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0 Introduction

The basic problem of linear programming is described as follows:

There is a production mechanism (a plant, firm, factory) available to a
decision maker. This mechanism is capable of converting

“raw materials 7 or “factors” — labeled? = 1,...,m

into
“goods” or “products ” — labeled j = 1,...,n.

The production mechanism has the following characteristics.

1. For one unit of product j the amount of a;; (¢ = 1,...,m) units of
the various factors is necessarily used.

2. The production process is “linear”, or shows “constant returns to scale”.
That is, in order to generate r > 0 units of product j it is necessary to
use ra;; (i = 1,...,m) units of the factors.

Two further data serve to describe the situation faced by the decision maker.

1. The decision maker has b; (i = 1,...,m) units of factor i at his
disposal.

2. There is an external market at which the decision maker can sell his
products; for a unit of product j he will receive the amount of ¢; (j =
1,...,n) units in money.

We assume that it is the task of the decision maker to maximize his total
income or expenditure, given his restriction of factors and the production
possibilities available to him. This is, however a rather vague objective, a
precise and mathematically tractable version has to be formulated. Within
the following definition we provide the exact mathematical formulation of
certain objects as well as interpretations — the latter are not really part of
the definition.

The notation is much smoother if we use matrix—vector notation. We write

(1) I:={1,...om}, J = {1,....n},
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and introduce the matrix

(2) A =

(aij)z‘el,jeJ .

The rows of this matrix will generally be denoted by

(3) Ao = (Qi1,...y04) (1€1)

and the columns by

(4) Ao = (01555 amy) (5 € T).

Then we combine the above vague descriptions by means of the following
definition (and interpretation).

Definition 0.1. A Linear Program (LP) is a triple

() (A,b,c)

consisting of an m x n—matriz A, and vectors b € R™, ¢ € R".

The interpretation as described above justifies the terminology: A is the
input—output matriz, b is the constraint vector, and c represents the
objective function (i.e., the function x — cx (x € R")).

Let us now formulate the task of the decision maker.

Definition 0.2. 1. A production plan is given by a vector € = (1, ...,x,) €
R? .
That is, the decision maker (“we”) plan to produce the quantity z; of
product j.

2. A production plan x is feasible whenever

(6) Ax <b

holds true.

We note that the total consumption of factor z, when the production plan x

is implemented is
n
E ;T -
=1
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Therefore, the inequalities
n
Zaijxjgbi (2:1,,m)
j=1

state that our production plan does not consume more than what is available
of each factor 7.

Hence, using matrix—vector notation, we read equation (6)
Ai.ZL' sz (’L: 1,...,m)

and find that a production plan is feasible if it obeys the restriction imposed
by the scarceness of the factors, i.e., by the constraints.

The set of feasible production plans or just the feasible set is
(7) C = {xeR" x>0, Az <b}.

The expenditure (= profits as we see no costs) obtained from a production
plan x is

n

(8) ZCJ‘JI]' = CI.

=1

We may proceed with the description of the decision makers task by providing
a concise definition as follows:

Definition 0.3. Given the above data, i.e., a linear program (A, b, ¢) a pro-
duction plan & € R", is optimal if it is feasible (i.e., T € C), and satisfies

(©) ct = max{cx|zecC}
= max{ecx|zecR", >0, Az <b} .

This way we maximize the profits given the restriction on production plans
that are dictated by scarce resources (and nonnegativity...). It is by no means
clear that the mazximum exists. Indeed, it may happen that there are no

feasible vectors at all. Or else, the objective function may be unbounded on
the feasible set. This will be part of a discussion to be initiated later.

If the mazimum indicated in (9) exists we may refer to it as to the value of
the linear program (A, b, c).
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Now we try to develop a geometrical view of this problem. This is most easy
forn =2. For 0 #a € R? and 3 € R, the set

{r e R | ax < 5}

is a half-plane; a is the normal of the bounding straight line (cf. Figure 0.1).

\
N
\
\
\ \
\
\ N a
\ \
\
\ \
\ \
\\ \
\ \ \
\ A}
\ N \
\
\ \
\
\ \ \
\ \ —
. ' \{:c|a:c = 4}
\ \
\
\ \ \
\ . \
\ —
\ [z|az =0}
b
\

Figure 0.1: Straight lines and half spaces
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Therefore, the general form of a set
Cc = {:cE]RQ‘:cEO, Amgb}
= {2eR|z;>0 (j=1,2), Awz<b; (i=1,...,m)}
= ﬂ{:cE]RQ‘JUJZO}ﬂ ﬂ {336R2‘A“£U§bz}

7j=1,2 i=1,...,m

is described by Figure 0.2.

Figure 0.2: A feasible set in R?
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The linear function given by
T —cx

on R? may be represented by its graph which is a plane in R?. Therefore we
obtain the picture offered in Figure 0.3 as the geometrical paradigm of the
maximization problem suggested by Definitions 0.1 and 0.3.

Figure 0.3: Maximizing a linear function in R?

It is rather easy to find maximizers as well as the maximum in 2 dimensions.
However, we will have to present methods or algorithms that provide the
value of the program and optimal solutions (if they exist) for any dimension
without the appeal to imagination. Moreover, the question of existence and
conditions to ensure that the algorithm reacts properly to linear programs
without optimal solutions etc. will have to be treated.






Chapter 1

Prerequisites: Convex Analysis

Within this chapter we shall present some basic topics of Convex Analysis.
These topics provede the tools which are permanently used in various con-
texts of Linear Programming and Game Theory. We discuss convex sets and
their extremal points, convex and linear functions on such sets, and separa-
tion theorems.
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1 Convex Sets and Convex Polyhedra

Intuitively, a convex set is a subset of R* which shows no "holes’ or ’cavities’
in its geometric structure. More precisely, a convex is a subset of R” with
the property that any two of its elements can be connected by a straight line
segment. The term “line segment” or “interval” between two points of R”
can be given a precise meaning. From this the resulting definitions follow at
once.

«ce€ =

Figure 1.1: The Shape of Convex Sets — intuitive pictures

Figure 1.2: Non—Convex Sets
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Definition 1.1. 1. Let 2% x' € R" be two points or vectors and let X € R
be a real number. We write

= (1 - Nz’ + \z'
[°, x'] : = {z*) € [0,1]}
(2%, z') : = {1 € (0,1)}

If X € [0,1] is true, then we call ** a convex combination of z° and
x'. The set [x°, x'] is called the closed interval generated by x° and
x'. Similarly, (°, ') is the open interval generated by x° and z'.

2. A set C CR" is called convex if, for any two vectors, z°, ' € C it
follows that

(1) [2° 2'] C C
holds true.

3. A set C C R" is called a convex polyhedron, if there ezists a nonempty
set of vectors a',...,a™ € R" (not all of them 0) and real numbers
b1, ..., by, € R such that

(2) {C=zcR"|az<b (i=1.m)}

holds true. Equivalently, we can say that there exists an m X n matrix
A # 0 and a vector b € R™ such that

(3) C={xecR"| Az < b}
holds true.

4. A set C C R" is a half-space if there is a vector 0 # a € R" and a
real number b € R such that

(4) C={x|azx <b}
holds true.

5. A set C CR" is a hyperplane if there is a vector 0 # a € R" and a
real number b € R such that

() C={z|ax =10}

holds true.
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Figure 1.3: The construction of an interval

We offer a detailed interpretation of the above concepts (Figure 1.3):

Consider two different points 2°, ' € R". Note that z* = x° + A\(z! — z°)
holds true, hence up to translation by z° we find £* to be a multiple of
2! — 2% Thus, while A is running through the reals, * is describing a line

that passes through x° and 2! ( the injective mapping
(6) z* : R— R,
defined by A — z* () € R), provides a parametrization of this line).

Clearly, as A ranges through [0, 1], * is running from x° to 2! thus describing
the intervall [z, z1].

Next, as |2* — 2°| = A|z! — x| is true, we note that

\_ 2 =)
Bl

follows and analogously
oo 2]

27— a0

holds true. This means that x* bisects the intervall [x°, '] proportionally
to A/(1—\). This way we can identify the vector * on the intervall [z°, x']
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within a geometrical context. In particular, o3 is the midpoint of the interval
[z°, z!].

The idea of a convex set has now a precise mathematical formulation. A
convex set C' contains any interval which can be formed by any two of its
elements; this is the correct elaboration of the fact that C' should not contain
"holes’ or ’cavities’. See Figure 1.4.

Figure 1.4: A convex set and a non convex set

As to the further concepts mentioned in the above definition, we assume that
the reader is familiar with a hyperplane. The (geometrical) nature of a half
space should be derived from the one of a hyperplane: it containes all vectors
“on one side” of a hyperplane. A convex polyhedron can be seen as a finite
intersection of half spaces; thus in R? its typical shape is depicted in Figure
1.5.

Here are some families of convex sets.
Theorem 1.2. 1. A convex polyhedron is conver.
2. Hyperplanes and half-spaces are convex polyhedra.
3. Linear subspaces and linear manifolds of R* are conver.

4. An interval is a convex polyhedron.

Proof:
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Figure 1.5: A convex polyhedron

. If two vectors £° and ! satisfy an inequality, then so does any convex

combination.

. Obvious. Note that an equation can be replaced by two inequalities.

Also, any >—inequality can be replaced by a <—inequality by reversing
the sign.

. Obvious.

. Assume that 2° # x! is true. Then the straight line {z* | A € R} is

a linear manifold that may be represented as the solution space of a
system of linear equations. That is, there is a matrix A of rank n — 1
and a vector b such that

{x* | eR} ={x cR"| Az = b}

holds true. Let @ € R” be a vector which is independent on the rows
of A. Assume (without loss of generality) az’ < az' and consider the
convex polyhedron

(7) {xER"‘Amgb, amogamgaml}.

This set is a subset of the above mentioned straight line. It containes
the two points % and ', hence the interval [z° x']. Tt is easy to
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see that any point on the straight line which is not located within the
interval violates exactly one of the two inequalities involving a.

q.e.d.

Convex sets can be manipulated in a way that the class of convex sets is not
left, that is, convexity is preserved.

Theorem 1.3. 1. If C CR" and B C R" are convex sets then C' N B s
conver. Arbitrary intersections of convex sets are conver.

2. If C" and B are convex polyhedra, then so is CNB. Finite intersections
of convex polyhedra are conver polyhedra.

3. A convez polyhedron is the intersection of finitely many half-spaces.

4. If f - R" = R" s a linear mapping and C C R is convez, then

F(C):={f(z) |z eC}

5. If f: R* = R" is a linear mapping and C C R™ is a convex polyhedron,
then

F(C):=A{f(z) |z eC}

18 a conver polyhedron.
Proof: All statements are obvious except, perhaps, the last one. For this we
sketch the following proof.

We restrict our argument to the case of a a half space {x|az < b}, obviously
this is sufficient.

1s*STEP : If f is surjective and represent by some (invertible) matrix A via
f(x) = Az (x € IR"), then clearly

{Az |ax <b} = {y|aA ™'y <b}},

which proves everything.

Suppose, therefore that f is not invertible. Consider the linear subspace
U’ = {z|Az =0}

and let U* be the orthogonal subspace of R”.
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2"4STEP : Assume that there is ° € U° with ax® # 0. Then, for arbitrary
x+ € Ut and real t we have

Azt = Azt +tx?)

while
a(z® +tz°) = ax’ + tax® <D,

provided ¢ is chosen sufficiently large and with the right sign. Therefore
(8) AU+ C{Az|az <b} C{Az |z € R"} C AU"

holds true. Necessarily we have the =-sign prevails, thus our set is a linear
subspace. Hence it is a convex polyhedron in view of the previous theorem.

3"4STEP : Suppose that, on the other hand axz® = 0 holds true for all
2’ € U°. Now any € R” can uniquely be decomposed into & = 2° + =+
each component being in one of the orthogonal subspaces.

Now Az = a(z’ + ) = az™, hence

{Az |az < b} = {Az' |zt € U', az" < b}.

But on U+ the mapping f represented by A is invertible, hence, up to a
change of basis, we may apply the result of the 15*.STEP,

q.e.d.

Example 1.4. Now we test some sets for convexity formally. E.g., the unit
sphere

(9) S ={zeR" [|z[ <1}

can be seen to be a convex set. For, if °, ! € S holds true, i.e., if we have
2’| <1, [z < 1,

then it follows that

M= Azt + (1 =Nz < Dt + (1 - Nz

|z
= Az |+ @ -=-N2| <A+ (1 -)) =1,

for A € [0, 1]. This shows that * € S holds true as well, hence S is convex.

The following is a particular convex set: a simplex. Simplices are of multiple
use for convex analysis.
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Figure 1.6: The Simplices in R?, R*

Definition 1.5. For any natural number k the set

k
:Xk:{mGRk|m20,in:1}

=1

W<

is called the unit simplex of RF.

A simplex is a convex set which can be proved easily. We now use the notion
of the simplex in order to extend the idea of convexity.

Theorem 1.6. A set C' C R" is convex if and only if the following holds
true: For any x',...,2* € C and any a € X* it follows that

k
(10) Zalajl eC
1=1
holds true.

Proof: The if’-part is obvious, since condition (1) of Definition 1.2 is implied
by condition (10) of Theorem 1.6.
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On the other hand, suppose that C' is convex. We proceed by induction. For
k = 2 condition (10) is satisfied since @ € X? means ap = 1 — .

If £ > 2 and condition (10) holds true for 1,2,....k-1, then observe that

k k—1 k—1
! Qi ! k
E o = E Q, E i1 T | tagT
=1 p= =1 Zp:l p

holds true.

Now, the last sum consists of £ — 1 summands with coefficients that establish
a vector in X*~!. This sum therefore yields an element of C' by induction.
Thus, the term on the right side is a sum of two elements of C' with nonneg-
ative coefficients summing up to 1 (i.e., constituting a vector in }:(2) This,
again by induction, is an element of C, q.e.d.

Definition 1.7. 1. Ifz',..2* € R" and o € X* then

k
(11) x* = Zalml
=1

is called a convexr combination of x', ...,z In this contest the co-
ordinates of o = (au, ..., o) € XF may be referred to as convexifying
coefficients

2. If E CR", then
(12) CnvHE :={z*|z',...2* ¢ E,a c X*, k€ N}

15 the convex hull of E.

In passing we note that by (11) we have implicitely defined a mapping

(13) z*: X 5 R

which generalizes the one given by formula (6), thus could be considered
as to provide a parametrization of CnvH{z°, ..., z*}. However, the map-
ping does not have to be injective unless the vectors involved are linearly
independent.
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Remark 1.8. 1. Let ', 2% x* € R?. Following the proof of Theorem 1.6 we
observe that

z® = ajz' + avz? + azz?
aq (6%)
= (o' + ) x' + z? ) +azx?
a7 + Qa9 aq + a9

e

=:x¢12 in the interval [x!,z?]

= (1-—a3)z'?+azz®

is located within the interval [z'%, 3] where £'? € [x!,2?]. See Figure 1.7
which allows to visualize the role of the coefficients o.

Figure 1.7: Interpreting ¢

Thus, intuitively, while o runs through X3, x® describes the elements of the
triangle spanned’ by z', % x> - the convex hull CnvH{z!, z? z3}.

2. In a general setup the convex hull of finitely many points may look as de-
scribed in Figure 1.8

3. Note that for the unit vectors ¢! = (0,---,1,---,0) € R¥ (i = 1,...,k),



20 * PREREQUISITES « CHAPTER I x

Figure 1.8: The Convex Hull of finitely many points

we have

k
(14) CnvH{el,..,eé") = {leel |z € Xk} = {:1: |z € Xk} = X*
1=1

Theorem 1.9. 1. For any E CR", the set CnvH FE is convex.

2. If ECR" and D C R" is convex such that E C D holds true, then
CnvH E C D holds true as well.

3. CnvH E =({C CR" | Cconvez, E C C}
That is, CnvH F is the smallest convex set containing F.

4. If C is a convex set, then CnvH C = C holds true.
Proof:

1. Let 2* € CnvH E and y? € CnvH E, i.e.

e =z’ +- o, Yy =0yt ++ By

where 2, y* € E(l =1---k,s = 1---7), and a € X*, 8 € X" holds
true.

Then we obtain
k r
Ax® 4+ (1 - Ny? = Z Aoy !+ Z(l = A)Bsy’.
1=1 s=1

Now, the convexifying coefficients may be combined to form a vector

vy = ()\041,... ,)\Oék,(l—)\)ﬂb'“ ,(1_)\)@) € XkJrr,
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since they are all nonnegative and add up to

k+r

Zf)/a =1
o=1

This, however shows that

Ax® 4+ (1 - NyP =27

is an element of CnvH E with obvious choice of 2!, .-+, 2**7.

2. This statement follows from Theorem 1.6

3. This follows from the second statement and the fact that £ C CnvH E
holds always true,

q.e.d.

The following lemma involves a reference to a topological property as well.

Lemma 1.10. Let C be a nonempty, convez, and closed subset of R". Then
there exists a unique vector & € C' satisfying

(15) |z |= min {|z||z e C}.

Proof:
15tSTEP :

Let a:=inf{| z || € C} and let (x*)iey be a sequence of elements of C
such that [&*| — a (k — c0) holds true. Let (2*),cqcn be a convergent
subsequence, say B

¢ -z (keN)
with suitable & € R". Then & € C as C is closed and | & |= « as | e |

is continuous as a function on R™. This proves the existence of the required
vector.

2"dSTEP :
In order to prove uniqueness, suppose | & |= « and | y |= « holds true for

Z,y € C. Then % € C and

T —
2

Qi

(16) a? <

_ 12
z+y|” 1, o, 1
Y| =5latslal
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Hence we have necessarily |z — g| =0,Z = g, q.e.d.

The following theorem establishes an important property of hyperplanes in
the context of convex analysis: the ability to separate points from convex
sets or to separate convex set from each other. We start out with a formal
description.

Theorem 1.11 (The Separation Theorem). Let ) # C C R" be convex
and closed and let ° ¢ C. Then there is 0 # p € R" and o € R such that

(17) px’ < a < min {pz|z € C}

holds true.

Figure 1.9: The Separation Theorem

An interpretation of the term “separation theorem” runs as follows: (cf. Fig-
ure 1.9)

Let H? = {x € R"|pxz = a} denote the hyperplane defined by p and a.
Then (17) shows that ° ¢ HP and x ¢ HP (z € C) is the case. Moreover,
2 and & € C are ’on different sides’ of HP. Thus, the hyperplane HP
decomposes R into two half spaces, on of them containing ° and the other
one C ’strictly’. That is HP separates C and z°.

Proof of Theorem 1.11
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1s*STEP :

First of all let us consider the case that £° = 0 is true. Let & € C be such
that

| [=min{| z ||z € C},

this can be achieved in view of Lemma 1.10. Note that & # 0 and |Z| > 0
follow from 0 = z° ¢ C.

Now, for any « € C and \ € [0,1], we have Az + (1 — \)x € C. Therefore
we obtain

Zz]? < Dx+(1- Nz
lz + Mz — 2)|?
= |z +2)2(x — z) + Nz — z|*.

Hence, for A € (0,1] we obtain the inequality
_ A 12
0§m(m—m)+§|x—m| .

But as A can be arbitrarily small we obtain immediately the inequality

(18) 0<z’<zx (xel).
Now we put « := %9 and p := . Rewriting (18) we find an inequality
(19) 0=pz’ <a<2a<pz (xcl),

as asserted.
2MdSTEP :
Now, let ° € R" be arbitrary. Define

C'=C-2"={z— x|z cC}.

Then C° is nonempty, closed, and convex as it is the image of C' under the
linear function (translation) f: R* — R", f(x) =z — z°.

Clearly, 0 ¢ C° holds true. Hence, in view of our first step and in particular
by (19), there is ag and p such that

pO0=0<ay<20 < py
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for all y € C°. But for all £ € C' we have £ — 2’ € C°, hence we obtain
0<ay<2<plx—2z°) (xcl)
or

(20) px’ < px’ + ag < px° + 209 < px (T € C).

That is, using a := px® + ay we obtain finally a series of inequalities

(21) pr’ <a<a+a <pz (zel),

which verifies our theorem for the general case. q.e.d.

We present some further versions of separation theorems.

Theorem 1.12. 1. Let C C R" be a nonempty, open and convex set and
let x° ¢ C. Then there is 0 # p € R" and o € R such that

p’=a<px (zecC)
holds true.

2. Let C C R" be nonempty, closed and convez set and let & be a point in
the boundary of C. Then there is 0 # p € R" and a € R such that

p’=a<pzx (zecC)
holds true.
Example 1.13. Let
C = {a:|x2 > (v — 1) — 1} C R?

C' is easily seen to be convex. Geometrically, this set is located above the
graph of f: R' = R', f(z1) = (z; — 1)? — 1, see Figure 1.10

Furthermore, let us put F': R2 — R
F(x) =2y +1— (2, —1)%

then we obtain C' = {x|F(x) > 0}. Consider the boundary of C' which is
0C = {x|F(x) = 0}. Then, for some & € JC, we consider the gradient

g—f:(aj) = (3—:51({13), g—i(m)> — (_2(371 - 1): 1)
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Figure 1.10: The Gradient Constitutes a Supporting Hyperplane

is perperdicular on 0C, since 0 = F(z)—F(z') = (z—2') 2L (z)+ O(|lz—2'|?)
for , 2’ € 0C. For example, the gradient
oF
ox
constitutes a hyperplane separating 0 from C. Indeed, we have p0 = 0 on

one hand and px = 2z, + 29 > 221 + x5 — 27 > 0 for £ € C on the other
hand.

0)=@21)=p

Thus, if the boundary of C is given via a differentiable function, for any
point on the boundary the gradient of this function constitutes a separating
hyperplane.

However, the function F defined on R? by
F(:I?) = X9 — |.’L‘1| (33 € Rz)

yields a set
D= A{x|F(x) > 0} = {z|ry > |2}
(see Figure 1.11).

With respect to this set, 0 is a boundary point and any p € R? with p, > |p]|
constitutes a separating hyperplane. As we will see, separating or supporting
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Figure 1.11: The Gradient Constitutes a Supporting Hyperplane

hyperplanes may serve as generalized derivatives in the context of Convex
Analysis.

Definition 1.14. 1. Let C and D be subsets of R*, 0 # p € R", and
a € R. Put

H? = {x € R"|px = a}
We shall say that H? separates C' and D
(a) weakly if
pc<a<pd ceC,deD
(b) strictly if
pc<a<pd (ceC,deD)
or

pc<a<pd (ceC,deD)

(c) strongly if
pc<a<pd (ceC,beD)

(d) strongly® if
sup{pc|c € C} < a < inf{pd|d € D}
holds true.
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2. If C C R" is convex and x° is a boundary point of C, then a hyper-
plane separating ° and C (weakly, strictly,...) is also called (weakly,
strictly,...)  supporting C at x°. (Of course, separating ° and C
and separating {x°} and C is the same notion.)

weak

Figure 1.12: Versions of the Separation Theorem

Thus, Theorem 1.11 means that a closed convex set C' can be strongly™ sep-
arated from any x° ¢ C. In Theorem 1.12 the second statement is that any
point on the boundary of a closed convex set admits of a (weakly) support-
ing hyperplane. And Example 1.13 suggests that the gradient constitutes
the unique supporting hyperplane at some point if the boundary of C' is
smoothely represented by some differentiable function.

Theorem 1.15. Let C' and D C R" be nonempty and convez sets satisfying
CND =(. Assume that C is open. Then C and D can be strictly separated.

Proof: (Sketch) Define F := C — D ={c—d|ce C,d € D}.

It is not hard to see that F' is open and convex. Now, as 0 ¢ F, 0 and
F may be strictly separated (Theorem 1.12), i.e., we find 0 # p € R" and
0 = o/ € R such that

pr>0 (xeF)
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strong™

strong

Figure 1.13: More Versions of the Separation Theorem

holds true, i.e. we have
p(c—d)>0 ce(C,de D,

or
pc>pd ce(C,deD

Let o := sup{pd|d € D}. Then clearly
pc>a>pd (ceC,deD).

folows at once. However, we claim that pe > a (¢ € C) holds true. Indeed,
if pr = a for some * € C, then, assuming w.l.o.g. p; # 0, the vector
x*=x — ‘;’Tlp(e,o, -+, 0) yields

pxrt =pxr —c < pr =
for all e > 0, thus ® ¢ C foralle > 0. Butasz®* - & (¢ —» 0), ¢ is a
boundary point of C, thus & ¢ C as C' is open. q.e.d.

We provide some further versions of separation theorems.

Theorem 1.16. Let C and D be convex sets in R satisfying C N D = (.
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1. If C is closed and D is compact then both sets may be strongly™ sepa-
rated.

2. If both sets are closed then they may be strictly separated.

3. If C is closed and x° is a boundary point, then 2° admits of a (weakly)
supporting hyperplane, i.e., C" and £° may be weakly separated.

4. If C' is a convex polyhedron and D is an open half-line of the form
D = {tb|t > 0}

for some b € R", then strict separation is achieved, i.e., there is 0 #
p € R" and a € R such that

pa<a<ptbh (aeC,t>0).

We shall only prove the last statement.
Proof:
1*STEP :

First of all assume 0 € C. As C is a convex polyhedron, there is a matrix A
and a vector d such that

O = {z € R"|Az < d}

holds true.

Since tb ¢ C' (t > 0) we can find, for any ¢ > 0, some k such that Ag.tb > dj
holds true. Since k attains only finitely many values (i.e., the rows of A), we
can choose a sequence (t,)nen such that ¢, — 0 (n € N) and

Apgot,b > dy

for some fixed k. Thus, di, <0 ast, — 0 (n € N). And as Ag.t,b > 0 holds
true, we have Agsb > 0 or Agtb > 0 (t > 0). Le., choosing p := Ay, and
a := 0 we achieve our goal.

2"4STEP :
Next assume 0 ¢ C. Define

a = min{ftb—z|*|t>0, z€C} = tb— =z,
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with suitable £ > 0, & € C.

We have necessarily o > 0. For, if a = 0 prevails, then tb = £ € C and as
0 ¢ C we must have £ > 0. This implies £ € DN C, which we have excluded.

Now Z minimizes the distance of tb towards C and, vice versa, tb mini-
mizes the distance of & towards D. As in Theorem 1.11 we see by a simple
computation that p := tb — Z yields a hyperplane

_ Oé}
T =
pT =75

H

N1l

= {:BE]R”

that separates B and C strongly™. (In fact, the hyperplane separates C' and
D = D U {0} strongly™). q.e.d.

The next series of statements can be seen as a set of applications of separation
procedures.

As preparation we prove a simple Lemma (1.17), the technique of which is
pure linear algebra. The following (1.18) is then the analogue concerning
inequalities or convexity theory.

Lemma 1.17. Let A be an m x n matriz and let b € R™. Then one and
only one of the following two statements is true.

(a) There exists & € R" such that

Az =b
holds true.
(b) There is uw € R™ such that
@A =0 ab=1
holds true.
Proof:
15*STEP :

Clearly, not both statements can be true. For if Z and @, as described in (a)
and (b) exist simultaneously, then we have:

0=uA

hence
0=uAz=u Az =ub=1,
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a contradiction.

2"dSTEP : Suppose, statement (a) is wrong, that is, there is no solution of
the linear system of equations Az = b. Then we have

b
rank | A =rank A+1
bm
0
=rank AT +1 =rank | AT :|+1
0
0
T : T
—rank A ‘ > rank A
bi...b, 1 bi...bm
b1
=rank | A :
bm

Hence, all inequalities involved are necessarily equations; in particular we
obtain

0
rank A" = rank A" 0
by ... m bi...bm 1
meaning that the linear system of equations
uA=0 ub=1
does have a solution, i.e., statement (b) is true. q.e.d.

Note that (b) can be replaced by a formulation that calls for ub < 0.

The above lemma is a topic of Linear Algebra. We now discuss the analogous
version within the territory of Convex Analysis.

Theorem 1.18 (Farkas’ Lemma, Theorem of the Alternative). Let A
be an m x n matriz and let b € R™. Then one and only one of the following
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statements 1s true.
(a) There exists & € R" such that

Az=b , >0

holds true.
(b) There exists u € R™ such that

uA >0 , ub<0

holds true.

Proof: We may assume b # 0 - otherwise the theorem is obviously true.

15*STEP : Not both statements can be true simultaneously. For, if  and u
as described in (a) and (b) exist simultaneously, then

uA >0

hence
0<uwAz=uAzxZ=ub< 0

- a contradiction.
2"dSTEP : Assume now that (a) is wrong. Consider the set
C ={Az|z ¢ R",z > 0}
then clearly, b ¢ C. Equivalently we can say
tb¢ C  (t>0),

or, in other words

CNB=10

with B = {tb|t > 0}. The sets C and B are convex (and C is a convex
polyhedron, see Remark 1.3, No. 5 ). Using Theorem 1.16 (No. 4), we find
a strictly separating hyperplane, i.e., p # 0 and a € R such that

pz<a<pth (ze€C, t>0).

Clearly o = 0 as t may be arbitrarily small and 0 € C.
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Next, for the basis vectors e/ € R} we have Ael = A,; € C, thus

pA,; <0 (j=1...n)

or

pA <0, pb>0.
Now u := —p satisfies the desired condition, hence statement (b) is true.
q.e.d.

There are several versions of Farkas’ Lemma, which are more or less equiva-
lent. The proofs are, therefore, derived from the one version we have already
checked. Let us mention the following

Theorem 1.19. Let A be an m X n matriz and let b € R™. One and only
one of the following statements is true.
(a) There exists x € R" such that

Ax <b

holds true.
(b) There exists w € R™ such that

uA=0 , ub<0 , u>0

holds true.

Proof: Consider the matrix

A= (A —AT

(with m x m identity matrix I') and apply Theorem 1.18. Then one and only
one of the following two statements is true.

(@) The system

Ay, z,w)=0b, (y,z,w)>0
has a solution or

(b) the system )
uA>0 wb< 0

has a solution. Rewriting the details, we see that

(@) either the system

Ay—Az+w=>b y,z,w>0
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has a solution or else

(b) the system
uA>0, —uA>0, u>0, ub<0

has a solution. Again this can be rewritten suitably. We obtain
(@)
Ay—2z)+w=>b y,z,w>0
has a solution or
(b)
uA=0, u>0, ub<0

has a solution. However, (a) is equivalent to (a) as w > 0 holds true. q.e.d.
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2 Extremal Points

Convex analysis provides its own notion of a “boundary” which in general is
different from the topogical notion.

Definition 2.1. 1. Let C C R" be a conver set. & € C 1is called an
extremal point of C if, for all 2°,2' € C and all X € (0,1) satisfying

Z =z it follows that
0 1

T = =
holds true.

2. Extremal points of a convex polyhedron are called vertices.

3. ExtC denotes the set of extremal points of a convex set C' C R".

An extremal point of a convex set is a point that cannot be located within
the interior of an interval generated by two other points of that set. Or, to
put it closer to the definition, whenever an extremal point is located within
an interval generated by two other points, then this interval has to be trivial.

Example 2.2. 1. Consider the convex polyhedron

3
C = {m€R3|0§x1-§ 1 (i=1,2,3), ing2}
=1

which is depicted in Figure 2.1

Figure 2.1: A convex polyhedron C'
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We claim that & = (1,1,0) (and likewise (0,1,1),(1,0,1)) is extremal,
i.e., a vertex. Indeed, assume that

'zt € C, A€ (0,1)

is such that £ = z* = (1 — \)z° + \z'.

Since 3 > 0 and 2z} > 0 as well 3 = 0 is the case, we obtain the

equations z3 = z3 = 0.
Next, if 29 < 1 should be the case, then it would follow that
1=z, =(1-Na?+ \z}

< (1=XN1+ Azt
<(A=-XN+Xr=1,

a contradiction. H ence z{ = 1. Similarly 2 = 1, i.e., 2° = Z. Analo-
gously ! = Z; that is & is extremal.

. We call the set

the unit prism of R". Figure 2.2 shows a picture in R?.

Figure 2.2: The Unit Prism of R?

We claim that the unit vector e' = (1,0,0) is a vertex.

Indeed, if

el=z'=(1-Nz"+ 2! (2'e€C, i=1,2)
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for A € (0,1) holds true, then, for i # 1 we have
0=¢ =(1—=X\) 29 +X 2} >0,
—  —~~

>0 >0
which implies that 2 = x] = 0 is the case. For i = 1 we have in turn
l=e;=(1-X) 2} +X 27 <1.
<1 <1

This implies 2% = 2! = 1: hence £° = ' = e' which verifies the desired
1 1 )

result. Similarly, it is seen that 0 is a vertex of II".

3. Recall that the unit simplex in R" is given by

mZO,zn:xizl}.

i=1

}_(":{:BE]R3

Figure 2.3: The Simplices in R?, R*

It is rather obvious that the unit vectors €’ = (0,...,0,1,0,...0,,0)

~~
1

are exactly the vertices.
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4. The closed unit sphere
S={x ecR"| |z|] <1}

satisfies Ext S = {x € R"| || = 1}. However, the open unit sphere
has no extremal points!

Remark 2.3. The relation between the boundary concept of topology and the
one of convex analysis is rather involved. We denote the (topological) boundary of
aset C CR" by 0C.

In the above cases we observe examples of convex sets C' such that C as well as
Ext C are compact sets and coincide, like the closed unit sphere. For the simplex
and the prism we see that Ext C and OC are compact but different.

In Figure 2.4 we observe a noncompact bounded convex set C whith compact
ExtC. We may include the straight line

Figure 2.4: A Noncompact Bounded Convex Set C

Note that the topological boundary 0C differs from ExtC.

Finally, we present a famous example of a compact convex set C' which has a
noncompact set of extremal points Ext C. This is shown in Figure 2.5. Note that
the point x is not extremal, i.e., we have x ¢ ExtC, ExtC # 0C.

In what follows, topological properties as well as convexity of sets are assumed
and the relation between the two concepts is discusseed.

The basic theorem concerning the existence of extremal points is due to
MINKOWSKI:

Theorem 2.4 (Minkowski). For every convez, compact set ) # C C R"
the set of extremal points is nonempty, i.e., Ext C # ().

Proof: We proceed by induction in n, the dimension of the Euclidean space
we are working in.
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Figure 2.5: The Double-Cone

1'STEP : n =1 In this case C' is a compact interval, say C' = [a, 0]
with a < b and there is at least one extremal point, i.e., a boundary point of
the interval.

2MSTEP: n > 1 Since t is compact, the quantity
t:=mazx {r, |x€C }
is a well defined real number. Thus we have
W£C = {zgeC |z =1}
= Cn{zeR" |z, =t} =CnNH;}

The set H} := {& € R" | z; = t} is a hyperplane, and indeed an affine
subspace of R" of dimension n — 1. This space is linearly isomorphic to R?~!
- we may actually translate it so that it contains the O-vector or, equivalently,
just assume that ¢ = 0.

Therefore, C is a convex, compact subset of an n — 1 dimensional Euclidean
space. By induction hypothesis, C' has at least one extremal point, say & € C.

3"4STEP : We claim that & is an extremal point of C' as well.
To this end, assume that there is ° 2! € C and ) € (0,1) such that

z=z'=(1- Nz’ + \z'
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I f

\/

Figure 2.6: induction in n (MINKOWSKI)

holds true. Then clearly ¥, z} <. If 2 < ¢ should hold true, then
T = (1=Nal+ ] < (1= Nt + Ay
< 1=Nt+XM=t,

would follow, contradicting Z € C. Thus 29 = ¢ and likewise z} = #. This
implies that B B

2'eC,z'eC
is the case. However, Z is an extremal point of C' which implies that ° =
! = Z has indeed been verified, q.e.d.

Let us now turn to the specific situation of convex polyhedra and analyze
the properties of extremal points or vertices within this context.

We introduce the following notation: For any m x n matrix A and b € R™
let us use the notion

(1) Cap:={x € R" | Az < b}.

Recall our standard notation referring concerning the index sets referring to
the rows and columns of such a matrix; i.e., we use

2) I:=1{1,....m} J:=1{1,...,n}

Theorem 2.5. Let A be an m X n matriz and let b € R™. Assume that
& € Cap. Then & is a vertex of Cap if and only if the following holds true.

There is a subset of indices Iy C I satisfying |Iy| = n such that the following
holds true:

1. The vectors (Aie)icr, are linearly independent
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2. The equations

hold true.

Clearly, if the two conditions are satisfied, then & is the unique solution of
the system of linear equations (3). That is, an extremal points corresponds
to a set of linear equations chosen among the inequalities defining the con-
vex polyhedron, having a nonsingular coefficient matrix and defining this
extremepoint uniquly.

Proof:

15tSTEP : First of all we show that an extremal point generates the corre-
sponding system of linearly independent equations. To this end, let £ € Ca
be a vertex of C4 4. Define

II = {Z S I|A1.ZI_L' = bz}
If there are n linearly independent vectors among the vectors A;y (i € I'),

then we are done with the ‘only if ’ part of our proof. If this is not the case,
then consider the affine subspace of R" given by

U={zeR |Az=0b (icl)};

we will use this subspace to produce a contradiction to the assumption that
I is a vertex.

Indeed, & € U’ holds obviously true and U’ has dimension dim U’ > 1 as
rank (Az')z'el’ S n—1
is the case. Choose & € U’ such that & # & and define for t € R

(4) zt = (1+£t)T Ftz

Then clearly

(5) Az =0, (i€l

holds true, i.e., we have z*' € U' (¢t € R).

Now, for i ¢ I' we have A; & < b;. Hence, for sufficiently small ¢ € R

(6) Azt <b; (i¢T)
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is true. But (5) and (6) imply that

(7) sy € CA,b

holds true for sufficiently small £ € R. Observing

®) 2= (" + o)

we come up with a contradiction: Z is located within the interval [z 2],
both points are located in C' and differ from & as & does. This is not com-
patible with & being an extremal point of C.

2"ISTEP :

On the other hand, suppose now that & € (4 allows for an index set I
satisfying items 1. and 2. of our theorem. We have to show that & is
extremal in C'. Now, Z is the unique solution of the linear system of equations

Let 2°, &' € Cap and X € (0,1) be such that

) = T.

Then, for 7 € Iy:

bi=A;z = A (1-Nz’+)\z')
= 1-M)A2°+ 24,2
< (1= Nb; + \b;
= b (i€ lo);

the inequalities are satisfied since z°, &' € Cap. Obviously, none of these
inequalities can be a strict one. Hence

Ai.ZL'U = bz s AiliL'l = bz (’L S I(])

meaning that ° and x' are solutions of (9). But (9) has only one solution,
thus

2’ =z' =2z,

i.e., & is extremal in C. q.e.d.
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\ 4

A

Figure 2.7: Cap C R?

Remark 2.6. 1. A convex polyhedron has at most finitely many vertices.

2. Our intuition is that we reach boundary points of C'4 p if some of the defining
inequalities become equations.

In R? is is rather obvious that a vertex is obtained if two of the defining
hyperplanes (lines) intersect. Note that two of those lines may, in addition,
intersect at certain points of R? that are not elements of Cap. Among the
conditions of Theorem 2.5 it is, therefore, explicitely stated that £ € Cap
should be satisfied.

We now observe that Theorem 2.5 indicates a constructive procedure to obtain all
vertices of a convex polyhedron as follows:

1StSTEP :

Pick n arbitrary rows of the matrix A. That is, fix an index set Iy C I, satisfying |Iy| =
n.

2rdSTEP .

Check whether the linear system of equations

(10) Ajx=0b; (i€l

has a unique solution & (i.e., whether rank (A;)icr, = n holds true).

3"d4STEP : If such a solution & exists, then check whether & € CAap, i.e., whether
Aiz <b; (iel—1Ip)

holds true. If this is the case, then & is a vertex of C'ap
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Example 2.7. 1. Consider the convex polyhedron as defined by
C: :{:BE]R"|xi20(i:1...n),2xi:1}.
k=1

Clearly, C is the unit simplex of R", in the notation introduced earlier
(Definition 1.5 of SEcTION 1), we have C' = X".

If we take
-1
A= -1
1 ... 1
-1 —1
and
b=(0,...,0,1,—1),
then we obtain X*» = C = Cap. Now we follow the procedure
outlined above: we take n rows of A, say given by Iy = {1,...,n —

1,n+ 1}. The corresponding equations

Tr1 = 0
Tpn—1 = 0
n
o =
k=1
have a unique solution Z = e" = (0,0,...,0,1) € R*. This way we
obtain all unit vectors as vertices of X". Of course we can also take
Iy = {1,...,n}, the corresponding system of equations yields = 0,

which is not in X".

1
1

2. Now take A = ( ) and b= (0,0,1,2,2), then we have

wD»—‘lo

0
1
3
0

Cap={zeR|2; >0 (i=1,2), 31, <2 (i=1,2), 2;+x9 <1}

b

If we solve 3xy = 2, xy + 29 = 1, then we find & = (%

the other hand, if we solve z; = % , Ty = 2 then we fin

- 3
Cap

o, -
B el
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A

2\\
1 Cap \

0 Z 1

\ 4

Figure 2.8: Cap C R? (Example 2.6)

Let us now turn to a slightly different version of representing a convex poly-
hedron. This version is particularly interesting in connection with linear
programming problems.

Thus, if A is an m x n matrix and b € R™ let us write

(11) Dy, ={zeR' |Az=b, = > 0}.

In the framework of Theorem 2.5 we have been speaking about row vectors
generating extremal points. After haveing changed our viewpoint concerning
the representation of a partincular type of convex polyhedron, we deal with a
further version. The next theorem establishes a connection between column
vectors of A and extremal points of DY ,.

Theorem 2.8. Let A be an m xn matriz and let b € R™. Let & € DY , and
define
Jt=J"(z):={j€ ]|z >0}

Then € Ext D?“) if and only if the vectors (Asj);jcs+ are linearly inde-
pendent.

There are two proofs (rather close to each other) which the reader should
ponder about. The first one works by appealing to Theorem 2.5. This may
not be surprising, as Theorem 2.5 is the first one establishing the connection
between extremals and linear independence of the corresponding rows (!) of
the defining matrix. The second version is the direct approach. Nevertheless
it looks rather similar in technique if compared to the proof of 2.5.
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Proof: 15*Version : In order to apply Theorem 2.5, write
D?4,b = {:13 e R | A, x <D (Z € I),—Ai.m < —b; (Z € I),—fl?j <0 (] € J)}

Then Dg,b is represented as a polyhedron Cp 4 the way we discussed in the
context of Theorem 2.5 and defined in (1); more precisely, we have

DYy ={x€R"|Bx <d}=Cgq

with
A
B=| -A
—el e
and d = (b,—b,0). By 2.5 we know that Z is extremal if and only if there
is a system of n rows B;, of B which are linearly independent and satisfy

Bi.i - dz

However, there are the rows (—e’);c; s+ satisfying e/& = 0. Hence in order
to identify & € DY , as extremal, it is equivalent to find | J* | rows - say

(AiO)iEI*

such that (A"' has rank n and satisfies

Y )iel*,jEJ—J+

However, A;,,@ = b; is satisfied by all i € I - hence it is sufficient and

necessary to show that (‘2] )jleJ+ has rank n. This is equivalent to saying
that

(A-j)jeﬁ

has rank | J* |, i.e., that the vectors (A,;);es+ are linearly independent,
q.e.d.

Proof: 2"¥Version, the direct way:

15*STEP :
Let & be a vertex of DY ,. If the vectors (A ;)jes+ are linearly dependent,
then there exists (;),es+ # 0 such that

(12) > yA;=0

jeJ+



* SECTION 2: EXTREMAL POINTS % 47

Define y; =0, (j € J—J"), then g € R" and g satisfies

(13) 0=> 1A, = Ay.

JjeJ

Now, as & € Dg,b and AZ = b, it follows from 13 that for all £ > 0 the vector

satisfies
Axt' = Az + tAy = AZ = b.

In addition, if £ > 0 is sufficiently small, then £*! > 0, as 9 has non-vanishing
coordinates at most whenever & has positive coordinates.

Thus, *' € DY, for small ¢ > 0. Now, obviously
T = l(aﬁlt +x )
2

contradicts & € Ext DY ,, hence we have shown that (A,;);c;+ are linearly
independent.

2MSTEP :
Suppose now that (A ;),cs+ are linearly independent. We want to show that
 is extremal in DY ,.

Assume that we can find 0 < A <1 and 2% @' € DY , satisfying
(14) z=M\'+(1-Nz".
Now, for j € J — J*
0=Z;=Aj+(1-Na)>A-0+(1-X)-0=0;
hence none of the inequalities employed can be strict. Therefore,
wf=x;=0 (jeJ—J")

holds true. Because of " € DY , (k =1,2) we know that

b=Az" =) 2hA,; =) A, (k=12).

JjEJ jeJ+
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But the matrix (A.;)jcs+ has rank | J* |, thus (z;);c;+ is the only solution
of the linear system of equations

Z.’I?jA.j :b,

jeJt

meaning that ° = &' = Z holds true. This shows that Z € Ext DY,
q.e.d.

Example 2.9. Let m = 2, n=3and A= (1) , b= (1,2) such that
D?‘l,b:{meR3 |z3 =1, z1+ 2y +23=2, ¢ >0}

is obtained.

Figure 2.9: Dy , ={x € R* |23 =1, 21+ 22+ 23 =2, >0}

The vertices are &' = (1,0,1) and ? = (0,1,1). The columns of A corre-
sponding to the positive coordinates are

1

xr -2 A.1 , A.3
2

T -2 A.Q , A.3

Observe that A,.3 is common to both vertices, so we move from x' to 2 by
‘exchanging A, and A, .’
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Corollary 2.10. If  is a vertex of Df{,,b, then & has at most m positive
coordinates.

We finish this section with a representation theorem. This concernes again
general convex sets and is not restricted to convex polyhedra. Nevertheless
it has a particular significance concerning convex polyhedra.

Theorem 2.11 (Krein-Milman). Every compact, convex subset C' of R"
18 the conver hull of its extremal points, more precisely

C=CnvH ExtC.
Proof: 15*STEP :
Since FxtC C (' and C is convex it follows at once from Theorem 1.10

that we have
CnvH ExtC C C.

2"dSTEP : Hence we have to show:

If £ € C then there is ',--- ,x* € EztC and a € X* such that
(15) z =z
holds true.

The statement shall be verified by induction over n, the dimension of R" we
are working in. For n = 1, as C' is a compact interval, (15) is obviously true.

f 1 !
a X b

Figure 2.10: A compact interval C'

If a # b is the case, then we have for Z € [a, b]

b—=x T—a
a +

b.
b—a b—a

r =

3"4STEP : Assume now n > 1 and consider & € C. If £ € Ext C, nothing
has to be shown. Hence we may in addition assume that there is z0 x! €
C, 2°#x!' and \ € (0,1) such that

8
Il
8

(16)
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Figure 2.11: Moving ' to the boundary

holds true. Intuitively, it is our aim to move the points !, z° to the (topo-
logical) boundary of C. We start with &' (cf Figure 2.11).

As
) = (1 - Nz’ + Az’ = 2 + \(z' — =°)

and z° # x! is true, we observe that the set
{lz*] | YeRy}
is unbounded. Since C' is compact, we may choose
1<p = maz{\|NeR, , 2* € C.
It is rather clear that * € 0C (the topological boundary of C).

Now we compute
' =px' + (1 — p)x’

mlzw_" _(1_N>mo
M M

and
2 = (1-N)z"+ !
— — N0 o) |2t 1=p .0
17 = (1_)\)_:1: —I—)\[N Nw]
_ (= Np—A(1-—p)

0 A it
T !
I T

— N*j\ 0 A I
= —Z !
1 + u
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As 0 < X < 1 < p holds true, it is seen at once that the coefficients sum up to
1 and are nonnegative. Hence we have represented I as a convex combination
of two points ° and x*, one of them being in dD. We may analogously
replace ° by a point in dC, say x”. This completes our 3"¢STEP.

4*"STEP : The basic idea of the proof becomes now obvious if one looks
once again into the proof of MINKOWSKI’s Theorem. Within that context,
the induction step involves a hyperplane H % which was supporting C' appro-
priately. Similarly, we employ supporting hyperplanes in order to proceed
with the present proof, see Figure 2.12.

Figure 2.12: The Krein—Milman Theorem

We assume now that & = z* holds true with %, ' € 9C. As a consequence,
there is a hyperplane separating £° from C weakly (a supporting hyperplane,
cf. Definition 1.14 and Theorem 1.16). More precisely, there is 0 # p € R”
and a € R such that

pr<pzx’=a (vcC),
meaning that C is located completely on one side of the hyperplane
HE ={z | pz = a}

which in turn contains x°.
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5*"STEP : Now, C? := C'N H? is a convex and (relatively) compact subset
of an n — 1 dimensional affine space. Hence we may apply our induction

hypothesis. Consequently, there is y', - ,y* € ExtC? and a € X* such
that

330 — ya
is true.

Suppose we can show that y!,--- ,y* € ExtC holds true (which is to be
expected, look at the proof of Theorem 2.3), then we would perform the
same procedure for !, i.e., find z!, -+, 2" € ExtCP and 8 € X" such that
x' = 2#. This way we obtain

z=(01-\Nz° + Az
L Lk
:(1—)\)Zaeyl + )\Zﬁpz"
=1 p=1

such that y'---y*,2'---2! € ExtC and the coefficients are nonnegative

and sum up to 1. Hence we will have completed the proof.

6*"STEP : Thus it suffices to prove that any £ € Ext C? is an element of
ExtC'. The technique is by now standard:

Assume that
z =tw’+ (1 - t)w'

with w® w' € C, t € (0,1): As
(18) pw’ <a, pw' <a
we have
pE = tpw’ + (1—t)pw'
< ta + (1-ta=oa.

Consequently, none of the inequalities in 18 can be strict ones. That is,

w’ € HP

o )

w' € HP

holds true. More than that, we have w’, w' € CP and as & € Ext(CP) we
conclude w® = w! = 7, thus & € EztC, q.e.d.
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3 Convex functions

Definition 3.1. Let C' C R" be a conver set and let f : C — R be a real-
valued function. f is called convex if, for any x°, ' € C and \ € [0,1] it
follows that

(1) fa?) < (1= Nf(") +Af(z)

holds true. f is concave if —f is convez, i.e., the <-sign in (1) is replaced
by the >-sign.

As for an interpretation, consider the graph of f which is a subset of R**!,
Given ¥ and z' (both in R") consider the interval

{@=N[2" f@")] + A [2", f(ah)]} = (=" f(2"). (", f(="))]

Then (1) says that any point on this line is located above the corresponding
point (z*, f(x*)) of the graph of f. Thus, the function f is somehow hanging

A
P ) )
MG +(1-N)ft)
Y e G ;;lph (f);
f(x) e (x?f(xﬂ)) ................................................
c R
;C() x/\ xll -

Figure 3.1: Definition of a convex function

down between any two points of the graph.

Theorem 3.2. Let C' C R” be a convex set and let f : C —> R be a function.
The following statements are equivalent:

1. f is convex
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2. For any ', ,x* € C and o € X* it follows that

f@®) <> af(a)

holds true.
3. The epigraph of f with respect to C, i.e., the set
ELf ={(m,t) |z € C,teR f(x) <1}

(cf Figure 3.2) is a convex subset of R" L.

Figure 3.2: The epigraph Eé

Theorem 3.3. 1. Let C C R' be open and convez and let f : C — R be
a differentiable function. Then f is convex if and only if f' is monotone
increasing. If f is twice differentiable, then f is convex if and only if
" is positive.

2. [ is convexr and concave if and only if f is linear.

Proof:

We will only check the monotonicity of the first derivative. Let f be convex
and differentiable. Pick «°, &' € C such that

(2) z’ < !

holds true. We want to show that, as a consequence, f'(z°) < f'(x') holds
true.

Now, for A € [0, 1] we have

(1=Nf(") + (') > f(=)
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or

Thus, for A # 0

flah) = f(=")

v

i.e.

f(=') - f(=")

xl — 0

f(@ + MNa! —z%) — f(z°)
Azt — x9)

(3)

>

and as A —> 0 the right side of (3) approximates f’(2°). Thus

f(=!) - f(z)

() s )

Now, exchange the role of £ and x'. Then

f(=') - f(z)

xrl — 0

(5) < fl(z")

But (4) and (5) indeed show that f’ is monotone. The reverse direction is
omitted. q.e.d.

Note that the term % that appears in equations (4) and (5) is the
slope of the line segment indicated in Figure 3.1. In other words, the slope
of the secant is between the derivatives at ° and x'.

Theorem 3.4. Let C' C R" be convex and compact, and let f: C — R be a
convez function. If maxgcc f(x) exists, then

(6) max f(x) = max f(x)

zeC xcFExtC

holds true. That is, a mazimum, if it exists at all, is attained on the extremal
points. Hence it suffices to search for mazimizers on the set Ext C.

Proof: Let Z € C' be such that f(Z) > f(z) (z € C) holds true. Then there
exist £k € Nya € X*, and vectors z',...,z* € ExtC such that £ = x®
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holds true. This follows from the KREIN-MILMAN Theorem (see Theorem
2.11). Clearly we have

(7) f(@) = f@*) < af(a).

Now, if all values f(z') satisfy f(z') < f(Z), then it follows immediately that
Zle a f(z') < f(x) holds true as well, a contradiction. Hence, we obtain
f(z') = f(&) for some ! € ExtC, q.e.d.

Remark 3.5. 1. As a consequence of the previous theorem we observe that
continuous convex functions defined on a compact convex set C attain their
maximum on Ext C. Therefore, in order to actually compute the maximum
of such a function as well as a maximizer it is sufficient to search on the
extreme points.

2. If n =1 is the case then we do actually not need the requirement of conti-
nuity. It is easily seen that a convex function on a compact interval attains
its maximum on one of the boundary points.

3. In general this is not necessarily true for dimensions n > 1. The following
sketch represents an example for a convex function defined on a compact set
(the unit disc) which is not necessarily bounded.

Remark 3.6. We would like to point out the close relationship of derivatives
and the normal of supporting hyperplanes once more. We restrict our interest
to convex functions, this remark generalizes a consideration already presented in
Example 1.13.

For convenience, let C' be a closed convex set and let & be a point within the
interior of C.

Consider the epigraph of f with respect to C which is a subset of R**! defined
by

(8) El = {(z,t)|z€C, teR f(z)<t}.

This is a closed set and the point (&, f(Z)) is a boundary point. According to a
separation theorem, Eé and (Z, f(&)) can be weakly separated (cf. Theorem 1.16,
item 3), that is, there is a vector 0 # p = (q,r) € R**! such that

(9) p(z, f(Z)) < p(x,1)

holds true for all (z,t) € Eé
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\/

Figure 3.3: An unbounded convex function on a compact set

This can be rewritten as
(10) (q.7)(®, f(&)) < (g.7)(=,1) (x,1) € EL.

We conclude that r > 0 holds true as (Z,t) € E(J; 1s true for large positive t € R.
Nezt, (10) implies in particular (choose t = f(x)) the inequalities

(11) r(f(@) —flz) <qlz—-z) (xeC).

This in turn implies r > 0. Indeed, if r = 0, then we have q # 0. Choose i such
that q; # 0 is the case and take

z = Ttee
which is an element of C for small € > 0. This implies

0 < £gqse,

a contradiction which verifies the fact that r > 0 is true. Now we may divide by
r > 0 in equation (11) obtaining

(12) (f(@) - f(=@) < ~(z—Z) (@)

=R
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Figure 3.4: Separation and the Gradient

or

= q =
(13) f(@) - (x—-2) < f(z) (xe0)
The inequalities (13) allow for a nice interpretation: it is seen that the linear
function

I(o) = (&) — (o — =)

,
has a graph located below the graph of f and satisfies [(Z) = f(Z). That is,
we represented the supporting hyperplane as a supporting linear function.

Figure 3.4 reflects the situation in R, here the gradient equals the derivative
of f.

Of course the gradient of this function (i.e.,—2) equals the gradient of f if the
latter one exists. For in this case, we take again € =  +ce' (i =1,...,n)
with small € > 0. Then (13) reads also

(14) f(&+ee) - f(z) > —%(ie) (i=1,....n).

Division by +¢ changes the sign once, thus

f@tee)—f(@) ¢ [(@—ce)— (@)

9 r —&

(15)

\%
|
|
Y

(t=1,...,n).
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Letting € approach 0, we obtain

(16) O @) =% (i=1,...n)

ox; r
Thus, the function f and the linear function / have the same gradient.

If partial derivatives do not exist, then it can be derived from (15) that right
and left hand derivatives exist. The slopes of the supporting hyperplane (i.e.,
the numbers —% (i =1,...,n) )are dominated by the left hand derivatives
and the right hand derivatives in turn are dominated by these slopes.






Chapter 2

The Simplex Algorithm

This chapter describes the simplex algorithm. By the previous section we
know that a linear function defined on a convex polyhedron attains its max-
imum, if a t all, then et some vertex of the polyhedron. Therefore, it is
desirable to find a procedure which represents a successive visit of vertices
with the aim of increasing the value of the linear function to be maximized.

61
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1 Exchanging vertices

The procedure explained in Remark 2.6 (based on Theorem 2.5)of CHAPTER
1 yields all the extremal points of a certain convex polyhedron. However,
with growing numbers of dimensions and restrictions (or rows and columns
of the describing matrix A), the number of equations to be solved grows
considerably. In most cases the procedure is practically not feasible.

However, we want to compute the extremal points in view of the fact that
linear or convex functions achieve their maximum, if at all, then on the
vertices. It is our aim to describe a ’'practical’ procedure in order to compute
all vertices. This will eventually be done by moving from vertex to vertex
until a maximizing value of a (linear) function is reached.

Within this section we consider a partial problem: Assuming we know a
vertex & - how do we reach the 'next’ or ’adjacent’ vertex?

Remark 1.1. For a start it is preferable to discuss this question in the framework
provided by Theorem 2.8 (not by Theorem 2.5). Thus, given an m X n-matrix A
and a vector b € R™ | we consider a convex polyhedron of the type

D:D%’b:{mER" |z >0, Az = b}

- and we frequently just write D and omit the subscripts. As previously, we use
I.={1,---,m} , J:={1,---,n},

and whenever & € R" (or more specific x € D = D?A,b)> then we shall write

JH@)=Jt={jeJ|z; >0}

Recall that, using this notation, & € D is a vertex of D if and only if

(AOj)jeJ+

are linearly independent (Theorem 2.8). Hence, every vertex of D has at most m
positive coordinates.

Definition 1.2. 1. A vertex & of D s said to be degenerate if it has
less then m positive coordinates, i.e., if

(1) | T =] T (&) [<m
holds true.

2. Otherwise & is said to be non-degenerate (n.d.).
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3. The pair (A, b) is said to be non-degenerate (n.d.), if all vertices of
D={xz R | x>0, Az = b} are non-degenerate.

:)

Example 1.3. Let n =4, m =2 and

A:(}
- ()

4
x>0, inzl,x2+2x4:1} ,

=1

1
0

== O

Then
D= {a: R

thus D can be viewed as the intersection of the hyperplane {x € R? | zo +
2z4 = 1} and the standard simplex X* = {z € R* ‘a: > 0, Z?Zl =1} .
This intersection is two dimensional and we can identify the points e =
(0,1,0,0) , (3,0,0,3), and (0,0, 3, 2). Thus, we obtain the the sketch repre-
sented in Figure 1.1. Clearly, €? is degenerate since there is just one positive

XI*=(4,0,0,%)

o ¢=(0,1,0,0)

Figure 1.1: D= {x € R ‘a: >0, Z?lei: 1, mp+ 2z, =1}
coordinate (and 1 linearly independent vector corresponding to it).
Example 1.4. Let n be arbitrary and m = 1, that is

D={zecR'|x>0, axr =b}

for a suitable vector @ € R? and by € R. Thus D is the intersection of a
hyperplane and the positive orthant of R®. In order to have non-degeneracy
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B
N
SE
N

S
A

Yl Py %!
Figure 1.2: The case m = 1. (Example 1.4 )

ensured we see at once that by # 0 is necessary and sufficient. If so, the
vertices of D are given by Z—O e’ for those i € J that satisfy a; # 0 and

%> 0. See Figure 1.2,

Example 1.5. Let n = 3 and m = 2, then
D:{w€R3|wZO, :1:2:1,:1:1+x3:1}

is n.d. (Figure 1.3)

| R,

Y

Figure 1.3: The line segment is n.d. (Example 1.5 )

while D={x e R* |2 >0, z1+23 =1, 29+ a3 = 1} is not. (Figure 1.4)
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s

Figure 1.4: A degenerate line segment. (Example 1.5 )

Remark 1.6. If(A,b) is n.d. and D is compact, then every & € D has at least m
positive coordinates. For, in this case we can appeal to Theorem 2.11 of CHAPTER
1 (the Krein-Milman-Theorem). That is, given « € D, pick k € N, a € X*, and
x',--- ,x¥ € EXT (D) such that

k
T =x%= Zal:vl .
1=1

As at least one «y has to be positive, & will have positive coordinates at least with
the positive coordinates of z' .

As it turns out, we can prove more without assuming compactness (and thus with-
out appealing to the Krein-Milman-Theorem).

Theorem 1.7. Let (A,b) be n.d. and let T € D. Then & € Ext D if and
only if & has exactly m positive coordinates.

Proof:
1StSTEP :

If z is a vertex, then & has m positive coordinates by Theorem 2.8 of CHAPTER
1 and by the very Definition 1.2.

2"dSTEP :

Assume now that & has m positive coordinates; write J*(&) = {i | Z; > 0};
thus

| J5(®) [=m .
Now assume per absurdum that & is not a vertex. Then we find 20, z! €
D, z°# ' and 0 < X < 1 such that

z=z"=Az'+(1-Nz".
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As usual, for i € J — J*(Z) we have
0=2;=Azr; + (1 =Nz > X0+ (1-N0=0
- and as all inequalities employed must be equations we observe that

W=x;=0 (ieJ—J.

7 7

Now we consider the case that &' — x° has positive coordinates (otherwise
take ° — x!). In this case the number

A =min{\ e R | z* > 0}
=min{\ € R | 2 + \(z' — 2°) > 0}
is well defined and nonpositive.

Also & := & has at least one zero coordinate iy € JT - for otherwise \ could
be decreased, thus

(2) | JH (@) [<m—1

Clearly & > 0 and as z°, ' satisfy Az° = Az' = b it follows that
Az = Az’ + \(Az' — Az®) =0,

thatisxz € D .

Since (A, b) is n.d., & cannot be extremal, this would contradict Definition
1.2 (compare (1) and (2)).

Thus we may repeat the above procedure, obtaining & € D such that

JH@) <m—2.

This way we finally prove that 0 = (0,...,0) € D holds true. This constitutes
a contradiction as 0 is certainly a degenerate vertex, q.e.d.

Remark 1.8. 1. If D # 0, then ExtD # (. For, the procedure employed
in the 2"STEP of the proof of Theorem 1.7 will produce a sequence of
elements &, &, .'i', ...& of D. The last of these vectors is an extremal point -
possibly (0,...,0) .

2. Therefore, if D # () and (A, b) is n.d., then rank A = m, hence n > m.

3. If D # () and (A, b) is nondegenerate, then the procedure employed in the
2" STEP of the proof of Theorem 1.7 shows, that any & € D has at least
m positive coordinates.
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4. If rank A = m (and nondegeneracy does not necessarily prevail), then, for
any vertex & of D, there is an index set J C J such that the following holds

true:

(3) JHE)CTCJ

(4) |J| =m

(5) (Aej)jcs are linearly independent.

If % is n.d., then J = J* (&) .

Definition 1.9. Let A be an m X n matriz and let b € R be a vector. Let
T be a verter of D?‘Lb and let J C J be an index set satisfying equations (3),
(4), and (5) of Remark 1.8. Then (A.j);c7 is called a basis corresponding
to T (the basis if T is n.d.).

On the other hand, let J C J, | J |=m, such that the vectors (Asj);cj are
linearly independent. The unique solution & € R" of the system of linear
equations

(6) 2ijei® Ay = b

g, = 0 (jeJ-J)

is called the basis-solution (corresponding to J or to (Aej)jei)- A basis
solution T is said to be feasible if T > 0 holds true, i.e., if & € D s
satisfied.

Corollary 1.10. If a matriz A has rank m, then the feasible basis-solutions
are precisely the vertices of D = D 4.

This way we have seen that vertices and bases consisting of columns of A
are closely connected. Therefore, the procedure of moving from a given
vertex to another one most likely can be understood as exchangement of the
corresponding bases.

The most natural way to change a basis is given by just throwing out one
member of a basis and exchanging it by a column of A that so far was not a
member.

Conveniently, it turns out that this is not only the straight forward way but
also admits for a nice geometrical interpretation: exchanging just one basis
vector amounts to moving to adjacent vertex - in the intuitive sense that the
movement takes place along the edge of D joining the two vertices.

We have as yet no formal definition of the terms adjacent, edge, etc. - but
the following example enlightens the situation.
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Example 1.11. (

f. Example 2.7 of CHAPTER 1. ) Let m = 2,n = 4 and
consider A= ({41

c
11) . b=(1,1), this way we obtain

Dz{:ﬂéR“

4
1
3320,21'1:1,1'425}

=1

The basis corresponding to the vertex z* (k = 1,2,3) is Ay, Agq. All three

x!=(1,0,0,%)

Figure 1.5: Example 1.11

are adjacent and moving from 2* to 2! amounts to exchanging A, A,; . See
Figure 1.5

Example 1.12. Next, consider again for m = 2,n =4

and

The vertices are #'?, 2 and «"', 2" with £ = 2’ + 7€’ . Note that !
and x*? are adjacent (switch from 1,4 to 2,4 by exchanging 1 and 2) - but
' and x? are not. Figure 1.6 shows that D%, geometrically has the form

of a trapeziod.

Definition 1.13. 1. Let (A,b) be nondegenerate such that D = DY , #
0 holds true. Let T be a vertex of D. We shall say that (A,b,T)
constitutes a standard vertexr configuration. Within this context,
we write

J=JY%) ={i| 7 >0}
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0
DAb

Figure 1.6: The Trapezoid (Example 1.12)

and denote by

A= (AOj)jeJ
the m X m matriz consisting of column vectors which form the basis
corresponding to T .

2. Let (A, b, &) be a standard vertez configuration. For any k € J — J we
define real numbers

()‘;?)jej
via the unique representation
(7) Ay =) NA,
jeJ

keJ—J

of column k by means of A . Then the numbers ()\f)jej are called

the tableau elements (corresponding to & ).

3. Let (A, b, &) be a standard verter configuration. Define for any k ¢ J
a linear subspace of R" by

L=L"7%"={zeR' |Azx=b, 2;,=0 (jeJ—(J+k)}

(Our notational convention is to use J — k for J — {k} and J + j for
Ju{jy (ke d, j¢J))
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4. Let (A, b,Z) be a standard vertex configuration and let, for some k ¢ J
the linear subspace L be defined as in item 3. The mapping

R — R
§ — zf
defined by
T, —0N jelJ
(8) =36 j=k

0 jed—(J+k)
is said to constitute the canonical parametrization of L .
5. Let (A, b, %) be a standard vertex configuration and let, for some k ¢ J

the linear subspace L be defined as in item 3. The convex set D N L
is called the edge (of D) emerging at T in direction k.

We hasten to demonstrate that our nomenclature is justified.

Theorem 1.14. Let (A, b, &) be a standard vertex configuration.

1. L =L777% is an affine subspace of R* with dimension 1.
2. The canonical parametrization is a bijective mapping R — L.
3. For 0 = 0 the canonical parametrization, yields €° = &.

4. For small § > 0 we have 2° € D (thus L N D # () holds always true).

Proof:

1. The dimension of L is 1 since

rank ( é )
e _
JEJ—(J+k)

=n—(m+1)+ rank (Asj)jcr
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2. The image of R via the canonical parametrization clearly is a linear
subspace of dimension 1 and the mapping 6 — x is bijective. Therefore
it suffices to show that ’ € L (6 € R) holds true.

However, for € R we obtain

b = Az
= TjAs
jeJ
= ) TA,+0(Ag— > MA,)
JjeJ jeJ

= ) (F -0\ AL + 0 A,
jeJ
= Az’

Now, as &’ > 0 for sufficiently small 6, it follows that ¢ € D holds
true for such 6 ,

q.e.d.

Remark 1.15. Clearly, 2’ ¢ D for @ < 0 . Thus, L N D is either an interval or
else a half line. Which case prevails will depend on the sign of )\f. E.g., if )\f <0
for all §, then &’ € D for all @ > 0, thus the edge L N D is unbounded.

Theorem 1.16. Let (A, b, &) constitute a standard situation. Let k € I — T

and consider L = L~17% and the canonical parametrization given by Defini-
tion 1.14.

1. The following statements are equivalent
(a) LN D is bounded.
(b)) ©:={0>0]2z} =0 for some j € J} # 0.
(c){jEJ|)\§>0}7§@.
(d) The quantity
0 := min {0 |60 e O}
= min {%‘jej,)\;?>0}

s well defined, that is, a real number.
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2. ]fé exists, then
&=’
is a vertex of D (the “second vertex at L N D”).
3. Ifé exists, then there is a unique jo € J such that
. )
zj, =x;, =0.
4. The basis corresponding to T 1is, therefore

(Aej)jer—jot

5. The restriction of the canonical parametrization

ping.

Proof: Clearly © is nonempty if and only if there exists a positive )\f. In
this case

min {f € ©} :min{ﬁzﬂ‘ﬁz%forsomejej, A§>0}
J

:rnin{i[_\“—{c jeJ, )\;‘?>0}

j
Moreover, & = z¥ has exactly m positive coordinates (that is, the coordinates
Jj € J—jo+k), hence is a vertex by the n.d. requirement in view of Theorem
1.7

Further positive coordinates of Z (i.e., coordinates j € .J) must not vanish
since, in view of 1.13, & € D must have at least m positive coordinates.
q.e.d.

Example 1.17. We continue with the discussion of Example 1.11. Recall
the defining quantities for D 45 which are
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z=a'"=(1002) e!

Diay
Figure 1.7: Parametrizing an edge of the Trapezoid (Example 1.17)

Consider the extremal point & = «*' = (1,0,0,2), then (A, b, ) constitute
a standard situation as we have seen in the context of Example 1.11. The
basis corresponding to & is given by A = (1,0) and Ay = (1,1/3).

Take k = 2 (i.e., we want the second coordinate to become positive). The
equation

A.2 — )\?Aol —|— )\iA.;l
requires A2 = 1, A\? = 0 since A, = A,;.

Therefore,

8

b = (i - 0)‘%70705 % - 9)‘421)
= (1-6,0,0,2)
Clearly 6 = L, thus & = (0,1,0,2) = 22

This way we have exchanged the basis vector A, against A, .

Remark 1.18. 1. Consider a standard situation (A,b,Z). Let J = J*(Z) as
previously. As D is nondegenerate, we know that n > m indices in J — J
are possible candidates in order to play the role of k in 1.13, 1.14, 1.15, and
1.16. Thus, at every vertex & € D there are exactly n —m edges in D.
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2. Consider a standard situation (A,b,Z) and let ¢ € R". Define the linear

function f: D — R via

n

f(a:):cmzz cjzj (xeD)

=1

(the “objective function”). As a preliminary exercise, let us compare the
values

f(@) =cz and f(z°)=ca’
for 6 >0 .

We come up with

6 _ i
cx’ = 3 cj¢zy+ ekl

= Zjejcj(‘%j — 9)\?) + 0

= St +0 (o Sye)
= c@+0 (¢ — 2)

If we define
2 = ch)\f = CJ)\]},
jedJ
then it is obvious that f increases (strictly) along the edge [Z, &] if and only
if ¢ > 2z holds true. This motivates the following

Theorem 1.19. Let (A, b, &) be a standard situation and let

T=1{jlz>0=7"@a).

LetceR" and f : D — R, f(z)=cx (x € R") .

For every k € J—J let )\f (j € J) denote the corresponding tableau elements
and define

2k = cj)\’}— = E cj)\?.

jeJ

Then the following holds true.

(a) If 21 > ¢, (k€ J—J), then & mazimizes f on D, i.e.,

f(7) = max{f(z) | @ € D}

holds true.
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(b) If there is k € J — J and j € J such that
2E < Cg, )\;C >0

holds true, then there exists @ € D as given by Theorem 1.16 and &
satisfies

cT > CT .

That is, the movement from & to & increases f strictly.

(¢c) Finally, if there is k € J — J satisfying

2 < ¢ and)\ﬁ?g() (j€J),

then f is unbounded on D and max{f(x) |x € D} does not exist.

Proof: In view of our previous discussion, b) and ¢) should now be rather
obvious. By Remark 1.18 we know that f increases with positive § and
by Theorem 1.16 the two alternatives occurring are represented by an un-
bounded or bounded edge at &, thus our claim is a direct consequence of
these results.

Hence it remains to prove a) - and clearly the problem is that we have a "local’
maximum but we do not know whether it is a global one. More precisely,
Remark 1.18 tells us that f decreases in the direction of each one of the n—m
edges joining at &. But this does not tell us immediately that f could not
have a larger value somewhere else.

The answer to this intuitive problem is, of course, that f is a linear function.
If it decreases in every direction form & then it decreases also in every direc-
tion pointing into D - and can hardly increase again to assume a large value
at some further edge...
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Formally, let £ € D be arbitrary. Then we obtain the following equations
Z i‘jA.j — b
J
= 2 mAy

Jj€J

= ijA'j+ Z {,ElA.l
jeJ leJ—J

= Zl‘jA.j+ Z xT) Z)\éA.J
jeJ leJ—J jeJ

= > fzi+ > m) | A,
jeJ leJ—J

as (A.j)jcs are linearly independent, we obtain
(10) ii‘j =Ty + Z l‘l)\é
leJ—J

This establishes a relation between & and x which permits us to compare
the values ¢ and cx. Indeed, we now compute cx and ¢z, estimating them
as follows

cr = E ijj_'_g 1y
J J—J

< E cjxj+E 21T
J—J

J

= chmj+ Z ZCj)\é x

J leJ—J \jeJ

= Do |+ ) w
jeJ lej—J

= chjj (Cf(lO))
jeJ

= c&,
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Example 1.20. We return to Examples 1.12 and 1.17. Within this context,
the polyhedron DY, was given by

1111 1
A:< >,b:<>.
001 3 T

The geometrical picture is repeated in Figure 1.8 With respect to the vertex

z = 2" = (1,0,02) we have computed for k¥ = 2 the tableau elements A} = 1

z=ax"=(1003) e

0
DAb

Figure 1.8: The Trapezoid revisited

)

and Af = 0. Thus, 2z = 2, = Y ¢;A] = ¢; for every ¢ € R". Taking z’ as
well from Example 1.17, i.e.

1 3
0 —_— — —
T <4 0707074>7

ct’ = ¢z +0(cy— 29)
= ¢Z+0(ca — 1)

we find

1

and f is increasing from & to & = x** = (0,1,0,2) if and only if ¢ > ¢; .

Remark 1.21. Consider the situation that occurs within the framework of The-
orem 1.19 if item b) prevails, i.e.,assume that we have the existence of at least one
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k€ J—J and j € J satisfying with

zr < ¢k )\?>0.

Clearly, the choice of k € J — J is not necessarily unique.

In view of formulae (8) and (9), that is
ez’ = & + 0(cy, — 21),

it seems plausible to choose k under the circumstances such that c; — z;, is maximal
(or z, — ¢, minimal) in order to increse the slope of f as much as possible. Nothing
formally exact can be presented in order to support this choice, as it is not only
the slope of the function but also the distance to travel which eventally determines
the value of the function at the far vertex.
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2 The Simplex Tableau

Within this section we present the formal algorithm that serves for an ex-
change of vertices. Given some vertex — or basis solution — we exchange one
basis vector against another one, thus moving to an adjacent vertex. Among
various adjacent vertices we choose the one which yields the largest increment
with respect to the linear function under consideration (unless the objective
function is unbounded).

The parametrization presented previously turns out to be a vehicle only. A
formal algorithm allows to compute all the details in order to specify the
next vertex. This algorithm is given by a simple procedure (the rectangle
rule) which is performed on a certain type of matrix, called a tableau.

Note that a matrix can be seen as a function defined on the Cartesian product
of two finite sets. Most of the time we have used the sets I = {1,...,m}
and J = {1,...,n}. Whenever we use these particular index sets there is a
tendency to view the rows and columns of the matrix in the same ordering
as is indicated by the ordering of the natural numbers imposed on I and .J.
In what follows, this implicit assumption may be violated; more precisely, a
row with index 5 might occur at a 'position’ different from j at some matrix
constructed for a certain purpose.

We start out with the definition of the rectangle rule.

Definition 2.1. Let J' C J and let

(1) S=Jx(J-J)=>R
be a matriz. Let jo € J', ko € J — J' be such that
(2) o= sfg = 5(jo, ko) > 0

holds true. We shall say that the matrixz

(3) SO (J —jo+ko)x (J =T +3jo—ky) =R

is generated by S via the rectangle rule (with (jo, ko) serving as the pivot),
if the relation as indicated by the following scetch is established between S
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and S°. We write

ko
* \
*
* .
Jo x % x|a|*x *x *x B x
S = * ;
JI
4 *
() ’
* .
0% )
*
* Vs
Fag?
and we want S° to look as follows:
(5) |
Jo
.
ko x k% é x k% g *
s =
* ’ Jl—j0+k0
*
*
*
B
-2 52
*
* Vs

J—J'+jo—ko
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We write

(6) S"= RS

in order to describe that S° is obtained from S by the rectangle rule.

Next we define the type of matrix (the tableau) we want to deal with under

the rectangle rule.

Definition 2.2. 1. Let (A, b, &) be a standard vertex configuration (cf.
Definition 1.13) and let
fR"—>R

be a linear function, i.e., f(x) = cx (x € R") with suitable ¢ € R".

Forj € J and k € J — J define real numbers )\é? via

(7) A=) MA,

jeJ

(these numbers are uniquely defined). Also, define

(8) zk:ch)\f (keJ-J)
J

and

(9) (e = 21 — ¢ (kEJ—j)

Then we call the matriz

A

—\ J
T(Z) = < ¢ i )
J—J
ij/
_ A T;
= J : :
,fj//
Ck P CT

the tableau corresponding to &.
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2. Let kg € J — J be such that Cho = min;_j(, < 0 holds true then kg
defines a ptvot column (of T(Z)).

(Recall Remark 1.21; the index ko represents an edge with maximal
increment of the function f.)

3. Let ko be a pivot column and let jo € J be such that

Z; Z;
(10) —2 = min {—k]
Ajo A

. T \k
]EJ,)\jO>0}

holds true. Then jo defines a prvot row.

(In the context of Theorem 1.16, this quantity coincides with 0 and
if it is finite, then the edge corresponding to kj is bounded, hence has
at least one further endpoint. At this endpoint the coordinate j, will
vanish).

4. If ko and jo as defined within the above items are well defined, then
T(Z) is called pivotable and (jo, ko) (or sometimes )\f(?) is called the
pivot element.

(The condition describes the case that there is an edge kq on which f
increases and which admits for a second vertex).

Remark 2.3. Let (A,b,&) be a standard situation and let T(Z) be defined by
Definition 2.2, thus

) @) = (4

Q |
8l <
N——

Suppose kg is a pivoting column of T(Z). We may list the quantities /\jTJO (€J)

J
— as far as they are defined — by adding an additional column to the right of T(Z).
Also, we list the indices j € J* and k € J — J* as the natural ordering of rows
and columns may be disturbed.

This we obtain the following scheme (we do not call it a matrix by obvious reasons).
The numbers (1) ... (7) indicating various regions to be explained below:
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* (1) ) *
ked—J
2 |3 @ | (1)
(12) I S L BV P
)\jo
® ©
* Ck .- | c *

The contents of regions (1) and (2) is obvious; these regions assign the correct
indices to the quantities appearing in the center.

In region (3)...(6) the elements of T(Z) appear. The term ’tableau’ will be used
in connection with the above scheme T(Z) as well as with the matrix T(Z).

Theorem 2.4. Let (A, b, &) be a standard situation. Suppose that T(Z) is
pivotable with pivot element (jo, ko).

Suppose & = @’ is obtained via Theorem 1.16 (Case b) as the neighboring
edge to . Then, with k = ko we obtain

(13) T(&) = RT(z).
That is, T(&) is obtained from T(&) by applying the rectangle rule.
Proof: The rectangle rule has to be verified for the elements notated within

the groups (3)...(6) in the tableau T(&). For (1) and (2) we exchange the
indices ko and jo while (7) is obtained by a simple division.

Thus, we first want to deal with (3), i.e., with the tableau elements )\g?. Now,

the elements 5\5 of T(&) are determined by

(14) A= Y MAG+ M Au, (ke J— T+ jo— k)
j€J—jo
On the other hand we had from T'(Z)

(15) A, =) MoA,

jeJ
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Now we have assumed )\fg > 0 since this is the pivot-element in T(&Z), hence
(15) can be rewritten to

Ao 1
(16) Ao == D T Au + 1A
jeT—jo 7o Jo

Next, consider the the indices k € J — J — ko with respect to T(Z). We have

A=) NA,

jeJ
k k )\]?0 1
— J
(17) = > NAG |- D oA I Ak
jeJ—jo j€T—jo “J0 Jo
Ak Ak
- % (i) A
jeJ—jo Jo Jo

We can now compare (14) and (17), thus obtain, for k € J — J — ko:

k
M= _Aﬁ
(18) ) 0 N
A= M€ (e T = jo).

J0 \ ko
)\jo

Moreoever, for k = j, a comparison of (16) and (14) yields

e 1
Mo = e
(19) e )
Ny = _)\—20 (J € J = Jo)
Jo

Now, after some inspection it is indeed seen that (18) and (19) constitute
the rectangle rule for group (3) in (12).

As to group(4), i.e., the coordinates of & we have to compare them with
those of &. However, in view of Theorem 1.16 we know that
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and _
. _ ANk _ Ljy \k . = .
a:j:a:—ﬁ)\jozm—)\—g)\jo (j€J—jo),
Jo
are satisfied, thus we recognize the rectangle rule.

Group (6) is particularly easy to treat as the equations

ck = cx? =@+ 0 (Cry — 21,)

:c:E—GCkO :Ci—% Cko
JO
immediately show the rectangle rule.
Finally, group (5) we shall not deal with explicitely; we have to consider

DS _ 2: \k
Ck—Zk—Ck— Cj)\j — Ck.

JE€T—jo+ko
By plugging in 5\5 (which we know from (3)) and some reshuffling the rect-
angle rule is confirmed, q.e.d.

Example 2.5. We continue with the discussion of the trapezoid example
which we left at Example 1.20. Recall the data which were given by

111 1 1 _
A_<0 0 1 1/3>, b = (1,1) and T = (1/4,0,0,3/4),

we reproduce the corresponding picture in Figure 2.1. In addition we choose
c = (10,0,2,0). We know already the tableau elements

AN =1, A\1=0

and as
Ao3 - _2A01 + 3Ao4

we can compute further tableau elements to be

Now, as ¢ = (10,0, 2,0) we have

2 =Yenay NG =a=10; G=2xn—c=10
= Zj€{1,4} )‘?’Cj = —2¢1 +3c4 = —20; (3=23—c3=—22
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0
DAb

Figure 2.1: The Trapezoid again

Next, cx = % and the tableau is

*
[\]
w
*

11 =217
(20) :

410 31317

x| 10 —22 % *

Clearly, kg = 3 yields a pivoting column as (3 = —22 < 0; thus we add the

quotients of group (4) (i.e. &) and the A\’s in column 3 of group (3), thus
obtaining

x| 2 3 *
111 -2 | L] -1
(21) j f
410 3|3 1
* | 10 —22 % *
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The minimal positive element in group (7) is ; > 0, this identifies (4, 3) as
the pivoting entry and 3 as the pivot. Applying the rectangle rule yields

*
[\
H~
*

1] 1 21317
(22) f ‘1‘

3/0 L1

x| 10 % % *

Now all { are positive, thus we have all the information for a maximum of
cx over D. The maximizing element is & = (3/4,0,1/4,0)(= «'*) and the
value of the maximum is ¢ = %. (Besides, the rows should indicate the

representation of A,y and A.; by Al and A,3).
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3 The Two Phase Method

Within the previous sections we have discussed convex polyhedra which were
defined by a set of inequalities. By contrast there is also the mixed version
which involves equations and inequalities. We now return to the version
discussing inequalities. An additional advantage will be that we are in the
position to develop a procedure for the initial tableau.

As previously we consider data given by a triple (A, b, ¢) such that A is
an m X n-Matrix while b € R™ and ¢ € R" are vectors representing the
constraints and the objective function.

Within this section we will always assume that
b>0 or b>0

is satisfied according to whether we want to insist on nondegeneracy or not.
Recall our notation for a certain type of polyhedron, we write

C:=Chp={zecR" |z>0, Az <b}.
We also consider a linear function
[*R*" =R, fl(z) =cx (xzeR").

which is specified once a vector ¢ € R” is given. Our aim is to compute the
quantity
mce}xf = max{cz |z € C}

as well as a maximizer of this function, that is, an element of the set

Mcof :=argmax{cx |z € C} :={xcC|cx = mgxf}.
In order to establish a connection between the “C-problem” as indicated
above and the “D-Problem” that we have discussed in SECTIONS 1 and 2, we

introduce the following notation. Given some m X n—-matrix A we introduce
the m X (n + m)-matrix A via

(1) A:=(AI,) = A
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To this matrix we associate a convex polyhedron (of “D version”) by

(2) D:D%b::{zeR”+m|zZO,ﬁz:b}

The latter type can be treated with the simplex algorithm as explained in
the last two sections. As it turns out, the two polyhedra can bijectively be
mapped on each other.

Lemma 3.1. Consider the two linear mappings

p: R R
p(x) = (z,b- Az) (z€R")

¢ : R"™ LR

Q(z) = Q(zla Tty Rny Andly 7Zn+m) - (Zl, Tt ,Zn) (Z & Rn-l—m)

(5) p:C—D,q:D—C

holds true. Moreover, these mappings are bijective and inverse to each other.

Proof: Clearly, we have
p(x) >0 (xeC)

and
Ap(z) = (A, I,)(x,b— Az) = Az + (b— Az) = b,

hence B
px) e D (xel).

On the other hand, suppose we have z € D (that is in particular z > 0),
then we come up with

(6) b = AZ = ASZl,'-- aznl+(fn+1a"' azn-l-m) > AQ('Z)

J/

N~ '

q(z) 20

that is ¢(z) € C . Thus we have shown that (5) is indeed true. In particular
we infer from (6) that

(7) b— A(z1,...y20) = (Znt1y -y Znim)



90 * THE SIMPLEX ALGORITHM x CHAPTER II %

is valid for z € D.

It is obvious that p is an injective mapping satisfying q o p = id.. Therefore,
it remains to show that p o ¢ = idgz holds true.

This follows immediately in view of
qu(Z) = p(Zla e :Zn)

= (Zlﬂ"' 7Zn7b_A(Zl7“' ,Zn))

:(Zla"'aznazn-l—la"'azn-l-m) (26_5),
where the last equation follows from (7),
q.e.d.

The following remark refers to a widespread terminology concerning slack
variables.

Remark 3.2. In a less formal context, the variables
Yi = Znti = b — Aje

are sometimes denoted as slack variables . The intuitive meaning is that an in-
equality “allows for slack’ and this slack is ’eliminated’ by introducing an additional
variable which changes the inequality to an equation. As frequently, the term vari-
able is not well defined, the precise notion is to speak about bijective mappings.
Observe that regarding the polyhedron

C={zecR'|z>0, Az < b}

there is one slack variable introduced per equation, that is, we obtain the polyhe-
dron

D ={(z,y) e RMtm | (,y) >0, Ajexz+y;=b; (i=1,---,m)}.

Example 3.3. Figure 3.1 shows a situation for n = 2 and m = 1. Observe
that the triangular polyhedron CY, C R? is “lifted” into R*"*™ = R® by the
mapping p and, in turn the projection ¢ acts as the inverse mapping. The
vertices 0 € CY, and (0,0, b) € D%b correspond to each other.

Example 3.4. More specifically, let n = 2 and m = 1 and consider the
polyhedron
C={xecR|xz>0, o, +21, <1}

(see Figure 3.2), then we obtain (see Figure 3.3)
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R2

C% 1

Figure 3.1: Identification of C' and D

Figure 3.2: C = {z e R |z >0, z; + 215, < 1}

A

Figure 3.3: D= {(Z,y1) e R | (z,y1) > 0,21 + 2190 + 31 = 1}
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D = {(x,y) € R® | (,y1) > 0,21 + 229 + 31 = 1}.

The action of the mappings p and ¢ can be nicely visualized.

Example 3.5. An example with m = n = 2 can also be geometricaly repre-
sented (Figure 3.4). Put

C={xecR|x>0,1 <1/2,2, <1/2}.
Then we have

5:{(33:1/) ER | (z,y) >0, 21 +y1=1/2, mp+y,=1/2}

={2eR" 220, 21+23=1/2, 20+24=1/2}

1 (%, %)

\
Q

0 % )
(a) C (b) D

Figure 3.4: A square in R? is mapped onto a square in R*

This example shows that a suitable square in R? is mapped into a variant
of our notorious trapezoid. Because the geometric representation misses one
dimension of R*, the projection property of the mapping ¢ cannot be repre-
sented.

Remark 3.6. 1. As p is affine and q is linear, both being bijective mappings,
the vertices of C' and D will be mapped onto each other respectively. That
is, p and q establish bijective mapping between the sets of extremal points
as well.

Indeed, for £%, @' € C , 2°,2' € D and X € [0,1]. we have

p(Az! + (1= N)z’) = Mp(a') + (1 - \)p(a’)

g(Az' + (1= X)2°%) = Ag(!) + (1 = N)q(z°).
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It follows immediately that any x € C admits of a convex combination if and
only if ¢(x) does. The same holds true for p.

2. In particular, the vertex 0 = (0,--- ,0) € C and the vertex ¢(0) = (0,b) € D
are mapped onto each other.

3. Now consider the function f : R* — R, f(x) = cx (x € R") which is in
particular defined on the convex polyhedron C. We put

EERn+maE: (cla"' 7cn107"' 50)
as well as

FiRYM SR, f(z) =Cz =c(z1,+ ,z) = f(a(2))

Clearly, we have
f=foa, f=Ffep.

From this it follows immeditately that q : Mo f — Mf)f and p : Mf)fN —
Mc f are bijective mappings and invers to each other as well. That is, £ € C
is a maximizer of f if and only if (x,b — Ax) is a maximizer of f in D.

4. Therefore, whenever we wish to find elements & € Mc f, we can as well try to
find elements z € Mp f. The advantage is that the vector (0,...,0,b) yields
at once an initial vertex of D. Hence we can employ the simplex algorithm
explained in SEcTIONS 1 and 2 using this extremal point for a start.

The corresponding basis is provided by the vectors (Aept1 -« - ,g.ner) =1,.

Note that even if the requirement b > 0 is substituted by b > 0 nevertheless

the vectors (Aen+1 -+ s Aen+m) = I constitute a basis.

The following theorem describes the initial tableau with respect to the vertex
(0,b) € D in the sense of Definition 2.2 and Remark 2.3. True, within the
framework of SECTION 2 everything was formulated assuming non degeneracy.
Nevertheless, in order to construct the initial tableau all we need is a basis
consisting of the columns corresponding to (0,b). These are the columns
taken from A = (A, I,,) that is, the column constructed by means of the
unit vectors.

Theorem 3.7. Let A = (A, I,,). The tableau T(0,b) corresponding to Ab
and Z = (0, b) (see Remark 2.3) is given as follows:
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* (1) *
1 e n
(2 |3 (4) [ (7)
n+1 by
(8) 7(0,0) = | . A .
(5) (6)
* —c . .- —cp, | 0 *

Proof: 1*STEP and 2"STEP : The first and second areas are defined
in an obvious manner; clearly we have J = {n+1,--- n+m} C J =
{1,---,n,n+1,--- ,n+m}.

3"4STEP : The columns j.j (j=n+1,---,n+ m) are the unit vectors
by definition, hence we obtain for k =1...n:

~ n+m ~
Ay =As= ) MA,
j=n-+1
m )"Ircz—i—l
- Z A§+n63 =
=1 )‘fz—l—m

This defines the tableau elements )\’f as to be the columns A,y.

4*"STEP : The shape of the fourth region is obviously the one indicated in
view of z = (0,---,0,b1,- -+, bp).

58STEP : For k = 1,---,n (that is k € J — .J) we obtain

n+m
—_ E ~ Ak —
2k = Cj)\j =0 s
j=n+1
and consequently we have
Ck = 2k — C = —Ck -

6*"STEP : Finally, the equation ¢z = 0 determines the value of the objective
function in region (6). q.e.d.
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Example 3.8. In Example 3.4 we have
C={zecR|z>0, 7 <1/2,25 <1/2}

and as a consequence

4
D={zeR'|) zi=1,zn+5n=1/2, n+u=1/2}
i=1

p0)
Z (72,72)

e3

k p(0,%) D
} p(72,0)
» e' 2
0 % plsY) ¢

(a) C (b) D

Figure 3.5: example: n =2, m=1 a€R2, by >0
+

The matrix corresponding to C' is given by A = ( (1) (1] > and the vector b
is provided by b= (3, 3). We put
c=(2, —1).

The initial tableau J(0,b) is given as follows:

* |1 2]

3|1 05|32
(9)

410 13| -

* | —2 110 %
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The tableau is pivotable around the index pair (3,1) with tableau element 3
in the upper left corner of region (3), the result is

* |3 21 %

1|1 03]—
(10)

410 13| —

* | 2 111 =

Since (3,(s > 0 is true, we have as a consequence
z=(1/2,0,0,1/2)

as a maximizer in D. The corresponding maximizer in C is obtained by
projection (that is, by an application of the mapping ¢). This yields

z = (1/2,0).

The value of the objective function in this point is given by ¢z = c¢& = 1.

Now we return to the version of a polyhedron in the form D?47b. This version
we have used in SECTI0NS 2 and 3 in order to develop the exchange of vertices
and the corresponding action of the rectangle rule on tableaus.

Consider the familiar version given by
D={xecR"|z>0,Ac=>b}=D),

Again, we assume b > 0 in advance and we are looking for the quantity
maxp f and elements of the set Mqf, where f is given by

["R" >R, f(x) =cx (x,c€eR")

Our procedure will be slightly different from the previous ones. We do not
consider bijective mappings. Instead it is our aim to point out an initial
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vertex. Therefore, let us define the following quantities:

1 0
A=(A1I,)=|A
0 1
(11)
¢c:=(0,---,0,—1,---,—1) e R*"™
lA):{zER"J’m|z20,:4z:b}:D%,b,

FiR"™ SR f(z)=¢z (2 € R™™)

On a first glance nothing has been changed with respect to the structure
of the mappings induced by the above quantities. However, our method in
order to aquire an initial vertex is slightly different. This is explained by
means of the following remark.

Remark 3.9. 1. z=(0,---,0,b) E/\R”*m is a vertex of D and hence can be
used as the initial vertex for the D-problem.

2. For all z € D we have éz < 0. If D #  holds true, then the following
statements are equivalent:

(12) Zpgl = = Zpam =
(13) zeMyf
(14) S=0

(15) (Z1,-++ ,2n) € D.

Observe that the simplex procedure with z as an initial vertex ends up at
some point z of the above type. This Z yields an element of D by just taking
the first coordinates.

3. Let the pair (A,b) be non degenerate and let z be a vector as described in
item (2) which results from the simplex procedure. That is, assume that
we have found a vertex of D with vanishing last coordinates. Then T =
(21, ,2zn) is a vertex of D. Every convex combination of elements of the
type of & implies a similar convex combination of elements of the type of Z.

Now we have the following lemma.
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Lemma 3.10. Let z = (0,---,0,b) € R™™ be a vertex ofﬁ in the sense

of item (1) of Remark 3.9 and let f be the function defined accordingly. The
simplex tableau T (Z) corresponding to Z (see Remark 2.3) is given by:

* (1) *
1 e n
2) | (3) : 4) |7
n+1 b1
(16) T(z) =
A
n—+m : by,
(5) (6)
8 —Dier @t T e @in | = D bi| *

Proof: The areas (3) and (4) are obtained exactly as in the proof of Theorem
3.7. In addition we have for k € {1,--- ., n} =J:

n+m
i~ ~ ke~
CGk=2p—Cr =2, = Z AjC;
j=n-+1

= Zazk(—l) = — Za]‘k.
i=1 i=1
Similarly we have
ez =(0,---,0,—1,--- ., —1)(0,b) = — > b;.
iel
q.e.d.

Remark 3.11. Consider the tableau as indicated in Lemma 3.10.

Following each step in the first phase, such that an index n + [ from the left group
(i.e., from J) has been transformed to the above group (i.e., to J — J), we can
cancel the corresponding columns. Hence, all indices exceeding n can successively
be omitted.
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* 1 n+l n *
n+1 * —| -
*
J *
(17) x
n+m * — | =
* *
T
cancel

This is so because corresponding to the index n+I there is a basis vector ;1.”“ =el.
The representation of this basis vector with the aid of tableau elements will never
be employed because the corresponding index will never be transformed to the
group below. Observe that the movement in direction of a coordinate n + [ would
never increase the value ¢z, on the contrary, it would strictly decrease as ¢, 1) = —1.

At the end of this procedure we will obtain a tableau such that the indices exceeding
n will not occur. As a consequence this tableau yields immediately a representation
of the vectors Ag, = Ay (k € J —J) by means of ;i.j = A, (j€J). In
addition the coordinates z; (j € J) are exactly the coordinates of the new initial
vertex for the second phase.
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<
>
N

|

<
>
8l

|

T T

replace

Note, however, that the vector ¢ has been constructed for the purposes of the new
phase. Therefore, the lowest row of the tableau contains the wrong data, the data
¢ and c¢Zx have to be computed from scratch.

Remark 3.12. Throughout this section we have always used the condition b > 0.

There is also a method of geting rid of this condition, however we will not pursue
this idea.



Chapter 3

Duality

The previous section describes a computational method, the simplex pro-
cedure, which serves to compute optimal elements of a linear programming
problem if they exist at all. The question of existence of optimal elements
will now be considered from a more theoretical point ov view. We start out
by attaching a twin to each linear program: the dual program. Apart from
the structural consideration (understanding the relation of the twins helps
understanding the nature of optimal solutions), this procedure will also be
helpful in order to consider the existence problem.

101
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1 Dual pairs of LP.’s

There are two aims within this section we are heading at. On one hand
the increasingly intricate connections between systems of inequalities and
equations (represented by different versions of convex polyhedra like C,
and DY ;) should be cleared. On the other hand, the simplex algorithm as
discussed in the previous sections is a practical or applied method. What
is presently missing are general existence theorems concerning the solutions
of linear programs. All of these problems should be dealt with in a unified
framework. The joined topic combining these various areas is the idea of
duality. Within this context it is possible to treat all the questions mentioned
above sinultaneously.

We start out with a formal definition of duality.

Definition 1.1. 1. For p,o =1,2 let m,,n, € N and let

A7 be an m, X n,-Matriz,
b* € R™, and
c® €eR",

then the (my +msy + 1) X (ny + no + 1)-matriz

r 3\
ml{ Al A2 pl

r = ¢ A12 A22 b2
mso {

is called a (mized) linear program (LP.).
2. The elements of the set

E={(z',2*) e R" x R™ |
‘A11m1+A12m2 S bl, A21$1+A22£B2:b2, 332 20}

(2)

are called the feasible solutions of the linear program T.
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o
&
o

2) € R™ xR™ are called optimal solutions of the linear program

(3) (&',2%) € Mgf
holds true. This definition involves the function

(4) f:R" xR"” - R
f(z, z*) = c'z’ + x* ((z', z?) € R" x R™)
Remark 1.2. The above definition encourages the reader to look for a solution

of the following problem:
‘find maxg f and (2',2%) € Mpf.

As a consequence many text books choose to consider this problem or task as ’the
linear program’. Within such a framework, an apropriate description is supposed
to be given by the system of inequalities and equations following below.

Allz' + A%2?2 < b
A21$1+A22$2 — b2
(5) 0 2 > 0

ele! + 22?2 — max

This kind of description, while mathematically not quite correct, has its advantages.
For instance, the notion is much more suggestive and the reader can more easily
come to grasp with the above formulation compared to the mathematical correct
one.

We will therefore accept (0) as a shorthand notation which suggests that the data,
the feasible, and the optimal solutions of a linear program are specified by a correct
definition as provided in Definition 1.1

Nevertheless, Definition 1.1 has a great advantage as well: it allows for the
precise handling of the idea of duality.

Definition 1.3. 1. Let T" be a linear program. Define I'* by the mapping
which exchanges p — 3 — p (p = 1,2), more precisely T* is the linear
program, defined by

A22 A21 b2
(6) .= A% A" b
2 1

c c 0
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2. Also, we define
(7) [=-1r"
here the upper index " reflects the transposed version of a matriz.
3. A pair (I, A) of linear programs is called dual if
(8) A=T
holds true.
Remark 1.4. It is at once verified that the following relations hold true:
9) T 7™ =1, T =T,
Therefore, if (I'; A) is a dual pair, then we have
(10) A— AT = Ty T =TT =

This means that (A,T") is a dual pair as well; the message is that the ordering of
the elements of the dual pair is not important. That is, a dual pair can be written
as

(0,1 or (A,4)
in any case.

Nevertheless, we frequently find formulations of the type that T is the program
‘dual to I'” or I is the program ’primal to T’ These notations are useful in order
to distinguish the two candidates for consideration. However, the attachment of
the qualifiers primal and dual is quite arbitrary: any element of a pair (I', A) can
play the role of the primal or the dual program respectively.

Again let us turn to the shorthand notation, this has consequences with
respect to duality as well. The ’problem’ implied by a linear program I' is
represented by (0). Which problem, using this notation, corresponds to I'?
Obviously we have

A22T A12T CQ
(11) f _ _F*T _ _ A21T A11T c!
b’ b' 0
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and the corresponding problem as in the sense of Remark 1.2 is presented by
the following system of equations and inequalities:

_OART I AT, o 2

AT AT,

(12) .

v
o

— b2 —b'22 - max

We now put
1 2

u' =22, ut =2t
and multiply each of the equations (12) by —1. Thereafter we reorder the
equations such that the matrix A appears on the left upper corner and we
write the equations and inequalities without using the transposed versions of
the matrices. This way we obtain

W A" £ u2AY = !
U1A12 + U2A22 Z C2
(13) (0) d> 0

b'u! + b’u? — min

We call (0) in a slightly sloppy way the ’dual problem’ to (0). A precise
definition corresponds to this formulation of the dual problem in the sense
of Remark 1.2 and Definition 1.3.

Remark 1.5. The various variables which appear in the primal and dual rep-
resentation of types (0) and (0) are as well subject to an interpretation. This
interpretation corresponds to the dimensions of the vectors or variables involved.
The interpretation can be formulated by means of the following list. Note that the

dimensions appear explicitely in the matrices when we represent the programs as
in (1).

ni: number of unrestricted variables in (0), number of equations in (0)
ne: number of restricted variables in (0), number of inequalities in (0)
my: number of inequalities in (0), number of restricted variables in (0)
mo: number of equations in (0), number of unrestricted variables in (0)

This way it is seen that to some extend and with liberal interpretation unrestricted
variables in the primal version correspond to equations in the dual version and vice
versa, while restricted variables correspond to inequalities and vice versa.
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We now discuss certain special versions of the general version represented
by formula 1. These versions correspond to a particularly easy shape of the
corresponding "popular’ problem as represented by (0) or (0). We list these
problems accordingly in order to provide easy reference.

Example 1.6. Let

(14) =

S OO
0O

o O o

The only relevant variable is = x? and the 'popular problem’ (i.e., the
corresponding version of (0)) is given by

Ax < b
(15) (I) x > 0
cx — max
Accordingly the dual version is
R 0 AT ¢
(16) T=-—10 0 0
0 b 0
which corresponds to the problem
R uA > c
(17) (I) u > 0
ub — min .

This way we have defined a pair of standard programs /(\I ) and (f ) which,
at this stage, are seen as particular versions of (0) and (0).

In fact the feasible set of the version indicated by (I) is the polyhedron
Chy={zeR" | Az < b,z >0}

which has been discussed in previous sections.
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Example 1.7. Put

0 0 O
(18) = 0 A Db
0 ¢ O
the shorthand version is
Ax = b
(19) (I) x > 0
cx — mazr
The dual program is
R AT 0 ¢
(20) r= - 0 00
b 00
which, in shorthand, is given by
uA > c

(21) (ﬁ) ub — min

Observe that the 'correspondence’ between equations / inequalities in the
primal and unrestricted / restricted variables in the dual (and vice versa) is
always reflected: (II) features equations only - hence we have only unre-

stricted variables w in (f\I) As @ is restricted (that is, > 0 in (II),) we
find that (II) has inequalities only etc.

The feasible set of (IT) is
DYypy={zcR'|z>0, Az =b}
which is also familiar from previous discussions.

Example 1.8. If we choose

A 0 b
(22) = 0 00
c 00
then we may write
Ax < b
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in order to indicate the informal version. The dual program is

R 0O 0 0
(24) = — 0 AT ¢
0O b 0
or for short
- uA = ¢
(25) (II1) u > 0
ub — nmin

Not all versions are relevant. E.g., the one given by

0O 0 0
(26) I'= A 0 Db
c 00
1.e.
(27) Axr = b

with dual version

~ 0 00
(28) = — AT 0 ¢
b 0 0
or
(29) uA = c

ub — min,

leads to unbounded or constant objective functions unless the set of feasible
solutions is trivial.

Example 1.9. Consider the LP. suggested by

(30) z > 0
201 — o — Mmazx
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% (%7%)

{x | cx=konst.}

L

'

'::: _1/2 , ..... ..... .................................

Figure 1.1: The feasible set and ¢ in Exampe 1.9

The feasible set is
{xeR|xz>0, Az < b}

. 10
WlthA:<0 1) ;b:(%7

As the linear program is of type (I), the dual is of type (f), i.e., we have

), and ¢ = (2, —1). See Figure 1.1.

N[

uA > ¢
u > 0
ub — min

or
w2
s(u +us) — min

The feasible set is depicted in Figure 1.2.

Both programs admit of optimal solutions which can immediately be taken
from the figures. The one for (I) is & = (3,0) and the one for (I) is
@ = (2,0). Note that the optimal values of the objective functions are given
by

ct=1=ub.
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A {x | bx=konst. )}

x|lud=c,u=0}

O T g

Figure 1.2: The feasible set in of the dual problem in Example 1.9

Remark 1.10. In a previous section (Section 3 of CHAPTER 2) we have seen that
the problem involving a polyhedron of type Cap (the 'C-problem’) in and the
one involving a polyhedron of type D?4,b ( the 'D-problem’) are equivalent in a
well defined sense which is established by a pair of bijective mappings or, verbally,
by the introduction of ’slack variables’. There is a certain analogy in the present
context: the operations which have been considered so far (represented by the
mappings * and ) can be augmented by further operations (introduction of slack
variables or the like) which we first describe verbally. We may change or transform
linear programs by means of the following procedures:

1. We may replace an equation by two inequalities (this way it seems obvious
that version (II) can be transformed into version (I)).

2. We may replace a free variable x; by two restricted variables. This is verbally
described by introducing x; = y; — z;, y;i > 0, z; > 0. (This way it is possible
to transform version (IIT) into version (I)).

3. We may introduce slack variables. (This way we can transform version (I)
into version (II), compare Section 3 of CHAPTER 2).

4. We may treat a restricted variable as a free variable by considering the re-
striction as an inequality to be incorporated in the corresponding matrix.
(This way we can transform version (I) into version (IIT)).

By applying these transformations it is obviously possible to transform the versions
(0), (I), (II), and (III) into each other and the same is true for the versions
(0), (I), (IT), (I11).
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In order to be precise for at least one version, consider the version (0) which is
represented in equation (1). Obviously the corresponding system of equations
and inequalities, that is version (0), is equivalent to the following set in which
we have inequalities and restricted variables only:

All(y_z) —|—A12£B2 S bl
AQl(y_z) —|—A22£B2 S b2
_AQI(y_ Z) . A22£B2 S _b2
(31) 2 > 0
y > 0
z > 0
c(y—z)+cx* — maz

This version is obviously of the form

Aw < 0
(32) w > 0
we —  mazx

b

that is, it is equivalent to a program of the form (I).

Remark 1.11. From the viewpoint of a concise representation it must be empha-
sized that the exact versions of the operations indicated by describing the items of
the previous remark can only be specified by matrix operations. More precisely,
it should be possible to represent linear programs by matrices as is done in for-
mula (1) and then apply a matrix operation which results in the new version to be
obtained.

For example, if we consider the above rewriting of version (0) as described
by the transition from equation (31) to equation (32) then, given the corre-
sponding matrix I' we obtain a matrix S(I") which is of the form

0 All _All A12 bl

0 A b 0 A" —A% A% b’

33) I'=5(@T) = 00 0 |=|o0 A4 A" A2 _p
0 ¢ 0 0 0 0 0 0

0 ¢ -ct c? 0

In general we will not elaborate on this topic,as the matrix operations in-
volved in this discussion are of no further practical importance.
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Remark 1.12. The reader may convince himself that the operations as discussed
above and the operation ™= —*T commute. This can be expressed by the following
diagram.

0 I — T (0)
! o
(I) ' — T (I)

Verbally we may express this fact by arguing that the introduction of slack variables
in the primal program induces the introduction of inequalities in the dual program.
These new inequalities together with the existing ones may lead to certain equations
etc. In other words, in can be seen that adding slack variables and transforming
various versions into each others constitutes consistent operations.

Again we shall not exhibit a more formal mechanism as it is of no further interest.
However, the reader should be aware that all of these operations can be made
precise.

The next question is obviously the one relating the solutions of primal and
dual programs in particular the optimal solutions if any. Of course there may
also be a relation of optimal and feasible solutions when transforming pro-
grams by admitting slack variables. In fact we have discussed these relations
to some extent in SECTION 3 of CHAPTER 2.

In order to clear up the connection between solutions (optimal and feasible
ones) of a dual pair we recall Farkas’ Lemma or the Theorem of the alternative
(cf. Theorem 1.18) of CHAPTER 1. Indeed the Theorem of the Alternative
also provides the impression that there is something like a dual statement
being formulated, albeit in a negative version. Similarly, as we have discussed
possibilities of transforming linear programs and taking the dual, it is possible
to formulate analogous versions of alternative theorems. The procedure is
quite familiar (using slack variables etc.) and we shall exhibit the relations
between alternative theorems and linear programs in what follows.

In particular a theorem of the Alternative is the appropriate method in or-
der to solve existence problems for pairs of dual programs. Note that Farkas’
Lemma or a a Theorem of the Alternative is essentially derived from a sep-
aration theorem as discussed in Section 1 of Chapter 1.
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2 The Main Theorem of Linear Programming

Within this section we discuss the Main Theorem of Linear Programming or
Duality Theorem. It claims the simultaneous existence of solutions of a dual
pair of LP.’s and states that the optimal values of both objective functions
are equal. We achieve this important result by means of a Theorem of the
Alternative (Farkas’ Lemma), hence it is essentially based on a separation
theorem.

In view of the results obtained in the previous section, it does not matter
which version of a dual pair is under consideration. Because of the nice
symmetry properties we choose to deal with a pair represented in version
(I, I). However, it should be clear that any other version can be substituted.

Theorem 2.1. Let (T, f) be a dual pair of Linear Programs that appear in

versions (I, T).

1. If both LP.’s admit of feasible solutions, then both admit of optimal
solutions (and vice versa, of course).

2. If (z,u) is a pair of feasible solutions for T’ and T then
cx < ub
holds true.

3. A pair of feasible solutions (Z,a) for ' and T respectively is a pair of
optimal solutions if
cx = ub
holds true.

Proof: If x is feasible for [' and w is feasible for f, then we have

Az <b
x>0
and
uA > ¢
u>0
hence

cr < uAx < ub.

Consequently, both objective functions are bounded; the second statement
is obvious. q.e.d.
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Theorem 2.2. (Main Theorem of Linear Programming,

Duality Theorem)
Let (F,f) be a dual pair of Linear Programs. Then either both programs
admit of optimal solutions or nmone of them. In the first case any pair of
optimal solutions (Z, @) for T and T respectively yields the same value of the
objective functions of both programs.

Proof: Without loss of generality, we may assume that I' and T appear in
versions (I) and (1) .
15*STEP :

Consider the linear system of inequalities in variables u € R™, x € R" given
by

Ax <b
—x <0
—ATu < —c
—u <0
—cx +ub<0
which is also written
A 0 b
-1, 0 0
(1) 0 —-A'|(zx,u)<|—c
o -I, 0
—c b 0

If this system admits of a solution (Z,a), then & and @ are feasible for T
and I'. Moreover ub < cZ is satisfied. In view of Theorem 2.1, & and u
constitute optimal solutions satisfying

ub = cZ .

2"ISTEP :
Alternatively, assume that the inequalities (1) admit of no solution.

In view of a Theorem of the Alternative (Farkas Lemma, Theorem 1.19 of
CHAPTER 1 ), there is a solution

0<z=(u,&, z,u.t)eR xR} xR} xR xR,
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such that
A 0
-I, 0
z| 0o —-AT| =0
0 —I,,
—c b
and
b
0
z|—c] <0
0
0
holds true.

The above set of equations and inequalities are rewritten as follows

uA -z —tc = 0

—Az —a' +tb = 0

(2) ub < cx
a,z,z,a > 0

t >0

3"4STEP :

We want to prove that ¢ = 0 holds necessarily true. Assume per absurdum
that ¢ > 0 is the case.

Because of -
'z +tcx
tcx

tub

wAZ + uu'

uAT

AV | RVAR VAR

we have a contradiction, hence ¢ = 0 is indeed true.

Consequently, the inequalities (2) can be rewritten as follows:

uA = & >0

Az = -4/ <0
(3) ub < cz

a >0

z >0
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4*BSTEP :

Now we can come to our final conclusion: if I' has feasible solutions, say x°
satisfying

(=)

(4) 0

8
IV INA
o

then, for ¢t > 0, consider
=2 +tz .

It turns out immediately that x' is feasible as well since ! > 0 is obvious
and

Az' = Az’ +t Az, <b
N~ N~
<b <0

shows feasibility (cf. (3)).

Similarly, if u? is a feasible solution for T, then
u' =u’ +ta

is feasible for T' as well. But in view of (3) we have, for sufficiently large real
t:
t(cz — ub) > u’b — cz’,

that is,
c(z’ +tz) > (u’ +ta)b

or
cx' > u'b;

this, however, constitutes a contradiction to Theorem 2.1, which requires
cx! < u'db.

This means that not both LP.’s admit of a feasible solution.
5thSTEP :

Moreover, if T' admits of a feasible solution «° (and r not), then, combining
(3) and (4) we obtain

cx > ub
> u(Azx")
= (uA)z°
> 0-0=0
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Hence
cx! = c(z®+tz)
= ez’ +tex — oo (t — o),
i.e., the objective function of I' is unbounded. q.e.d.

Obviously the following version of the Main Theorem is equivalent:

Theorem 2.3 (Main Theorem of Linear Programming, 2"¢ version).
Let (T',T') be a dual pair of LP.’s. If T has optimal solutions, then so has T’

~

and vice versa. In this case, assuming the version (I,1I), we obtain

(5) max{cx | Az < b,z > 0} = min{ub | uA > c,u > 0}.

Finally, we add a third formulation to be referred to in due course:

Theorem 2.4 (Main Theorem, 3" version). Let (I',T) be a dual pair
of LP.’s. Then both programs have optimal solutions if and only if they both
have feasible solutions.

If (T,T) appear in version ((I),(I)), then a pair of feasible solutions (&,u)
1s optimal if and only if
cT = ub

holds true.

The following optimality criterion is an immediate consequence of the Main
Theorem. It is most usefull as a test for a candidate to be verified as an
optimal solution.

Theorem 2.5 (Optimality Criterion). Let (I',T) be a dual pair of linear
programs which appear in version (I,I). A feasible solution & of T is optimal

if and only if there exists a feasible solution 4 off such that the following
holds true:

(6) Ifj>0 - ’l_l,A.j:Cj (]GJ)
u; >0 = Az.i:bz (ZGI)

Whenever u satisfies formula (6) then @ is an optimal solution of T.

Proof:
15*STEP : Let T be an optimal solution of I'. In view of the main theorem
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of linear programming (Theorem 2.2), there exists an optimal solution @ of
' such that the following holds true.

cx = ZjGJ Cji‘j S Zje] ’lTl,A.ji'j = ZjeJJr ’lTl,A.ji'j
(7) = uAZ =D it GiAT =), 4 UiALT
S Zz’e[ albz =ub = CcT
Here J* denotes that set of coordinates at which & is positive and, similarly
I'" denotes the set of coordinates at which @ is positive. Now suppose (6)
is violated for some i € I or some j € J. Then the above set of inequalities

would be a strict one which is not possible in view of the main theorem of
linear programming.

2"dSTEP : Suppose on the other hand that (6) is satisfied. Then there are
feasible solutions of both programs which obviously satisfy

Cr = ZjGJ CiTj = ZjGJ ’U;A.jl‘j = uAz
= Zz’e[ aiAi.a: = Zz’e[ ﬂzb1 ub

However, this obviously means that (Z, @) is a pair of optimal solutions for
both programs respectively, q.e.d.

(8)

Example 2.6. Let
10 3
A=101] b=(,1,2) ¢=(2,1)
11 2

Consider the version

R uA > ¢
I) w > 0
ub — min

This means also that we have to look for

3
min{u1+u2+§u3|u20, uy +uz > 2, ug +uz > 1}

The dual program is represented by version (1) as follows:
Axr < b
I =x >0
cr — max
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which asks for the computation of
3
max{2z; + 29 | >0, 21 <1, 29 <1, 21429 < 5}

This problem obviously is solved in a rather trivial way by taking

)

€T =
cTr =

1

N | =

b

N[O

Of course, one can also go through the simplex algorithm in order to solve
this problem. Obviously we have

4410i = bl
A2.i < b2
4430i = b2

~

Therefore we are looking for an optimal solution of (I) among the solutions
of the form
u = (Ul, 0, Ug).

As & > 0 we have necessarily

’lTl,A.l =C ’l_,l,A.Q = Co ,

that is,
U +ug = 2
Uy +iis = 1
EQ - 0
As a consequence we have
a=(1,0,1) .
This is a feasible solution which in addition satisfies
5
ub=-=cx ,
2

hence @ is optimal.
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3 Shadow Prices

We provide some economic interpretation of the solutions of a dual pair.
Recall the standard interpretation of an LP. as a linear production process.
The incentive of the decision maker is provided by the sales revenue/profit
he can obtain by selling the products on a hypothetical market. In order to
generate products one has to make use of the production process (the input
output matrix), there is no way to directly sell quantities of a factor on this
market.

Nevertheless, one would expect that some worth or value is thereby im-
plicitely attached to the factors: as factors can be convertet to goods, they
are valuable. This idea can be made precise, it is possible to assign what
is called “shadow prices” to production factors and it turns out that shadow
prices are provides by optimal dual solutions.

To make this more precise, let us consider a pair of two dual linear programs
in the form (I,I). That is we are given the two problems in shorthand
notation as follows:

Axr < b
(1) (I) r > 0
cr — max
and
R uA > ¢
(2) (I) u >0
ub — min .

Now we change the constraint vector b and (for some i € [ and € > 0)
replace it by a slightly modified version which is

(3) b* = b+ce.
The new “primal” problem is thus suggested by

Az < b*
(4) (I*) z > 0

cxr — max
and the “dual version” is
R uA > ¢

(5) (I7) u >0

ub® — min
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which has the same feasible solutions as (I)
Suppose now, we are given a pair of optimal solutions (Z, @) for the original
(unchanged) problem, i.e., for (I) and (I) (see (1) and (2)) Also, suppose

that there is an optimal solution x* for the modified primal problem (f ) in
(4) which satisfies the following

Shadow Price Assumption:

z; >0 = Z;>0 (jeJ)

6

It will turn out that this condition is not too restrictive, but we will postpone
the discussion in order to continue with our economic interpretation.

In view of the Optimality Criterion (Theorem 2.5), the above Assumption
implies the following conclusions that establish a relation between & and u*:

z; >0 = Z;>0 = TwA, =¢ (jeJ)

(7)

We may, therefore, argue that the pair (x*, @) as well satisfies the Optimality
Criterion. However, the vector u satisfies the constraints

uA > ¢

u > 0
which are the same for I and I*. Therefore, the pair (z*, @) constitutes a
pair of optimal solutions for (2) and its dual, i.e., for (I*,I*).

From this we obtain

max{cx |z >0, Az <b"} = cx* = b'u
®) = bu+cuy, = c+cuy
= max{cx|x >0, Az < b}
+ e,

Verbally: if the quantity of factor iy available is increased by some ¢ > 0,
then the profit/sales revenue is increased by e1,,. Hence, 4,, can indeed be
seen as some sort of “price” attached to a unit of factor ig. This justifies the
term shadow prices for the coordinates of the optimal dual variable.
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It must be stressed that “prices” of this kind exist only in context with op-
timal solutions. The decision maker or entrepeneur can assign a “price” to
a factor only if production is arranged in an optimal way and stays in an
optimum when the additional quantity of a factor is added. This idea of a
“price” is more clearly exhibited in the general context of Equilibrium Theory
and Game Theory, where “prices” (formaly dual variables) appear only “in
equilibrium”.

Mathematically the above derivation obviously shows the existence of certain
partial derivatives provided the “Shadow Price Assumption” holds true. More
precisely, define for some (A, ¢) € R™*" x R* a function f = f4¢ : R" - R
via

(9) f(b) = f4¢(b) := max{cx|r >0, Ax < b}

we have shown the following.

Lemma 3.1 (The Shadow Price Lemma). Let (A, b,c) € R™™ x R x
R™ be such that (I) and (I*) admit of feasible (and hence optimal) solutions.
Let @ be an optimal solution of (I*). Furthermore, let iy € I and suppose
there is €9 > 0 such that for all ¢ < gy and b* = b + ce™ the Shadow
Price Assumption (6) is satisfied. Then the function fA¢ admits of a partial
derivative in direction iy at b which is given by

afAc

(10) 8b1 (b) = ﬂio .

This will now be extended to a large class of Linear Programs. To this
end, we will first of all exhibit a class of LP.’s such that the Shadow Price
Assumption is satisfied.

Lemma 3.2. Let (A,b,c) € R™" x R} x R" be such that (I) and (I*)
admit of optimal solutions (Z,u). Let T be a vertez of

Chl={recR"|z>0 Az <b}

and let z = p(&) be the image of T under the “slack variable mapping ” p
(c¢f. Lemma 3.1, p(z) = (x,b— Az) (x € R?)). Also, let A := (A, I,,) be
the corresponding matrixz for the “D-problem” as in CHAPTER 2, SECTION J.
If (A, b, 2) is non—degenerate, then, for ig € I and sufficiently small € > 0,
there exists

z*e Oy ={xeR" |z >0, Az <b*}

which is optimal with respect to (I*) such that (6) is satisfied.
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Proof: Let J := {1,...,n,n+1,...n + m} denote the index set for the
columns of A and for the coordinates of 2. Let J := {j € J|Z; > 0} denote

the index set for the positive coordinates of z. The size of this set is |.J| = m
in view of the assumption concerning nondegeneracy. The square matrix

0 ._
A = (Asj)jes
is nonsingular by the same assumption.

Consequently, the system of linear equations given by

(11) Az = e"
has a unique solition, say w’ € R’. The restriction Z 7 of z satisfies, therefore,
A'@;+ew’) = A'Z;+eA'0z
(12) = AZ+4ce"
= bitce® = b
In other words, z2° = 2z + c(w’@D0) is the unique solution of the linear
system of equations
(13) Ax = b+cee® = b*.

For sufficiently small ¢ > 0 it will happen that 2° > 0 holds true and that
{j € j|x§ > 0} = Jis the case. That is, the basis corresponding to the
vertex z° is the same as the one corresponding to z. Then the first part of
the Assumption as formulated in (6) is obviously satisfied for the projections
Z = ¢(z) and * = q(z°).

We can see immediately that the second part of (6) is satisfied as well. For,
if Aye@ = by holds true for some k € J, then z = p(Z) = (x,b — Ax) yields
Zntr = 0. From this it follows that 2z, = 0 holds true which in turn implies
Ak.:n* == bk.

It remains to be shown that x* is optimal with respect to the LP. indicated
by (I*). To this end, we compare the tableaus induced, i.e., T(Z) and T(2%)
(see Definition 2.2). Clearly, the tableau elements collected in A are the
same as the matrix A has not changed. The same is true for the vector ¢
and hence for the coordinates of ¢, as is easily verified. The optimality of z is
reflected by A and ¢ and depends on these quantities only. As the quantities
are the same, we know that z° is optimal as well. The argument is at once

carried over to the projections, as optimality is preserved by the mappings p
and ¢ (Remark 3.6),

q.e.d.
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Lemma 3.3. Let n > m and (A,b) € R™" x R,. If every square m X m
submatriz of A is nonsingular and b is not contained in any linear subspace
spanned by less than m columns of A, then (A, b) is nondegenerate.

Proof: This is rather obvious, as the condition means that any basis of
column vectors corresponding to some vertex has to contain m such column
vectors. Otherwise the vector b would permit a representation by means of
less that m columns which span a smaller linear subspace.

q.e.d.

Corollary 3.4. The set of linear programs (A, b, c) € R™™ xR, x R" such
that (A, b) is n.d. is open and dense in the topology of R™" x R, x R".

Proof: First of all, one has to take care of the fact that b avoids finitely
many subspaces spanned by the columns. However, the subspace of triplets
such that b is contained in a subspace spanned by n — 1 columns is a lower
dimensional subspace itself. Therefore it is sufficient to avoid finitely many
subspaces — which defines an open and dense subset.

Similarly, the subspace of triplets such that n columns of A are linearly
dependant is a linear subspce.

One obtaines an open set since the determinant is a continuous function.
q.e.d.

Combining all this we may now explain the shadow price vector as the al-
most everywhere gradient of the function f4¢ which assigns the value of the
Linear Program to the constraint vector. To simplify matters, we restrict
the discussion to nonnegative matrices A. For, if A and b are positive, then
clearly (I) and (I'*) admit of feasible solutions, hence optimal soltions exist.

That is, we obtain

Corollary 3.5. There is an open and dense set of LP.’s (A,b,¢) (in the
topology of RT™"™ x R x R™) with the following property: the mazimizers T
of (I) and @ of (I*) are uniquely defined. The function fA¢ is differentiable
at b with gradient

(14) 8gbc(b) _

Proof: 15*STEP : Consider the set A of triples (A, b, c) € R xR} xR"
satisfying the following conditions:
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1. A>0, b>0.
2. (I) and (I*) admit of unique optimal solutions.
3. Every square submatrix of A is nonsingular.

4. For every Iy C I the restriction by, of b is not contained in a subspace
spanned by less that |Io| o f the restricted columns (Aje)icr, = Alge-

It is not hard to see that the set A is an open and dense set.

27dSTEP : We show that for all triplets in A it follows that (A,b) =
(A, I,,, b) is nondegenerate.

To this end, we appeal to Lemma 3.3. An m X m submatrix of A consists
of some [ columns of unit vectors, say (e"*%);c;, and some m — [ columns of
A, say (Asj)jes, (with |Io| + |Jo| = m). This submatrix is nonsigular if the
rank of the submatrix of A involved, say A,j,, is m — (. This is implied by
the conditions for the set A.

Similarly, b avoids any subspace spanned by less than m columns of A if, in
the above situation, the restriction by is not contained in a subspace spanned
by less than |Jy| columns of the square submatrix (a;;)i¢r,,jes,- This again
is guaranteed by the conditions defining A. This finishes the second step in
view of Lemma 3.3.

3"4STEP : Now consider Lemma 3.2. The conditions of this Lemma are
satisfied for the elements of A, hence the Shadow Price Assumption (6) is
fulfilled for every iy € I. Therefore, the partial derivatives exist in every di-
rection and equal the coordinates of the dual optimal solution by the Shadow
Price Lemma 3.1,

q.e.d.

We close with some remark concerning the computation of shadow pricesin
the “D-problem”.

Theorem 3.6. Let

Axr = b
(15) (I1) x > 0
cr — mazx
and
= uA > c
(16) (1) ub — nmun
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indicate a dual pair of LP.’s and assume that (A,b, &) is a nd. standard

configuration. Also, let _
A = (Adj)jes

be the square submatriz consisting of the rows of the basis of &. If T is
optimal, then

(17) @ = c;A

15 an optimal solution of the dual problem.

Proof: Write R
A = (A, A))
in order to separate the basis and non—basis columns of A. Also let A denote

the matrix of the tableau elements. Then we know that for any non—basis
column we have

Ao = Z)\?Aoj = ZAOjAJ° - (AA).k
jeJ jeJ ok

or, for short

We conclude that
(19 @A = c;A (A A) =  ¢;A'(A,AN)

which shows that @ as defined in (17) is feasible for the dual program (f\I ).
Moreover, we have
(19) ub = (cj/i )b = ¢;T = cZ,

which shows that (@, Z) constitute a dual pair of optimal solutions,

q.e.d.



Chapter 4

Games and Equilibria

We now leave the topic of Linear Programming and focus our attention to
the theory of Bimatrix Game. This topic provides an introduction to Non-
cooperative Game Theory. Within this context we discuss decision problems
for more than just one person, that is, multipersonal decision problems or
games. There is an abundance of new concepts and ideas that distinguishes
Game Theory proper from Optimization or, for that matter, Bimatrix Games
from Linear Programming.

127
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1 Bimatrix Games

We start out with a general definition of a noncooperative N-person game in
normal form. The procedure is similar to the one presented in SEcTION 1 of
CHAPTER 3 with respect to the topic of a linear program. We have to provide
three definitions. The first one is dealing with the game as a well defined
mathematical object. The second one will refer to the feasible set which, in
this case, is the set of strategies. The third one concerns the solution concept.
Within the framework of Linear Programming we are aiming at optimal
solutions. Within the framework of Game Theory the solution concept is
given by the idea of the Nash equilibrium.

Definition 1.1. A noncooperative N-person game (in normal form) is
given by a 2N —tuple

(].) F:(Sl,...,SN;Fl,...,FN),
such that Sy,...,Sn are arbitrary sets and
(2) stlxst—>R (kzl,,N)

is a real valued function. The set Sy (k =1,...,N) is called the strategy
space of player k and the function Fy, (k =1,...,N) is called player k's
payoff function.

At this stage the term “strategy” has no serious foundation, a strategy is a
mere index from a certain set. Each player has the choices available listed in
his strategy set.

The intuitive idea is that players draw a strategy more or less simultaneously
and, given a strategy n-tupel s € S = 57 x ... x Sy, player k receives the
payoff Fj(s). We assume that no player has any information concerning
the choice of his opponents. They may submit their strategy to a referee,
independently on the choice of everybody else or they may introduce the
strategy into some mechanism or black box which evaluates the payoff for all
players.

We do not rule out that there is communication before the choice of strate-
gies. Players may discuss the situation, suggest appropriate choices or threat
another player with hurting him by some uncomfortable choice. However,
no commitment is possible and whatever the promises for good conduct or
the threats with evil consequences might have been, none of these can be
enforced when the actual choice of strategy takes place.
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In the first approach, the game is played just once, we are dealing with the
“one shot game”. Repeated play will be discussed in a larger framework,
however, it changes the strategic possibilities, it may allow for threats or
punishment. These intricacies will omitted in our first and introductory
presentation.

This is the general version for the N—person game. Within our present
context we focus on two particular elementary types of games.

Definition 1.2. Let I = {1,...,m} and J = {1,...,n} and let
(3) A:IxJ—Rand B: I xJ —R

be functions or matrices defines on I x J. Then

(4) I'o=(1,J; A, B)

is called a bimatriz game (’in pure strategies’). The rows (or rather the
elements of I ) are the stratetgies of player 1 and the columns (respectively,
the elements of J) are called the strategies of player 2.

A bimatrix game is a two-person noncooperative game with finite strategy
spaces. The interpretation of the model as presented above obviously specifies
as follows: player 1 chooses a row and player 2 chooses a column. By these
choices a unique element in both the matrices A and B is definied; the first
one specifies the payoff to player 1, the second one to player 2.

Bimatrix games are the raw material of elementary noncooperative theory.
Supposedly they represent rudimentary strategic situations in which the play-
ers face decision problems the outcome of which depends on one’s own choices
and those of an opponent.

There is a host of such elementary examples. The stories told in the context
of such an example are rather elaborate and maybe too fancy. However,
these stories are most useful in keeping in mind certain paradigms of basic
strategic multipersonal decision problems.

Example 1.3. 1. The Prisoners Dilemma. Let m = n = 2 and hence
I = J = {1,2}. Define the matrices

(5) A:(i?) andB:(ﬁi)),

then I' = (I,.J; A, B) is called the prisoners dilemma.
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The story behind this example is as follows. Two tramps are being
cought by the sheriff and there is some but not sufficient evidence that
they committed a theft in the neighborhood. Both are locked in jail
and the attorney of state offers both to act as a witness against the
other one (in which case there will be no penalty at all for the witness
and a heavy one for the other guy). On the other hand they agreed in
advance not to confess anything - in which case there is no sufficient
proof and a mild penalty for trespassing will apply only. Hence, each
player has two strategies: To cooperate with his buddy (first row and
first column) or to defect and confess to the attorney of state (second
row and second column). Cooperation between the two convicts yields
a rather good payoff of three units, but there is a strong drive for each
player to deviate and collect five units under the assumption that his
opponent will stick to the agreement. The danger of being betrayed
and receiving zero payment may cause both players to confess and end
up with a payoff of one unit for each.

. Chicken. Let m = n = 2 and hence I = J = {1,2}. Define the

matrices

(6) ( >andB:<g‘;’>,

then I' = (I,J; A, B) is called the chicken game.

This game represents the dubious game that may have been played
by youngsters with old cars in a lonely spot. Two drivers are racing
towards each other, if someone swerves, the other one is considered a
hero and obtains considerable social prestige. If both stick to the final
goal, the game results in desaster. Each player has two strategies: To
eventually swerve or to hold on and risk a crash. Swerving is the first
strategy and to hold on is the second strategy for each player. To risk
a crash yields a high payoff of five units if the opponent ’'chickens out’.
But if both players decide to stick to the second strategy, then the
outcome is the desastrous one.

2 Finger Morra. Let m = n = 2 and hence I = J = {1,2}. Define
the matrices

(7) A:<_§ _i) and B:(_g _i>,

then I' = (I,.J; A, B) is called a 2-finger morra.
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This is a game played in Sicily. Each player can either show one finger
(first strategy) or two fingers (second strategy). If the total number of
fingers is odd (which is necessarily 3), then player 1 receives the number
of fingers as payment from player 2. If the number of fingers is even
player 2 receives the same payment from player 1.

Note that in this case B = —A or A + B = 0 is the case, we speak
of a zero sum game. The sum of the payoffs in always zero; this we
can interprete to the extent that one player pays what his opponent
receives and vice versa. This kind of game reflects a direct conflict of
interests.

4. The Battle of Sexes. Let m = n = 2 and hence [ = J = {1,2}.
Define the matrices

(8) A:(ﬁ?) andB:<[1)g>,

then ' = (I,.J; A, B) is called the battle of sexes.

This game is by no means martial but represents an almost coopera-
tive situation in which, however, both players slightly prefer different
outcomes. There are two choices for a married couple: To either go
to the boxing event (1°* row and 1°¢ column) or to the opera (2"¢ row
and 2"? column). In the traditional version the male prefers the boxing
event and the female would like to go to the opera. But none of them
is in favor of going without his or her partner. Therefore if they agree
on the first strategy (first row and column, i.e. the boxing event) then
player 1 receives two units and player 2 receives one unit. If they both
decide in favor of the opera player 2 receives the better payoff (second
row and second column). If they fail to coordinate their choices they
both get a zero payoff.

This type of game can at once be generalized (Box, Bar, Dinner, Opera)

9 A= and B =

o O O =
S OO
S W oo
_ o O O

5. Stone, Scissors, Paper. Let m =n = 3 and hence I = J = {1, 2, 3}.
Define the matrices

10) A= | -1 0 1| and B = 1 0 -1 |,
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then ' = (I,J; A, B) is called the stone-scissors-and-paper game.

Here the interpretation is obvious. The three strategies for each of the
players are labelled stone, scissors, paper and the payoff to player 1 is
according to whether stone hits scissors (-1) etc.

Example 1.4. Consider the game Safe and Risky which is again defined
by m = n = 2 and by matrices

B 9 0 (9 z+1
(11) A—<z+1z> and B_<0 . ),

for real x with 0 < x < 8. We may choose = 7 obtaining

(12) A:<§2> and B:(ﬁi)

Or, for the sake of the following argument, let us choose = close to 8, with
x < 8. Then it seems rather obvious that players 1 and 2 will someway or
other coordinate their choice of strategies. The goal should be that both
receive a payoff of 9.

However, after some consideration both players may note that it is a safe op-
tion to use the second row and second column since a payoff of 7 is guaranteed
and a slightly better payoff results if the opponent sticks to the coordinating
strategy..

On the other hand if one sticks to the coordination strategy aiming for 9
units the slight danger of the opponent playing the safe strategy is a little
bit disturbing. Suppose he prefers to play save. Then all of the sudden
one is held down to zero units. And, given this considerationd should one
expect that the opponent has the same doubts? Should I expect that my
opponent believes me to be sufficiently considerate to expect him to deviate?
Eventually it may not be safe to take chances by playing the profitable first
strategy.

The following definition introduces new strategy spaces for both players. We
imagine that they extend their strategic possibilities in a particular way which
is basic to game theoretical considerations. The procedure is to introduce
mixed strategies. A mixed strategy is a probability distribution over the orig-
inal strategy space; in this case a mixed strategy for player 1 is a probability



* SECTION 1: BIMATRIX GAMES % 133

over the rows and a mixed strategy for player 2 is a probability over the
columns. The corresponding payoffs are then obtained by the expectation of
the original payoffs taken with respect to the product probability over the
rows and columns.

Intuitively both players employ a random device or lottery in order to choose
a pure strategy. The motivation for this procedure may be given in various
ways. For instance in the 2-finger morra, if played repeatedly, a player will
change his choice of one or two fingers. He may be afraid of this opponent
detecting a pattern in his behavior. Therefore there is an incentive to delegate
the choice of one or two fingers to a random device (a coin, a dice, a lottery
...). This way a lottery is performed each time which provides no clue for the
opponent to detect a pattern of behavior.

Of course the strategic choices of a player employing a random device are
not deminished. On the contrary, he has now the choice of selecting the
probability distribution governing his experiment. In the 2-finger morra the
question arises with which kind of probabilities one or two fingers should be
chosen.

Note also that we assume the random devices to be independent in the tech-
nical sense. This is reflected by employing the product probability when
computing the expected payoff.

Here is the formal definition.

Definition 1.5. Let m,n be integers and let A and B be m X n—matrices.
Define

(13) X = X" = {xeRm|x20,in:1}
i€l

and

(14) Y = Y = {yER"|yZO,Zyj:1}.
jeJ

Ezxtend the matrices to the effect that they define functions

A: XxY—R
(15) Az, y) = zAy = Z TiijY;

iel,jed
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and
B:XxY—R
(16) B(z,y) = By = Z TiijY;
i€l jeg
then
(17) r = (X,¥:4,B)

is a bimatriz game in mized strategies. X is the space of player 1°s
mixed strategies and similarly, Y is the space of player 2°s mized strategies.
Frequently T is referred to as to the mixzed extension of Ty = (I,J; A, B).

The mixed extension again is a noncooperative N—person game in the sense
of Definition 1.1. The game is being played exactly as the pure game: each
player choses a mixed strategy and each player receives the payoff resulting
from the joined choice in terms of expectation. Note that we can also consider
this to be the second step of the program mentioned initially: We have
now defined the equivalent of the feasible set, that is all possible choices of
strategies. As yet we have not defined the solution concept for a game.

Remark 1.6. The unit vectors €' € R™ and e/ € R" define particular mixed
strategies: they reflect a lottery choosing i € I and j € J with probability 1
respectively. The corresponding payoff e.g. to player 1 is obviously

(18) eiAej = Gy

which is as well obtained in the pure game I'y by playing © € I and j € J re-
spectively. Analogously, player 2’s payoffs b;; are available in the mixed extension.
This way all possibilities of choice and all payoffs resulting thereoft available in I'g
are available in I' as well. Losely speaking we have described an embedding of the
pure game into the mixed one.

Note that the payoffs if one player plays pure and the other mixed can be written
(19) e'Ay = A,y and xBe’ = xB,; (i€, j€J).

The following definition is introduces the basic solution concept for Nonco-
operative Game Theory.

Definition 1.7. Let T' = (S1,...,SN; Fi1,..., Fx) be a noncooperative N-
person game. A strategy N-tuple 5 = (5',...,5V) € S = S'x ... x SV
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is called a Nash equilibrium if, for all k € {1,...,N} and all s* € S* the
inequality

(20) Frs', .80 8Ny > PR, LR s

holds true.

There are many interpretations assigned to the concept of Nash equilibrium.
The most obvious one is that of a stable situation: if at some stage (of preplay
discussion) players find themselves in the situation of a Nash equilibrium,
then it is not profitable for anyone to deviate provided the opponents stick to
the equilibrium in question. Another interpretation is that a player estimates,
guesses, or beliefs that his opponents will play according to the N — 1tuple
represented and optimizes his payoff given this belief. Then, if all players
believe consistently in the actions of their opponents an equilibrium is at
hand.

The notion of equilibrium turns out to be much more involved compared to
the simple idea of optimum or maximum which is persued in linear program-
ming or, more generally, in optimization. It must be stressed that the idea
of optimum is not applicable to the context of multi-personal decisions. A
good decision for one player facing a certain strategy of his opponents might
be a bad one if they change their behavior. To persue some appealing payoff
regardless of the other players interest is obviously folly. One should try to
anticipate the opponents behavior, but maybe they will anticipate this and
so on. And, in fact, ideas like this are captured by the Nash equilibrium.

Remark 1.8. For two players the inequalities defining a Nash equilibrium
5=(5,5%)ecs=8"x5?
are written as follows:

F'(5',5%) > F'(s',5) (s'esh
(21) 201 22 2,1 2 2 2

F*(5',5°) > F*(5,s") (s € 89).
Thus, we imagine the two payoff functions such that, whenever one coordinate is
fixed at the equilibrium value, then with respect to the other one the corresponding
payoff function yields a maximum at the equilibrium payoff.

Let us focus on bimatrix games. Then the payoff function is given by an
m X n matrix. We consider the pure game and the mixed game and just
write down the definition of equilibrium as follows.
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Corollary 1.9. 1. Let Ty = (I,J; A, B) be a bimatriz game in pure
strategies. Then a Nash equilibrium is pair (i,7) € I x J indicating
a row and a column such that the inequalities

(22) a;>a; (i€l), b >by; (je€J)

are satisfied. That is, row i mazimizes the payoff elements in matriz
A when column j is fized and vice versa for B.

2. LetI' = (X,Y; A, B) be a bimatriz game in mized strategies. Then
a Nash equilibrium is a pair of vectors (probabilities, mized strategies)
(Z,7) € X x Y such that the inequalities

A

B

A
B

:BGX
(yeY)

8I
Q)
8
Q)

(23)

8l
Q)
(AVARV
8l
<

hold true.

Example 1.10. Let us return to the examples collected in 1.3. Within the
"prisoners dilemma’ it is easily seen that there is a Nash equilibrium indicated
by (i,7) = (2,2) (the second row and column), which yields a payoff of 1 to
each player.

An important message is conveyed by this simple example. Not only is the
Nash equilibrium no immediate relative of ’optimal behavior’ of any kind
but on the contrary it may lead to a rather unsatisfactory stable situation.
In this example both of our tramps would prefer to keep their contract and
not make a confession to the attorney of state. What they might prefer even
more is to act as a witness and let the other guy keep the contract. None of
these situations is stable and this way they both end up in confessing.

The ’battle of sexes’ has two equilibria, written in terms of rows and columns
(1,1) and (2, 2).

Here is another important message. Clearly, equilibrium is by no means
unique. Moreover, both equilibria provide different payoffs to each player.
Clearly, player 1 would prefer the first one while player 2 would prefer the
second one. Hence we recognize that the situation is basically diferent from
the one encountered in optimization problems (e.g., in Linear Programming):
equilibria are not unique and their 'worth’ to various players is at variance.
As a consequence, there is no of maximizing the payoff or finding “optimal
solutions”. In “optimization” problems a maximizer might not be unique, but
at least the maximum is (if it exists). Thus the “value of a Linear Program”
is a well defined concept.
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Not so with a game. Both equilibria in the “battle of sexes” example are rather
appealing. They represent the success of coordination and the game has a
certain drift towards cooperative behavior quite in contrast to the prisoner’s
dilemma. However, equilibrium is not uniquely defined, optimal payoff is
not a suitable concept, and there are situations which yield symmetric yet
different equilibrium payoffs in such a disturbing degree that selecting an
equilibrium seems to be impossible.

As it turns out, the 'battle of sexes’ in addition has an equilibrium in mixed
strategies that does not occur in the pure version. Consider the pair of mixed
strategies given by

21 1 2
24 T = (=.—) g4 = (=,-).
It is not hard to see that
B a 2
Aloy - A2-y = 5
3
as well as 5
zB,i = B, = 3
holds true. From this it follows that we have
2 2
gBA’y = xlAl.’g—f—.ﬁEQAQ.’g = (flfl—f—xg)g = g = ... = {EA’y

The analogous relation is true for the corresponding payoffs of player 2, hence
(Z,y) is an equilibrium.

A third message is obtained from the considration of other types of games.
There is a host of examples that yield no Nash equilibrium in pure strate-
gies at all. E.g., the 'stone,scissors,paper’ example is obviously of this kind.
On the other hand, the ’stone,scissors,paper’ example does have an equi-
librium in mixed stratgies. Indeed, the pair of mixed strategies (Z,g) =

((%, %, %), (%, %, %)) is easily seen to satisfy

Ay = Asy = Azy = 0.
Therefore we have
TAy = TAYy = 0 (xe):()

by the same reasoning as above. Again the analogue for B is obvious, hence
we have an equilibrium at hand.
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With respect to the mixed extension,the situation is indeed far more advan-
tageous. Equilibria do always exist and the equilibrium concept eventually
turns out to be a most fruitfull one. In order to elaborate on this statement,
we will start out with a simple Lemma. It shows that it suffices to verify a
finite number of inequalities in order to check for the equilibrium property.

Lemma 1.11 (The Finite Test). Let ' = (X, Y; A, B) be a bimatriz game
in mized strategies. A pair of mized strategies (Z,Y) is a Nash equilibrium if
and only if the following inequalities hold true:

TAY > Ay (i€l),
ZBy > zB.;, (j€J).

(25)

Thus, it suffices to check m+n inequalities in order to make sure that a given
pair constitutes an equilibrium.

Proof: Because of
A.y=¢€Ay (i€l), zB.,j=xBe (jcJ)

the inequalities (25) are certainly satisfied by any equilibrium (Z, g).
Assume on the other hand that (25) holds true, then, for any » € X we find

TAY = (Zzz) a:Ay>Zx, Wy = TAY

i€l i€l

and the analogue equation for player 2’s payoff. Consequently, (Z,y) is an
equilibrium.

q.e.d.

Corollary 1.12. 1. If (i,j) is an equilibrium of the pure game T, then
the corresponding unit vectors €' and €’ constitute an equilibrium in
the mized extension I'. Thus, the embedding of the pure game into to
the mized extension does not diminish the set of equilibria.

2. For any (x,y) € X x Y the inequalities

(26) mln Ay < min A,y <zAy < max Apy< max Ay
ke kEl,z,>0 kel zp>0

are satisfied, the same holds analogously for the matriz B.
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Proof: The proof of the first item is at once based on (25).

The one of the second item follows from the fact that

inAioy < (Z Iz> max Ay

icl icl
etc. is true. That is, player 1’s payoff at any of his mixed strategies against
a fixed strategy of his opponent is between his worst and best payoff at pure
strategies. Clearly, this results from the fact that the mixture is obtained by
a convex combination of all the payoff at pure strategies.

q.e.d.

Definition 1.13. A pure strategy i € I is called a best response against
a mized strategy y € Y if it satisfies

(27) Ay = max Ayy

An analogous definition holds true for j € J w.r.t. being a best response
against ¢ € X .

This way, the result of Lemma 1.11 (&, y) states that a pair of strategies
constitutes an equilibrium if and only if the payoff for player 1 at & against
Y is as good as at any of his best responses against .

Now we have
Theorem 1.14 (The Optimality Criterion). Let ' = (X,Y, A, B) be
a bimatriz game. A pair of strategies (Z,q) is a Nash equilibrium if and only
if the following criterion holds true:
;>0 = A,y = IilaIXAk.g (1€1)
€

28
( ) gj>() :>§B.j = Iglef?}XiEBol (]GJ)

That is, at equilibrium each player puts positive probability only on best
responses against the opponents mixed strategy.

Proof: 15*STEP : Let (Z,y) be an equilibrium, then, using Lemma 1.11,
we obtain

2AY = ar Ay = ( > ) A
(29) i€1,3;>0
> Y ALY = ZAY.

1€1,2;>0
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Non of the inequalities involved can be a strict one, this proves the first line
of (28). The analogous version is true for the matrix B, this way we realize
that the criterion (28) is satisfied.

2"dSTEP : On the other hand, assume that (28) is satisfied for some pair
of strategies (Z,y). Then, for any i € I, we have

TAYy = Z T Aoy

kel, x>0
(30) :( 2 ) max vy
kel, x>0
= ALy
o Avey

>Ay (iel).

The analogue holds true for player 2's payoff, hence (Z,g) is an equilibrium
in view of the 'finite test’ Lemma 1.11. q.e.d.

Example 1.15. 1. Recall the ’stone, scissors, paper’ example which was
presented in Examples 1.3. The payoff matrix for the first player is

0 1 -1
(31) A = -1 0 1 ,
1 -1 0
and the one for the second player is give B = — A. We argue that

n
the pair of mixed strategies (Z,9) = ((3, 5
librium because

7, >0 = A,y = rga;cAk.g =0 (iel
€

holds true and the same is true for the matrix B.

2. A second example is provided by the matrices

5 3 —4 -1 -1 -4 7 11
(32) A_<—6 -3 5 3>’B_< 3 4 -9 —19)'
Consider the mixed strategies given by

3 2 _ 9 11

(33) T = (5:5)7 Yy = (2_0:07%:0)'
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We want to check that the conditions of the Optimality Criterion are satisfied.
Indeed, we have both coordinates of & positive, i.e., T; > 0, Ty > 0 and the
conditions (28), i.e.,

45 44 1
A._: _—— = —
Y= 50720 20
54 55 1
A._:—— _ = —
2Y =303~ 20

are satisfied. On the other hand, the positive coordinates of ¢ are 7; >
0, 73 > 0, hence we have to make sure that

{EB.l - iB.g Z iB.Z (Z € I)
is satisfied. The data are

j-Bol =
iBo3 -

,3_33.2 - -

ol orw
[SHIS SN

, TBy = —

which verifies that (Z,g) is indeed a Nash equilibium. The payoffs at this
equilibrium are

vy = L amy

ray = 20 Yy = 5
Theorem 1.16 (Nash’s Theorem). Let I' = (X,Y, A, B) be a mized
bimatrix game. Then T has a Nash equilibrium.

Proof: 15*STEP : Within the context of this proof we will heavily depend
on an important result of topological nature, the Brouwer Fixed Point
Theorem. Within the territory of Mathematical Economics this theorem
plays a role as important as the separation theorems that has been discussed
in the first chapter. Existence theorems of all kind of equilibria depend on
this (or the related Kakutani-) fixed point theorem.

As a proof is beyond the scope of this volume we shall only cite the appro-
priate version:

Theorem 1.17 (Brouwer’s Fixed Point Theorem).

Let C C R™ be a compact and convex set. A continuous function
f  C —= C defined on C' and ranging within this set has a fixed
point. That is, f admits of z € C' such that f(z) = z holds true.
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There is also a short piece of notation we shall use within the present proof:
we write T in order to indicate the positive part of a real number, i.e., we
write o™ = max{a,0}.

2"ISTEP :

In order to apply this theorem to our present problem, i.e., the existence of
Nash equilibria, we consider the following function

foXxY — XxXY
fle,y) = (.9y)
’ Z; + (Az.y — JfAy)+ .
34 T = 1€ 1),
(34 143 e (Ary — zAy)* ( )
, 4+ (xB,; — xBy)™" ,
. _ Y (zB.; Y) (j € J).

1+ ,,(xBy —xBy)*

Clearly, the set X x Y is convex and compact, the fact that f maps this
set into itself is obvious by the construction. Also, all ingredients used to
build f can be seen to reflect continuous functions, hence f is continuous
and satisfies all the requirement of Brouwer’s Fixed Point Theorem.

Note that f admits also a nice interpretation: given & and y we consider the
transition from « to ’. If « is not an equilibrium, then some responses i are
better then x, in particular those ¢ € I that constitute best responses. We
put more weight on these best (or good) responses, hoping that eventually
the ()"-term on the enumerator will vanish — in which case we expect an
equilibrium.

Note that any equilibrium is easily verified to constitute a fixed point of f
via the Finite Test Lemma 1.11. What we want to verify is, of course, the
reverse statement. Indeed, this is the content of the formal development to
follow.

3"4STEP : Now, let (Z, %) a fixed point of the mapping f to be obtained by
Brouwer’s Theorem. We know that

(35) f&9) = (29

holds true. Let us insert this into the definition, that is, into (34). Exploiting
for the moment the first part only, we obtain

T (1 + Z(Ak.g — a‘:A@)*) = I;+ (A — ZAG)" (i€ 1),

kel
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(36) 7 (Z(Ak.g — :I:Ag)+> = (Ay —zAy)" (iel).

Now, in view of the second item in Corollary 1.12 we can find 7y € I such
that z;, > 0 and

A § <zTAy
holds true. Obviously this implies
(37) (Aig —2Ag)" = 0
Therefore, evaluating (36) for i = iy and observing z;, > 0 and (37), we
obtain
(38) > (Awg — zAg)t =0

kel

This can only happen when all terms under the summation sign do indeed
vanish, that is, we have

(39) Ay <zAy (icl).

The analogue for the matrix B (derived from the second part of the defining
equations in (34)) reads of course

(40) ZB,.,; <ZBy (je€J).

Both equations show that (Z,g) is an equilibrium by means of the Finite
Test Lemma 1.11,

q.e.d.

The Brouwer Fixed Point Theorem is not constructive, it provides an exis-
tence theorem for equilibria but no direct procedure to actually compute an
equilibrium or all equilibria. There are some immediate observations resting
on the Optimality Criterion which constitute a crude method for the com-
putation of equilibria. However, on the long run, we will have to deal with a
more involved algorithm.

Let us first discuss some easy conclusions.

Lemma 1.18. Let T = (X, Y; A, B) be a bimatriz game in mized strategies
and let (Z,9Y) be an equilibrium. Then there exists index sets I C I and
J C J as well as real numbers A and i such that

(41) (T, 9, i)
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is a solution of the linear system of equations m+n-+2 in variables (x,y, A, j1)
given by

Az.y—)\ =0 ZEI_

y, = 0 jeJe
Zjej y; = 1
(42)
B, —p = 0 jed
x, = 0 1€ I°
Ziel_ g = 1
Proof: Define then index set I by
(43) I = {iel|z >0}
and let A be given by
(44) A = max Ag.7.

kel

Then, in view of the Optimality Criterion, we have
(45) i€l =2,>0= A,g=A\

Hence g satisfies the first group of equations (42). The analogous argument
yields the same statement with respect to &,

q.e.d.
Remark 1.19. Given a bimatrix game in mixed strategies I' = (X, Y; A, B) con-
sider the matrix

-1

(46) A = A :
-1
1 ... 1 0

If (,9) is an equilibrium, then we may consider the linear system in variables

(z:i)ier and (y;);eg as well as A, u obtained from (42) by canceling all the zero
coordinates, that is the system

Ai.y—A = 0 €1
djeryi = 1

dierTi = 1
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The coefficient matrix of the first part of this system is a submatrix of A corre-
sponding to the row in I and the columns in J and including the elements of the
last row and column. This matrix may be written

1
(48) A = A

-1
1 ... 1 0

Consequently, defining the suitable matrix B’ in a similar way, we may represent
the system (47) for short as

(49) AGN = | |, @B = 0,---,01) .

== O

To every equilibrium there corresponds a pair of submatrices A', B' or rather a
suitable pair of submatrices A’', B’ (including the last row and column elements)
such that (Z,y, A, 1) is a solution of (49).

As a consequence, one can specify a primitive method of computing all equilibria.
This procedure is a relative of the one presented for the computation of the extremal
points of a convex polyhedron as indicated In Remark 2.6.

The procedure runs as follows:

1. Pick all possible submatrices A’ and B’ (these are finitely many!) and com-
pute all the corresponding solutions of systems (49) or (42) respectively.

2. Check that the solutions (Z,y) obtained are nonnegative vectors.

3. Check that the solutions satisfy the Optimality Criterion (Theorem 1.14).
Le., make sure that the values A\, [ given by the solution of (42) are the
maximal ones among the values A;g and zB.,;.

The procedure is most inefficient. Note that the solutions of the linear systems of
equations are not necessarily unique.

Remark 1.20. In a well defined sense, it is sufficient to consider square nonde-
generate submatrices of A and B. More precisely, consider the polyhedra of type

g‘CT’U = {(y,A)EiXR|

a0
( ) Aioy = >\2Akoya (iETakETC)a ylZO(ZEU)}
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forT CI, UCJ and

Lryv = {(@p) e X xR]

51
(51) B, = p>xzB, (jER,IER"), 2, =0(keV)}

for R C J, V C I. Similarly to the above construction, it is seen that any equilib-
rium point is located within some convex compact polyhedron

(52) :H:T,RC X LR’TC.

There are finitely many of these polyhedra (corresponding to the finitely many
index sets we can choose). It is sufficient, to compute the extremal points of these
polyhedra, again, these are finitely many. By a standard argument it is seen that
the extremal points correpond to square and nonsingular matrices A’ as indicated
in (49) and the analogous square and nonsingular matrices B'. Hence by computing
the extremal points and forming suitable (!) convex combinations one obtains all
equilibria.

Remark 1.21. Remark 1.19 and Remark 1.20 provide a (in general very tedious)
procedure that yields all the equilibrium points of a bimatrix game. The corre-
sponding algorithm for the case of one player/optimizer — Linear Programming —
is indicated in CHAPTER 1 by Remark 2.6. There is an obvious relationship between
both procedures. Nevertheless, a warning is apt at this point: the set of equilibria
of a bimatrix game is by no means a convex one (other than the set of feasible
solutions or the set of optimal solutions of a linear program).

For instance, the example ’Battle of Sexes’ as introduced in the 4. item of Example
1.3 has exactly the equilibria

In order to indicate the modus operandi of the above mentioned procedure,
let us discauss a somewhat more extensive example.

Example 1.22 (The Fish Pond). This example depicts a general super-
vision or inspection problem. Player 1, for illustrative purpose, is called the
fish thief or poacher and player 2 is the inspector.
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The matrices are

—1 aq ap
A — a9 —1 o = . a9
Ay G, R |
(53) and
1 0 . 0
1 0 0
B =
0 0 1

and the interpretation is as follows:

There are m = n fishponds in the neighborhood, the number a; reflects the
expected ’yield” of pond No. 7 when a medium skilled fisherman exercises his
abilities at this pond. In the beginning dust of the evening, player 1 advances
towards one of these ponds. In order to confuse player 2 and since he likes
mixed strategies, he has chosen the pond to fish in for today by tossing a
(manipulated, what else to expect from a fish poacher) dice during the long
hours of the lazy afternoon.

The inspector, on the other hand, is aware that poaching will take place this
evening. Alas, the usual cuts in the budget have deprived him of his hords
of deputies, now he is on his own and can just visit one pond (he does not
like to extend his hours too much and ponds are not too close in distance...).
Fortunately, the fish office features a PC and the inspector, believing that a
PC can produce random numbers (an applied view ...) has chosen the pond
to visit also at random (in the hectic turmoil of his afternoons office hours).

If the inspector happens to catch the poacher, he obtains a unit payoff (a
small reward by the landlord) and the thief looses a unit (again, the laws have
become lenient). Otherwise, the inspecter walkes home slightly frustrated
(payoff 0), and the poacher enjoys a quiet evening at his pond, receiving an
ample reward of a; in terms of (expected?) fish units.

Now, from the dry viewpoint of the theorist, we follow the primitive proce-
dure as indicated by Remark 1.21 to produce equilibria:
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The approach
Aioy = Ail.y (Z, il S I)

leads to
Ay = —yita (Zk;ﬁz yk)

—yitai(l—wy)
= ai—(1+a1~)y1~ = A (ZE[)

(54)

from which we compute

a; — 5\ .
;= I
(55) Yi 1+a (Z € )

(the denominator is positive !). The constant ) is obtained from the require-
ment

j < 1
RN S e

(56) el el

iel
= a— \j.
which means
- a—1
o7 A =
(57) 3
The quantities
(58) o= and p=
icl 1+ai icl 1+ai

are given with the data of the game, hence A can be determined and y follows
with (55).

The corresponding computation with respect to the matrix B is much easier.
The unique solution of the linear system of equations

B, = ... = zB,,
iel
is obviously
1 1 1 1
60 T = (=.....2) = (= 2
(60) 2= () = ()



* SECTION 1: BIMATRIX GAMES % 149

Now we are in a not uncommon situation: we solved a system of equations,
hence obtained a candidate for an equilibrium. But solving a certain set of
equations is a necessary condition for equilibrium, not a sufficient one. Pos-
sibly some additional inequalities are not fulfilled. In the present case, we
have to check whether the solutions result in vectors with nonnegative coor-
dinates. Thereafter, it can be verified that (z,y) as determined by (55) and
(60) are probabilties and satisfy the Optimality Criterion : all coordinates
are positive and all responses yield the same payoff.

Now the requirement

ai—j\ .
61 0<y = 1
(61) <y = F== (el

is obviously satisfied for a; > ), that is for
fa;>a—1 (i€l),

or

1 ag )
62 i > -1 I).
S i L,

kel kel

This equation determines a set of data a € R™ for which (55) and (60)
provide an equilibrium. This set is notempty. For, if

a; = ¢ = const (i€l

happens to be the case, then we find (62) to be reduced to
ne ne
>

-1
1+¢c~ 1+c

b

which is obviously true. Morover, we can argue that in, view of this result,
(62) is satisfied within a neighborhood of the diagonal of R™.

A somewhat more elaborate consideration provides us with a larger set of
data (included in the neighborhood mentioned above). If

1
|ai—ak|§— (Z,kGI)
m

is true, then we have

ay — a; lax — a4 1 1 ,
O Y <1 (iel),
2 iTa S22 ita SmiTra St 0D

kel kel kel
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which again implies (62).

We come up with a nice result: if the yield of all fishponds is approxia-
mately equal, then there is a mixed equilibrium putting positive probability
on fishing and watching at each pond.

At this equilibrium, the violator will visit each pond with equal probability
(oh yes, no manipulating of coins necessary), while the inspector has to
carefully choose his probabilities by using (55) (fortunately, he can use his
PC. Unfortunately, the generation of random numbers by a PC, dubious a
procedure as it is, is not discussed within this volume).

The payoffs can be computed at once: for player 2 as a civil servant, it is
immediately seen that his payoff at the equilibrium at hand is given by

1
(63) ZBy = TB.;, = - (j€J)

Hence the inspector, having a small chance of catching the violator, gets a
small % in expectation (perhaps slightly baffling as he was so busy with his
PC).

For player 1 (who invested little in his computations, unless you believe that
he had to do all the computations of the inspector as well), it follows from
(54) and (57) that his payoff is

a—1
B

Generally, the violators payoff increases with increasing yield of the fishponds.
a growing incentive to engage in the game... The poor inspector (a civil
servant) doesn’t care for fish and for the quality of the ponds — he gets a
fixed salary and (hopefully) has a sufficient incentive to do his duty (the
payoff to him does not reflect the hardships of a cold and rainy night at the
ponds ...)

(64) TAY = Ay = )\ = (iel,i>3).

We are not finished as yet: how about landscapes with fishponds of greatly
varying yield?

Consider the situation that a; and ay exceed all other yields a; substantially.
More precisely, let us require a condition

a1a9 — 1

65
( ) ap + as

>q; (i€, i>3),

which can be satisfied for the first two quantities being relatively large with
respect to the other ones.
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We look for a solution of the system

(66) )

Ay = Ay> Ay (123); y, =0 (5>
(i >

xB. = By >xzB,; (j>3) ; v, =0

).

the computation is quite analogous to the first case: we have to solve for just
2 variables y, y9: the system reduces to

a1 — (14+a = a—(1+a :
(67) 1 ( 1)y1 2 ( 2)y2
y1ty2=1
The solution is
1
68 y = ——— (a1 +1,a9 + 1).
( ) y a1+a2—|—2(1 2 )

The solution satisfies
Ay = oy —(1+a)yr >a;— (1+a)0 = Ay (1 €1)

because this is just equivalent with (65). The second part of (66) results in
the solution

11

(69) z = (53

0,...,0)

and again one can check that the Optimality Criterion is satisfied.

The interpretation of this result is close at hand: as the ponds No. 1 and 2
are much more promising, the violator as well as the inspector concentrate

their activities on theese two ponds; the probabilities are given by equations
(68) and (69).

The ponds yielding little prey are left out to rest quietly in the beginning
dusk when the inspector marches around one of those favorite ponds of the
landlord while the poacher sneaks around the other one — or maybe not,

whatever the result of tossing a coin and running the inspectors powerfull
PC.

A host of further alternatives describes the full variety of possible landscapes
of fishponds. We do not wish to enter this territory as the theory is tedious
and our PC provides only a small APL workspace with limited O WA.
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2 Zero-Sum Matrix Games

We consider a particular class of bimatrix games in mixed strategies. This
class historically was the first to be analyzed extensively and it is also a class
with extremely smooth equilibrium properties.

Definition 2.1. 1. A 2-person game I' = (Sy, So; F1, Fy) is said to be a
zero-sum game if

holds true. We write T = (Sy, So; Fy) or rather T' = (Sy, S9; F) in order
to indicate this kind of game, the player index at the payoff function
can be omitted. It is always understood that the payoff F as indicated

15 the one for player 1 and that player 2 receives the payoff described
by —F.

2. A zero-sum bimatriz game is just called a matrix game; we write
Iy = (Ia J; A)
instead of To = (I, J; A, —A) for the version in pure strategies and

r=(X,

I
=<

;A)

for the mized extension I = (X, Y; A, —A).

The important property is not just that player 1 receives what player 2
pays and vice versa. Essential is the direct conflict of interest reflected by
the model. As a consequence, implicit cooperation, coordination, and joint
ventures that may possibly appear in the general bimatrix game, will fade
into the background.

Thus, matrix games represent conflicts most understandably, maybe naively,
direct: each player wants to get as much payoff as possible and, therefore,
hurt his opponent as much as he can. This is a small sector of the many
possible ways of conflict and cooperation that may be suggested by a bimatrix
game.

It turns out that the actual restriction imposed on the model by the zero-sum
assumption is so powerful that it it leads to a rather streamlined theory. One
should accept that this theory concernes only a small part of game theoretical
modelling.
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Remark 2.2. IfT = (S1,S59; F) is a matrix game, then s € S; x Sy is a Nash
equilibrium if and only if

(1) F(§1,32) > F(§1,§2) > F(31,§2) (31 €S, e S2)

hold true. Therefore, 5 is also called a saddle point (see Figure 2.1) .

Figure 2.1: A Payoff-function with a Saddle Point

Lemma 2.3. Let I' = (X,Y; A) be matriz game.

1. For everyy € Y let

p(y) = maxzAy .
zeX

Then ¢ : Y — R is a continuous function.

2. The quantities

max min x Ay
zeX yeY

and

minmax r Ay
yeY zcX

are well defined.
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3. The above quantities satisfy the inequality

minmax Ay > maxmincz Ay .
yeY xzeX zeX ycY

Proof: 15*STEP : The mapping
(z,y) » vAy

is continuous and hence uniformly continuous on the compact set X x Y.

That is, given € > 0 there exists § > 0 such that
(2) (@, y) — (2" ¢)| <6 = [zAy — @' Ay'| <¢

holds true for (z,y), (¢, y') € X x Y .

(Note that this statement can be derived directly from the bilinearity of the
function involved, one does not need the Heine—Borel Theorem.)

274STEP : Now let £ > 0 be given. Choose § as prescribed in the 15 STEP
and consider a pair ¢,y satisfying

|y -yl <d.
Also, choose two corresponding maximizers, say & and Z such that

¢(g) = maxzAy = TAY

(3) T
o(y) = maxzAy = TAY
zeX

is fulfilled.

Then we have

o(y) = TAY

> ZTAY

(4) o AT
TAY —¢
= o(y) —¢ .

Here, the second inequality uses (3) and the third one employs (2) as

(@, 9) - (®,9)| <o
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holds true indeed. Symmetrically, we obtain

oly) = TAY

> TAY

(5) > ZAD
TAY —¢
= o(g) —¢.

Obviously we have now

lo(g) — @) <e,

which shows that ¢ is continuous (actually we have proved uniform continu-
ity).
3'"4STEP : The second statement of our present lemma is now obvious.

4*"STEP : The third statement is quite easy to verify. It is, however, the
first part of an important theorem in zero-sum theory, the Min-Maz Theorem
to be made precise later on.

For any (Z,7) € X x Y we have

TAY > minTAy
yey
and hence
max x Ay > maxminz Ay
zeX zeX ycyY

is true. Therefore, taking min on the left side (the right side is a real number)
we obtain indeed

minmax x Ay > maxmin x Ay,
yeY xcX zeX ycyY

q.e.d.

Remark 2.4. The following Remark concernes all zero sum games provided the
quantites

maxminzAy and minmaxxzAy
zeX yeY yeY zeX

do exist. However, we presently focus on bimatrix games in mixed strategies and
our interpretations are particulaly usefull within this framework.

Consider the quantity

(6) vp = maxminzAy,
zeX yeY
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we claim that player 1, by a suitable choice of a strategy, can ensure himself to
receive at least this much. Indeed, for every € X, the worst that player 2 can do
to player 1 is

min zAy.

yeyY
Therefore, player 1 can guarantee himself the quantity he obtains by maximizing
among all these gloomy prospects, this maximum is just vp. And what player 1
should do in order to make sure that he gets at least this much is choosing & € X
such that
(7) minZAy = maxminzAy = uvr.

yey zeX yeY

To aim for this payoft, as far as player 1 is concerned, means to play safe and not
to take chances; there may be more in the game to be reached by player 1 but
this is a cautious and risk averse strategy. Therefore, the quantity vy is sometimes
called the lower value of the game .

On the other hand, player 2 can prevent player 1 from getting more than

(8) Ur := minmaxxAy.
yeY zeX

Indeed, for each y € Y, the maximal payoff player 1 can achieve is max zAy.
zeX

Hence, by suitable choice of gy player 2 can hold down player 1 to

(9) max Ay = minmaxxAy = Ur.

zeX yeY zeX
So far the discussion was lead from the viewpoint of player 1. But of course, as we
are in a zero-sum game, the quantity vr is up to the —-sign the value player 2 can
guarantee himself etc.

Now it is not true that the above two versions of what one can achieve for sure
and what one can be prevented from will generally coincide. On the contrary, with
respect to the pure game it is seen at once that both versions may differ.

For, in the pure game of 'stone, scissors, paper’ represented as Ty = (X,Y;A)
with

0 1 -1
(10) A = -1 0 1

1 -1 0

the two quantities are

maxmina;; = —1 < 1= minmaxa;; ,

icl jeJd jed el
they do not coincide. This means that there is an “indefinite” domain of payoffs
that neither player can achieve for sure. Nor can either player be prevented by
whatever kind of skillful choice of strategies to achieve a payoff within this domain.



* SECTION 2: ZERO-SUM MATRIX GAMES % 157

The Main Theorem of Matrix Game Theory states that the upper and lower
value coincide for the mixed extension: there is no gap between what a player
can guarantee himself and the maximum he can achieve.

Theorem 2.5 (MIN-MAX Theorem, J. v. Neumann).
Let T' = (X,Y; A) be a matriz game in mized strategies. Then

(11) vp = maxminzAy = minmaxxAy = Ur
zeX yeY yeY xzeX

holds true.

Proof: In view of Lemma 2.3 it suffices to prove the > —inequality. To this
end we shall (at this stage) make use of the existence theorem concerning
equilibria in bimatrix games, i.e., of Nash’s Theorem (1.16), which in turn
rests on the Brouwer Fixed Point Theorem.

Accordingly, there exists an equilibrium, say (Z,g), which satisfies (as we
have a zero sum game)

(12) TAy > Ay > zAy (z,y) € X x Y.

Hence we conclude:

maxminz Ay > minZAy
zeX yeY yey
= TAY
(13) = maxTAy
zeX

Vv

minmax r Ay
yeY zcX

Definition 2.6. Let I = (X,Y; A) be a matriz game. Then

(14) vr = maxminzAy = minmaxxAy ( = ir = )
zeX yeY yeY zeX

1s the value of T'.

The value of the game is what player 1 can definitely achieve by playing a
suitable mixed strategy and what player 2 can (up to the sign) ensure as his
maximal payment. The question as to what is meant by playing suitably in
order to ensure the value is readily answered:
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Theorem 2.7. Let I' be a matriz game in mized strategies.
1. For every equilibrium (Z,y) T the payoff is the value of the game, i.e.,
(15) -’I_ZA:lj = Ur.

2. If (&,9) and (Z,y) are equilibria of T', then so are (Z,y) and (Z,Y)
(of course again with the same payoff, i.e., the value).

Proof: As to item 1, this has already been proved in (13). So we turn to
item 2 : Because we may use the equilibrium inequalities (i.e., (12)) both
with respect to (&, 4) and with respect to (Z,y), we obtain

(16) TAY > TAYy > TAy > TAYy > TAY.

This shows that all the expressions involved are equal, hence we continue
with

(17) TAY =zAy > xAy (x cX)
and similarly
(18) LAY =TAF <TAy (yeY)
This shows that (&, ¥y) is an equilibrium as well.
q.e.d.

Example 2.8. The third item in Example 1.3 is the 2 Finger Morra.
which for m = n = 2 is given by the matrix

(19) A:<_:23 _i).

If we solve the linear system of equations given by
Aloy = AQOy
ity =1

then we come up with the unique solution

75

Yy = (ﬁ’ﬁ)
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and the anolgous system for & yields

T
12'12

T = )

as well. By the Optimality Criterion this constitutes an equilibrium; the
value is the payoff at this equilibrium and turns out to be

. _ _ 1
ur = TAY = Ay = Ay = —.
12
the seeming symmetry of the game is deceptive, player 1 is in an advantageous
position and will (in expectation) gain % at each play.

As we have seen, the answer provided to the above question (how to play
in order to achieve the value) is a straightforward one: play an equilibrium
strategy, it does not matter which one. More than that: while an equilibrium
is a pair of strategies, the above theorem (and the MIN-MAX Theorem)
show that each player can just choose an arbitrary part of an equilibrium
pair in order to achieve the value of the game. This is in marked contrast
to the general situation in bimatrix games, where equilibria represent a joint
decision to opt for a pair of strategies. In the context of a matrix game it is
therefore possible to speak of optimal strategies.

This motivates the following definition.

Definition 2.9. Let I' be a matriz game and let £ € X be a (mized) strategy
such that there is § € Y so that (Z,q) is an equilibrium. Then & is called
an optimal strategy. The analogous definition holds true for player 2.

Theorem 2.10. Let I = (X, Y; A) be a matriz game.

1. The value of the game satisfies

v = maxminxzA,; = minmaxA4,y.
(20) r mef jed J yeyY wep e
2. Let
(21) C: = {(m7y7)‘)€XXYXR‘

|2A; > > Ay (ieljel)}

Then (Z,9,A) € C holds true if and only if & and g are optimal strate-
gies for player 1 and player 2 respectively and N\ = wvr holds true.
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3. Define now
(22) D = {zxeX|zA,;>ur (jel)}.
Then D 1is precisely the set of optimal strategies of player 1.

4. The optimal strategies of each player constitute a convex compact poly-
hedron (in X and Y respectively).

5. The Nash equilibria constitute a convex compact polyhedron (in X xY ).

Proof: As for item 1, we know that for & € X the equation

(23) minzA,; = minxAy

holds true (cf. Corollary 1.12).

The proof of item 2 is the only one that is not straightforward.
15*STEP : If (&, §) is an equilibrium, then we have

(24) v = TAY<TAy (yeY)

and in particular

(25) o < ZAe = zA,; (je€J);
analogously we obtain

(26) vr > Aiy.

That is, we find indeed that (&, g, vr) € C holds true.

2MSTEP
On the other hand, consider a triple (Z, y, X) € C. We have

vr = minmax A;,y
yeY i€l
(27) < rglglei.?? <A < r]nei}leA.j
< maxminzA,; = vr
xzeX JjeJ
and we conclude that the equations
(28) X = o = minZA,; = minZAy

jeJ yey
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holds true. We show quite analogously that we have as well

(29) A = or = maxzAj.
zeX

Consequently we obtain
(30) rAy < ur < TAy.

This way we see that indeed (Z,y) is an equilibrium (a pair of optimal
strategies) and ) is the value of the game.

The remaining statements as formulated in items 3,4, and § are now quite
easy to prove.

q.e.d.
Corollary 2.11. Letd = (0,...,0,1) € R"*!. Then
vr = max{ d(z,\) | (z,\) € R™M

(31) rA,;,—A>0 (jeJ)

holds true. Any optimal solution of the Linear Program suggested by (31)
supplies an optimal strategy T of the matriz game I’ = (X, Y; A).

In other words, if we introduce a matrix
(32) A = A : P

as well as a restricting vector
(33) c = (0,...,0,1,—1,0)
and a vector representing the objective function, say

(34) b = (0,...,0,—1)
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then using the sloppy (but suggestive) way of writing LP.’s introduced in
SECTION 2 of CHAPTER 2 we obtain

(z,\)A

(35) (II) N

c
min

LV

as the LP. we have in mind. Using the Simplex Algorithm (SEcTI0ONS2 - 2 of
CHAPTER 2) we may compute the value and optimal strategies — provided we
can ensure nondegeneracy.

Proof of Corollary 2.11

By item 3 of Theorem 2.10 it follows clearly, that a pair (&, vr) is feasible
whenever Z is an optimal strategy of player 1. That is, (Z,vr) is an element
of the feasible set indicated in formula (31). Consequently, the max exceeds
the value of the objective function at this particular pair, i.e., we have

(36) max{d(x,\) | ...} > d(&,vr) = vr.

On the other hand, let us assume that a pair (Z, /)\\) is feasible so that it
satisfies

(37) FAG >N, 220, D @ =1

iel
Now pick an optimal strategy g for player 2, then we have
(38) ur > Ay (i€l)
(by the 3" item of Theorem 2.10). Now we find
i€l jeJ j€J
This implies all statements claimed. q.e.d.

The above theorem links Linear Programming techniques with the compu-
tation of optimal strategies in matrix games. Note that everything we have
done until now, as far as the existence of such optimal strategeies is con-
cerned, rests on Nash’s Theorem, which in turn uses the Brouwer Fixed Point
Theorem. The latter one is a rather heavy tool. As the Duality Theorem of
Linear Programming was essentially based on a separation theorem (which
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is a less involved result compared to Brouwers Theorem), it may be useful to
exploit the results from Linear Programming for a simplified existence proof
concerning optimal strategies. Indeed, this project is easily performed, we
can base an existence proof on the Duality Theorem of Linear Programming.
The clue is to construct the suitable LP.

To prepare this, we start out with a simple lemma:

Lemma 2.12. Let

(40) E = : :
I ... 1

as well as A be m X n-matrices and let « > 0 and 3 be reals. Consider the
familiy of matrices

(41) Af = aA+BE (aeR,,, BER)
and the corresponding family of matriz games
(12 5= (X.Y:43) (acRy. fcR).

ThenT = T} and I'f (a€Ryy, B€R) have the same optimal strategies
for both players. Moreover, the family of values satisfies

(43) Urg = OJ’UI‘—F/B (QGR—F-I-? /BGR)

Proof: Because of
(44) _ _
rAjy = z(@A+BE)y = azAy+(3 (re€X ye€Y, a>0, eR)

the inequalities concerning Nash equilibrium can be immediately established,
the remaining statements are easy. q.e.d.

Frequently a game I'§ is said to be strategically equivalent to I' = '} as the
strategies and the equilibria are the same.
Remark 2.13 (Second proof of the MinMax Theorem).

The linear program as suggested by Corollary 2.11 is certainly not the only one
that serves for the computation of vr and of optimal strategies. If we consider
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the following pair of dual LP.’s, then we obtain simultaneously a proof for the
existence of optimal strategies which is based on the Duality Theorem of Linear
Programming — and hence on a separation theorem.

Proof (of Theorem 2.5):

We assume that the matrix involved satisfies A > 0; this is not a serious
restriction in view of our previous lemma. Tentatively let us use the notation

(45) e™ = (1,...,1) €R

in order to be able to distinguish between vectors e™ and e(™.

Now consider the LP.’s indicated as follows:

(46) (I) y > 0
ey — max
and
TA > e
(47) (I) T > 0
ze™ — min ,

both of them constitute a dual pair.
Clearly, y = 0 is a feasible solution for (I).

Because we assume A > 0, it is seen that, for sufficiently large ¢ € Ry, the
vector &' = (t,...,t) = tel™ is a feasible solution for (I). Hence, in
view of the Duality Theorem of Linear Programming (we use the version in
CHAPTER 2, SECTION 2, given as Theorem 2.4), we know that both programs
admit of optimal solutions, say Z and ¥ such that

(48) ze™ = ey = ¢

prevails. Necessarily we must have Z # 0 as otherwise Z cannot be feasible
for program (I'). Therefore the constant c introduced is ¢ > 0. Now define

Q8
|
Q)

(49) x

I

such that we obtain & € X, § €
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Then, for arbitrary £ € X and y € Y, we obtain the following string of
equations and inequalities:

n (m)
zAj = TAY < Te _ 1
(50) C C C
(n) T
_ ey < TAy ™
c c
This means that (&, g) is an equilibrium and 1 = wvy.

q.e.d.

We will now describe a graphical procedure that works for small numbers of
rows m or columns n of the matrix A involved in a matrix game.

Let
r=(X,Y;A)

be a bimatrix game with m = 2. Consider, for each j € J, the function
(51) fit XoR, fi(z) = zA; (z€X)
and also the function

(52) f: X—=R, f(z):= rjnei}l:nA.j = I%l?f](m) (z € X).

Then we have

max f(z) = maxminxzA,, = maxminzAy = ur
zeX zeX Jj€J zeX yeY

and any & satisfying

clearly yields

TA, > min £ A,;

= maxminZA.,, = o (I €J),
zeX J€J

which indicates in view of Theorem 2.10 that & is an optimal strategy for
player 1 and f(&) is the value of the game.

Now, as we assume tentatively that m = 2, the graph of any of the functions
fj can easily be sketched:
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Graph of f;

\ azj

Cllj

—

e X e’
Figure 2.2: Graph of a function f;

We can represent the simplex X by a line segment or intervall with endpoints
e' and e?. The graph of some f; is a line segment as f; is a linear function.
In fact, the value of this function at the endpoints is obviously

fj(ei) = A, = a; (1 = 1,2).

That is, the two elements of column j which are the matrix entries a;; and ay;,
determine the height of the graph at the endpoints and hence the complete
behavior of the graph.

By drawing the graphs of all functions f; (corresponding to all columns of the
matrix A) we can, as a next step, easily identify the graph of the minimum
function f. The maximizer(s) of this function as well as the maximal value
now yield a graphical solution for the problem of finding value and optimal
strategies.

Generally, the determination of the optimal strategies may not be precise
when performed graphically. The graphical representation yields, however,
the columns involved in the systems of linear equations the solutions of which
provides the desired quantities.

More precisely, the set
{fereX|f®)=u} = {ze X‘ mjinfj(a:) =}

(53) _ _
{iBG)_(‘iBA.j:’UF} = {iBG}_(‘CBA.j > our}
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Graph of min; f;
ais A2
oSN— | T T T ur
: Q355
Qa1
a1 !
el X F e?

Figure 2.3: The Minimum of all functions f;

is the set of optimal strategies of player 1. This set is an interval or a point
in X and the extremals can be found by solving two equations of the form

A =xAy, T+ T2=1,
employing typically two of the functions f;, f; that are involved.

We can also determine the optimal strategies of player 2. To this end, let &
be an optimal strategy of player 1. Define

(54) J = {jeJ|zA., = f(Z)}

which graphically indicates the f; involved in finding the value vp. The
columns j € J indicate the best replies of player 2 against Z. Hence, the
optimal strategies of player 2 have to satisfy J; = 0 (j ¢ J). Therefore, an
aproach to find the optimal strategies for player 1 is described by an attempt
to solve the system

Aloy = AQOy
= 0 (je
jeJ

E.g., if it so happens that we have |.J| = 2, J = {j, k}, and
iBA.j = il}A.k
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determines & uniquely, then the submatrix of A given by

A — ai; A1k
Qo5 A2k

determines ¢y uniquely via

A(l)o(yj7yk) = Ago(yj:yk)
yi + oy = 1
o= 0 (ed l#jk).

The following example illustrates the procedure.

Example 2.14. Let

0 4 1 1000 3
(56) A= (512 —2 3)

The scetch resulting from this example represents the five columns of A by
the corresponding straight lines, which depict the graphs of the functions
fi (7 = 1,...,5). The endpoints of these lines are easily determined by
inserting the two entries of the corresponding row.

Q
)

1 — 1
2 - 2
3 —-3

Figure 2.4: Example 2.14

The minimum function f shows a unique maximizer & which involves column
2 and column 3. Accordingly, the solution of the system

(57) SBA.Q = SBA.g, 1 +T9 = 1
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yields
4371+.ZE2 = $1+2(172, X1+ Ty = 1

_ 13
z = |- -
4’ 4

which is the optimal strategy of player 1. As none of the pure strategies
1 = 1,4,51s a best reply at &, we know that the optimal strategies of player
2 will have to satisfy

and hence

y1 = Y2 = ys = 0.

Therefore the solution of
(58) A(l)oy - Agoy y Y2 + Y3 = 17

i.e., of
dys +ys = Yo +2y3, Yo +ys = 1,

is (i, %) which yields § = (O, i, %, 0, O) for the optimal strategy of player
2. The value of the game is

_ _ 7
vp = ALY = Ay = 1
Note that we do not actually use the graphical representation for the practical

computation of the relevant data. Rather, the sketch tells us which systems
of linear equations we have to solve.






Chapter 5

The Lemke—Howson Algorithm

With this chapter we present a version of the algorithm due to LEMKE and
HowsonN. This algorithm is a relative of the simplex procedure, yet it moves
alternatingly in both the simplices X and Y of mixed strategies. The algo-
rithm yields at least one Nash equilibrium point. In addition, it provides a
surprising insight into the structure of the equilibrium set: given a version
of nondegeneracy, this set is nonempty,discrete, and consists of an odd num-
ber of equilibria. All these facts are exhibited by the procedure. Thus, in
particular, we obtain a further proof for the existence of equilibria.

171
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1 Nondegenerate Games

The procedure presented within this chapter is a relative of the simplex algo-
rithm. It is based on the Optimality Criterion (Theorem 1.14) which connects
the positive coordinates of an equilibrium strategy with best response prop-
erties against the opponents strategy. As we have demonstrated, equilibria
can be found as the solutions of certain systems of linear equations, compare
e.g. Lemma 1.18 and Remark 1.19. The naive procedure growing out of
this idea, i.e., the computation of equilibria by means of the evaluation of all
square submatrices of the payoff matrices is an extremely tedious one. Simi-
lar to the simplex algorithm, the Lemke—Howson algorithm follows a certain
path built up from the edges and vertices of appropriate polyhedra.

These polyhedra, not so unexpected, result from the Optimality Criterion,
they are the polyhedra of “best reply”. We start out with a formal definition
of these polyhedra. Simultaneously, we consider the subsimplices X and Y
defined by the requirement that some coordinates vanish. Again, this seems
not so unnatural in view of the Optimality Criterion.

Definition 1.1. Let ' be a bimatriz game. The polyhedra

(1) K,={yeY|Awy>ALy (kel)} (iel),
as well as the polyhedra
(2) Kr=(\K: (0£TCT),

i€T

are called polyhedra of best reply. The polyhedra
(3) Yy ={yeY|y;=0 (jelU)} (UCJ U#J)
are called faces of Y.

Analogously we use Lj , Lg , Xy ete. forj € J, 0#ARCJ,VCI V#
I; these are subsets of X . F.g. we have

(4) L; = {zgeX|zB,j>xzB., (l€J)} .

Example 1.2. In order to clarify the geometric shape of the objects as
defined above, let n = m = 3 and consider the matrices

100
(5) A= |0101]|, B=
001

_ o O
O O =
O = O
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We consider the polyhedra of best reply given by
le{-’BEX‘CBBolZCBB.I (le)}y={xecX|x3>a, $3ZI2},
and

Ky={yeY|Awy>Any (kel)}={yeY|p>y,p>ys}

as well as .
L23:{$€X|$1:$22$3}-

111
Lioz = Kig3 = {(3, 3’ 3)}
is rather obvious. It turns out that we obtain the simplex Y as the union
of all polyhedra of best reply which, whenever we are willing to neglect the
boundaries, almost looks like a decomposition. Of course, the boundaries of
some K; are given by certain K;; or by the intersection of K; with certain Y
etc., the geometrical appearance as a decomposition is only superficial. Nev-
ertheless it is most usefull to view the following sketch of the “decomposition”
obtained in Y and X respectively.

Also we note that

Figure 1.1: The Polyhedra of Best Response in Example 1.2

In view of these geometrical interpretations of the polyhedra of best reply we
attempt do reformulate the Optimality Criterion as follows:
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Remark 1.3. Let (Z,7§) € X x Y. Define index sets
{

(6) T :={iel|lz;>0},V ={iel|z = 0}
as well as
(7) R:={jelJ|y;>0},U = {jeJ|y; = 0}

Then (&,4y) is an equilibrium if and only if

(8) (@, 9) € (Le[)Xv) x (Kr()Yv)
holds true.

The proof is trivial in view of the Optimality Criterion 1.14. For instance, if (Z,q)
is an equilibrium, then y € Yy is true by definition, moreover for i € T we have
always z; > 0 and hence Ajey = maxy Apey. That is, g € K; (i € T) or y € Kr.
And vice versa.

Example 1.4. Let m = 2,n = 4 and pick the matrices as follows :

1 0 -10 -1 -4 5 6
(%) A_<—1—2 12>’B_<3 4—3—6)

Recall the graphical method employed at the end of SEcTION 2. Again we
consider the affine function £ — xB,; defined on X; the values of this
function at the endpoints of X (that is, at €' and e?) are:

elB.j = blj and €2B.j = ij

This procedure results in four graphs of the corresponding functions defined
on X and hence implies the “decomposition” of X into the polyhedra of best
reply as follows.
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—
NS
=
SN—r
—
=
VI
SN—r
—~
=
N[N
~—

6 —6
5 —5
4 2B 4
3 3 X
2+ By 2 N
1+ —1
ol Ly 3 L, Lo .2
—1 -1
—oL 12
=T s, s
—4 14
sl wBa\__|_s
—6L L13:{(%7%)} —6

Figure 1.2: The Polyhedra of Best Response; Example 1.4

The simplex Y C R* is three dimensional (see Example 1.3) It is easily seen
that the points

y' = (0,1/2,0,1/2) y* = (1/2,0,0,1/2)
y* = (1/2,0,1/2,0) y* = (0,1/2,1/2,0)
are located on the hyperplane
{y eR' | Ay = Asy},

the (two-dimensional) intersection with Y of which can be represented graph-
ically. We obtain the following sketch:

The polyhedra K; “decompose” the simplex Y (not properly); the “edges”
constitute a “net” in Y. An equilibrium is given by

@ 9-(G.pv)
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e
Y
K,
&3
Yt
K,
el
2

Figure 1.3: The Decomposition in Example 1.4

This is easily verified in view of the Optimality Criterion - or else geometri-
cally in view of Remark 1.3. For indeed, we have

(Z,9) € (LpsztNXe) x (Ko Yiey)
= (Ly- N Xyp) x (K;NYr) .

Observe that, in addition, in this case the polyhedra of best reply and the
faces generated by (Z,y) do not contain any further points. That is, we

obtain
<L{1,3} ﬂX0> X (K{1,2} ﬂY{2,4}) ={z,y}

This property is (among others) die main object of our next definition. It is
a version of nondegeneracy that is established by this kind of consideration.
Again it is important to observe that the index sets at Y, and L, (at X, and
K,) are complementary when we are dealing with an equilibrium.

Visually, we observe a kind of “net” which (if we focus on Y) is generated by
the corresponding equations. E.g.,

KQﬂYM by y2 =0, y4 =0
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and
K[ |Y2 by Ay = Aoy, y>=0.

Here the index sets are complimentary up to one index. Indeed, it is a further
aim of the next definition to make sure that the polyhedra we have mentioned
always represent one dimensional lines or points as is indicated.

Definition 1.5. 1. We would like to associate dimensions with polyhedra.
The dimension of a convex polyhedron is defined to be the dimension of
the smallest linear subspace containing this polyhedron.

2. Negative dimensions will be associated with the empty set.
3. ForO0 AT CI andU C J, U # J let
Hrpy = KTﬂYU cY
4. Analogously we define Gry = Lr[ Xy C X .
We are now in the position to formulate the version of nondegeneracy that

is appropriate within the context of mixed bimatrix games.

Definition 1.6. 1. A bimatriz game T is said to be nondegenerate if,
for all) #T C T and U C J, U # J the following holds true:

(10) HT,U7£®:> d’LmHT7U:7’L—|T|—|U|
and analogously for all) # R C J and V C I, V #1,
(11) GR,V?‘A@: dimGR’V:m—|R|—|V|.

2. IfHry # 0 and | T | + | U |= n holds true, then the unique element
y € Hry (and the set Hyy as well) is called a vertex (“of the Y-
net”). If | T |+ | U |=n—1 then Hry is said to be an edge (“of
the Y -net”). (The analogous definitions hold true with respect to X or,
more figuratively, for the X-net).

Remark 1.7. 1. An easy computation reveals that the intersection of two poy-
hedra of the above type is obtained as follows:

Hry [ Hyp o
= (Kr()Yv)( Kz () Yor)
= (Kr[(Kr) (Yo [ Yv)
= Kqur [ Your

= Hrur | vuv
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2. Let | T |+ | U |=n and consider the corresponding system of linear equa-
tions satisfied by y € Hry:

Ajey = maxAgy (1eT)
kel
yp = 0 (G €U)
D= 1
jedJ

As previously (compare SECTION 1) it is advantagous to introduce a new
variable A and to focus in the system of linar equations given by

Aisy—A = 0 (ieT)
(1) yp = 0 (j€U)
dyp= 1
JjeJ

The coefficient matrix is square as equation (12) consists of

|T|+|U|+1=n+1

equations in m + 1 variables. If it is nonsingular, then (g, ) is the only
solution of the above system, that is, the nondegeneracy condition (10) is
satisfied with respect to this particular set Hr ;. Obviously, nondegeneracy
means that the dimension of the subpolyhedra of best reply is obtained by
just counting the equations involved.

Example 1.8. The following sketches show situations that do not occur
when nondegeneracy prevails (Figure 1.4). E.g. regarding the left side sketch,
the unit vector e' is contained in Kas, ie., § # Kos N Y = Hiazjqas).
Nondegeneracy would require that the dimension of this polyhedron is —1.
More generally: a unit vector can be located in exactly one polyhedron K;
only.

Similarly, the right hand figure suggests that 0 # K3 N Y5 = Hyia3ys) is
true, which again contradicts nonegeneracy.

Here are some first simple properties that hold true for nd. games.

Corollary 1.9. Suppose T' is a nondegenerate game. Then the following
holds true:

1. The number of equilibria is finite.
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63

e
Y Y
! K,
K,
Ks %3
e! &2 el o2
Figure 1.4: Best Response Polyhedra with Degeneracy
2. If (%,9) € X x XY is an equilibrium and
T={ilz;>0t R={j|y; >0}
denotes the corresponding sets of positive coordinates, then | T |=| R |
and
(LR N XTc) X (KT N YRc) = {(i, ’g})
holds true.

3. (Z,9) € X x Y is an equilibrium if and only if the following (stronger)
version of the Optimality Criterion holds true:

;>0 < A,y = rga;;Ak.g (1€1)

13 c

(13) y; >0 <= yB,;, = r?aJxa‘:B.l (jeJ).
€

That is, at equilibrium each player puts positive probability exactly on
the best responses against the opponents mized strategy.

Proof:
1StSTEP :
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First of all, we prove the second statement. Let (&, y) be an equilibrium. In
view of Remark 1.3 we have (using T := {i € I|&; > 0}, R := {j € J|g; > 0})

(Zl_f,'g) € GR7TC X HT7RC.

As we have assumed nondegeneracy, we conclude that

0

I IA

dim Hy pe = n—|T|—-| R

(14) n—|T|-(n—|R) = |R|-|T],

holds true. That is, we obtain the inequality | R |>| T | .

By reasons of symmetry we have as well
OSd’imGR’TCZ |T|—|R|,

and hence | T' |=| R |. Obviously equation (14) implies now dim Hy . = 0.

2MdSTEP : The last statement of our Theorem is now obvious: If i € K;
and Z; = 0 holds true for some i € I, then i ¢ T, hence

YyeKriNYg
but
dim Hryjpe=n—(T|+1)— |R|=—-1,
contradicting nondegeneracy.
3"ISTEP :
It remains to prove the first statement: the number of equilibria is finite.

Given any equilibrium (&, §), define R and T as previously and consider the
linear system of equations in variables (y, \) € R**! given by

(15) Ui =0 (jeRY
ZjeJ Yj =1

Define
A= mI?XAk.'g,

then the pair (g, ) is a solution of the linear system 15. We claim that it is
the only solution.
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Indeed, assume that there is a second solution (g, \) . Then, for sufficiently
small € > 0, define

Yy =(1—-¢e)g+eg.
It turns out that, for small &, y° is an element of Y. For given j € R®, we
have y; = 0, and for j € R we have g; > 0, therefore y; > 0 if € is sufficiently
small.

In addition we must have Az, < A (k ¢ T), for otherwise the non degen-
eracy assumption is violated. Therefore, if ¢ is sufficiently small, it follows
that R

Ayt = (1 —e)A+e) > Apyf

is satisfied fori € T, k€ T°.

Hence, we conclude that y* € Hyp ge is true indeed. But then
dim HT’RC Z 1

follows, which is impossible in view of the nondegeneracy condition.

Therefore, (g, A) is the unique solution of (15). Now as there are only finitely
many systems of the nature indicated in (15) (each one corresponding to a
pair R, T), it follows that there are only finitely many equilibria, so our first
statement is verified, q.e.d.

Now we begin to collect the first interesting facts concerning the structure of
the “net” appearing in Y.

Lemma 1.10. Let T be non degenerate and let § be a vertex in Y. If § is
a basis vector then there are exactly n — 1 edges containing y. Otherwise, if
Y is not a basisvector, there are exactly n edges containing y.

Proof: 15*STEP : Let us assume that § = e! € Y s,..n holds true. We
cannot find 7, k € I such that

’gGKiﬂKk

is satisfied (cf. Example 1.8, Figure 1.4 and Figure 1.5). For otherwise we
would have § € Hy; 3 (2,....n) and dim Hy; 3y 42 n3 = n—(n+1) = —1, hence
Hji k. 2,..n) = 0. Consequently, the index i satisfying g € K; is uniquely
determined.

Therefore we find a unique 7 € I satisfying ¢ € Hy;) (2..n). It follows all the
more that § € Hyy o, j—1,j41,..n) = HY holds true for 7 =2,...,n. The
polyhedra HU) are exactly the n — 1 edges containing 4.
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61

Figure 1.5: Nondegeneracy prohibits a unit vector in IK; N Ky

A further edge cannot be of the form Hg r with | 77 |> 2. Because of
Remark 1.7 we would have

¥ € Hyy qo,..n) " Hyp g = Hypggiy g2, nyuoe

which again is a contradiction to nondegeneracy. That is, the “obvious edges”
are all the edges which possibly contain our unit vector.

274STEP : Now let us argue with respect to the alternative. Suppose ¥ is
not a basis vector and assume that

{g} =Hry
with | T |>2 and | T | + | U |=n holds true.
Once again we have n “obvious edges” available which contain g. These are
Hy_,pv (ieT)

and
Hry; (j€U)

Now if Hp ¢ is a further edge, then again we would have § € Hpupr yup
and because of | T | + | U |= n it would follow that | TUT" |=| T | and
| UUU' |, hence T" C T,U" C U. This means of course that again Hy r is
one of the “obvious edges”, which finishes our proof. q.e.d.

In the future we frequently claim that in view of non degeneracy it is sufficient
to consider the “obvious edges”. The proofs will be omitted as they are in
principle most of the time a complete repetition of the argument we have
just given above.
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Example 1.11. Consider again the situation reflected by Figure 1.3. Here
n = 4. The basis vector e' is located exactly in K;, in fact we have e €
Hiny o,y =KiN Y ay.

The obvious n —1 = 3 edges adjcent to e' are obtained by removing just
one index i # 1 from {2,...n}.

=<

K,

KiNYsy \«/ e’

Figure 1.6: Example 1.4 revisited

E.g., the edge H® := Hyjy 3,0 = Ki N Y3, ) is the one obtained by
admitting the 2nd coordinate to become positive. Or, more colloquially, by
dropping the equation x5 = 0 we start moving into the direction of the 2nd
unit vector.

Consider, on the other hand, the vertex y? € K123 N Y93y. Now, there are
4 edges adjacent. E.g., we can admit positive 3rd coordinates (i.e., drop the
index 3 with respect to Y3y, drop the equation 23 = 0), this way obtaining
the edge K123 N Y2, . Or else we can drop the index 1 with respect to
K12} (leave the compartment K; this way moving towards e along the
edge Kz N Y 23).
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2 Alternating Moves

Now we have to slightly change our viewpoint: we shall have to consider
elements of a “net” in the product X x Y. The reason is as follows: the
Lemke-Howson algorithm to be presented formally works in the Cartesian
product X x Y. It moves from one vertex of the hypothetical net to the next
on along an edge (all this taking place in X x ¥ ). The situation in one of
the simplices induces the conditions for the movement working on the other
one.

Later on it is realized that the single steps can be interpreted as alternating
movements in X or Y. That is, the present algorithm is a relative to the
simplex algorithm but essentially proceeds alternatingly in both simplicies.

Remark 2.1. In the following version the index n € J plays an exceptional
role throughout all of the presentation. Eventually, it will be argued that this
particular role can be played by any other index. It is just a convenience of a
notation to take n.

Remark 2.2. Let 0 #T C I and J # R C J satisty | T |=| R| +1, n ¢ R. Pick
iop € T and jo # n, jo ¢ R. Then we have

| T|+[R —n| = |R[+1+|R —n| =mn
|R|+|T°+ip| = |R|+m—|T—ip| = m
[ R+Jo| +|T°| = |T|+|T°| =n

The result is obvious by just counting the number of indices.

Definition 2.3. Let 0 #T C I and J # R C J satisfy | T |=| R | +1, n ¢
R. A nonempty set

(1) (LR N XTC+Z'O) X (KT N YRchL) (20 € T)

is called an admissible product vertex (for short a I1-vertex), provided
1t 1s mot empty.

Simailarly, a nonempty set

(2) (Lrtjo N Xre) X (Kp N Ygen) (o & R, jo # n)

called an admissible product vertex (for short a Il-vertez).

Because of nondegeneracy and in view of Remark 2.2, the sets involved in

the cartesian products do have dimension 0, thus they just contain a single
point. Therefore, a IT-vertex consists of a pair of two vertices in X and Y
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respectively. The unique point within this set, say (&, ) will of course also
be called “a II-vertex.”

Consider for some 7y € T the IT-vertex
(i, ’g) = (LR N X.TC+Z'O) X (KT N YRcfn)

Obviously &, ¢ satisfies:

If j € R, then y; > 0 and & € Lg,

(this ist one part of the optimality criterion),

if1 €T —ip, then Z; >0 and § € K

(and again, this is part of the optimality criterion).

However, the indices n and 4 play a particular role: g, > 0 holds true - but
Z € L, is not satisfied. And on the other hand we have § € K;, and z;, > 0
is not satisfied.

That is, two conditions of the (stronger) optimality criterion (cf. Corollary
1.9, formula (13)), namely

(y,>0< €L,

and
(Z;, >0 g€ K,)

are violated. In this sense we could call (Z,g) an almost equilibrium point.

Next we turn to a particular type of edge in the cartesian product X x Y. In
order to have a one-dimensional line segment, we expect an “edge” to be a
pair which consists of a vertex and an edge in either one of the two simplices
respectively.

Definition 2.4. Let | R |[<|T |<|R|+1 andn ¢ R. The set
(3) (LR N XTc) X (KT N YRcfn)

is called an admissible product edge (for short a TI-edge). We shall say
that TI—edges satisfying

| R|=|T| represent a “motion” in Y

and T1-edges satisfying

|R|=|T| -1 represent a “motion” in X.
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We are indeed dealing with an edge in the cartesian product.

For, if |R| = |T|, then |R| + |T°| = n, hence the left hand factor in (3)
constitutes a vertex in X. The right hand side constitues an edge in Y as
IT| + |R¢ — n|] = n — 1is true. To speak of a “motion in Y reflects the idea
that “moving along the edge (3)” (which the algorithm shall perform in a
typical step) actually means fixing a vertex in X and “moving along an edge
inY "

If, on the other hand, | R |=| T' | —1 holds true, the the situation is symmet-
ric, but constitutes an edge in X and a vertex in Y. We reflect the situation
in Figure 2.1

el

<l

Figure 2.1: IT-edges as motions in

The final definition concerns a particular vertex that will serve as the starting
point or initial vertex for the algorithm. Recall that n plays an exeptional
role within the presentation.

Definition 2.5. Let iy € I be such that €™ € K;, (that is, a;yn > arn(k € I)).
Then (e , e") is called the initial TI-verte.

The algorithm reflects a motion along certain vertices and edges that takes
place in X x Y. It starts at the II-vertex and is restricted to II vertices and
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IT-edges such that for each II-vertex an edge is constructed leading to the
“next” TT-vertex. The TT-edges in X x Y always consist of a pair (vertex
and edge) in the X—net and the Y-net respectively. It will turn out that the
“motion” alternatingly takes place in X and Y.

Definition 2.6. The LH—net is the set L that consists of the initial I1-
vertex, all I1-vertices, all I1-edges and all Nash equilibrium points.

It will be our aim to, simultaneously with defining the algorithm, exhibit the
structure of the LH-net.

Example 2.7. We return to Example 1.4. Here we have m = 2 and n = 4
and the decomposition of the two simplices is repeated in Figure 2.2
4

e
Y

e e’ K

| | | | o v e’
L4 Ls L L \\,\ K{12}
Y R y?
K,
el

62

Figure 2.2: A TI Vertex in Example 2.7

shows that (Z,y) with

1 1

5262:(071): g:ylz((],§,(),—

5)
is an admissible IT-vertex: We have (n = 4) and the following relations can

be verified.
Jo>0= T cly

Yy, > 0=
o > 0= 'gng

ye€ K,
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This means that the case (ip = 1) prevails. A more formal way to represent
this situation is as follows:

{@,9)} = LaNXpy) x (Kpoy N Yq1,33)

Now come up with the first essential theorem which regulates the start of
our procedure:

Theorem 2.8. The initial I1-vertex
(e, e")

s either admissible or an equilibrium and not both. If it is admissible, then
it 1s located at exactly one admissible I1—edge. If it is not admissible, then it
15 located at no Il—edge.

Proof: We have chosen iy in a way such that e” € K, is true. Assume first
of all that e ¢ L, holds true. Then e” € L;, for a suitable j, # n. Hence,
we have

{(620’ en)} = (Ljo N Xf—io) X (Kio N YJ—TL)

with jo # n. Obviously (e, e") is a IT-vertex, compare the second equation
(2) in Definition 2.3. Now exactly the IT-edge

(4) Ljo N leio) X (Kio n YJ*”*]'O)
is admissible and contains the initial IT-vertex (€%, e").

On the other hand, assume now that e € L, is true. Then (e, e") is an
equilibrium. The only X-edges at €’ are of the form

LjyNXijo—i (i €1, i#1)

but since e" € K;, and e" ¢ K;, the corresponding IT-edges are not of the
correct form as required.

Analogously the only edges at e are of the form
Kio N Yanfj (] € J:] 7& n)
and again these together with €’ do not yield an admissible IT-edge.

q.e.d.

Consider again the case that e ¢ L, holds true in the above situation.
Note that the IT-edge constructed, i.e., the one indicated in (4), reflects a
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motion in Y, that is if e’ € L;, then we move in Y and we move in direction
e’. Verbally: there are two violations of the Stronger Optimality Criterion
manifested by the conditions defining the initial IT-vertex (€%, e"). Exactly
one of them can be removed, this way we “leave” this vertex on exactly one
IT-edge.

Example 2.9. Once again we return to Example 1.4. Here we have n = 4
and e* € K,. Since e ¢ L, we have not an equilibrium at hand. Rather it
is true that e?> € Ly holds true - hence we move in Y in direction towards
e”. This eventually leads to the point y' = (0,1/2,0,1/2).

4

e
Y

e' e’ K

| | | | 6 ¥ y' e’
L4 Ls L, @ \ ‘. K
. A y?
K,
el

82

Figure 2.3: Starting the Algorithm in Example 2.9

Remark 2.10. We recall the simple geometric procedure that governs the begin-
ning of our algorithm:

1. Choose iy such that (in Y) (e" € K;,.

2. If this is not an equilibrium, move in the direction jy that is
uniquely described by e € Lj,.

Theorem 2.11. Every Nash equilibrium which is not the initial I1-vertex is
located in exactly one admissible T1—-edge.

Proof:
1*STEP : Let (Z, §) be an equilibrium. In view of Remark 1.3 and Corollary
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1.9 we may introduce the sets R = {j | y; > 0} and 7' = {i | &; > 0} and we
obtain
{(SE, ’g)} = (LR N XTc) X (KT N YRC)

with | R |=| T |-
We shall distinguish two cases.
2"STEP : Assume g, > 0.

Then n € R. Now, it cannot happen that | R |= 1 for otherwise we would
be dealing with the initial II-vertex (e, e"). Therefore, we have necessarily
| R |> 2 and it is possible to remove n from R. We observe that

(5) (LRf'n N XTc) X (KT N Y(an)cfn)

is an admissible IT-edge which contains (Z,y). There are no further edges
containing (Z, §) - just the obvious ones are those to be taken into consider-
ation (compare the arguments given in Lemma 1.10).

The geometric meaning of this procedure is that we can leave the equilibrium
point by moving in X and leaving L,,. This means just that the condition of
the Stronger Optimality Criterion which says

(6) g, >0z el,

is sacrificed. Or else we can say that we reach an equilibrium point moving
on the edge described by the missing optimality condition (6). That is, we
reach L, in X and thereby supply the missing condition.

Indeed, this edge represents a “motion in X” since | R, |=| R | -1 =|T | -1
holds true.

3"4STEP : Within this step we supply the formal proof for the fact that only
the “obvious” edges are adjacent at the equilibrium point. This maybe useful
for the reader who wants to follow the formally exact proof. The statement
that further edges are “obviously” not attached to ¢ appeals to an insight we
have gained in the proof of Lemma 1.10. We learned that “too many edges”
(that is too many equations) contradict the non—degeneracy condition. This
Step appears to be redundant, but we want to discuss the detailed arguments
again. The reader who wants to proceed can as well continue with the fourth
step (which treats the case g, = 0).

Let us assume, therefore, that apart from the IT-edge which is defined by
(5) there is another edge indicated, say by
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(7) (LRI N XTIC) X (KT’ N YRIC,H).

We know that (&, g) is located within this edge. Hence, we argue as follows:
because of Z; =0 (i € T¢) we must have

T'c C T¢
TD>T
Now, if it so happens that 7" 2 T holds true, then we would have
Yy € KT/ N YRc.

However, this cannot happen since we have already | T | + | R® |= n.
Consequently, we must have T' = T’ (again the argument in Lemma 1.10
should be compared).

Analogously, because of 7; = 0 we obtain
RY-nCR°.

Now if it would happen that j € R' and j ¢ R, then we would obtain
Z € Lpy; N Xy,

which by the same reasoning as above is impossible. Since n ¢ R holds
true again we have R = R’ + n. As a consequence the hypothetical edge
(7) and the one we have originally considered (5) coincide - this finishes our
consideration of the 3"¢step.

4*"STEP : Now consider an equilibrium in which by 7, = 0 is the case.
Define R and T in the obvious way as in the 2"%step. We see immediately
that exactly the IT-edge

(LR N XTc) X (KT N YRC—n)

contains our equilibrium point (Z,g.) Further edges are (“obviously”) not
available.

Note that this is a motion in ¥ (we reach a vertex reflecting the condition
Yo =01in Y — or we leave this vertex by admitting y,, > 0 ).

The reader will realize that arrival or departure at this kind of equilibrium
on an admissible track occurs in a way such that the optimality criterion (6)
is eventually satisfied by the appearance of a coordinate y,, = 0; this happens
by means of a “motion” in Y.

q.e.d.
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Remark 2.12. Again it is useful to describe the simple Geometry of the algorithm
verbally:

Whenever we reach a vertex such that the index n is involved either by
entering L, or by a vanishing coordinate y, = 0, then we are stuck at
some equilibrium (and there is no departure edge).

Example 2.13. We repeat our standard example that occurred the last time
in Example 2.9:

e
Y
el T e’ K
| | i I o V¥ ' e’
L, Ly L, @
K12y
y3 - - - — _ . _ y4
K,
el

Figure 2.4: Stopping the Algorithm at some Nash equilibrium

The pair of mixed strategies (Z, y*) is a Nash equilibrium. For, one one hand,
the positive &-coordinates are 1 and 2 (i.e., all coordinates) — and y> € K,
is satisfied. On the other hand, the positive y—coordinates are 1 and 3 and,
indeed, we have € Li3. As n = 4 and the fourth coordinate of y® vanishes,
it is the Fourth Step of the previous proof that applies: exactly by admitting
ys > 0 we define the unique IT-edge on which to leave or on which to arrive
at y3.

Roughly speaking, we have characterized the departure from the initial TI-
vertex and the arrival at some equilibrium. What happens intermediately?

Theorem 2.14. Every admissible I1-vertex is located in exactly two admis-
sible T1-edges.

Proof:
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Consider a IT-vertex (&, 4) such that with a suitable iq € T. We assume
(8) {(®,9)} = (Lr N Xreyip) X (Kp MY gey)
with | T |=| R| +1, n € R° and consequently

R+ |T¢|+1=m
|T|+|R|-1=n.
(The remaining case from Definition 2.3 can be treated quite analogously.)

We present a shortened proof just indicating the IT-edges on which one can
leave or reach (Z,y). These edges are given by

(9) (LR N XTc) X (KT N YRC—n)
(“motion in X” — “relieve x;, = 0”) and
(10) (LR N X.TC+Z'O) X (Ksz'o N YRc,n),

(“motion in Y” — “relieve K;,”), and there are (“obviously”) no further edges.
q.e.d.

Let us again offer a geometrical interpretation. In case of the Il-vertex
given by (8) there exists, apart from the specified index n, another particular
index 7y which corresponds to an “obsolete” equation x;, > 0. Accordingly,
this vertex can be left reached on two tracks: either by admitting z;, > 0 -
meaning that we move in the direction towards e® - or by leaving K;,. The
first motion type takes place in X and the second takes place in Y.

Example 2.15. Our standard example appears in Figure 2.5. The pair
(e?,y') is of the type treated explicitely in the last theorem: the decisive
index is i = 2. We have an equation zo = 0 and yet y € K, is satisfied. We
can leave (or arrive) by either admitting x5 > 0, i.e., moving in X from e?
to & or by leaving K, i.e., moving in Y from y' to e*.

On the other hand, consider the pair (Z,%?). The decisive coordinate is
Jjo = 2. We can either leave by admitting yo > 0, i.e., by moving in Y from
y? to y®. Or else we can leave by leaving Ly, i.e., by moving in X from Z to
T.

The direction indicated by the arrows is suggested by the fact that we started
out from (€2, e*) and, whenever we arrive at some IT-vertex on some admis-
sible track we want to leave on the other one.

Remark 2.16. We offer the usual short geometrical description “for the browser:”
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Figure 2.5: Motions of the Algorithm at II-vertices

1. If, at some II vertex, we arrive via a motion in Y and enter some
K,,, then we leave via a motion in X by admitting x;,, > 0. (Or the
other way around: if x;, becomes 0, then we leave K;;.)

2. If, at some Il vertex, we arrive via a motion in X and newly reach
some Lj,, then we leave via a motion in Y by admitting y; > 0.
(Or the other way around: if y; becomes 0, then we leave Lj,.)

Theorem 2.17. Any Il-edge contains exactly two IT-vertices. These vertices
are either admissible or equilibria.

Proof: Recall that an admissible IT-edge has the form
(LR N XTc) X (KT N YRC—n)-

This describes a convex polyhedron of dimension 1, i.e., a line segment. This
line segment has two endpoints which have dimension 1 and are contained in
the line segment.

We consider the case | R |=| T | which reflects a “motion in Y” (the second
alternative of Definition 2.4 is treated analogously). Then we have dim(Lg N
Xre) = 0 and dim(Ky NY ge_,) = 1; the first part is a vertex in X and the
second a line segment in Y.

Necessarily the endpoints of that line segment occur when an additional K;
or some boundary simplex Y is reached. That is, the endpoints will have
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one of the following forms.

Krii, N Y pe_, K, is reached
Kr N Ypgeijo—n Y, is reached
Kr N Y re Y, is reached

Exactly in the last case the procedure arrives at an equilibrium (as y, = 0
holds true and all equilibrium conditionas are satisfied). The other cases
mentioned above generate Il-vertices - for example the IT-vertex

(Lr N Xge) X (Krpip N Yre ) = (L 0 Xryig)etio) X (Krpig N Y ge )

satisfies the conditions specified in Definition 2.3. q.e.d.

Again, it is seen that an equilibrium is located at an admissible edge “when-
b

ever index n appears’, that is, “whenever one moves into Y,”, “one moves

into L,,”, or “y,, = 0 occurs.”
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3 The Structure of Equilibria

We are now in the position to discuss in detail the structure of the LH-net
L that consists of all II-edges and —vertices, the equilibrium points and the
initial vertex (see Definition 2.6). This in turn allows to give a rather precise
account of the set of Nash equilibria of a non degenerate bimatrix game. In
addition, we obtain a second existence proof for such equilibria which is, in a
sense, constructive and does not hinge on the Brouwer Fixed Point Theorem.

As previously, we assume that all games we are dealing with are non degen-
erate.

Theorem 3.1. 1. The LH-net satisfies

L= {lzyecXxY|nu>0=ycK, (icl),
yy>0=>xeL;, (jeJ—n)},
= {(z,y) € X x Y | there exists either io € I orn # jo € J
such that x; > 0=y € K; (i€l —1i),
ory; >0=x €L; (j€J—n—jy) respectively },

hence it can be seen as the set of equilibria and “almost equilibria”.
2. The LH-net L is nonempty.

3. The LH-net L is a compact subset of X x Y.

Proof: The first statement is an obvious reformulation of the definition in
view of nondegeneracy. The LH-net is nonempty as it contains the initial
IT-vertex and closed as it is a union of finitely many closed sets (points and
line segments).

q.e.d.

The following is a collection of the results obtained in the previous sections.

Theorem 3.2. 1. The initial I1-vertex is either an equilibrium or admits

of a TI-edge

2. Any equilibrium which is not the initial TI-vertex admits of exactly one
I1-edge.

3. Any Il—vertex which is not an equilibrium admits of exactly two TI-
edges.
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4. There are only finitely many IT-vertices and edges.

As a consequence, we obtain the structure of £ as follows.

Theorem 3.3. Let I' = (X,Y; A, B) be a non degenerate bimatriz game.
Then the following holds true.

1. T has at least one equilibrium.
2. The number of equilibria of T is odd.

3. The LH-net L consists of finitely many connected path without loops,
each path consisting of finitely many edges and vertices. The path con-
taining the initial I1-vertex contains exactly 1 equilibrium located at its
endpoint. FEach other path contains two equilibria, one at each endpoint.

Proof: We define the decomposition of L into a set of disjoint path by spec-
ifying a procedure that reflects the motion along IT-vertices and Il-edges
only. The procedure starts at the initial II-vertex If this is not an equilib-
rium, then there is exactly one IT-edge on which to leave the starting point.
There is a second endpoint (a IT-vertex) to this edge. If this happens to be
no equilibrium, then there is exactly one further IT-edge on which to leave
this vertex. The path can never return to meet itself as this would require
three Il-edges to join at one Il-vertex. Since there are only finitely many
such vertices and edges, the path has to terminate eventually. This final
Il-vertex admits of one joining Il-edge only and, hence, is an equilibrium
point.

Suppose there are further Il-vertices that have not been visited so far. Unless
it is an equilibrium, each such vertex admits of exactly two II-edges, one for
arrival, one for departure. A path constructed as above necessarily has to
yield two endpoints not admitting departure. That is, there are two further
equilibria. Any further Il-vertices that have not been visited so far can be
grouped together so as to yield an even number of equilibria. Thus, there is
one equilibrium resulting from the initial path and possibly an even number
of additional equilibria resulting from the second type of path,

q.e.d.

Remark 3.4. (The Lemke-Howson Algorithm)
The previous theorem constitutes not only an existence theorem but also an algo-
rithm to find or compute equilibria. This algorithm is constructed as follows.
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The procedure starts with the starting point (€%, e") as defined by 3.10. If
this is an equilibrium, then the algorithm terminates. Otherwise, if (e, e™)
is not an equilibrium, then there is a unique “departure II-edge” in Y. This
edge is described by a motion towards e’ or “Yijo > 07

. By inspection of 3.11 the following facts can be observed: If, upon arrival, a

motion in X occurs, then there appears a new index ig satisfying € € Xre ;-
This means that we obtain “z;, = 0”. When departure takes place (in Y)
that is, when Ky _;, N'Y ge_,, is the departure edge in Y, then we leave the
polyhedron K;,. Obviously we have the same specified index ruling departure
as well as arrival and the motion changes from taking place in X to Y.

Inspection of 3.12 shows the following. If the “specified index” is n, then the
equilibrium has been reached.

For the geometric behavior the combinatorics of the polyhedra of best reply
is decisive.

Example 3.5. We return to our favorite example which is reproduced by
Figure 3.1.
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We obtain the following sequence representing the initial path of the Lemke-
Howson procedure. Note that m = 2 and n = 4 holds true, thus 4 € J is
the critical index and we take €' € Y to be the second part of the starting

point.
Arrival | new vertex | criterion | critical index | type of motion | simplex
edeK, [2€] choose e? in X
e’ (€% e) e2ely, |2€J ya >0 in Y
y! (e, y') y'eK, |1el z; >0 in X
T (Z,y') recl, 1eJ y >0 in Y
y? (Z,9?) Yo =0 2¢e.J leave L, in X
T (z,y?) xecls |[3e€J yz > 0 inY
y3 (z,y?) ys =0 4eJ specified index | equilibrium
e
el
| | e’
Ly
y*
K,
1
€2

Figure 3.1: The LH-Algorithm in Example 2.15
Example 3.6. For t > 0,s > 1, consider the matrices

A =

n O O =
n O = O

0
0
1

—2s

, B

010
0 01
t 00
t 00

The corresponding decomposition of X and Y into the polyhedra of best reply
is represented in Figure 3.2. The mixed strategies playing an exceptional role
are given by
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z 5 &2

I

Figure 3.2: The Decomposition in Example 3.6

1 111
g o= — (61,0, § o= (===
T 2t—|—]_(, J ) )5 y <35353>
~ 1 . 1
r = —(t10,1), y = (2s,25,25 — 1)

2t+1 6s — 1
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There are 3 equilibria given by
(e'.e) , (.9 . (29

which are indicated in Figure 3.3

Figure 3.3: Equilibria in Example 3.6
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Figure 3.4 reflects the LH-algorithm starting from e€® in ¥ and ending up
at the Nash equilibrium (&, g). The remaining two equilibria are connected
by means of a second path in L so the fugure suggests the full LH-net . Of
course, L is a 4-dimensional set, so we cannot actually depict it directly.
One has to take into account the alterneating motion within both simplices
in order to actually concieve the structure of L.

Figure 3.4: The LH-net in Example 3.6

Instead of choosing n = 3 as the critical index we might choose 2 € J.
Then the algorithm ends up with the equilibrium (e*, e'). Choosing 2 € I
yields the equilibrium (Z, g) again. After some inspection one realizes that
the pasth never reaches (Z,%y) whatever the critical index and the resulting
initial w—vertex.

Yet there is a way to find all equilibria Eecause, when n € .J is critical, then
the pure equilibrium is connected to (&, )y. So if we use within this setup the
pure equilibrium as a starting point we may obtain the missing one. While
this a change of the procedure it clearly leads to successfully establishing all
equilibria.

Another nice feature of this example is that the equilibria (Z,g) and (Z, y)
move arbitrarily close to each other with increasing parameters ¢ and s.
This property may be employed for a test of precision or of numerical errors
when implementing the algorithm by some computer program. A test of
convergence of approximative procedures is also useful.
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Example 3.7. A permutation of the rows of A changes the picture. E.g.,
exchanging the first and second row amounts to exchanging the first and
second index of the polyhedra K;, hence the result looks almost identical up
the fact that K; and K, have exchanged their roles.

Figure 3.5: Permuting the Rows creates further Equilibria

Now there appear two nice additional equilibria described by (z*,y*) and
(z,y). The exact coordinates are

1 11
f= —(0,4,1,0 - -0, -
T t—‘—l(”’) y (2’ 72)
1 _ 1
- (0,4,0,1 = (250,51
2= 3 OH0Y) Y g0

Again x* and x are arbitrarily close for large ¢ while y* and y are not close
for any choice of the parameters. The example may now serve for all possible
versions of the LH and other algorithms.

Example 3.8. The previous examples may be generalized as follows. Take

P 0
0 1 o0 .. 0
(1) A=
0 1

VA
VA
[
—~
S
|
—
~—
VA
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and
0 0 1 0
(2) B=1¢ o 1
t 0 0
t 0 0

Both matrices are supposed to be (n + 1) x n.
Again there are 3 equilibria

(e'e) ., (29 . (@9
which, in this case are given by

1

2= ot Lo)
B 1 1
= =
g (n1 2
T = m(t,...,t,o,l)
j = W(s(n—1),...,s(n—1),s(n—1)—1)

One can now consider these equilibria (which are all) and observe again that
some of the equilibrium coordinates are “close” for large parameters. Also,
permuting the first n rows of A and the last n — 1 columns of B amounts
to exchanging just the numbering of the polyhedra, not the geometric shape
of our basic picture. Then further equilibria appear. These examples are,
therefore, quite useful for testing procedures to compute equilibria.
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4 Remarks on the
Alternating Simplex Procedure

We shall shortly discuss the formal procedure resulting from from the Lemke—
Howson algorithm. This procedure resembles the simplex method but, due
to the nature of the algorithm, involves two tableaus. For short one can
speak of an alternating simplex algorithm as indeed the motion induced by

manipulating the tableaus alternatingly takes place in the two simplices X
and Y.

As a prerequisit we introduce the “canonical” parametrization appropriate to
an edge in Y. To this end, let ) 2T C I and .J # U C J be such that
T+ Ul =n

and
HT,U = KTﬂYU#O

holds true. By nondegeneracy it follows that the dimension of this set is 0,
hence it containes just one element, say

(1) HT,U = {g}

Define

A= Ag>Aly (€T, 1¢T).

Then (g, \) is the unique solution of the non homogeneous linear system of
equations

v
D y=

JeU

(2)

—_

As we consider the variables to be (y, A), the coefficient matrix is obtained
by augmenting the index sets I, .J. Accordingly, we write

Tu{e}, JU{x}
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and introduce the matrix

J
7 S ~N *
( 1
./l{: I A
-1
\
o 1 1 1] 0

Then, for W C J + {x}, Z C I+ {o} we obtain submatrices

‘AEV = (ﬂz‘j)iew,jez
of the matrix A. We use symbols A;ZO 1o etc. analogously, —U refers to the
complement of U.

This notation is useful in order to represent affine or linear subspaces that
are obtained by systems of equations like (2).

For instance, suppose we want to parametrize an edge Kr_,;, N Yy adjacent
to y. We imagine that the situation depicted in Figure 4.1 has to be treated.

Then , consider the linear subspace

Liliy = {u=(v.r) eRT"xR|AY pn=0}
g RJ*U xR = RJ*U#»{*} )

(3)

If we introduce the zero vector Oy of RV, then the above linear subspace can
be imbedded into R’**, this subspace is denoted by

Aioy = A (Z eT — io),
(4) L0 @0y = { (Y. y, = 0 (jeU),
Yes = 0

Therefore, the affine subspace
(5) {@ N} + (£75, @ oy)

is the candidate for “canonical representation” as its projection on R” contains

an edge of the form Kr_; NYy adjacent to (g, \).
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Figure 4.1: Parametrizing an edge

As L;ZO is a linear subspace, we can specify a vector
(6) g o= (°,v"°) e LY,
by the additional requirement

(7) AV = 1.

0@

Now we know that the pair (g, \) satisfies

(8) Ar(g, ) = (0,...,0,...,0,1) ¢ RT+1
and as a consequence of equation (4) we obtain

(9) ‘AT ((g: 5‘) + (ﬂ’io + OU)) = (0, Tt 1: 07 <y 07 1) € RT+{*}

Verbally: we sacrifice one degree of freedom of L;ZO by the requirement (7)

and obtain a vector pointing in direction of the subspace. (Figure 4.2 ). This
vector is now used for parametrizing the subspace. Figure 4.2 represents the
situation projected onto the unit simplex Y and the subspace containing it.

We are now in the position to suggest the shape of the “canonical repre-
sentstion”.
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proj L:;ZO

Figure 4.2: The projection of L;ZO

Definition 4.1. The canonical representation of the affine subspace (5)
15 the bijective mapping

(10) 06— (y*,\") = (g,)\) -0 (a" e oy)

It is not hard to see that there exists a parameter 6 such that the canonical
parametrization does what it is supposed to do, that is, satisfies

(11) Hr_iyv = {ye ‘ 0<0< 510} .

Assuming that some ¥ is the second vertex of Hy_;,  and that, in addition,
the decisive index ¢; occurs because

yaio - Ki1

holds true, we conclude that a set of equations

(12) Ailoygio = Aioyéio = )\glo

is satisfied. From these equations one can actually compute the parameter
6;,- The “Alternating Simplex Procedure” is a procedure that, analogously
to the Simplex Procedure as discussed in CHAPTER 2, provides the formal

transition from (g, \) to (Y, /):) = (y%, )\91'0).

The procedure formalizes
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~ —

1. The computation of (g, A\) by means of (g, \) and a set of data carried
along (the “tableau elements”).

~

2. The computation of the tableau elements at (y, \) by by means of the
ones at the previous vertex.

3. The alternating movement in the simplices X and Y. Correspondingly,
the procedure actually involves two tableaus and switches alternatingly
between both of them.

4. The decision to terminate as the decisive index (n in most of the pre-
vious discussion) appears.

5. The final generation of a Nash equilibrium.

The two tableaus involved are linked to the two payoff matrices A and B.
The generic form of the A-tableau involves tw o index sets 7' C [ and U C J
and lists the tableau—elements proper, the parametrizing parameters and the
present strategy ¥ as follows. Note that, due to the dual nature of index sets
in both simplices there appears further partition as indicated; accordingly,
the indices from I and J are separated.

A Yy
T U
10 Jo
f : :
TS 0 o d2° 0;
71 11 1
_ {
r . . .
ved g | oA s
L

These data are basically determined by A , 4, and X ; e.g., the T vector 0
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is given by

(13)

é —= — A,Tg + 5\67’]1

— _Aiog+)‘

1eTe

while the generic element of the uppermost left corner is given by

(14)

—i0  __ —U—10 —1g
Cil - ‘Ai10 K

— A.fo’LIO (,72'07 1710) ’

710

etc. The computation during the process, however, shall not be performed
by the solution of this kind of equation but by the Rectangle Rule !

To this end, the following alternating procedure is established:

1.

A pivot determines the change of the Tableau according to the Rect-
angle Rule. Accordingly, a criterion is developed which yields either an
index i, € T —

(corresponding to a change to Hy_;,1i,.0),

or an index j; € U¢ —

(corresponding to a change to Hp_;yu+j,). This choice respects the
partition within the Tableau.

. The alternating movement in the geometrical context is reflected by

the alternating action in the A- and B-Tableau.

. The generic step proceeds as follows: Let 7y be given from an action in

T4 and let j, be known from an action in TB. Assume i; to be the
minimal element in the x—columnn of TA. Then convert the Tableau
according to

AA .
(15) T4 = R)'T.

Now 7 is known from TA. this index is transferred to TB and pivoting
takes place in this second tableau. This way an index is alternatingly
shifted from one tableau to the next one simultaneously with pivota-
tion.

It remains to describe the initial tableau. This is canonically produced by
the inbital steps of the algorithm. We list the following steps.
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1. Choose the specified index ng € J (or mg € I, this case is treated
analogously).

2. Determine 7y by the requirement

(16) Qiojo = WAX din -
3. Determine jo € J by the requirement

(17) bigjo = r?ea}c bioj -

4. If jo = ny happens to be the case, then terminate the algorithm:
(€', e’) is a Nash equilibrium.

5. Otherwise define, for 7 € 1,7 # 19

1 a’iono - ai’no

S

(18)

i
di = i = Qing T Qigny — iy,

and set up the tableaus

A __ Al n _ T
T _T(eo,eo)—<rA )

ey

T U
AN - -~ ~ %

i0 Jo
_ I—i i | =1 dh 6
{ne} { mo \—-1]1... 1. |1

andT® analogously.

Now by choosing the pivot one may change from one tableau to the other
one alternatingly and stopp once the specified index ng appears.

In the end, the positive coordinates of the equilibrium appear in the *—
column: the ones for ¢ in T4. The miissing coordinates are zero and the
same applies mutatis mutandis for the tableau T4.

We have described the Alternating Simplex Procedure. No proofs have been
provided and the reader looking for more details may consult the presentation
in [18]. For comparison, the original version of the Lemke-Howson Algorithm
is found in [20].






Chapter 6

Selection of Equilibria

Some Nash equlibria are less desirable that others and frequently the abun-
dance of equilibria is disappointing. Selection of certain equilibria according
to some basic principles is a major problem of Noncooperative Game Theory.
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1 The Trembling Hand

Within this chapter we consider the first type of a selection mechanism for
Nash equilibria.

Thus we define the notion of a perfect equilibrium in the context of bimatrix
games.

We consider a bimatrix game in mixed strategies
(1) I'=(X,Y:4,B)

As usual, A and B are m x n matrices and X and Y are the unit simplices
of R and R” respectively; the generic elements of these strategy spaces are
denoted by x and y.

A mixed strategy £ € X is said to be weakly dominated if the following
holds true.

There exists Z € X such that
Ay >zAy (yeY)
(2) and
TAY > TAy
for at least one y € Y.

Furthermore, € X is strictly dominated if

there exists & € X such that
(3) zAy > Ay (yeY)
holds true.

Lemma 1.1. Let € X be not weakly dominated. Then there exists Y € Y,
Yy > 0 such that T is a best reply against y (i.e. TAY > Ay (x € X)).
Proof: (Sketch)

15*STEP :

We may assume £ A = 0 — otherwise replace A by

TA TA

A=A-—| : |=4-] :

TA TA
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with e = (1,...,1).

Indeed, if we write

TA TA.,...,TA,,
TA TA.,...,TA,,
then we see that
TA
T : = (xAa,...,TA.,)
TA

and hence B
TA = zA—-xA = 0.
Moreover, for any & € X and y € Y we obtain
TA TAy
TA TAy
This implies B
rAy = xAy — xAy.

Now we observe that all dominance relations are not influenced by the pres-
ence of the second term as & does not appear.

2"dSTEP :
x is not weakly dominated, hence there is no x such that
and
ZL’A.]'O > iAojo
for at least one 7o, 1 < jo < n.

Now define .
U={zA|x e X}.

Then U is a convex, compact polyhedron. We know that u :=xA =0 € U.
And we know that there is no w € U, u > w and u;, > 4;, for at least on jo,
1 < jo < n. That is, U does not contain an element of the closed nonnegative
orthant apart from the origin 0.
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Figure 1.1: Separating U and the non—negative orthant

3"dSTEP :

As it turns out, it suffices to construct a hyperplane with normal p > 0 which
separates U and 0 weakly, i.e. satisfies

(4) pu>pu  (uel).

D
ep’

Indeed, suppose we are given p > 0 satisfying (4). Then we put g :=
and obtain ¢ € X, ¥ > 0 and

TAY = u >ul =zAy (x € X) .

ep €p

4*BSTEP :

Hence we have to appeal to an appropriate separation theorem. Note that
the polyhedral shape of U is important. Nevertheless, we will not enter into
a more detailed exposition (see Figure 1.2). q.e.d.

Now we change our viewpoint in order to specify a particular type of equi-
librium. The following definition is due to R. SELTEN ([37])

Definition 1.2. Let I' = (X,Y; A, B) be a bimatriz game. A pair (Z,7) €
X x Y is a trembling hand perfect equilibrium if there exists a sequence

(mnayn)neN € X X Y
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Figure 1.2: A polyhedral U ensures a positive normal

such that the following holds true

1 (z",y") — (Z.9) (n — o0

2. (z",y") >0 (n € N)

3. & is best reply against y" (i.e. TAy" > cAy") (x € X, n € N)

4. y is best reply against " (i.e. "By > z"By) (y € Y, n € N)
The elements (x",y") of the sequence are interpreted as “small deviations”
from equilibrium. E.g., if player 2 when choosing his (equilibrium) strategy

y, slightly “trembles”, thus choosing y" instead, then nevertheless player 1
should have a best reply in his equilibrium strategy . And vice versa.

Conceivably, a critique against this interpretation rests on the fact that there
is just one sequence (&",y")nen required in order to approximate (z,y).
This would (only) justify a statement that the pair (z,y) is robust against
a certain type of trembling.

In our present context we shall use the term t.h.-perfect in order to refer
to SELTEN’s concept as indicated by Definition 1.2.

Remark 1.3. Equivalently, given T = (X,Y; A, B), a pair of mixed strategies
(,9) € X x Y is t.h.-perfect if and only if in every neighborhood of (Z,q) there
exists a positive (z,y) € X x Y such that the following statement holds true:

1. & is best reply against y

2. y is best reply against x.
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Example 1.4. Let m = n = 3 and consider the two matrices
0 00 000
A=|0 1 2 B=1|010
0 0 2 0 2 2

First of all we claim that (e!, e!) is a Nash equilibrium but not t.h.-perfect.

Indeed, let (Z,9) > 0 be such that e! is best reply against g and e! is best
reply against . Then, according to the optimality criterion for bimatrix
games, we would infer that

(5) 6% > 0= Al.g = max Az.g
holds true. However, we find
(6) AQ.g = gg + 2@3 > Ag.g = 2@3 > Al.ﬂ =0

holds true, contradicting (5) immediately. (Analogously for €' and ). Thus,
(e',e') is not t.h.-perfect

The next observation concerns (e?,e®). Again it is immediately seen that
this is a Nash equilibrium.
However, (€3, e?) is not t.h.-perfect. For, similarly to the above argument, if

(z,y) > 0 is such that €® is best reply against ¥, then the requirement
€§ >0= A3.’g = mzax A"g
is immediately contradicted by

Asey = Yo + 2y3 > Aszey = 243.

Finally, (e, e?) turns out to be a Nash equilibrium which is as well t.h.-
perfect. To verify this, consider for ¢ > 0 the pair of strategies defined by

x® =(e,1—2¢,¢)

7
(7) y° =(e,1 —2¢,¢)
Now we obtain
Asey® =1(1 — 2¢) + 2¢
Z Ag.yg = 2¢
> ALy =0;
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thus, as €2 > 0 and A3,y° = max; A;,¥y°, it is indeed true that e? is best
reply against ¥ (and similarly, €? is best reply against ).

Note that with respect to the strategy sets of both players, e! and e® are
weakly dominated while e? is not.

Theorem 1.5. Let n = 2. A pair of mized strategies (z,y) € X x Y is
t.h.-perfect if and only if the following conditions are satisfied.
1. (Z,79) is a Nash equilibrium.

2. & and Y are not weakly dominated.

Proof:

1**STEP : We assume that (Z,9) is t-h-perfect. Then we can find a se-
quence (x", y"),en of positive elements of X x Y such that (2", y") — (Z,7)
(n — o0) and

TAY" > cAy" (n € N,z € X)
x"By > " By (neNyeY)

(8)

Passing through the limit yields

(9) rAy > xAy (xeX) , zBy>zBy (yeY),
i.e., the Nash equilibrium conditions.
Next, suppose that & is weakly dominated, say by Z, i.e., we find Z such that

(10) Ay >zAy (ycN)
zAY’ >z AY°
for some y° € Y.

From (10) we conclude that there is j € J such that

EA.Z >T A, (l S J)
/$\A.j >iA.j

(11)
Now, pick any arbitrary y > 0, y € Y. Then

(12) ZB\Ay = ZZ}?\A.I?JZ > ZQ_JA.lyl = E:Ay



220 * SELECTION x CHAPTER VI %

in view of (11). That is, Z cannot be best reply against positive y € Y,
contradicting then t.h.-perfectness (or (8) for that matter). Hence & (and y
is not weakly dominated. This settles the first step of our proof.

2"dSTEP :

Now consider (Z,9) € X x Y constituting a Nash equilibrium such that 2
and g are not weakly dominated. According to Lemma 1.1 there is y € Y,
y > 0 against which Z is best reply. Also there is & € X, £ > 0 against
which y is best reply. Now the set

Kz = {y | @ is best reply against y} = ﬂ K;
{i|z;>0}

is a convex compact polyhedron; hence as y and g are contained in K, so is

Yy =(-e)y+ey

for all € > 0. Similarly,
°:=(1—¢e)Z +ex

is best replied against by g (¢ < 0).

As (z°,y°) > 0 and € > 0 can be arbitrarily small, this shows that (&, y) is
t.h.-perfect, q.e.d.

Theorem 1.6 (SELTEN). Every bimatriz game I’ = (X, Y; A, B) has t.h.-
perfect Nash equilibria.

Proof: Define fore > 0

(13) X ={zeX|r>c (i=1,...,m)}
Y ={yeY|y>c (j=1,...,n)}

and let

(14) r.=(X,Y:;A B)

be the game obtained by restricting the strategy spaces. As X and Y¢ are
convex and compact and A and B are linear functions in each coordinate it
follows that I' has a Nash equilibrium, say (¢, y°) (¢ > 0).

Pick a subsequence (¢,,)nen, €n — 0 (n — 00) such that

(", y") — (,y) € X x Y  (n— )
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holds true, clearly (&, y) is a Nash equilibrium for I'. We would like to show
that (@, y) is t.h.-perfect.

To this end it is sensible to attempt a proof of the fact that @ is best reply
against y° (and y against x°).

In I'® the “optimality criterion” is formulated as follows:
(z,7y) is a Nash equilibrium in I'® if and only if

T > = Al.fj = max Ar.g

Up > € = B, = max TG,
holds true.

Therefore, if Z; > 0 for some ¢ € {1,...,m} then % > ¢ for sufficiently small
€ > (0 and hence

(15) A;.y° = max A,.y°.

Hence, by choosing ¢y small such that z; > 0 implies z; for all 1 =1,...,m,
and € < €p, we conclude that

z;, > 0= Ai.gg = max A,«.'gg (8 < 80).

Thus, « is best reply against y* > 0 for all € > 0, € < &, q.e.d.
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