (formal) logic. But consider the theory of natural numbers as an example, this
time formalized in first-order logic. By Gödels result we know that this theory is not
recursively axiomatizable, there is no effective procedure that will yield an answer to
any question we have about the numbers. So the theory of the natural numbers is
undecidable. This holds even for first-order predicate logic itself. However, Gödel
proved that in addition no recursively axiomatizable theory of numbers will ever be
complete, that is, there can be no recursively axiomatizable theory such that whatever
is true about numbers will also be provable in that theory. What this means, then, is
that if we want to prove certain facts about natural numbers there is no way around the
fact that the model of the numbers, N with, say, =, 0, the successor function, addition
and multiplication etc., can be produced only by an informal sketch, relying thereby
on an intuitive understanding of what these symbols mean. Ordinary mathematicians
have no difficulties with this state of affairs. They simply use their intuitive model to
get the theorems, relying here on the fact that this model is the one anyone else would
choose. Thus, rather than (only) using the formal theory of numbers, they will resort
to extraneous means to get the facts they want. In the end, however, they will produce
a strict proof using induction—if they can. Some facts, such as Kruskal’s Theorem,
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cannot be proved this way, so a proof must be found in a stronger theory, this time in
set theory. Again, mathematicians find this unproblematic. All that seems necessary
to them is to show that the natural numbers can be embedded (or interpreted) in set
theory. Yet, it is not clear that we are able to show that. We may be able to produce a
proof that the formal theory will be preserved under this embedding; but what happens
to the theory of the intended model (the one in our heads so to speak) we do not know.
Thus, there is a gap that spawns between the meaning of the symbols as fixed by the
formal theory of numbers and the intended meaning. Yet this does not mean that there
is nothing one can fruitfully show about numbers.

Now take as a final example the linguist in his search for universal grammar. Here,
as in the case of natural numbers, the intended meaning of the symbols in the formal-
ism is (reasonably) clear, even though one might in both cases have problems with the
existence of these entities. To take the recurrent theme of this present essay, take the
language of attributes and values. We know what an expression such as [ : acc]
means. It means that the object in question has accusative case. It is less clear what the
consequences are of this. For example, does it generally follow that [ : acc] and
[ : nom] are exclusive, or, as it may well be the case, can there be several cases
realized at a lexeme? To someone with an Indo-European mother tongue it seems
almost logically true that there is one and only one case realized at a single lexeme.
Yet, we cannot be so sure. Cases are realized as suffixes in Indo-European languages,
and there is no reason why we cannot iterate them. A construct such as (Latin) poet-
arumae (poets-GEN.PL-NOM.PL) might be hopelelessly ungrammatical but it is not
unconceivable—we have just succeeded in producing it. 1 Thus if we want to set-
tle this question we must investigate the case marking systems of languages and see
whether they allow for multiple case marking. A language where this option is realized
is the Australian language Kayardild, as reported in [Blake, 1994]. We will discuss the
evidence in a later section. To take a slightly less exotic language, in Georgian a pos-
sessor phrase succeeding a noun phrase will in addition to the genitive case also inherit
the case of its regens. (Again this is taken from [Blake, 1994]. It is reported there that
double case marking is not uncommon in Australian languages.) This being so, it is
quite unclear what logical properties the formal construct [ : acc] has. In general
we are inclined to ban nesting the attribute  so that expressions of the form[

 :
[

acc
 : gen

]]
will be illegitimate. Apparently, for languages like Kayardild and Georgian we will
need an exception to that ban. It might be worth a dispute whether we have captured
the meaning of has accusative case properly with our formalism – but the problem

1In transliterations we follow [Blake, 1994] by using a hyphen when there is a corresponding seg-
mentation in the original word and a dot when there is not. The latter case is also called cumulative
exponence. In the case at hand, the suffix -arum indicates both genitive and plural, there is no separate
plural or genitive morpheme; therefore a dot is placed.
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itself remains. This is so because we are not in full control of the consequences of
our stipulations. In contrast to mathematics, where this problem arises out of the com-
plications of the matter itself rather than the a priori impossibility of knowing the
consequences, here the questions really are of an empirical nature. Namely, with case
defined in some or the other way, we do not know whether it has certain properties
(say, that there are no nestings, that there are no more than 20 distinct cases in any lan-
guage etc.). This has to be found out, by careful examination of the languages. This is
one of the reasons that Chomsky rejected the use of formal theories in this enterprise.
However, notice that even if not all properties of case can be fixed outright, some may
be. We may, for example, comfortably settle the question whether having nominative
case and having accusative case. Seen as a property of morphemes we can in any
case, even in Kayardild and Georgian, postulate the exclusiveness of distinct cases.
Even if there is little we know for sure, a formalization is not impossible. Notice also
that even if there are no surprising theorems about case that can be brought to light
by this formalization, the formalization may be successful in that we can write down
facts about case rather succinctly. And that we may succeed in removing certain am-
biguities in speaking about case, such as whether we want to regard case marking in
Kayardild as multiple case marking rather than nested case marking. It seems prima
facie reasonable to prefer the latter.

The position of a linguist differs somewhat from that of the number theorist. The
latter has no trouble identifying correct arguments from incorrect ones—the logic itself
remains fixed, so does the interpretation of the symbols. With language, however, we
cannot be sure what the denotation of the symbols really is, or, to put it differently,
we do not know which of the theoretical possibilities are attested in some languages
and which ones are not. If all we need is to write down facts about case, we might
not be bothered by that at all. For example, to say that it is a feature with atomic
values (default) or -feature value (Georgian and some others), is to allow for some
minimal form of reasoning about case. We will identify the logic of this feature in
the sequel as K.Alt1. However, it does seem likely that case has nontrivial properties
beyond that. They will not be captured by this rudimentary logic, hence not be used in
inferences. What can be done in this circumstance? The natural conclusion suggesting
itself is that in actual fact we have not identified the logic of case in . What we
have is a lower bound for it, that is, we know what axioms and rules there are at least.
In the literature as it presents itself, this conclusion has never been drawn explicitly.
Hence there has never been an inclination to study large classes of logics in order not
to prejudge the case. Instead, there seems to be a hidden consensus that the base logic
K.Alt1 is the logic and that the rest can be captured by adding suitable constraints
(or whatever one may call them) later on as a kind of peripheral system around the
logic of attributes and values deemed to be universal. This view has its justifications.
First, there is some terminological difficulty in speaking of a logic of case. A fact
such as the non-iterability of the case-feature does not ring of an axiom but of an
accidental fact of language. Furthermore, it is usually very difficult to redo decidability
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proofs for logics in a general setting. Generally, the basic logics that one can settle on
initially, such as the aforementioned K.Alt1, do turn out to be decidable, but whether
or not an arbitary logic containing this logic is decidable is very difficult to prove (and
mostly false). The first objection is not really serious. We settle here on two different
notions of necessary properties of . One that springs from the definition of 
as a feature in the technical sense, whereby deriving certain rudimentary properties,
and the other from interpreting [ : x] by the pre-theoretic term has case x. The
second argument is also not so serious. It might be from an architectural point of
view desirable to have distinctions between core and periphery. This distinction will
have its uses in diachronic linguistics or in articulate theories of language such as .
But in the present context they camouflage parts ot the logic. Peripheral facts are
facts and their consequences are facts, too. So, peripheral facts are additional axioms.
We will see in the course of this essay that we cannot hope for general and powerful
decidability results even in the most economic setting. We just have to live with the
fact that the consequences we can derive from our theories constitute a fraction of
the truth. An illuminating comparison might be the notion of space in physics. This
notion has undergone a number of revisions, from three-dimensional euclidean to four-
dimensional Minkowski space-time up to higher dimensional differentiable manifolds.
There is no question about the fruitfulness of this approach in physics even though the
notion of space (such a simple notion even) is not once and for all fixed. And even if
it were, the first-order theory of space is undecidable—as is the theory of numbers.

This leaves us with the following scenario. We will identify basic logical and lin-
guistical constants auch as ∧ and  and try to nail down their logic as much as
possible. With the logical constants this will be unproblematic. However, with the
linguistical constants we simply have to leave the true logic or, if you wish, their true
behaviour underspecified. The reason is simply that the logic of these constants is
an empirical question and cannot be solved by pure thought, unlike a mathematical
problem. This is then different from the classification of finite simple groups, which
is a mere consequence of the axioms of group theory and hence was provable by mere
symbol crunching. Here we must confront ourselves with real data, linguistical data,
such as case marking in Kayardild. In some sense, if we have settled on the constants,
universal grammar might be identified with a small set of logical systems, those cor-
responding to particular values of the parameters, or indeed with a single logic, which
itself is so strong that it allows only finitely many logical extensions, all of which are
particular (core) grammars. The problem is to identify . But this is really, according
to some researchers at least, all there is to linguistics; therefore, one should not regard
the identification of  with a logic as particularly useful or revealing. The problem is,
as we will show, that we are in the uncomfortable position that there is very little that
one can say about , if it exists at all. There are simply no significant properties of
logical theories that we can prove to hold for a sufficiently rich class of logics so as to
ensure that when we hit  it is bound to have them. This point cannot be stressed often
enough, because it emphasizes the unfruitfulness of the debates between proponents of

7



 and their adversaries. To some of the latter kind the result by Peters and Ritchie that
any recursively enumerable language is the language generated by some transforma-
tional grammar is a devastating blow to transformational grammar since it shows that
the power of the mechanism is by far too strong. Even if this were an argument (which
I myself doubt), we will see that undecidability strikes at such a low level that it is hard
to imagine one can have a formal system that is both reasonably rich and yet inherently
decidable, that is, all extensions are decidable. So, if you buy my story that it is not
logical systems but classes of extensions of these system that must be studied, then it
is not enough to point at a single logic as the logic of linguistic structures—unless it is
(arguably) identical to —and then prove that this logic is harmless. Mostly this logic
will be just the least common denominator of all conceivable interpretations. Other-
wise, we might defend  in turn by claiming that that there is a basic transformational
core grammar common to all languages, which is well-behaved. To the contrary, we
must be prepared to look at all possible logics that strengthen our base logic, or at least
at a suitable subclass of them.

3 Modal Logic—Notation and Terminology

This section introduces basic notions from modal logic. I will make special reference
to the connection with s, but knowledge of the latter is presupposed. Instead I refer
to [Carpenter, 1992] for s and to [Blackburn, 1993] and [Blackburn and Spaan,
1993b] for the connection with modal logic. Typically, feature structures are presented
as directed acyclic graphs where the arcs as well as the nodes have labels. Moreover,
from each node there exist per arc label at most one arc with that label pointing to
some other node. Such graphs can be seen as special kripke frames where each arc
label represents a different accessibility relation. We refer to such kripke frames as
polyframes to stress the fact that they can have any fixed number of relations, not just
one. A polyframe is an object f = 〈 f ,C1, . . . ,Cm〉 with f a set and C j ⊆ f 2 a binary
relation for each j ≤ m. For concreteness’ sake assume that our s are based on a
finite set Arc = {`1, . . . , `m} of arc labels and a finite set Node = {n1, . . . , nn} of node
labels. The node labels correspond to types in [Carpenter, 1992], but here the logic
of types is boolean logic. We then define the following language to talk about the
polyframes instantiating the s. We have countably infinitely many propositional
variables p1, p2, . . ., constants c1, . . . , cn, all boolean connectives and the modal opera-
tors ♦1, . . . , ♦m. The constant ci is interpreted by the node label ni and the modality ♦ j

is the existential modality based on the relation

arc j = {〈x, y〉 : there exists an arc with label ` j from x to y}

As usual, � jφ := ¬♦ j¬φ. In order not to be overly pedantic we will write ni instead of
ci and we will confuse the arc label ` j with the set arc j of pairs of nodes connected by
an arc of label ` j so that we can write 〈` j〉 for ♦ j and [` j] for � j as is common practice
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in propositional dynamic logic. From there we will borrow the convention to write 〈w〉
for a word over the alphabet {`1, . . . , `m} and we understand by that the composition
of the elementary modalities 〈` j〉 in the order and multitude specified by the word w.
(And similarly for [w].) So, if we have the arc labels , ,  etc. then we
may write 〈; ; 〉 instead of 〈〉〈〉〈〉. We call 〈` j〉 an arc modality.
Finally, we use the words kripke frame and polyframe interchangeably, but they are
strictly different from s. This will no doubt cause confusion, but necessarily so. If
it helps, think of a kripke structure as a maximally specified .

Let us for the moment concentrate on the case of a single modality, which we
denote by �, dropping the index. The basic logic for kripke structures is called K and
it contains all propositional tautologies, the so called box-distribution axiom �(p →
q). → .�p → �q, and is closed under substitution and modus ponens; the set of
theorems is also closed under the rule MN : P/�P. A quasi normal modal logic is a
set Λ of formulas containing K closed under modus ponens and substitution, but not
necessarily closed under MN. If a quasi-normal logic is closed under MN, it is called
normal. It should be stressed here that in general a logic is defined by its language and
its set of deduction rules. Here, we have defined a logic only via its set of theorems.
This is justified since it is tacitly assumed that the only rule of inference is modus
ponens. This means that both substitution and MN may be applied only to theorems.
The distinction between quasi-normal and normal is very crucial in the logic for s.
Typically, an s satisfies a constraint only if the constraint is true if evaluated at
the root the , rather than at any other point. 2 If Λ is a quasi normal logic and φ a
formula thenΛ+φ is the smallest quasi normal logic containingΛ and φ. IfΛ is normal
then we write Λ⊕ φ for the smallest normal logic containing Λ and φ. This notation is
borrowed from [Zakharyaschev, 1992]. To a normal logic an axiom can thus be added
both quasi normally (with +) and normally (with ⊕). Obviously, a normal logic is also
quasi-normal and it is standard knowledge that

Λ ⊕ φ = Λ + {�kφ : k ∈ ω}

(As usual �k is the k-fold iteration of �; we have �0φ = φ,�k+1φ = �(�kφ).) We
write QΛ for the lattice of quasi normal extensions of Λ and NΛ for the lattice of
normal extensions. The notation and terminology is mutatis mutandis the same in the
case where we have more than one operator. We will not spell that out here. The
simplest case of polymodal logics are the so-called independent fusions studied in
[Kracht and Wolter, 1991]. For any polymodal logic Λ the mono-modal fragments Λ j

– the intersection with the language over single operator fragments – is a mono-modal
logic and (quasi) normal if Λ is. Suppose that Λ is the smallest (quasi) normal logic
containing all Λi. Then Λ is called independently axiomatizable and we say that it
is the independent fusion of the Λi. We write Λ =

⊗
j≤mΛ j. There is no notational

distinction between the quasi-normal and the normal fusion. But the fusion of normal
logics is normal, and this is the only case which will arise.

2If this sounds cryptic, read on.
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Structures for normal polymodal logics are the so-called (generalized) polyframes.
A generalized polyframe is a pair F = 〈f,F〉 where f is a polyframe and F a set of
subsets of f closed under boolean operations and

� ja = {s ∈ f : (∃t)(s C j t & t ∈ a)}

In that case the sets of F form a boolean algebra with operators

F+ = 〈F,−,∪, �1, . . . , �m〉

a ⊆ f is called internal in F if it is in F otherwise it is called external. F is called
differentiated if it satisfies

(∀x)(∀y)(x = y.↔ .(∀a ∈ F)(x ∈ a.↔ .y ∈ a))

In terms of s we can say that an  is differentiated if points are reentrant iff
identical. [Johnson, 1988] calls these structures discernible. To use the terminology
of [Carpenter, 1992], an  is differentiated if nodes are extensionally identical iff
they are intensionally identical. Namely, reentrancy is by definition the sharing of the
truth of all propositions alias structure. This merits some thought. Recall that s
are actually thought of as (partial) descriptions of objects, which we call polyframes.
Polyframes on the other hand can be seen as fully instantiated s. It is actually
rather odd to interpret ordinary s themselves as kripke structures, because the latter
are objects, and s are sets of objects. The fact is that s are externally dynamic
because they can be fused with other s (a process described as unification); if two
nodes of the  agree on all formulae prior to unification with an  this might not be
true after unification, because some incoming information may destroy this harmony.
Actually, that an individual s should not be seen as a kripke structure but as sets of
such structures supports the thesis which we want to advance here, namely that s
are axiomatic descriptions of kripke structures.

There are two other notions that have counterparts in s which are essential to
both. The first is that of a generated subframe. Consider a frame 〈f,F〉, f being a
polyframe. Pick a set S ∈ f . Then let Tr(S ) be the set of all points that can be
reached from S in a finite number of steps following any of the elementary relations.
Equivalently, define for S ⊆ f the set Tr1(S ) := {t : (∃s ∈ S )(

∨
j≤m s C j t)}. Further, let

Trn+1(S ) := Tr1(Trn(S )). Then

Tr(S ) =
⋃
n∈ω

Trn(S )

If S = Tr(S ) we call S a generated subset. The structure

s = 〈S , 〈C j ∩ S 2 : j ≤ m〉〉

is a kripke frame. If we let S = {a ∩ S : a ∈ F}, the set of subsets induced by F
on the subset S, then the pair S = 〈s,S〉 is called a generated subframe. It is one-
generated if S = Tr({x}) for some x ∈ S . A p-morphism between kripke frames
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f = 〈 f , 〈C j : j ≤ m〉〉 and g = 〈g, 〈J j: j ≤ m〉〉 is a function p : f → g such that (i) if
x C j y for some j and x, y ∈ f then p(x) J j p(y), and (ii) if p(x) J j u for some j and
x ∈ f , u ∈ g then there exists a y ∈ f such that p(y) = u and x C j y.

A model is a triple 〈f, β, x〉 where β is a valuation and x a world. The symbol
〈F, x, β〉 |= φ is standardly defined. We have 〈F, x, β〉 |= p if x ∈ β(p). Furthermore,

〈F, x, β〉 |= ¬φ iff 〈F, x, β〉 2 φ
〈F, x, β〉 |= φ ∧ ψ iff 〈F, x, β〉 |= φ and 〈F, x, β〉 |= ψ
〈F, x, β〉 |= 〈`i〉φ iff there is y such that x Ci y and 〈F, y, β〉 |= φ

We writeF |= φ if for all valuations β and all worlds x 〈F, x, β〉 |= φ. As a rule of thumb,
a propositional variable in modal logic corresponds to one-generated subframes. To be
more precise, a variable p can be instantiated to true at a world iff it reflects part of the
structure generated by that world. This is immediate if we think about the definition
of generated substructures. Namely, if a formula φ is true at a world in F it is also true
at the same world in the subframe generated by that world.

Any normal logic is complete with respect to differentiated generalized polyframes.
(Remember that any logic is complete with respect to its canonical frame; the canoni-
cal frame is differentiated.) Λ is called complete, however, if it is complete with respect
to kripke polyframes. Λ is called df-persistent if for all differentiated frames F = 〈f,F〉
with F |= Λ we also have f |= Λ. By a result of [Fine, 1975b] any df-persistent (nor-
mal) logic is elementary. Finally, if f = 〈 f ,C1, . . . ,Cm〉 is a kripke frame and a ⊆ f
we define the subframe based on a by f ∩ a := 〈a,C1 ∩ a2, . . . ,Cm ∩ a2〉. Similarly,
a subframe for a generalized frame F = 〈f,F〉 is the pair 〈f ∩ a, {b ∩ a : b ∈ F}〉
where a ∈ F. Following [Fine, 1985] we call a logic a subframe logic if its class of
generalized polyframes is closed with respect to taking subframes.

Appropriate structures for quasi-normal logics are generalized pointed polyframes.
These are pairs 〈F, x〉 where x ∈ f , f the underlying set of worlds. A model based
on such a pointed frame is a triple 〈F, x, β〉. Thus, normal and quasi-normal logics
share the notion of a model. But the structures that underly these models are different.
One can always assume that x is a root of f, that is, any point in f is accessible via
some path from x. If this holds, we called 〈F, x〉 rooted. Standardly, s are pointed
polyframes, with the point being the root. So a constraint is evaluated at the top, so
to speak. Hence, a logic for s is in the deafult case a quasi-normal logic. This is
worth remembering.

Modal logic can be drastically extended by two new operators, the test ? and the
Kleene star ?. Adding these two we get propositional dynamic logic. The test turns a
proposition φ into a relation φ? between nodes defined by

φ? = {〈x, x〉 : 〈f, x, β〉 |= φ}

Consequently, 〈φ?〉 and [φ?] are new modalities and we have

〈φ?〉ψ.↔ .φ ∧ ψ [φ?]ψ.↔ .φ→ ψ
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The test alone is therefore a dispensable piece of notation; but in combination with the
Kleene star it becomes quite forceful. Given a word w over the alphabet of arc labels,
we define

w∗ = {wk : k ∈ ω}

where wk denotes the k-fold iteration of w, w0 = ε, the empty word. So w∗ is the
reflexive and transitive closure of w. We have

〈w∗〉φ.↔ .
∨

k

〈wk〉φ [w∗]φ.↔ .
∧

k

[wk]φ

The interpretation of w∗ relative to w can be fixed by the following axioms.

p.→ .〈w∗〉p, 〈w∗w∗〉p.→ .〈w∗〉p, 〈w〉p.→ .〈w∗〉p

p ∧ [w∗](p→ [w]p).→ .[w∗]p

The first two force w∗ to be reflexive, transitive and at least as strong as w. The last
axiom, known as the recursion axiom, forces w∗ to be at most as strong as the reflexive,
transitive closure of w. We issue a warning here that it is possible to satisfy these
axioms with structures in which w∗ is different from reflexive, transitive closure of w.
So this construction has to be handled with care. (See [Goldblatt, 1987].)

There is one last thing that needs explanation which will be referred to as the
irreflexivity trick. Consider the following axiom G = �(�p → p). → �p, known
as Gödels axiom. To make it a bit more perspicuous, replace p by ¬p and switch
the arrow. This yields ¬�¬p. → .¬�(�¬p. → .¬p). This is the same as ♦p. →
.♦¬(p → ¬�¬p) or ♦p. → ♦(p ∧ �¬p). It can be shown that this formula can be
falsified on frames which contain a reflexive point, or on frames whose relation is not
transitive. These are only sufficient conditions, however, but for finite frames they are
also necessary. Now consider a basic operator � and its iterate �∗. �∗ is based on a
transitive and reflexive relation. However, �+ defined by �+φ := �(�∗φ) is only based
on a necessarily transitive relation, which may be irreflexive. If we add to any logic for
� the axiom Ir : �+(�+p → p). → .�+p, then we have required any structure for that
logic to be such that �+ is based on an irreflexive relation. This can only be the case
if � itself is based on an irreflexive relation. On finite structures this correspondence
is exact; a finite structure satisfies Ir iff the relation underlying � is irreflexive. This is
also worth remembering.

4 Internal Descriptions and Axiomatic Expressivity

A logic can be seen as a description of admissible structures. If it is this description we
are after via the logic the choice of the language is rather immaterial. We can character-
ize kripke structures using first-order logic or even second-order logic because we can
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view polymodal logic as a part of monadic second order logic, where modal axioms
express certain special universal conditions via the so-called standard translation (see
[Benthem, 1983], [Blackburn, 1993]). We can be interested in an independent charac-
terization of what properties are expressible modally. In particular, methodologically
interesting is the case when the role of the second-order quantifiers over internal sets
can be eliminated in favour of first-order quantifiers over worlds. It is known that nei-
ther are all axioms characterizable as first-order descriptions of the frames, neither are
all conditions expressible by first-order sentences also modally expressible. Yet, it will
be seen shortly that in the cases under consideration the situation drastically simplifies.

In [Kracht, 1993a] I have argued to replace the usual second-order language by a
notational variant, namely two-sorted predicate logic, the so-called external language
Le. The notation of Le has the advantage of being closer to the intuitive understanding
of the formulae. Rather than replacing every variable p by a predicate variable p(x)
taking a world as an argument (as in [Benthem, 1983]), we keep variables for worlds
and for propositions as separate objects and introduce the symbol ε for being element
of. So, instead of p(x) we write x ε p; the intended meaning is, of course, that (the
interpretation of) x should be a member of (the interpetation of) p. This conforms to
the standard intuition of propositions as sets of worlds. Propositions, being one sort,
are combined as before with ¬, ∧, ♦i etc. So we can write x ε p ∧ � j♦i> to state that
x belongs to the set of worlds satisfying p ∧ � j♦i>, that is, x satisfies p ∧ � j♦i> in the
standard sense. There are obvious postulates such as

(∀x)(∀p)(∀q)(x ε p ∧ q.↔ .(x ε p & x ε q))

which connects the conjunction of the modal language (written as ∧) with the conjunc-
tion of the predicate language (written as &). We will not dwell on a precise definition
of this language, as it is really not necessary; all that is required is that one is able to
grasp the meaning of an occasional Le-formula.

The first-order predicate language L f for talking about kripke structures alias di-
rected graphs is a sublanguage of Le. It has the usual logical symbols (boolean con-
nectives, quantifiers, variables, equality) plus – in our case—the constants t, t, ni (so
that x ε ni tells us whether ni is true at x) and binary relation symbols x C j y telling
us whether there is an arc with label ` j from x to y. It is better to switch from L f to
the language R. It differs from predicate logic in that it has the following restricted
quantifiers where predicate logic has ordinary quantifiers.

(∀y B j x)φ := (∀y)(x C j y.→ .φ)

(∃y B j x)φ := (∃y)(x C j y.& .φ)

Even though the restricted quantifiers are first-order definable, the first-order quanti-
fiers are not definable from the restricted ones, so that R is strictly weaker than full
first-order logic. Furthermore, for the quasi-normal case we have the language Rq
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which in addition has a constant r. In pointed frames 〈F, x〉 r is interpreted by x. Only
in the quasi-normal case is it possible to create sentences, i. e. formulae without free
variables. In the standard case at least one variable remains free, since every quantifier
binding a variable needs a variable as a restrictor. The free variables are assumed to be
universally quantified (by a standard unrestricted universal quantifier). We speak of an
R-sentence φ whenever φ has exactly one free variable.

Given a proposition φ and a pointed frame 〈F, x〉 we can ask the following two
questions.

• What is required for 〈F, x〉 in order to base a model for φ on it?

• What is required for 〈F, x〉 if no model against φ can be based on it?

The two questions are in nuce one and the same question, since a complete answer to
one of them answers the other. But it turns out on an intuitive level that one should try
to answer the first one. We say that in the first case we are interested in the property of
models described by φ, and in the second case in the property defined by φ. We are of
course not looking for any characterization – otherwise a straightforward second-order
sentence will do. Namely, the effect of the modal axiom φ can be equally enforced by
the second-order axiom (∀x)(∀p)(x ∈ φ(p)), where p collects the free propositional
variables of φ. The intention is to develop simple criteria. A striking example of such
a characterization are the canonical formulae of [Zakharyaschev, 1992] for extensions
of K4. However, his formulae do not always correspond to first order properties. But
here we are interested in possible reductions to first-order logic. This is the standard
domain of correspondence theory of [Benthem, 1983]. Traditionally, however, re-
search has concentrated on the second question, thus at the axiomatic characterization.
I have demonstrated elsewhere in [Kracht, 1991] and [Kracht, 1993a] that the theory
can be much simplified if one concentrates on the first question instead. The specific
advantage is that the conditions on the constitution of a model for a complex formula
can in the known cases be reduced quite comfortably to that of simpler subformulae
and so the conditions can in certain cases be computed algorithmically, using a cal-
culus pairing strings of propositions with first-order conditions. Such algorithm can
never cover all modal formulae. By a result of [Chagrova, 1991] there can be no gen-
eral algorithm for the correspondence problem so we have to be content with a partial
solution.

We will sketch here the approach of internal descriptions as far as it is beneficial
for present purposes. Recall that a general frame is called differentiated if it satisfies

(∀x)(∀y)(x = y.↔ .(∀a ∈ F)(x ∈ a.↔ .y ∈ a))

Alternatively, there is an Le-sentence characterizing this property, namely,

(∀x)(∀y)(x = y.↔ .(∀p)(x ε p.↔ .y ε p))
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This can be rephrased as follows. Given two worlds x and y, we know that they are
different only if we can name a set a ∈ F such that x ∈ a and y < a. Of course, if such
a set exists the points must be different; the postulate of differentiation is non-trivial
only in the sense that it guarantees the other direction as well. Notice that while we
can always construct such sets, for example {x}, the problem is that they need not be
internal, i. e. members of F. In a final step we replace the condition on the internal set
a by a condition on a valuation. Since any internal set is the value β(p) of a proposition
variable p under some β, we can say that x , y exactly if we can find a valuation β
such that

〈F, x, β〉 |= p and 〈F, y, β〉 |= ¬p

The idea to characterize an elementary condition by the simultaneous satisfaction of
some propositions at possibly different worlds is generalized to the following defini-
tion.

Definition 4.1 A first-order condition α(x1, . . . , xn) is internally describable in a class
X of generalized frames if there exist P1, . . . , Pn such that for anyF ∈ XF |= α[w1, . . . ,wn]
exactly if there exists a valuation β such that 〈F,wi, β〉 |= Pi for all i ≤ n. α(x1, . . . , xn)
is internally definable in X if ¬α is internally describable in X.

To see the simplicity in the concept of internal descriptions just try to define internal
definability analogously! Internally describable conditions are closed under conjunc-
tion, prefixing with restricted ∃ and identification of variables. Moreover, internally
describable conditions of the type α(x1) are closed under disjunction as well. Constant
propositions are internally describable in all generalized frames. Consequently, α(x1)
is internally describable in the class Df of differentiated frames if it is composed from
inequations and constant formulae with the help of ∧,∨ and restricted ∃.

The special flavour of correspondence theory is produced by the existence of two
gaps. The first gap spawns between purely second-order and first-order conditions, the
second between first-order and locally first-order definable conditions. How large these
gaps are is only partially known. Sahlqvist’s Theorem names a class of propositions
first-order in descriptive frames and kripke frames; and in [Kracht, 1993a] the first-
order conditions definable by them are characterized. There it is also shown that an
elementary condition definable in all kripke frames must be positive. (A formula is
positive if it is composed from atomic formulae and constant formulae using only ∧,
∨ and the quantifiers.)

The use of internal descriptions as defined lies in the possibility to express the
condition a modal axiom φ imposes. Notice, however, that we have distinguished two
ways of adding φ as an axiom to a logicΛ. The first isΛ+φ, the quasi-normal addition,
and the second is Λ ⊕ φ, the normal addition. Now if ¬α(x1) is internally described
by ¬φ in X then the logic Λ + φ selects from X those pointed Λ-frames which satisfy
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α(r), while Λ ⊕ φ selects all Λ-frames which satisfy (∀x)α(x). Notice that 1st-order
definability is relative to the class X. For example, there are generalized frames which
satisfy ♦♦p. → .♦p but are not transitive, although the two correspond for kripke
frames. And, more appropriate in this context, there exist generalized frames which
satisfy a certain reentrancy postulate without reentrant points being identical. So they
satisfy an axiom of the form 〈x〉p. ↔ .〈y〉p for some words x, y, but the x-successor
of the root r and the y-successor are not identical. This can happen if the frame is not
differentiated.

We give a brief exposé of the calculus of internal descriptions. A frame is tight if
it satisfies

(∀x)(∀y)(x C j y.↔ .(∀a ∈ F)(y ∈ a.→ .x ∈ � ja))

or, equivalently, if it satisfies the Le-sentence

(∀x)(∀y)(x C j y.↔ .(∀p)(y ε p.→ .x ε ♦ j p))

Tightness guarantees that x 6 j y is internally describable. A frame is compact if⋂
U , ∅ for every ultrafilter U ⊂ F. A frame is descriptive if it is differentiated,

compact and tight. On kripke frames as well as descriptive frames a limited version of
a rule for ∀-introduction can be derived. The following theorem can now be proved.

Theorem 4.2 An R-formula which is positive and in which every non-constant atomic
subformula contains at least one inherently universal variable is internally definable
in the class of kripke frames and descriptive frames. (a)

Here, a formula is called constant if it is composed from the constant atomic formu-
lae t and f. A variable is inherently universal if it is bound by a universal quantifier
which itself is not in the scope of an existential quantifier. Notice that the occurring
constant subformulae can have any shape. The modal axioms to which such properties
correspond are the so-called Sahlqvist formulae. Call a formula strongly positive if is
composed from constant formulae and variables with only ∧ and the boxes �i, i ≤ m.

Theorem 4.3 (Sahlqvist) A modal axiom corresponds to an elementary property of
both kripke and descriptive frames if it is of the form A→ B where A is composed from
constant formulae and strongly positive formulae using ∧,∨, ♦, while B is composed
from constant formulae and variables using ∧,∨, ♦,�. (a)

An important subclass of Sahlqvist formulae are primitive formulae. A formula is
simple if it is composed from constant formulae and variables with the help of ∧, ∨
and ^. A formula is primitive if it is of the form A → B where both A and B are
simple. Notice that simple formulae may contain instances of �ψ but only when ψ is
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constant. It can be shown that a primitive axiom can be written in such a way that each
variable in B occurs exactly once in A. Primitive formulae are all Sahlqvist and define
frame properties of the form ∀∃, ignoring the constant subformulae (though not all of
the latter are definable by primitive formulae). They are thus of the complexity Seq1 in
the Sahlqvist hierarchy defined in [Kracht, 1995a].

5 The wonderful world of limited choice logics

Of particular significance are the logics of limited alternatives. These logics are char-
acterized by the following postulates.

altn

∧
i≤n+1

♦pi.→ .
∨
i< j

♦(pi ∧ p j)

These axioms are Sahlqvist and express the condition that any point has at most n
different successors. In R this is expressed by

altn (∀y1 B x)(∀y2 B x) . . . (∀yn+1 B x)(
∨
i< j

yi = y j)

A polymodal logic where each relation satisfies a principle altn for some n is called
limited choice logic. Moreover, polymodal logics where each relation satisfies alt1 will
be called no choice logics. Quite a lot is known about these logics ([Bellissima, 1988],
[Segerberg, 1986] and [Grefe, 1994]).

Remembering that we are interested in logics for feature structures the connection
should be clear. Feature structures admit per node and arc label ` j at most one related
node, and so each single arc fragment is a structure for K.Alt1. Hence, the logic of
feature structures for m features is—constants aside—exactly the m-fold independent
fusion

⊗
i≤m K.Alt1. This logic and its extensions are the main object of our investi-

gation. As [Bellissima, 1988] first observed, every limited choice logic is canonical.
The argument is extremely simple and consists in an application of what I will call
the principle of finite effect. It will be used here to show a much stronger property,
df-persistence. It consists in the observation that in any polyframe of this sort only a
finite number of points can be reached from any given point with paths of given length.
Thus, if 〈F, x〉 |= φ for a differentiated F, and the modal depth of φ is δ then the set
algebra induced on the subframe consisting of all points reached from x in at most δ
steps, is the powerset algebra over this set. Hence we can pass with impunity to the
underlying kripke frame, and so 〈f, x〉 |= φ. This shows that any socialist logic is df-
persistent and thus ∆-elementary. Another consequence of the principle of finite effect
is worth remembering.
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Theorem 5.1 Let Λ be a finitely axiomatizable socialist subframe logic and let Φ be
a finite set of formulae. Then Λ + Φ has the finite model property and is decidable.

Proof. Let δ the maximum of the modal depths of all φ ∈ Φ. To know whether a
rooted frame 〈f, x〉 satisfies Φ it suffices to study the set of points reachable in at most
δ steps. This set is finite and hence this task can be carried out for any frame. Now
let a formula ψ be given and assume it has a model 〈f, x, β〉. Let δ̂ be the maximum of
δ and the modal depth of ψ. Let g be the result of dropping all points not reachable
from x in δ̂ steps. Simple induction shows that 〈g, x, β〉 |= ψ. g is finite and satisfies
the postulates of Λ by the fact that the latter is a subframe logic. But 〈g, x〉 |= Φ as
well since the subframe of δ-reachable points of 〈g, x〉 is isomorphic to the subframe
of δ-reachable points of 〈f, x〉. a

That subframe logics of limited choice have the finite model property was first re-
marked in [Wolter, 1993], where it was also shown that subframe logics do not neces-
sarily enjoy the finite model property, contrary to what one might expect. These results
can be improved drastically in the no choice case. Notice, namely, the following basic
equivalences.

�(p ∨ q).↔ .�p ∨ �q ♦(p ∧ q).↔ .♦p ∧ ♦q

�p.↔ .�⊥ ∨ ♦p ♦p.↔ .♦> ∧ �p

We will show all of these equivalences. First, in the top row, in both formulas one
direction is valid in K. Namely, �p. → .�(p ∨ q) and �q. → .�(p ∨ q) hold in K
(instances of box-distribution), so that �p∨�q.→ .�(p∨q), by propositional calculus.
Likewise, ♦(p ∧ q). → .♦p ∧ ♦q is a theorem of K. The converse implication, ♦p ∧
♦q. → .♦(p ∧ q), is an instance of alt1. Now replace p by ¬p and q by ¬q. This
gives ♦(¬p) ∧ ♦(¬q). → .♦(¬p ∧ ¬q). By propositional calculus this is equivalent
to ¬♦¬(p ∨ q). → .¬♦¬p ∨ ¬♦¬q, that is, �(p ∨ q). → .�p ∨ �q. This shows the
upper two equivalences. By replacing q with ¬p in the first equivalence we get that
�(p ∨ ¬p). ↔ .�p ∨ �¬p. Now, the left hand side is a theorem, �>, and so we
have as a theorem �p ∨ �¬p, or ♦p. → .�p. The latter is often used as a charactistic
axiom of K.Alt1. Since �p ∧ ♦>. → .♦p is a theorem of K, we have shown the lower
right equivalence. The lower left equivalence is similar. These equivalences allow to
create very simple normal forms (see [Fine, 1975a] for the general case). Recall from
standard propositional logic that we can transform any formula into disjunctive normal
form. For each formula φ there exists an equivalent formula which is a disjunction of
formulae φi such that each φi is a conjunction of either a variable or its negation. The
proof is by showing that negation ‘commutes’ in some sense with disjunction and
conjunction (via the de Morgan laws) and that disjunction and conjunction commute
via the distribution laws. The same method can be applied here as well. First, we
can move negation inside before variables as usual. We just have to observe that in
addition to de Morgan’s laws we have ¬♦p. ↔ .�¬p and ¬�p. ↔ .♦¬p. Thus we can
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move negation inside. Double negation can as usual be removed. Next we move ∧,∨
outside the scope of any modal operator. That this is possible is due to two facts. In K,
we have the equivalences �(p ∧ q). ↔ .�p ∧ �q and ♦(p ∨ q). ↔ .♦p ∨ ♦q, allowing
to drive conjunction out of � and disjunction out of ♦. Moreover, by the additional
equivalences proved above, conjunction can be moved out of ♦ and disjunction out of
�. Finally, any subformula � jφ can be replaced by the conjunction of � j⊥ and ♦ jφ.
Thus, at the cost of introducing some subformulae of the kind � j⊥, � jφ can be replaced
by ♦ jφ. After having done this we can drive the conjunction out of the scope of the
modal operators. Hence any formula φ can be written as a conjunction of formulae of
the following kind

(‡)
∨

i

[ui]⊥ ∨
∨

j

〈v j〉> ∨
∨

k

〈wk〉pk ∨
∨
`

〈x`〉¬q`

Here, ui, v j,wk, x` are words over the alphabet of arcs. The pk, q` need of course not be
distinct.

Proposition 5.2 Every extension of
⊗

j K.Alt1 can be axiomatized by primitive for-
mulae.

Proof. Recall that a primitive formula is a formula of the form A → B where both
A and B are made from constant formulae and variables with the help of ∧, ∨ and
♦ j. Now, any formula can be brought into a conjunction of formulae of the form (‡).
However, adding a conjunction of formulae as an axiom is equivalent to adding the
formulae individually, so we can assume our formula to have the form (‡). In (‡),
replace disjunction over negative formulae by an arrow. This gives

(¶)
∧

j

[v j]⊥ ∧
∧
`

[x`]q`.→ .
∨

i

[ui]⊥ ∨
∨

k

〈wk〉pk

The consequent is a simple formula. Now reduce the subformula
∨

`[x`]q` into normal
form. This procedure will not introduce any negation. Thus after doing this reduction,
the antecedent of the conditional is a simple formula as well. a

Often enough a modal operator also satisfies the axiom ♦>, konwn as D. If it does,
then we can derive �p. ↔ .♦p. With this axiom it is more or less obvious that every
formula can be brought into primitive form. Moreover, every constant subformula is
equivalent to either ⊥ or >, so that we derive extremely simple normal forms.

Similar considerations lead to reduced first-order descriptions. We have the equiv-
alences

(∀y B x)(φ ∨ ψ).↔ .(∀y B x)φ ∨ (∀y B x)ψ

(∃y B x)(φ&ψ).↔ .(∃y B x)φ& (∃y B x)ψ
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(∀y B x)φ.↔ .(∀y B x)f ∨ (∃y B x)φ

(∃y B x)φ.↔ .(∃y B x)t & (∀y B x)φ

Remember that the (local) elementary condition expressed by an axiom φ above a lim-
ited choice logic is positive. Using the reductions above we can eliminate all existential
quantifiers in favour of a universal quantifier plus a constant formula. It follows that the
first-order conditions are such that all occurring variables are universal and a fortiori
inherently universal. Moreover, above polymodal K.Alt1.D every axiom corresponds
to a ∀-sentence. The conditions are therefore equivalent to Sahlqvist formula.

Theorem 5.3 A positive elementary R (Rq) condition is internally definable in differ-
entiated generalized polyframes for

⊗
i≤m K.Alt1. a

Corollary 5.4 A condition on (pointed) frames for
⊗

i≤m K.Alt1 is internally definable
in differentiated generalized polyframes iff it satisfies a positive R (Rq) sentence.

We have stated above that a quasi-normal extension of a subframe logic is decidable
if finitely axiomatizable. We will see that this is not so for normal extensions. The tool
to prove this is to code Thue-processes. (See [Kracht, 1995a] for the connection with
modal logic as described here and [Baader et al., 1993] for similar undecidability result
for feature logics.) A Thue-process T is a finite set of equations vi ≈ wi, i ≤ k, over a
finite alphabet L = {`1, . . . , `m}. One can think of the Thue-process as a specification of
a semigroup, with generators `i and certain equations. In mathematical terms we call
T a presentation of that semigroup. It is obtained from that specification by forming
the semigroup of all L-words with a binary operation · of concatenation (this is quite
an easy object); and then lumping together in one equivalence class all those words
that can be obtained from each other by successively replacing a substring identical
to a vi or wi by wi (and vi, respectively). We write T ` x ≈ y for some words x, y if
x = y in the semigroup FS G(L)/T, where FS G(L) is the free semigroup over L. The free
semigroup over L can be interpreted as a kripke frame; the elements are words over the
alphabet, and vCi w iff w = v · `i. This frame satisfies exactly the logic

⊗
i∈m K.Alt1.D.

Now, the semigroup presented by a Thue-process is a homomorphic image of the free
semigroup. It is proved by direct calculation that the homomorphism corresponds to
a p-morphism onto a frame whose nodes are the equivalence classes of T under the
lumping. For two such equivalence classes, [v] and [w] we put [v] Ci [w] iff there are v̂
and ŵ such that T ` v ≈ v̂, w ≈ ŵ and ŵ = v̂ · `i.

It is known that there exist T such that ‘T ` x ≈ y’ is undecidable. Take such a T
and let

ΛT =
⊗
i≤m

K.Alt1.D ⊕ {〈vi〉p.↔ .〈wi〉p|i ≤ k}
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Then T ` x ≈ y iff ΛT ` 〈x〉p. ↔ .〈y〉p. Thus ΛT is undecidable. Now let T1 be
the first-order theory of bi- or polymodal K.Alt1-frames. Then ΛT is an extension of
polymodal K.Alt1.D. The postulate 〈xi〉p↔ 〈yi〉p is not only first-order but universal.
It says that any xi-successor (i. e. the one and only such successor) is equal to any yi-
successor. Now take a Thue-process T. It induces a strengthening T2 of the theory T1

by the axioms corresponding to the equations. Hence T2 = T1 ∪U, where U is a finite
set of universal sentences. By construction, T ∀2 is undecidable. But T ∀2 = (T1 ∪ U)∀.
Suppose that T1 is decidable. Then since T ∀2 is the set of all φ such that T1 `

∧
U → φ,

T ∀2 is decidable, contrary to fact. So T1 is undecidable. Now, modulo T1,
∧

U →
φ always reduces to a universal sentence (the reduction is effective). Hence T ∀1 is
undecidable. Thus we have derived that the universal theory of two binary, (quasi-
)functional relations is undecidable; we have also shown that the universal theory of
two unary function symbols is undecidable.

It is known to be undecidable whether or not a modal axiom expresses an elemen-
tary condition (proved in [Chagrova, 1991]). The following converse in bimodal logics
due to [Grefe, 1994] holds.

Theorem 5.5 (Grefe) (m ≥ 2) It is undecidable whether a first-order condition is
modally definable in classes of frames for

⊗
i≤m K.Alt1.

Proof. We work with two modal operators. Recall that T ∀1 is undecidable. The formula

α0 = (∀x)[(∀y B1 x)(y , x) ∧ (∀y B2 x)(y , x)]

expresses the irreflexivity and is not modally definable, as is standardly known in
modal logic. The culprit is the fact that the formula has a negative matrix (see [Kracht,
1993a]). Now consider the formula β = α0∨γ, where γ is arbitrary. Then if for a kripke
frame f we have f |= α0, then also f |= β. Now suppose that β is modally definable.
Then it must hold on all kripke frames for K.Alt1⊗K.Alt1 by the fact that every frame
is the p-morphic image of an irreflexive frame. Thus T1 ` α0 ∨ γ, whence T1;¬α0 ` γ.
Suppose now that β is not modally definable. Then T1 0 β, that is, T1;¬α0 0 γ, for
otherwise β holds in all frames and is therefore modally definable (for example by the
true constant). Hence if we are able to show that T2 = T1 ∪ {¬α0} is undecidable, we
have succeeded in showing that modal definability (of β) is undecidable.

Now consider the theory T3 = T1 ∪ {α1} with

α1 = (∃x) [(∀y B1 x)(y = x) ∧ (∀y B2 x)(y = x)
∧ (∀z){(∀y B1 z)(z , x) ∧ (∀y B2 z)(y , x)}]

Since ` α1 → ¬α0 we have that if T2 is decidable, so is {ζ : T2 ` α1 → ζ} = {ζ :
T1;¬α0;α1 ` ζ} = {ζ : T1;α1 ` ζ} = {ζ : T3 ` ζ}. So we are done if we have shown that
T3 is undecidable. Now, consider a frame f for T1. If we add an inaccessible, reflexive
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point, that is, if we form the disjoint union f ⊕ r, where r is the one-point, reflexive
frame, then we have a T3-frame. And a T3-frame is a T1-frame. Thus, by standard
model theory, T ∀3 = T ∀1 . Hence, since T ∀1 is undecidable, so is T ∀3 and a fortiori T3. a

In addition to certain Thue-processes being undecidable it is also undecidable
whether a given process T is decidable. This result can be sharpened. Instead of
the above axiomatization we can consider an axiomatization where we use a subframe
axiom to code a Thue-equation, namely

(〈xi〉p.→ .[yi]) ∧ (〈yi〉p.→ .[xi]p)

This states that if we start at a given point and an xi-path exists, then it is equal to
all yi-paths starting from that point, and if a yi path exists it is equal to all xi-paths.
Actually, only one half of this axiom is sufficient.

ΣT =
⊗
i≤m

K.Alt1 ⊕ {〈vi〉p.↔ .[wi]p|i ≤ k}

The logic ΣT is a subframe logic and therefore has the finite model property and is
decidable. However, if we add the postulates 〈` j〉> for all j ≤ m we get the logic ΛT.

Theorem 5.6 (m ≥ 2) There exist undecidable, finitely axiomatizable normal exten-
sions of

⊗
i≤m K.Alt1. a

Call an extension trivial if it has only one model, with a single point x reached from
itself by all features. Equivalently, if corresponds to the logic ΛT where T = {`i ≈ ε :
i ≤ m}. Using a result by Rabin the following can be proved.

Theorem 5.7 (Grefe) (m ≥ 2) Whether a finitely axiomatizable extension of
⊗

i≤m K.Alt1

is decidable or trivial is undecidable. a

Finally, consider the question of finite model property. It, too, is undecidable. For
suppose it is decidable. Then we show that it is decidable whether or not a Thue-
process is trivial, a contradiction. Thus let T be a Thue-process. First decide whether
or not ΛT has the finite model property. If not, it is not trivial. If it does have the
finite model property, then it is decidable (!) and so ΛT ` 〈`i〉p. ↔ .〈ε〉p is decidable,
showing the decidability of triviality.

Theorem 5.8 (m ≥ 2) It is undecidable whether an extension of
⊗

i≤m K.Alt1 has the
finite model property. a

In [Segerberg, 1986] it is shown that for m = 1 this theorem is false. All normal
extensions are finitely axiomatizable and have the finite model property and are thus
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decidable. Although there are uncountably many quasi-normal extensions, the finitely
axiomatizable extensions have the finite model property as well, as follows from The-
orem 5.1. However, as the previous theorem shows, even recursively axiomatizable
quasi-normal extensions need not be decidable.

The results can be summarized as follows. The latticeN(
⊗

j K.Alt1) is a sublattice
of Q(

⊗
j K.Alt1). The first contains undecidable logics, so does the latter. However,

the semilattice N f (
⊗

j K.Alt1) of finitely axiomatizable normal extensions is not a
subsemilattice of the lattice Q f (

⊗
j K.Alt1) of finitely axiomatizable quasi-normal ex-

tensions. 3 The latter consists exclusively of decidable logics, while the former does
not. Nothing changes if we replace

⊗
j K.Alt1 by an extension – provided this is a

subframe logic.

These results show the following.

Theorem 5.9 Let Λ be a finitely axiomatized subframe logic extending polymodal
K.Alt1. Then the lattice Q f (Λ) is decidable. That is, for two logics Θ1,Θ2 ∈ Q f (Λ) the
problems ‘Θ1 ⊆ Θ2’ and ‘Θ1 = Θ2’ are decidable.

Proof. Let Θ1 = Λ+Φ1 and Θ2 = Λ+Φ2 with finite Φ1 and Φ2. Then for each φ2 ∈ Φ2

it is decidable whether φ2 ∈ Λ+Φ1, by Theorem 5.1. Hence Φ2 ⊆ Λ+Φ1 is decidable
and so ‘ Λ + Φ2 ⊆ Λ + Φ1’ is decidable. Consequently, ‘Θ1 = Θ2’ is also decidable. a

6 Extensions and fragments of the language

Various enrichments of the standard modal apparatus have been considered ([Black-
burn, 1993], [Blackburn and Spaan, 1993a], [Blackburn and Spaan, 1993b], [Gazdar
et al., 1988]). In addition there is the ‘classical’ language of Kasper and Rounds
(see [Kasper and Rounds, 1990]) with it’s various extensions, for example [Baader et
al., 1993]. We will discuss them in turn concentrating on the aspects of definitional
strength and their decidability.

Kasper and Rounds in their work advance a language LKR that has conjunction,
disjunction, arc modalities 〈` j〉 and a device that is equivalent to having path equations
v ≈ w. Indeed, here (and only here) only the question of descriptive power as opposed
to the defining power makes sense. But this is only a consequence of the fact that
there is no negation. Consider now a formula φ in LKR and ask what it tells us about
a model for it. Suppose there are no path equations. Then by the fact that there is no
negation only constant conditions are describable. So, only path equations introduce

3Notice that in contrast to quasinormal extensions, the intersection of two finitely axiomatizable
normal extensions need not be again finitely axiomatizable.
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non-trivial, non-constant conditions. The elementary condition described by φ is thus a
conjunction of disjunctions of constant formulae or path equations. Compare this now
with

⊗
i≤m K.Alt1. A formula φ defines (!) a conjunction of disjunctions of constant

formulae or path equations. However, in contrast to the logic of Kasper and Rounds
we can also define the non-existence of paths. By the reduction to normal form (‡)
one can show that this is the exact limit. Call a modal formula impartial if it does not
contain positively a subformula asserting the inexistence of paths.

Theorem 6.1 Any satisfiability condition of LKR is modally definable (in differentiated
polyframes) by an impartial modal formula. a

Given a formula φ of LKR, the satisfiability problem for can be transformed into the
problem⊗

i≤m

K.Alt1 + φ̂ ` ⊥

for a suitable translation φ̂. This translation is as follows. Translate booleans by
booleans and arc modals by arc modals; translate v ≈ w by

〈v〉> ∧ 〈w〉> ∧ (〈v〉p.↔ .〈w〉p)

(See [Blackburn, 1993].) As an immediate consequence we get the decidability of
the logic of Kasper and Rounds by reference to Theorem 5.1.

We can consider also axiomatic extensions of Kasper and Rounds’ logic, for ex-
ample by path existence statements and by path equations. To let this be nontrivial,
we will assume these statements to hold globally, that is, if v ≈ w is added as an ax-
iom then xv ≈ xw as well as vx ≈ wx should be derivable as well. It is possible to
axiomatize Kasper and Rounds’ logic by axioms and rules in such a way that this is
possible. The interesting question is whether all extensions are decidable. Here the
answer depends on the interpretation of ≈. There are three plausible alternatives. (1)
v ≈ w holds at a node if the two paths are equal if both exist; (2) v ≈ w is true at a node
if whenever one path exists, the other exists as well, and if both exist they are equal;
(3) v ≈ w is true at a node if both paths exist and are equal. (1) is a condition closed
under taking subframes, so by reference to Theorem 5.1 we know that all extensions
by finitely many axioms are decidable. (2) and (3) are stronger and both allow to recre-
ate undecidability via the word problem alias Thue-process. Incidentally, Kasper and
Rounds’ have chosen (3).

Rather than using the method of axiomatic classification [Blackburn, 1993] uses a
more powerful language to ensure that path equations can be described. He adds nomi-
nals; these are a special sort of propositional variables (constants) which can and must
be made true at singleton sets. If i is a nominal and β a valuation, β(i) = {x} for some
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x. This poses some problems for generalized frames here, but the logics we consider
here are all complete, so for the correspondence problem we can settle comfortably on
Kripke frames, which removes the worry about non-internal singleton sets. It is clear
that by using nominals we can describe equality of worlds in kripke frames (that is, we
can define inequality). All that is required for x and y to be equal is that some nominal
i is simultaneously true at both x and y under some valuation. So, modal logics with
nominals are more powerful than modal logics without nominals. Interestingly, an in-
spection of typical axioms for attribute-value structures show that they can be written
with exclusive use of nominals. Ordinary propositional variables can be eliminated.
Call a formula purely nominal if it contains no ordinary propositional variable.

Theorem 6.2 Every extension of
⊗

j K.Alt1 can be axiomatized by means of purely
nominal axioms.

Proof. (Fast proof.) Observe that for primitive formulae the singleton sets are decisive
in the sense of [Kracht, 1993a], whence 1st-order correspondence is determined by
singleton valuations. So nothing is changed if proposition variables are exchanged by
nominals. a

Proof. (Slow proof.) Any extension is complete with respect to kripke frames, so the
axiomatic equivalence can be checked on kripke frames. We know that any formula
can be reduced to primitive form. So we have an axiom of the form A→ B where A and
B contain � jψ only if ψ is constant. Moreover, we can assume that a variable occurs
in A at most once. It is enough if we show that A → B is axiomatically equivalent to
(A → B)n where (A → B)n results from A → B by replacing a propositional variable
p by a nominal ip not already occuring in A → B. So assume f 2 A → B. Then there
exists a valuation β and a x such that

〈f, x, β〉 |= A,¬B

A is a disjunction of constant formulae or formulae of the form 〈w〉q for some word w
and variable q. If q = p then we have in particular

〈f, x, β〉 |= 〈w〉p

Since f is functional with respect to the relations, there is exactly one point y such that
y is w-related to x. Thus

〈f, y, β〉 |= p

Define now β+ by β+(q) = β(q) if q , p and β+(p) = {y}. Then we have

〈f, x, β+〉 |= A,¬B

Namely, we have seen that A is satisfied with new valuation, simply by construction.
For ¬B, however, we need not worry, because the set of points on which ¬B is true

25



grows when the sets on which the variables are true shrinks, because ¬B contains every
variable negatively. With βn like β+ but βn(ip) = {y} we thus have

〈f, x, βn〉 |= An,¬Bn

And this had to be shown. Assume conversely that there is a valuation γ and a point x

〈f, x, γ〉 |= An,¬Bn

Then let γn be like γ except for p where we put γn(p) = γ(ip). Then

〈f, x, γn〉 |= A,¬B a

Notice also that the formulae alt1 can be replaced by purely nominal formulae be-
cause they are primitive. The internal descriptive power of the language with both
nominals and standard propositions is therefore the same as the descriptive power of
the sublanguage with just nominals. Moreover, the novum is the describability of iden-
tity, which shows by means of the calculus of internal descriptions that with nominals
any R (Rq) condition which is existential modulo constant formulae is internally de-
scribable. Every condition reduces to such a condition in no choice logics.

Theorem 6.3 EveryRq-sentence is internally both describable and definable in frames
for
⊗

j K.Alt1 in logics with nominals; every R sentence is internally definable. a

By the finite effect principle it can be shown that the logic
⊗

i≤m K.Alt1 enriched with
nominals is decidable, and an analogue of Theorem 5.1 can be proved. The tech-
nique of selecting points is the one used in [Blackburn and Spaan, 1993b] as well as
[Blackburn, 1993]. The addition of nominals has the advantage to allow for defining
inequality—which is not possible in ordinary modal logic. [Carpenter, 1992], while re-
jecting the use of negation (which would result in a boolean logic of types), argues for
inequations, but the only real example is that of disjoint reference for pronouns. This,
however, is not such a strong case; it has been argued that the disjoint reference is not
syntactically required but follows from pragmatic considerations on top of the fact that
the pronouns allows the option of same or different referent, while the reflexive does
not (see [Reinhart, 1983]). For an excellent exposition arguing that disjoint reference is
a non-issue see [Fiengo and May, 1994]. This being the only case where non-identity
has been claimed to be necessary, we can therefore not discern much necessity in the
introduction of nominals.

Another concept which enjoys only marginal status is that of the relational con-
verse. Suppose that R is a binary relation. Then R` = {〈y, x〉 : xRy} is called the
(relational) converse of R. R being C j, one of the accessibility relations in a poly-
frame, we write B j instead of C`j . The converse relation of an accessibility relation
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plays a fundamental role in tense logic, which is essentially the logic of bi-frames in
which the relations are converses of each other. The converse relation of an attribute
appears for example in [Johnson and Moss, 1994], and we will make use of this con-
struction further down. Here, let us only show how one can axiomatically characterize
that two operators, call them ^ and ^ are inverses of each other. These are

p→ �^p p→ �^p

Via Corresponence Theory it can be shown that these two axioms are sufficient. The
reader may try to prove that for himself, or consult a textbook. I should also add that
the addition of the converse is not just a matter of definitional strength. One has to
be careful in that the meaning of a variable changes. This is due to the fact that there
are now less generated substructures. If a frame is connected via C, then it has no
nontrivial generated subframes. We will return to this point below.

In [Gazdar et al., 1988] it was proposed to add a master modality on top of the
arc modalities. This master modality should allow to look arbitrarily deep into the
structure. I proposed an axiomatization in [Kracht, 1989] and proved that the logic
has the finite model property. However, the axiomatization only guarantees the master
to be at least as strong as the intended one; the reason was that a priori there was no
bound on the number of arcs. The result is therefore of little practical value. The case
where we have only a finite number of arc modalities is actually covered by a result of
[Ben-Ari et al., 1982]. Call a program π deterministic if the corresponding modality
〈π〉 satisfies alt1, that is,

〈π〉p ∧ 〈π〉q.→ .〈π〉(p ∧ q)

Theorem 6.4 (Ben-Ari, Halpern and Pnueli) The dynamic logic of deterministic pro-
grams is decidable. a

Corollary 6.5 The logic of category definitions is decidable. a

The master modality is the reflexive, transitive closure of the union of all basic modal-
ities. So, with � denoting this union, �∗ will be the sought after master modality. The
definability and describability questions are not so straightforward. Since �∗ is not
limited choice, there is no hope that the second-order definition can be reduced to a
first-order one; moreover, there exist no exchange laws for existential and universal
quantifiers.

The principal motivation of a master modality is actually to overcome the dis-
tinction between quasi-normal extensions and normal ones. The problem is that, as
explained, traditionally only the satisfaction problem with respect to the basic logic
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has been studied, or, equivalently, the decidability of quasi-normal extensions. How-
ever, some conditions on s amount to adding an axiom normally rather than quasi-
normally, which means if seen as a satisfaction problem, we are asking not for the
local but for the global satisfaction of a formula. Namely, in presence of a master
modality all finitely axiomatizable normal extensions turn out to be finitely axiomati-
zable as quasi-normal extension. For it is the case that Λ ⊕ φ = Λ + �∗φ. This has
for consequence that there are finitely axiomatizable quasi-normal extensions of the
logic of category definitions which are undecidable, and that it is not decidable which
of them is decidable.

Instead of a master modality, [Blackburn and Spaan, 1993b] study the addition of
a universal modality � (as from [Goranko and Passy, 1992]). With this modality we
get back our standard unrestricted quantifiers. The universal modality is the reflexive
and transitive closure of � and it’s converse �` or, alternatively, as the fusion with S5
plus the axiom �p. → .�p. The primary advantage of the universal modality, which
it shares with the master modality, is that we can enforce global constraints by a local
condition. However, from an intuitive point of view, the master modality, and not
the universal modality, is the right kind of object to look for. The reason is that we
want to think of the initial relations as fundamental and when moving around in the
structure we must follow these relations rather than jump anywhere we want. This has
consequences also for the notion of a constituent, as we will see below. In [Blackburn
and Spaan, 1993b] it is proved that the universal modality is from a complexity point
of view better behaved than the master modality. This is to be expected, if we consider
the fact that the universal modality is doing not much more than allowing to collapse
the global and the local derivability relation (see [Goranko and Passy, 1992], while the
master modality has greater expressive power. I remain unimpressed, however, by such
an argument. First of all, it is unclear whether the complexity bonus of the universal
modality will really show up in practice, for the simple reason that linguistic statements
may be simpler (and in fact are simpler) than those that are responsible for the worst
case in the complexity result. Second, even though low complexity is an advantage, it
should not be a criterion when choosing the language. Much more than that, I claim,
we must strive for natural translations, those which are by themselves fitted to the
problem. In addition, adding the universal modality is tantamount to appreciating the
use of first-order predicate logic in this context. Recall that if a first-order formula φ is
modally definable if it can be rewritten with restricted quantifiers such that the matrix
is positive and the variables meet a certain condition. In this context, a restricted
quantifier corresponding to the universal modality is really an unrestricted quantifier.
So, with the other qualifications remaining in place, we are a good step closer to using
predicate logic. I do think that the hallmark of modal logic as opposed to predicate
logic is in this context to use of restricted quantification, so that adding the universal
modality removes that distinctive feature.

These extensions can be mixed. We can add both nominals and a master modality
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or a universal modality. In both cases the defining power increases drastically, due to
the fact that identity can be described. Without any master modality this was harmless
by the finite effect principle but now that there is no such principle we are caught.
Consider a Thue-process {v1 ≈ w1, . . . , vk ≈ wk} and an equation x ≈ y. Write the
following formula

�∗(
∧

j

〈v j〉i j ↔ 〈w j〉i j).→ .〈x〉ik+1 ↔ 〈y〉ik+1

This formula defines the decision problem ‘T ` x ≈ y’ for the Thue-process T. Hence
there are finitely axiomatizable quasi-normal extensions of the logic with and a mas-
ter modality (or universal modality) for which the decision problem is undecidable.
[Blackburn and Spaan, 1993b] and [Blackburn and Spaan, 1993a] explore variations
on that theme, but the outcome is always the same. Replacing the nominals with path
equations exacerbates the problem in that it is now the base logic itself which is unde-
cidable. Similarly if we add the connective⇒ defined by

φ⇒ ψ := �(φ→ ψ)

Notice namely that �φ is definable via > ⇒ φ, so that little is changed passing to
this new language. Notice that the connective⇒ is exactly the one used in constraint
programming, cf. [Carpenter, 1992].

Finally, [Baader et al., 1993] define a language that extends Kasper and Rounds’
language by negation and what is called functional uncertainty. The latter means noth-
ing but that for any regular set L of words over the alphabet of arcs we have the ex-
pression

〈L〉φ :=
∨
w∈L

〈w〉φ

The addition of negation brings us into plain modal logic. Functional uncertainty is
equivalent to the introduction of the Kleene Star

〈w∗〉φ :=
∨

i

〈wi〉φ

Notice that x ≈ y becomes internally definable via �∗(〈x〉p. ↔ .〈y〉p). So, unsurpris-
ingly, even the base logic is undecidable. If we want to express modally in test free
dynamic logic we need in fact to add nominals. Or, alternatively, we might replace this
by dynamic predicate logic, where the only predicate is equality.

In subsequent sections I will argue that the most suitable language for describing
linguistic entities is dynamic logic, in particular deterministic dynamic logic. It will
include the master modality, indeed any master modality. In will exclude the use of
nominals, the use of converse relations and the universal modality. I have argued two of
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these cases. The reasons for banning te converse relation(s) will be more subtle. There
will be a certain split in the feature language in that the star will only be needed when
talking about syntactic structures in the traditional sense, while it will be dispensable
when talking about categories (again in the traditional sense).

Part II: Feature Logic in Linguistic Practice

7 Coding Linguistic Structures

While in  the feature structures where finite objects, giving specifications for the
type of a constituent,  and other frameworks took this one step further and used
feature structures throughout to code linguistic entities (see [Pollard and Sag, 1987]).
We will see below how this is done and show that there is a reduction of trees to feature
structures. However, two questions arise after this observation has been made. First,
should we then replace trees by feature structures? And second, what significance does
this observation have in linguistics? To answer the first question, let us just observe
that if indeed there is such a translation then it does not really matter in which of these
formalisms we express ourselves – this is just a question of personal taste and whether
one is at ease with one or the other. This will also answer the second question: there is
no linguistic significance in this observation.

Nevertheless, there is a point being made by this in  namely that one should
regard the distinction between categories and tree structure as artificial. Looking at a
code of a traditional syntactic tree we see that there is no distinction made between
what is inside or outside a category. It has lost its own status. Thus, in spite of the
previous criticism, one has to adduce good arguments in favour of the traditional split.
I guess that the real reason for distinguishing between categories and structure is that
the number of categories is bounded, while the number of distinct structures is not. So,
we take side here with  as concerns the analysis. However, this does not mean we
are claiming that languages are context-free. Even if there are only finitely many cate-
gories, the conditions on the structures (or trees) can be more complex. We might, for
example, consider a -grammar instead of an ordinary . The former can generate
non-context free languages using finitely many symbols. A typical transformational
grammar can even be more powerful. Be this as it may, the question remains as to
why there are only finitely many categories. I cannot really produce a knock-down
argument. What I want to say is that there are only finitely many words. However,
this argument meets two objections. (1) There obviuosly are infinitely many words,
(2) The are more symbols in the grammar than there are lexical categories. To answer
the second objection, even though there are more non-lexical categories, each of them
must be lexically motivated. If we believe in X-bar-syntax or something of that sort,
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then each non-lexical category is a projection of a lexical one, so if the latter is finite,
so is the former. Objection (1) is somewhat harder. We must acknowledge the fact
that the lexicon is productive. Yet, it is arguably clear that simple lexotactic processes
do not give rise to an increase in categories, so in languages like German, where huge
words can be built by compounding, these words nevertheless behave syntactically like
corresponding non-compounded words. Similarly, in most languages a word displays
only a finite amount of morphological variation, due to inflection and derivation. The
increase is only by a finite factor. So a challenge derives only from processes which
change the nature of the item and are iterable at the same time. Such morphological
processes are subsumed under the header incorporation in [Baker, 1988]. The dis-
tinctive nature of incorporation processes is that they change the syntactic properties
of the incorporating element. For example, case assignment possibilities may change.
A verb may suddenly assign case to quite different s after incorporation. Notice,
however, that Baker assumes the following principle.

C F P P.
A complex X0 of category A in a given language can have at most the
maximal Case assigning properties allowed to a morphologically simple
item of category A in that language.

What this says is that from the point of view of case relations, an incorporation process
is licit only if it transform the item into an item of an already realized syntactic class.
So, iterable morphological processes do not expand the class of pre-terminal symbols.
We conclude that it is justified to assume a finite amount of syntactic symbols out of
which complex structures are built. The potential infinity of syntactic entities then is
entirely within syntax, that is, the structure (but see below for a closer look).

We will argue in detail in the subsequent sections the various approaches to formal-
ization. In the remainder of this section we will introduce a logic for formalizing tree
structures. This logic will be something of a reference point for my own views on the
subject. The basic idea is that an ordered tree is a quadruple 〈T, r, <,@〉, where T is the
set of nodes, r the root, < the proper dominance relation, and @ the linear precedence
relation for nodes. We assume that the reader is familiar at least with the notion of a
tree; suffice it say that for T to be a tree it is sufficient that < is an irreflexive, transitive
relation such that for all x, if x < y, z then either y < z or y = z or y > z. r is the root
if there is no x such that r < x. A syntactic tree specifies a structured event, namely
that of an utterance. The nodes correspond to parts of that utterance, subevents, that
is. The dominance relation describes whether a subevent of the utterance is a proper
subevent of the other. The relation @ specifies which event precedes another. @ is
irreflexive and transitive. Moreover, two events x, y overlap if x < y or x = y or x > y.
Two no-overlapping events must be @-comparable. It is possible to write down explixit
first-order axioms, but we will refrain from doing that. We will turn an ordered tree
into a pointed kripke frame f = 〈T, r, down, right, left〉. We define x down y iff x > y
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and there is no z such that x > z > y. Thus, down is immediate dominance. We define
right to be immediate precedence and left immediate succedence between daughters
of a single node only. So x right y iff x @ y and there is a z such that z ≺1 x, y and no
u exists such that x @ u @ y. Finally, x left y iff y right x. From the primitive relations
down, right and left any complex relation using the resources of dynamic logic may be
formed. So we have defined in effect a dynamic logic over three basic relations with
the following interaction postulates.

(coh.r) 〈down; right〉p.→ .〈down〉p
(coh.l) 〈down; left〉p.→ .〈down〉p
(con) 〈down〉p ∧ 〈down〉q.→ .〈down〉(p ∧ 〈right∗ ∪ left∗〉q)
(lr.+) p→ [right]〈left〉p
(lr.-) p→ [left]〈right〉p
(alt1.r) 〈right〉p ∧ 〈right〉q.→ .〈right〉(p ∧ q)
(alt1.l) 〈left〉p ∧ 〈left〉q.→ .〈left〉(p ∧ q)
(Ir.d) 〈down+〉p.→ .〈down+〉(p ∧ [down+]¬p)
(Ir.l) 〈left+〉p.→ .〈left+〉(p ∧ [left+]¬p)
(Ir.r) 〈right+〉p.→ .〈right+〉(p ∧ [right+]¬p)

The first two ensure a coherence between moving down and left/right. They mirror
the fact the left and right are defined only among daughters. The third postulates
ensures that the daughters are connected by precedence. Then follow two axioms
stating that left and right are inverses of each other. Then there are the standard no
choice postulates for left and right. Finally, for each of the three basic operators we
have added a postulate that ensures the irreflexivity of the operators. This language
and logic is similar to that studied in [Kracht, 1995b], but the up relation, the converse
of down is left out here. We will see why this has to be so. Notice, finally, that
models must always be trees with the distinguished world being the root. Technically,
without the relation up this cannot be achieved. The best approximation is to add
quasi-normally these axioms

¬〈right〉> ¬〈left〉>

They will make sure that we are standing at a sisterless node. We will in sequel not
insist on these postulates.

Feature structures have been designed also to exhibit the fine strucure of linguis-
tic categories, so it is perhaps not wise to treat the nodes of a tree as atomic entities.
Hence, we will need a few more modal operators to cater for the internal structure of
categories. This is not hard to do. A syntactic object now looks pretty much like a
-type feature structure, so we have by this move also abandoned the distinction
between being internal and being external of a linguistic category. But we are at the
moment not arguing that this is the best possible formalization of matters, so we leave
that aside here, pursuing only the formal consequences. We now have modal operators
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that take us down, left and right in a tree and those which take us into a node. We
must ensure now that the tree structure and the category structure do not mingle too
much. In [Blackburn et al., 1993] this is achieved by layering two languages, one for
talking about the structure and another for talking about the internal shape of a lin-
guistic category. Layering them consist in banning all formulae which stack structure
formulae inside category formulae. For example, while we might happily speak of
the case feature of a daughter of a noun phrase, speaking likewise of the daughter (in
the tree sense) of the case feature of a noun phrase, is talking nonsense. Inasmuch
as layering achieves the right kind of restrictions, it is quite successful. However, it is
unnecessary to impose layering since by using the right kind of axioms we can directly
force the models of the logic to be of the right shape. Notice namely that layering puts
a ban only on the way we may express things, not on the structures themselves. So,
rather than layering the languages we use axioms. Suppose then that in addition to the
tree-relations left, right and down we have category relations i, i ≤ m, of unspeci-
fied nature. Then in addition to the postulates above and the no choice axioms for the
features, we add the following axioms.

[i]¬〈down〉>
[i]¬〈left〉>
[i]¬〈right〉>

These axioms are Sahlqvist, hence elementary, and express the fact that when we fol-
low a feature relation, that is, go inside a category, then no daughter and no sister is
defined. This has the desired effect of layering the two structure and leaving the tree,
as it where, outside the categorial structure. We call the so defined logic the constituent
logic, CL.

It will be this logic—or better, the family of logics of the above kind—that we will
be considering. Variation may consist in adding propositional constants. Moreover,
if we believe with [Kayne, 1983] that syntactic trees are binary branching, then the
relation down actually satisfies alt2. In general, if an upper limit δ on the number of
daughters can be found, then the down-relation is of limited choice. In that case we
can interpret the language in the language of deterministic dynamic logic as follows.
Instead of the relation down we propose to have a number of relations downi, i ≤ δ.
The relations left and right will be dropped. Instead, it is implicitly assumed that if
x downi y and x down j z then i < j iff y right z. It is a somewhat longwinded procedure
to show that with these stipulations talk of sisters can in the linguistically relevant
cases be eliminated in this new language. It is an extremely simple language. It has the
relations downi and  j, each satisfying alt1. There is no interdependency between
these relations except for layering. Thus, if there is an a priori bound on the number of
daughters, we can design an attribute-value language to talk about the trees in this way.
We call this vertical coding of trees into s. However, in [Pollard and Sag, 1987]
another method is described, which we refer to as horizontal coding. It is related to
the treatment of lists in . Introduce an operator first and an operator rest. Both will
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be alt1-operators. We will require that rest and first be irreflexive, and that if there is a
first-successor, there must also be a rest-successor. (We might also introduce a constant
nil to denote the empty list.) The daughters of a node in a tree are then thought of as
a list, the first entry being the first daughter, the second entry the second daughter etc.
The elements of the list are accessed as follows. We have downi = (resti−1); first. This
way of coding allows to define down and right, but not left, unless we grant ourselves
the converse modality up. For various reasons we will not do that; first, decidability of
the constituent logic of trees is a simple matter without up, and secondly, it seems that
for linguistic applications we can do without. We will announce here without formal
proof the following result.

Theorem 7.1 CL has the finite model property and is hence decidable.

The proof is analogous to the proof of the finite model property of DPDL by [Ben-Ari
et al., 1982], using computation traces. We have opted for excluding the proof from
this paper since it is rather long and unrevealing for the present purposes. Notice the
following immediate condequences.

Corollary 7.2 Any extension of CL by a finite set of constant formulae has the finite
model property and is decidable. In particular, the logic of at most n-branching trees
and finite constant extensions thereof have these properties.

Proof. Let X be a finite set of constant formulae. Put χ =
∧

X. Now consider
CL ⊕ χ. We want to show that this logic has the finite model property. To that end
assume φ < CL ⊕ χ. Then a finite countermodel must be found. Now, from the
assumption follows �∗χ. → .φ < CL ⊕ χ, since �∗χ is a theorem of this logic. A
fortiori, �∗χ. → .φ < CL, since the latter logic has less theorems. By the previous
theorem there is a finite model 〈F, β, x〉 |= �∗χ ∧ ¬φ and we can assume that F is
generated by x. Hence, F |= CL, by the fact that F is a frame for CL, and F |= χ
by the fact that 〈F, β, x〉 |= �∗χ and (1) the frame is generated by x, so every point
is reachable from x by going down. (Remember we have stipulated via non-normal
postulates that x has no sisters; but that can be avoided in the proof if necessary.) Thus
〈F, β, x〉 |= χ, whence 〈F, β〉 |= χ. (2) χ is constant, so it does not depend on the
valuation so that F |= χ. This proves the first claim. For the second observe that to be
at most n-branching is expressible by a constant formula namely ¬^n

>, to be added
as a normal axiom. a

8 Grammatical Theories as extensions of CL

Grammatical theories of any sort can be viewed as axiomatic extensions of the con-
stituent logic CL for some fixed set of features. It is impossible to describe in detail all
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possibilities that this approach offers, but we will give the reader an impression of how
large the spectrum is. The first example is the variety of grammars of the -type.
Recall from [Gazdar et al., 1985] that  has two principal components. One compo-
nent for defining the admissible categories and the other for defining the grammatical
rules. The architecture of  is quite close to that of CL. In order to translate a spe-
cific -grammar into an extension of CL we first introduce for each -feature a
corresponding modality. Thus for the the features , , , ,  etc. we
introduce arc labels with the same name, and each in turn gives rise to a modal oper-
ator satisfying alt1. Furthermore, boolean constants will be introduced for the atomic
values of the features, which are, for example, nom, , +, −, for, that, whether, if,
nil. 4 Now we start with the axioms. First, we will have to state that the constants are
all mutually exclusive. So, if ni and n j are constants with i , j then an axiom ni → ¬n j

is added. Next, the value range of an operator must be defined. If an operator has
atomic values only, like , we must add axioms of the form []¬〈〉>, for
each feature  that is to be excluded. Furthermore, we must state for each atom ni

that is outside the range of  the axiom []¬ni. Alternatively, if the permitted
range is {acc, nom} then the axiom []nom ∨ acc will do.

In  there are also feature co-occurrence restrictions and feature specification
defaults. The former are straightforwardly translatable, since they are axioms. The
latter are tricky, because they do not have the status of an axiom. Thus, a priori there
is the possibility that defaults cannot be translated. It seems, however, quite plausible
that defaults are just a shorthand for an otherwise clumsy formula. A typical case is
the so-called elsewhere-condition the principle that a more specific rule overrides a less
specific one. This is in some sense a meta-axioms because it does not reduce to rules
simpiciter, but given a rule system that employs it, this rule system can be rewritten
into a rule system that does not. Naturally, the latter will be much more complex in its
formulation. I will not say more the reducibility of defaults; in the case at hand I trust
that the reader finds it as obvious as I do that they are a shorthand notation.

Next comes the rule component. It is split into rules and metarules. Again, it is
possible to remove the metarules at the price of inflating the rules. After having done
this we can translate the rule system as follows. Let R = {ρ1, . . . , ρm} be the totality of
rules. Then

γ =

m∨
i=1

ρt
i

where each individual rule ρ = C0 → C1 . . .Cm is translated as

ρt = Ct
0 →

m∧
i=1

〈downi〉Ct
i ∧ ¬〈downm+1〉>

4In order to appreciate this list, it is advisable to look at the appendix of [Gazdar et al., 1985].
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The translation of the categories is straightforward. The given translation is not the
most efficient, but it serves the purpose of illustrating our point. There is actually
more to , such as the head-feature convention, the factorization of rules into /-
format etc. By now, however, it should be clear that they all can be rendered more or
less as axiomatic extensions. A fast argument is a proof that  allows only a finite
number of rules. However, this proof is not so illuminating because unravelling the rule
system completely destroys the structure of the system completely. Ideally, however,
one wants the internal architecture of  to be preserved as much as possible, so
a closer analysis is to be preferred. Let us note that all axioms of  are constant
formulae, so  corresponds to a constant extension of . This is a consequence
of a theorem of [Kracht, 1995b] which states that an extension of CL for m-branching
trees (n some number) is context-free iff it is axiomatizable by constant axioms. This is
may not be exciting, but it shows directly that the logic of these grammars is decidable.
Moreover, with some effort one can show that for two such grammars it is decidable
whether or not they generate the same constituent structures. (See [Kracht, 1993b] for
an extensive discussion. There the same result is proved by reducing the context-free
grammars to a special normal from preserving the constituent structures.)

At the other end of the spectrum lies  with its very rich internal structure. ,
however, does fit the logical approach rather well. This is partly due to the fact that
the logic CL has arisen from studying formalizations of . The whole process of des-
tilling a logic from a particular -grammar is a rather long and difficult procedure, so
will have to be content with a sketch, focussing on some details only. Curious readers
might consult [Kracht, 1995b] for an example of formalizing Relativized Minimality
and [Kracht, 1993b] for an extensive study. First of all,  is a multistratal theory,
unlike . This leaves two options. The first is to encode in one structure the total
derivation by introducing a new modal operator  which mimicks the flow of time.
Move-α can be understood as specifying how a tree at point ti is related to a tree at
point ti+1. This can be written down axiomatically. This approach is rather unsatisfac-
tory because it does not reveal much about the empirical consequences of the theory.
Much better is the second approach of stratification. It consists in replacing  by an
empirically identical monostratal version. 5 It is not difficult to get rid of -structure,

5It needs to be clarified what counts as empirically identical. I propose the following definition.
Two grammars are empirically identical if they generate the same bracketed strings alias constituent
structures. This notion is somewhat in between weak and strong equivalence. Alternatively, we might
also take certain empty categories as if they were part of a string, so that theories are counted different
if they distribute PRO differently, everything else being equal. However, Noam Chomsky (p. c.) insists
on the reality of the generative process itself, so that two theories must be counted as different when
they differ only in the way the structures are being produced. Two remarks on this are in order. First,
this kind of definition might be useful in identifying the right theory, but is unhelpful in the present
circumstance because it trivializes the notion of equivalence. Notice, that for independent reasons we
must be interested in the formal consequences of a theory, thus testing equivalence with respect to other
theories in whatever sense is a reasonable thing to do. If the term empirical hurts, replace it by another.
Second, I know of very few linguistic articles that use data other than alignment facts in languages.
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because the derivation can be read off -structure. The real question, therefore, is the
reducibility of  and . Largely,  is still an unarticulated component, so we may
ignore it here. , however, cannot be ignored, although [Koster, 1986] has argued
that monostratal variants of  can be produced. He mainly argues that the arguments
in favour of  are not so compelling. I have been convinced especially be [Fiengo
and May, 1994] that this is not so. What can be done? We use the following trick.
Complete a full derivation from -structure to . Do not delete traces, just mark them
by a special feature to make them transparent. (Thus we fudge  a bit.) In addition,
leave the physical element in its original place at -structure and move a sort of anti-
trace, which we call a shadow. Thus, we obtain a mixture of -structure and . It
is -structure extended by additional empty categories that mimick the movement of
certain items to . Shadows will be identifiable by a feature, just as traces and other
elements.

If it is clear how  works, the phrase-structure component of  can be under-
stood with ease. Of course, we need to introduce enough features and values to create
the categories. So the basic categories of  such as cp, v, infl0 and agr-o can all be
produced from a list of features and values. Much of what remains implicit in -
notation will have to made explicit, for example the θ-grid, case assignments features
etc. There will be no indices, however. The θ-grid is syntactically relevant, so it clearly
must be reflected in the categorial system. X-bar-syntax is straightforward.

9 Cross Serial Dependencies

A particularly challenging construction in natural language is that of cross-serial de-
pendencies. Languages in which they occur are difficult to handle with many syntactic
formalisms. Two rather interesting solutions will be discussed here and we will see
how the modal constituent language CL can be put to use. The syntactic problem with
them is that they lead to what are known as copy languages. These are languages of
the form ww, w a word over a finite alphabet. These languages are known not to be
generable by context-free grammars. In the present context, the argumentation must
be careful. If we are interested only in syntactic acceptability, it is not immediately
clear that cross serial dependencies lead to copy languages. In essence, they may on
a very simple account only lead to languages of the form {anbn : n ∈ ω}, which are
indeed context-free. The grammar generating this language will not reflect the un-
derlying associations between the elements; however, since the associations are not
part of the representation, the difference will not show up. If, on the other hand, the
associations do exert an influence (e. g. when we have a selectional restriction hold-

Even if most linguists have higher aspirations, they use strings paired with grammatical judgements as
(raw) data. Rejecting the word empirical in this context is thus simply unfair, since I use the same data
as a criterion.
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ing between associated items), then we can indeed detect it. In the latter case there
is non-context-freeness. In the former case we note that a context-free grammar even
when it generates the right set of string will never generate the right kind of constituent
structures. For the type of construction discussed below, the syntactic structure is in
fact rather complex. We will not question it here and follow [Johnson, 1988]. Re-
call that nested sentences in English are syntactically unproblematic; the subordinate
clause begins after the sequence of nominal complements is complete, e. g. in I told
Mary not to let Bill help Peter.. In German, the subordinate clauses can also be center
embedded.

. . ., [daß ich1 [Maria2 [den Kindern3 aufzuräumen3] helfen2] verboten habe1].

. . ., that I forbade Mary to help the kids clear up.

In Dutch, finally, the dependencies cross. We do not have the sequence 1-2-3-3-2-1
but 1-2-3-1-2-3. A particularly striking sentence is the following one.

. . ., dat Jan1 Piet2 Marie3 de kinderen4 zag1 helpen2 laten3 zwemmen4

. . . that Jan saw Piet let Mary help the kids swim.

A particularly simple analysis is provided in . We will explain that solution here in
an extremely simplified fashion, in order to be able to concentrate on the case at hand.
We assume for Dutch and German the same -structure. However, for independent
reasons we assume that while for German we may let the verb remain in place until -
structure the verb has to be raised in Dutch and adjoined to the next higher verb; when
it adjoins it will swap places with that verb. Thus we have the following rudimentary
grammar with two rules for deriving the -structure 6

s→ np v s→ np s v

In addition the movement process generates the following -structure

(i) [np1 [np2 [np3 v3] v2] v1] {
(ii) [np1 [np2 [np3 t3] [v2 v3] v1] {
(iii) [np1 [np2 [np3 t3] t2] [v1 [v2 v3]]]

Each individual process follows a local pattern. The verbal constituent dominated by
s is adjoined on the right of the verb sister to s and leaves behind a (coindexed) trace.
Let us see whether we can approach this analysis with an axiomatic constituent theory

6This grammar just serves the purpose of illustration. No further claims are being made here. In
particular, this grammar does not conform to X-bar syntax. Moreover, it is not implied here that a
similar verb raising for German is excluded. We can perform the same analysis as with Dutch with the
difference that the verb adjoins to the left, thus recreating the same order. This is on the one hand banned
in  on the grounds that such movement is string vacuous, i. e. reproduces the original aligment. On
the other hand, there might be syntactic facts pointing to a constituent structure similar to Dutch. As an
additional note observe that the mere notion of string vacuousness as opposed to constituent structure
vacuousness seems dubious if we are interested in structural description. (See also the footnote on
empirically identical theories.
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by reducing  to a single stratum, -structure. It seems at first look impossible to
redo this analysis using the modal constituent language. The simple reason is that
each time the verbal complex is raised we have to check for the admissibility of the
movement, that is, we check whether the trace left behind is bound. However, in the
above derivation we can see that in the structure (iii) t3 is not bound. It need not
be, because it has been created by moving from (i) and (ii). Its legitimacy has been
checked already. This is the advantage of the derivational component of . If we want
to write a representational account of the same construction, we need to remember the
justification for the traces. We do this by using a simple trick. Rather than using
unstructured traces we will let the trace have the shape of its antecedent. In particular,
it will be completely isomorphic with an important exception. We need two boolean
features, ant and trc, roughly equivalent to being an antecedent and being a trace.
Now the root node will be labelled trc in the (feature structure of the) trace while the
root node of the antecedent will be labelled ant. To let no misunderstandings arise,
trc does not exactly identify the traces. Any node which is itself trc or directly or
indirectly dominated by a trc-node will be phonetically empty and be thought of as
part of one and the same trace in the original sense of the word. In effect, then, the
modification suggested here will make no difference in the output string nor in its
physical (acoustic/grapic) constituent structure. We have just articulated the internal
structure of a trace somewhat more. Let us see how the derivation from - to -structure
looks like.

(i) [np1 [np2 [np3 v3] v2]v1] {
(ii) [np1 [np2 [np3 v3] [v3 v2] v1] {
(iii) [np1 [np2 [np3 v3] [v2 v3] [v1 [v2 v3]]]
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The picture shows the fully articulated -structure. ±t means that the element is/is
not trc and ±a means that the element is/is not ant. All nonverbal nodes are −t,−a.
Notice that all four combinations are legitimate. In a three element chain 〈t1, t2, xp〉
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the first element is +t,−a, the middle element +t,+a and the head of the chain is
−t,+a. The combination −t,−a represents unmoved elements, or one-element chains.
Head-movement chains are two-membered, so the combination +t,+a—characteristic
of intermediate traces—does not appear here. The indices are not part of the repre-
sentation, they are just helpful devices for referring to constituents. Now the locality
restriction on trace-antecedent pairs can be monitored at any subsequent level. We will
show how. Let us agree to call a trace a constituent being labelled trc such that it is
not properly dominated by any constituent which is also trc. We introduce the constant
trace denoting traces. Thus, traces in the old sense are constituents whose root satisfies

trace := trc ∧ �+ − trc

We are now in a position to write down an axiom defining that a tree has proper trace-
antecedent relations for head-movement of the illustrated kind. This axiom needs
to be satisfied for a -structure to be correctly derivable from a -structure by head-
movement.

- : s ∧ 〈down; v?〉(trace ∧ 〈down〉p.→ .〈right; down〉v ∧ ant ∧ 〈down〉p

This axiom is not constant. It contains the variable p, standing here for the open
constituent dominated by the v-node. The content of the axiom is that if there is a s
node with a v-daughter which is a trace, then s is sister to a v dominating a constituent
which is isomorphic to the trace with the exception of the trace/antecedent labelling.
Given the fact that adjunction can be iterated any number of steps we do not know how
large the constituent is that is being moved. Consequently, we must use a variable to
stand for the (open) constituent dominated by the trace.

To get the full picture, we also need to revise the grammar, since we want to gen-
erate -structures directly. Thus write the following grammar.

s→ np v s→ np s v v→ v v

We have seen how to convert this such a grammar into an axiom for CL. This grammar
will overgenerate. Hence we need to restrict it in some ways. Among some minor ad-
justments (to do with the fact that we cannot afford base generated adjunction) we need
to add the axiom -. Thus, with cross-serial dependencies we have an example
of a syntactic analysis leading to a rather nontrivial modal logic of its trees. This logic
is not a constant extension, since it would then yield a strongly context-free language,
which we have shown to be false.

It is interesting to compare this with a different approach, namely . The fact that
 can come to grips with cross serial dependencies shows that its internal make-up
must be more complex than that of . The idea is that in addition to an ordinary
syntactic tree (called -structure) another structure is created hand in hand with the
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rules, a structure that reflects the argument structure of the sentence. This structure is
called -structure. Each node x in the syntactic tree will get a unique associated node
f x in the -structure. It may be that two syntactic nodes will be associated with one
and the same node. Well-formedness conditions therefore operate not only on syntactic
trees but also on the accompanying functional analysis. We will explain this using the
formalism of attribute-value grammars in [Johnson, 1988]. Recall that  has rules of
the following kind.

s → np vp
(↑ ) =↓ ↑=↓

This means the following. Suppose we are at node x in the -structure alias syntactic
tree; x is associated with f x is the -structure. Suppose that x is expanded according
to the above rule. This means that x dominates y and z, y a np and z a vp, that the
subject of f x is f y and that f y = f z.  can handle cross-serial dependencies because
it generates in addition to the syntactic tree the comparatively speaking shallow -
structure, which allows to encode the cross-serial dependencies in a simple way. We
will not present the specific solution. Rather, I will seize the opportunity to show
how the framework itself can be translated into CL. First of all, we will drop the
independent structure and treat the relations ,  etc. as relations over the syntactic
tree. To make this possible we must recreate the shallow analysis. This we do by
introducing an equivalence relation ≈ on the nodes. The intention is that we want to
put x ≈ y in a syntactic tree whenever f x = f y in the -structure. So, in the case of the
rule above we will say that the second row expresses the following. x dominates a np
y and a vp z; moreover, y is the subject of x and z ≈ x. To use an equivalence relation
other than identity only has the disadvantage that the relation object of is not identical
with . 7 Rather, a node u is object of v if u is equivalent (via ≈) to a node w which
is related via  to z and z ≈ v. In other words, object of is the relational composition
≈ ◦  ◦ ≈.

To translate this into CL assume a modal operator for each basic functional rela-
tion, such as  and , and assume a separate operator � based on ≈. In dynamic
logic notation, � is the same as [≈].

p∧s.∧ .〈down1〉(np∧q)∧〈down2〉(vp∧ r)∧¬〈down3〉>.→ .〈≈ ◦  ◦ ≈〉q∧〈≈〉r

By the correspondence between modal formulae and first-order statements it can be
shown that the above formula defines that the admissible local trees are those defined
by the (unique)  rule we have given above. Of course, a grammar has several such
rules, but we know that a disjunction of first-order axioms is again first-order, and
the formula corresponding to this disjunction can be computed. In this way any 
grammar can be effectively reduced to a modal logic. Moreover, it will be an extension
of polymodal K.Alt1 unless we admit functional uncertainty.

7It wouldn’t be in  either since we are literally speaking not talking about the same node when
we talk about f x instead of x.
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10 On alternatives to features

We have seen that there is a division between tree structure and feature structure.
Roughly (though not always agreed on) the typical feature structures have bounded
size, so that there is a bounded number of them. This suggests that rather than view-
ing them as attribute-value structures we might actually use different apporaches, for
example a straight boolean approach, without any modal operators. In this section we
will show that this is a justifiable option, even though the arguments for and against
will be balanced. We discuss this using concrete examples.

I-ECM. Consider the arc modality 〈〉 in Indo-European lan-
guages. We write 〈〉acc to state that the object under consideration has accusative
case. The syntax of the modal language allows to repeat the operator and create the
following statements.

〈〉〈〉acc
〈〉dat. ∧ .〈〉〈〉acc

In Indo-European languages, case is a simple property of nouns and adjectives, there
is no sense in iterating the operator 〈〉. Thus, for such languages (constituting the
majority of languages in fact) this has to be ruled out. Two alternatives are plausi-
ble. One fix is to forbid the reapplication of the operator. So we postulate the axiom
[][]⊥. The other would be to postulate that the reapplication must receive the
same interpretation, i. e. we add the postulate 〈〉〈〉p.↔ .〈〉p. (Or, equiva-
lently, the path equation  :  ≈ .) Notice that the latter postulate is weaker,
because in addition to the irreflexive singleton (a) it allows the reflexive singleton (b)
as a model structure.

(a)
•

(b)
•
� case

Of course, this condition has to hold everywhere, so the postulate is added normally.
Both approaches, however, do have their problems. Up to now it is still conceivable
that the atom acc is assigned at the root and the 〈〉 successor. So, the formula
nom ∧ 〈〉acc still needs ruling out. We can do this by requesting that acc or
any other atom for cases be false at the root of feature structures for constituents, and
can only be true if prefixed by 〈〉. This sounds like a difficult thing to do, but is
possible. But let us let us reflect instead on what constitutes a reason for using feature
structures at all.

Namely, I think even though it is optically pleasing to regard  as intrinsically
relational, the initial attraction results from a superficial linguistic analogy of 〈〉acc
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with the case of this item is accusative, thus suggesting that there is an underlying
relation. Yet, the expression my car is red does not indicate that the expression car is
relational, neither does this item’s case is accusative lead to the conclusion that case
denotes a relation. There are only cars and in particular red ones, and there are cases,
in particular accusative. So it seems that case is a group or sort with certain subsorts,
one of which is accusative. This can be implemented as follows. Simply add a boolean
constant case in addition to the constants for all cases rather than a feature, and write
down a disjunction of the following kind.

case.↔ .nom ∨ gen ∨ dat ∨ acc ∨ abl ∨ inst ∨ loc

(This reflects the original Indo-European case system. For arguments that vocative is
not a case see [Blake, 1994].) Hence it seems that the formalization of case should
involve a plain boolean constant, not a relation. This is in line with our intuition that
case is a property of [+N]-phrases.

There is actually an argument in favour of a feature analysis stemming from feature
sharing. Suppose, we need to say that two different nodes share a property, say their
case. Let us for simplicity assume that the nodes are mother and daughter, though any
other structural relation between them will do. The case at hand is a specific instance
of the head-feature convention, which requires head-features of the mother be passed
on to the head daughter. Whatever the general principle is, suppose we want to state
the fact that mother and head daughter agree in case. With attribute-value formalisms
this is easy.

〈〉p.→ .[down; head?; ]p

In conjunction with the system of axioms for , this will ensure exactly what we
want. Recall, namely, that we have axioms stating that although p can stand for any
partial description of a generated substructure (in the modal sense), the structure that is
being generated is the single world at which we stand, and there only case-atoms can
be true. So p stands for information about case, nothing more. If we instantiate p to
the case of the mother node, then whichever way we go down to the head (which is a
unique daughter) and look into the case feature, it too must be p, and this enforces the
identity. The same effect can be achieved by using typed variables. However, in with
booleans we need to state seven different axioms, each instantiating a distinct case. For
example, sharing nominative must be expressed by

nom.→ .[down; head?]nom

There is no way to simplify this set of axioms other than using typed variables or a
-feature. Thus, it is not possible to write down certain general laws.

C M  K  G. [Blake, 1994] reports the case of a lan-
guage in which several cases are marked on a single lexical item. The example sen-
tence is the following
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Maku-ntha yulawu-jarra-ntha yakuri-naa-ntha
woman- catch-- fish--

dngka-karra-nguni-naa-ntha mijil-nguni-naa-ntha
man---- net---
‘The woman must have caught fish with the man’s net.’

Here,  stands for oblique and  for modal ablative. It seems legitimate to con-
sider Kayardild as a language in which case can be arbitrarily nested. However, this has
to be analysed with great care. [Blake, 1994] speaks of several layers of case marking.
There is adnominal case, adverbal case, and two outer layers of what are etymologi-
cally case markers. It is not clear that any of the layers allows for iteration. In fact, it
is stated that there are something like two adverbal cases. In Georgian, and some other
languages, there is double case marking in that there is independent adnominal case
marking (genitive case) and adverbal case. Consider the following example from Old
Georgian.

sarel-ita man-isa-jta
name- father-sc gen-
with father’s name

The instrumental case is realized on the dependent noun despite the fact that it bears
genitive case already. 8 In many languages that do exhibit double case marking we find
only this constellation, that adverbal case may be added in addition to adnominal case.
One might speak here of independent possessor marking. Georgian has the additional
twist that the noun phrase is possessor marked only when it follows the governing noun
phrase. It is not clear whether possessor marking can be iterated.

A  I-E . A similar story can be told about agreement,
in this case between verb and noun phrase. Indo-European languages have nominative-
accusative-agreement systems, and there is agreement between the subject (in nomi-
native case) and the verb. They agree in person and number. In [Gazdar et al., 1985],
agreement is implemented by using a category valued feature , which is mediated
between subject and verb. Again, a closer analysis (see [Kracht, 1993b]) shows that,
technically speaking, no such feature is needed and we can use the percolation mech-
anisms of  to do the job. The principal line of argumentation is that it is not
necessary to use a property agrees in number x and person y in addition to has number
x and person y, since there will be no cases in which an item has different number
or person than the one which it will be required to agree (if it has to agree with any-
thing at all). There are intermediate categories of which it may make little sense to
say that they are singular or plural, and that is why the argument is technical in nature.
Nevertheless it points at an information overload in the system making the category
inventory unnecessarily large.

8Thus, a typical interventionist approach to case à la Barriers as proposed in [Chomsky, 1986] and
elaborated in [Fanselow, 1991] will not work for languages like Georgian (and Kayardild).
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A  B. There are languages in which the verb agrees with two, some-
times three argument. Basque is such a language. Following [Laka, 1991], Basque
displays agreement with subject, object and indirect object, corresponding to three
cases, ergative, dative and absolutive. (Basque is an ergative language.) Unlike the
Indo-European system, we cannot simply pass on the agreement features of the ar-
guments as properties of the intermediate categories. They may be inconsistent. In
a sentence like I give the boys two books. the subject is singular, while the object is
plural. So if the subject passes on its number feature, sing, and the object passes on
its number feature, plu, they will both arrive at the verb and clash. Moreover, the verb
must be able to identify each argument as to where it comes from. So,  has in fact
given a better analysis—instead of introducing an single , we just need to correct
 by introducing three agreement features. As with case, it is not clear what the
upper limit is, at least there is no a priori plausible number of arguments with which
a verb can agree in a natural language. It seems that Basque represents an extreme,
but this has to bet left open. If that is so, however, we might ask whether it is better
not to introduce distinct agreement features but simply allow  to be iterated. So,
effectively we keep a list of agreement facts, and let additional axioms regulate the
length of such a list. (For example, add [4]⊥ for Basque.)

So we see that there is a non-trivial question of what is the right language within
which we formalize, and which is the correct logic of let us say sensible attribute value
structures under a particular interpretation. Let me close by pointing at an alternative
approach which saves the finiteness of the feature component of syntactic categories.
We may analyze the complex words of Kayardild as syntactically complex objects,
treating each case ending as a different terminal node in the structure. This is similar
to the  analysis of morphology, e. g. that of [Baker, 1988], in which the morpho-
logical complexity is due to head-movement. However, while in Baker’s own analysis
the adjoining head and the adjoined head occupy different terminal nodes, [Chomsky,
1993] assumes that lexical items are not spread over several terminal nodes. Instead,
the items are considered to be tagged onto the tree in the process of derivation as
fully derived and/or inflected and the syntactic derivation that ensues will only serve
to identify (or check, as it were) the features of the lexeme. From an explanatory point
of view, Baker’s theory has the advantage. 9 However, it depends also on the exact
demarcation line between syntax and morphology whether one wants to take side with
one or the other. In the present context, Baker’s analysis has the advantage to leave
the number of syntactic categories finite and relegate the apparent infinity of them
to the syntactic structure. Yet, Baker can obviously explain with his approach only
part of the morphological variety, and he does not tell us what happens in the cases
discussed above. They do not, in his view, constitute cases of incorporation. Never-
theless, should it turn out that case is iterable without bound, it seems plausible to give
each case ending a separate terminal node, albeit not derived via head-movement. The

9The differences between these views are discussed in an appendix to [Halle and Marantz, 1993].
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necessity of such a strategy depends (in my view) on questions of iterability of case
marking. Nevertheless, an analogical treatment of agreement will not be so straight-
forward. Considering the multiple agreement system of Potawatomi or the Georgian
proclitics (see [Halle and Marantz, 1993]) we see that the agreement information sur-
rounds the verb in rather unusual fashion suggesting that the approach in terms of
different nodes will be tantamount to reproducing the morphological analysis in the
syntax. In addition, this irregular distribution of agreement information makes it plau-
sible that languages prefer the verb to agree with only a small number of arguments. To
analyse in what ways it does this, is a fascinating study, but feature logic will remain
completely neutral in this affair.

11 Genuine contributions of modal logic

From a formal point of view, anything goes. We can use Kasper and Rounds’ lan-
guage, predicate logic, partial semigroups—and modal logic. From an intuitive point
of view these approaches have their own strengths and weaknesses. Yet, if we have to
choose between all of these ways of talking about s and linguistic strictures such
as trees, which one is to be preferred? I wish to argue contra [Johnson, 1991] and
others—as did P. Blackburn—that modal logic is the best candidate. But my reasons
are quite different. Initially, modal logic was used there (as generally in linguistics) as
a mere language of analysis, for the simple reason that modal logic—by the fact that
it is a well developed logical discipline – allowed to state the problem in simple terms
and proceed to its solution without worrying too much about the surrounding techni-
cal appratus. There is no sufficiently general result on the decidability of polymodal
logics in general and logics for  structures in particular. It goes without saying that
this has nothing to do with the fact that we used modal logic here; the same holds
for all sufficiently expressive logics for s. On the other hand, due to advances in
correspondence theory it was possible to characterize the strength of modal axioms
and show that all existing languages for s can be interpreted quite comfortably as
modal languages. Here lies what I consider a good argument in favour of modal logic.
For modal logic has developed all necessary classificatory tools just as it has for in-
termediate logics. First, there is a rough classification according to the power of the
language. We have polymodal logic, test free propositional dynamic logic etc. There
is no need for extravagant devices and even less need for constantly changing notation.
Secondly, there are well-known theories about lattices of logics allowing a global view
on the spectrum of possible logics. Moreover, the specific advantage is that modal uses
the relations in an essential way, more intrinsically at least as predicate logic.

It has been thought, however, that modal logic is nevertheless too weak and has to
be boosted up by extra operators to make it useful. I think, in that respect the introduc-
tion of nominals has been a mistake that damaged the image of modal logic more than
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it helped to promote its case. What, the attentive observer asks, is the purpose of modal
logic if we need to add what effectively reduces to first-order variables? And what sort
of theorems can I apply from nominal modal logics? There are none of significance.
Nominals have been a desparate attempt to guarantee the token identity of those nodes
marked for reentrancy. makes a point in requiring that the marked nodes be really
identical, not just that they agree in the structure that is tagged onto them (= that they
generate in the modal sense). We have seen that the postulate

〈x〉p.↔ .〈y〉p

added as a quasi-normal postulate enforces identity on differentiated frames, but not
necessarily on all generalized frames. But so what? There is no need to assume that
there is something that is actually moved in our heads by move-α in order to under-
stand . [Koster, 1986] has shown that we can do without. And there is likewise
no need to assume real identity in re-entrancy. Of course,  needs that in order to
explain why structure sharing happens, but this is really only a superficial explanation
in view of the fact that the nodes need not correspond to anything in the world; they
are—as explained above—quite often artefacts of the visual representations. Tagging
s is a nice metaphor but is under threat by Ockham’s razor. Above all, however,
 prides itself with an information based approach. And the modal postulate above
expresses the second-order condition

(∀p)(r ε 〈x〉p.↔ .〈y〉p)

which satisfies that every p true at the x-successor of the root is also true at the y-
successor of r. In other words, these two successors share all information. What more
than that do we need?

Well, there actually is more. Such apparatus is namely only needed if the amount
of information that is shared across or between nodes is a priori unlimited. By the
fact that  allows in principle unbounded nestings, this case may theoretically arise
and so the notion of structure sharing rather than information sharing becomes vital.
It is up now unclear whether we actually need an unbounded amount of information.
In [Kracht, 1993b] I investigated this question rather closely. The argumentation is
complex but can be summarized as follows. Standard locality restrictions between
moved phrases and traces, subjacency, etc. are all expressible in CL, as we have seen.
Then if the number of intersecting dependency paths is bounded a priori (which is
commonly the case except for marginal cases leading to non-context free languages
such as Swiss German), the amount of information that is to be stored at a single node
is finite, and there is no need for infinite s, provided we are not using s to code
the structure of the entire tree.

The difference between the approach I have sketched above and the typical ap-
proach in constraint based grammars cannot be overestimated. If, namely, we use
feature structures on the basis of the tree then the relational interpretation of features
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makes real sense; sisters in a tree are different objects, a mother node is really different
from its daughter. 10 Different in a sense that the value of the attribute  cannot
be, because the value of a feature is a property of the same object to which we apply
the feature. The graphical representation of knowledge about structure—which is no
doubt successful—has created the impression that there is a traceable difference be-
tween the nodes of that representation and that it makes no difference whether we talk
about a feature  or about a feature . But reality gets us all in the end.
[Carpenter, 1992] quotes an example of Carl Pollard based on employers and employ-
ees where we would rather not make the  differentiated—that is collapse it as much
as possible—for reasons that are highly unsurprising.

12 Conclusion

One can adduce more arguments to show that for logics of s modal logic is the
most appropriate candidate. I am thinking here in terms of the specific results that are
folklore in modal logic and have been reinvented in the context of s, such as p-
morphisms, generated substructures, unravellings, contractions, differentiated frames
etc. Obviously, the use of modal logic would have allowed to concentrate on real
issues instead. One caveat, however, should be made. [Carpenter, 1992] does not use a
boolean logic of types, so his notions are somewhat different, but the spirit is the same.

The outsider to modal logic must, however, get the impression that there is no
such thing as modal logic, only a bewildering multitude of languages, with or without
nominals, with or without masters, etc. Indeed, there is no real consensus on what
counts as a language of modal logic. Such a consensus need also not exist – there is
a variety of languages for s, some notational variants of the other, some slightly
different, others markedly stronger or weaker. In this essay I have tried to show that
to some extent it makes no difference whether we use 1st-order logic or modal logic,
and many equivalences with other calculi follow from there. However, as we should
strive for simplicity, it is good to consider the simplest language that allows to express
all that we need to express. In that respect the modal logics extending

⊗
K.Alt1 (or in

fact the constituent language) are the best candidates. First, they are stronger as Kasper
Rounds’ type logics because of the possibility to forbid path existence. Second, they
are weaker as logics with nominals and related systems because the non-identity of
paths cannot be defined. I do not know of any compelling argument that it should be
definable.

The use of ordinary modal logic without masters and without nominals and other
10This can be debated if empty categories are admitted in the grammar, because it is not straightfor-

ward to argue for a physical difference between different nodes in an analysis tree. For example, [V t] is
phonetically identical to V. But if we use the constituent structure as the underlying kripke frame, there
is really no doubt about this.
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devices has a price. Now we must be interested not in a single logic for which we
can study the satisfiability problem but in an infinite number of such logics. This
seems to be very dangerous situation. However, notice first of all that there is no real
difference in studying a spectrum of logics rather than a single one. We have seen, for
example, that reentrancy postulates can be modelled either by (non)normal axioms in
our polymodal logic or by formulae containing nominals. So in the latter case we study
the satisfiability problem in the base logic while in the former we study the derivability
in an axiomatic extension of the base logic. The original problem remains the same—
so whatever solution is produced using one method will give a solution for the other.
To go to the extreme, everything can be understood as a problem to satisfy a certain
Le-formula. The twist is thatLe is so vastly more complex that we see immediately the
hopelessness of this translation. So, by the very fact that our approach via axiomatic
extensions of polymodal logic allows to state less problems than the one with nominals
shows that the former has an advantage over the latter.

In addition to the explicit commitment to studying axiomatic extensions of
⊗

K.Alt1

or the constituent logic, the other approaches have an implicit commitment to studying
extensions of their base logic. We have shown, namely, that the base logic does not
filter out those structures that are meaningless in the intended interpretation, or simply
inadmissible for empirical reasons. Such reasons can be universal facts of language. To
remedy this situation we need to pass to an axiomatic extension that has exactly those
structures that are admissible; admissibility of course is an intentional notion here. The
special problem that arises is that while typical descriptions of frames (or s) specify
local properties corresponding to quasinormal extensions, the admissibility conditions
arising from the base logic are typically global, hence correspond to normal extensions.
For example, the appropriateness and well-typing conditions of [Carpenter, 1992] are
global. So even if the literature suggests the contrary, the study of the satisfiability
problem for the base logic is of little theoretical significance. Rather, we have to be
interested in the whole lattice of finitely axiomatizable extensions. However, we have
seen that even the lattice of normal extensions of K.Alt1 ⊗K.Alt1 is so vastly complex
that no reasonable results of sufficient generality can be expected. This is the situation
as it presents itself throughout the literature and if this line of theoretical research is
pursued, we just have to get used to this fact.
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