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Abstract

We continue the discussion of the taxation game following our presenta-
tion in [12]. Our concept describes a cooperative game played between
a set of jurisdictions (“ countries”). These players admit the operation
of a multinational enterprise (MNE, the “firm”) within their jurisdic-
tion. The original version of this game is due to W. F. Richter [3],[4].
We suggest an extension of the model by introducing the dual game of
the firm’s profits and the tax function game. The latter is the NTU
game generated by introducing tax functions (the term “tariffs” will be
avoided henceforth).

In [12] we treated the bargaining situation obtained when all countries
decide to cooperate – otherwise everyone will fall back on their status
quo point. However, in his basic paper, Richter argues that the share of
the tax basis allotted to a country should be determined by the Shapley
value of the taxation game. This idea establishes an interesting new field
of applications.

The Shapley value “as a tool in theoretical economics” [13], [14] has
widely been applied in Game Theory, Equilibrium Theory, applications
to Cost Sharing problems, Airport Landing Fee games, and many others.

Based on these ideas, we continue our presentation by formulating
the tax function game for the countries involved and introducing the
Maschler–Perles–Shapley value as developed in [11].

To this end, we introduce the adjusted TU game, which reflects a
rescaling of utility measurement as suggested by the superadditivity ax-
iom of the Maschler–Perles solution. Then the Maschler–Perles–Shapley
value of the tax function game is the image of the Shapley value of the
adjusted TU game on the Pareto surface of the grand coalition.

We demonstrate that the Maschler-Perles–Shapley value for the tax
function game is Pareto efficient, covariant with affine transformations
of utility, and anonymous.
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1 The Tax Function Game

The notation within this article is the one of [12]. We assume that the reader is
familiar with concepts of a cooperative game (“with side payments”) (I,P, v) and
Non–Transferable–Utility (“NTU”) games (I,P,V ).

We focus on a Multinational Enterprise (“the firm”) operating in certain jurisdictions
(“countries”) , i.e., the players described by I = {1, . . . , n}. Countries consider an
agreement about how to allot the firms profit for taxation purposes.

Subgroups of countries are coalitions . If a coalition S ⊆ I agrees to cooperate, then
the firm may carry out business simultaneously in each cooperating country. The
profit v(S) earned is taxed according to a jointly agreed system of rules. Following
W.F. Richter [3], [4] in a very simplified way, we adopt a profit concept called “pure
return earned on know–how”. Somewhat more precisely, we assume that an agency
responsible for “unitary taxation” is established within the (joint) jurisdiction of all
members of S.

Based on this idea, a firm operating in various groups of countries generates a
coalitional function v. We obtain a cooperative TU game (I,P, v) which is
called the profit game.

In [12] we argue that the dual game to the profit game should be focused upon.
For, otherwise the firm has incentives to (“after taxation rules”) deviate from the
planned production generating the profit v(•). In the context of the dual game the
firm has no such incentives and, hence, the basic model exhibits a higher degree of
stability.

In order to obtain a most general theory, we agree that a profit game (I,P, v) may
be thought of as either referring to the primal or dual version of v. In a particular
application, this ambiguity should always be taken care of in advance.

Next we turn to the NTU context by introducing aTax Function (for short a TF ).
This is a function applied by the various countries to actually generate revenue by
taxing the firm. A TF admits of a dual version as well and again we leave the details
open for clarification in a specific context. A dual version is exhibited in Figure 1.1.
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Figure 1.1: A dual TF of country i

The concave function in Figure 1.1 suggests a dual TF but we disregard the reference
to primal and dual and just consider a piecewise linear and concave function as
above. In order to provide description of such functions we introduce a “universal
grid” as follows: We set

(1.1) K = {1, . . . , K} .

Then for some t0 ∈
�
+, the grid points are given by

(1.2)

{
0,

t0

K
,
2t0
K

, . . . ,
(K − 1)t0

K

}
.

A function f {t0} as in Figure 1.1 is linear within intervals

(1.3) J
{t0}
k :=

[
(k − 1)t0

K
,
kt0

K

]
, (k ∈ K)

Thus, a TF equals a linear function within each interval of the grid. Within this
context we obtain

Definition 1.1. Let t0 ∈
�

+, t0 ≤ K.

1. A Tax Function (TF) (for taxation in [0, t0], adapted to K) is a continuous,
monotone, concave, and piecewise linear function

(1.4) f {t0} : [0, t0] →
�

+, f(0) = 0 .

also written

(1.5) f(t) = min
k∈K

ckt+ dk (t ∈ �+k, k ∈ K)

with suitable coefficients ck, dk (k = 1, . . . , K).
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2. Given the appropriate boundary conditions the coefficients ck, dk (k ∈ K)
corresponding to f yield

(1.6) f {t0}(t) = ckt+ dk (t ∈ J
{t0}
k , k ∈ K) .

• ˜˜˜˜˜˜ •

As to the boundary coefficients, the obvious definition – tedious and not further
enlightening – is given in Definition 1.7 of [12]. Clearly, a piecewise linear func-
tion adapted to the grid and the corresponding coefficients representing the linear
function within each interval of the grid are tantamount quantities.

Assume that a quantity t0 is available for taxation. Then, as we assign a TF to each
country i ∈ I, we obtain

Definition 1.2. 1. Next, a TF system (for taxation in [0, t0], adapted to K)
is a family of TFs

(1.7) f{t0} = (f
{t0}
1 , . . . , f {t0}

n )

such that for i ∈ I

(1.8) f
{t0}
i (t) : [0, t0] →

�
+

satisfies

(1.9) f
{t0}
i (t) = cki t + dki (t ∈ J

{t0}
k , k ∈ K) .

with coefficients

(1.10) cki , d
k
i (i ∈ I, k ∈ K) .

satisfying the boundary conditions.

• ˜˜˜˜˜˜ •

A distribution of monetary values is represented by a vector t = (t1, . . . , tn) ∈
�

n
+.

A TF system reflects the taxes obtained by such monetary distributions. The payoffs
available to the countries are then obtained by the taxoid

(1.11) Π{f} = Π{f ,t0} :=

{
f {t0}(t) t ∈ �n

+ ,
∑

i∈I

ti ≤ t0

}

However, whenever we consider the influence of coalitions as well, we have to extend
this notion in order to arrive at the NTU game generated. To this end we combine
the TF system with the profit game (I,P, v). That is, we determine, for each
coalition S ∈ P the payoffs available via the TFs of the countries involved.
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Let

(1.12) f {v(I)} = (f
{v(I)}
1 , . . . , f {v(I)}

n )

be a TF system for the distribution of t0 = v(I). Assume that, for S ∈ P, the term
v(S) is an element of the grid

(1.13)

{
0,

v(I)

K
,
2v(I)

K
, . . . ,

(K − 1)v(I)

K
, v(I)

}
,

say v(S) = K ′v(I)
K

with some K ′ ≤ K. Then, because of

(1.14)
v(S)

K ′
=

v(I)

K
,

the grid

(1.15)

{
0,

v(S)

K ′
,
2v(S)

K ′
, . . . ,

(K ′ − 1)v(S)

K ′
, v(S)

}

is a subgrid of the grid (1.13). Hence, the function

(1.16) f
{v(S)}
i := f

{v(I)}
i | [0,v(S)] (i ∈ I)

constitutes a TF for i ∈ I and

(1.17) f {v(S)} = (f
{v(S)}
1 , . . . , f {v(S)}

n )

is a TF system for the distribution of v(S) with the same linear ingredients, i.e., we
have

f
{v(S)}
i (t) = cikt+ dik t ∈

[
(k − 1)v(S)

K ′
,
kv(S)

K ′

]
= J

{v(S)}
k

= cikt+ dik t ∈
[
(k − 1)v(I)

K
,≤ kv(I)

K

]
= J

{v(I)}
k

= f
{v(I)}
i (t) (i ∈ I, k ∈ K, k ≤ K ′) .

(1.18)

(The last term in the first row of (1.18) refers to the grid generated by K ′). In other
words, the function f{v(I)} serves simultaneously as a TF system for all coalitions
via the restriction

(1.19) f {v(S)} := f {v(I)}

| [0,v(S)] .

Definition 1.3. Let (I,P, v) be the profit game. Also, let

(1.20) f {v(I)} = (f
{v(I)}
1 , . . . , f {v(I)}

n )

be a TF system for the distribution of v(I). For S ∈ P let f {v(S)} be the derived
tax function system according to (1.19).

The TF game (resulting from v and f{v(I)} ) is the NTU game (I,P,V {v}) defined
via

(1.21) V {v}(S) :=

{
f{v(S)}(t) t ∈ �S

+ ,
∑

i∈S

ti ≤ v(S)

}
(S ∈ P) .

• ˜˜˜˜˜˜ •
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2 The Pareto Surface of a Taxoid

Given t0 ∈
�

+ and a TF system f{t0} we consider the taxoid Π{f} = Π{f ,t0} defined
in (1.11). We introduce the unit simplex ∆e = {t ∈ �n

+ et = 1} and its dilatation
and ∆t0e = t0∆

e.

Then the Pareto surface of the taxoid (1.11) is

(2.1) ∂Π{f ,t0} :=

{
f{to}(t) t ∈ �n

+ ,
∑

i∈I

ti = t0

}
= f{t0}(∆t0e) .

The Pareto surface constitutes the basic for the surface measure and a corresponding
version of the Maschler–Perles–Shapley value regarding the TF game. Therefore,
we cast a short view on this surface.

Consider a sequence
k = (k1, . . . , kn) ki ∈ K (i ∈ I)

of indices taken from K. Because of

f
{t0}
i (s) = ciks+ dik (s ∈ J

{t0}
k , i ∈ I, k ∈ K)(2.2)

we obtain an n–dimensional cuboid

(2.3) Q
{t0}
k

= Q
{t0}
k1,...,kn

:=




t = (t1, . . . , tn) ∈

�n
+

t1 ∈ J
{t0}
k1

·
·
·

tn ∈ J
{t0}
kn





such that f restricted to Q
{t0}
k

coincides with the (affine) linear mapping induced
by the local coefficients (Definition 1.2). According to (1.9), this mapping is given
by

?
xk(•) :

�n
+ → �n

+ ,

t = (t1, . . . , tn) → (c1k1t1 + d1k1 , . . . , c
n
kn
tn + dnkn) ,

?
xk(t) = ck ⊗ t+ dk (t ∈ Q

{t0}
k

) .

(2.4)

Combining we obtain the following

Definition 2.1. 1. Let

(2.5) K := {k = (k1, . . . , kn) ki ∈ K (i ∈ I)}
denote the system of all possible choices of indices taken from K. For t0 > 0
and k ∈ K define

(2.6) ∆t0e
k

:= Q
{t0}
k

∩∆t0e .

such that

(2.7) f {t0}

|∆t0e
k

=
?
xk(•)|∆t0e

k

(k ∈ K)

holds true.
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2. We call a sequence k = (k1, . . . , kn) such that ∆e
k
6= ∅ has full dimension rele-

vant. Also, ∆e
k
is called a relevant polyhedron. The set of relevant sequences

is denoted
◦

K.

• ˜˜˜˜˜˜ •

Note that ∆t0e
k

(t0 > 0) has full dimension if and only if ∆e
k
has full dimension, i.e.,

the relevance of some sequence k ∈
◦

K does not depend on the dilatation factor t0.
For a relevant polyhedron the polyhedron (2.7) has full dimension and constitutes
a Pareto face of the taxoid Π{f ,t0}. More precisely we have

Corollary 2.2. [The parametrization of ∂Π{f ,t0} ]

Let t0 ∈
�

and let Π{f ,t0} be the taxoid induced by a TF system f {t0}. The Pareto
faces of this taxoid are given by

(2.8) F {k,t0} :=
?
xk(∆t0e

k
) ⊆ ∂Π{f ,t0} (k ∈

◦

K) .

The bijection

(2.9)
?
xk(•) : ∆t0e

k
→ F {k,t0} (k ∈

◦

K) .

provides a parametrization of the Pareto face F {k,t0} (see [10] and [11]).

Therefore, the mapping

(2.10)
?
x(•) : ∆t0e → ∂Π{f ,t0} , t → ?

xk(t) (t ∈ ∆t0e
k

, k ∈
◦

K)

which is the composition of the local parametrizations

(2.11)
?
x(•)|∆t0e

k

=
?
xk(•) (k ∈

◦

K) .

constitutes a the canonical global parametrization of the Pareto surface Π{f ,t0}.

• ˜˜˜ ◦˜˜˜ •

We emphasize that
?
xk(•) is an (affine) linear mapping. The composed mapping

?
x(•)

is, in general, not linear. Indeed,
?
x(•) coincides with f {t0} – the unifying notation

of (2.10) emphasizes the locally linear character.

As it turned out ([12]), the Pareto faces F k show in general not a simplicial character.
Rather they are unions of simplices located in a common hyperplane. This allows us
to define a version of the Maschler-Perles surface measure. We describe our findings
including the results of [12] within the following Theorem.
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Theorem 2.3. [The Pareto Surface of a Taxoid]

Let 0 < t0 ≤ K and let f {t0} be a TF system. Let Π{f ,t0} be the corresponding
taxoid.

1. Let k ∈
◦

K be a relevant sequence. Then

(2.12) F {k,t0} =
?
xk(∆t0e

k
) = ck ⊗∆t0e

k
+ dk

is a Pareto face of Π{f ,t0}. The relevant sequences describe exactly all Pareto
faces.

2. Because of

(2.13) ∆t0e =
⋃

k∈
◦
K

∆t0e
k

the Pareto surface of Π{f ,t0} is described by

(2.14) ∂Π{f ,t0} =
⋃

k∈
◦
K

F {k,t0} .

3. Let k ∈
◦

K be a relevant sequence. Then there exists a family of simplices{
?

∆l l ∈ L
k

}
such that

(2.15) ∆t0e
k

=
⋃

l∈Lk

?

∆l

4. For l ∈ L
k let

(2.16)
?

F l :=
?
xk(

?

∆l) = ck ⊗
?

∆l + dk .

Then
?

F l is a simplex in ∂Π{f ,t0} such that

(2.17) F {k,t0} =
⋃

l∈Lk

?

F l

holds true.

• ˜˜˜ ◦˜˜˜ •

Proof: No proof is offered. q.e.d.
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3 Surface Measures

Within this section we extend the Maschler-Perles-Shapley value to the present
context of TF games provided by Definition 1.3. The prerequisites can be found
in [12], the basic concepts are due to Maschler–Perles [2], the extension has been
developed in [8]. The rationale underlying this version of the Shapley value is (a
weak form of) superadditivity.

We recall the definition of the surface measures involved.

Remark 3.1. The Maschler–Perles measure ι∆ is defined for Cephoids and – by
a limiting procedure – for smooth bodies, see [8], [9]. It is normalized such that

ι∆(∆
e) = 1 holds true for the unit simplex and ι∆(∆

a) = n

√(∏
i∈I ai

)n−1
for a

deGua simplex Πa and its Pareto surface ∆a. The Maschler–Perles Measure ι∆ is
then defined for Cephoids by additive extension, i.e., via the particular structure
of such polyhedra. The deGua measure ϑ is obtained by a standard calculus of
measure and integral defined on certain surfaces. We refer to [10], [11].

For a deGua Simplex ∆a, these “surface measures“ satisfy ι∆(•) = o(n)ϑ(•) with
some constant o(n) depending on the dimension. As in [12] we unify our notation
by working with the measure

(3.1) θ := o(n)ϑ .

somewhat sloppily we call θ the Maschler–Perles measure.

◦ ˜˜˜˜˜˜ ◦

We recall our results of [12] as follows.

Theorem 3.2. [The Maschler–Perles Measure on a Taxoid]

Let 0 < t0 < K and let f {t0} be a TF system. Let Π{f ,t0} be the taxoid induced.
Recall the structure of the Pareto surface presented in Theorem 2.3.

1. For n = 2 and k ∈
◦

K, ∆Ke
k

is a unit simplex such that θ(∆Ke
k

) = 1 holds true.
Moreover, for some k = (k,K − (k − 1)),

(3.2) θ(F {k,t0}) =
2

√
a
(k)
1 a

(k)
2 =

t0

K
2

√
c1k1c

2
k2

=
t0

K
2

√
c1kc

2
K−(k−1) .

2. For n = 3, Lemma 2.5 of [12] characterizes the relevant sequences. The

Maschler-Perles measure for k ∈
◦

K is

(3.3) θ(∆Ke
k

) = 1, θ(∆t0e
k

) =

(
t0

K

)2

, θ(F {k,t0}) =

(
t0

K

)2
3

√√√√
(
∏

i∈I

ciki

)2
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3. In general, by (2.15) and (2.16), a Pareto face of a taxoid Π{f ,t0} is a union
of simplices and the measure θ for some F {k,t0} is given by additivity. For a

relevant sequence k ∈
◦

K and the corresponding Pareto face F {k,t0} :=
?
xk(∆t0e

k
)

of Π{f ,t0}, let

{
?

∆l l ∈ L
k

}
be the family provided by Theorem 2.3, item 3.

The simplex
?

∆{l} has Maschler–Perles measure

(3.4) θ(
?

∆{l}) =
t0

K
.

Accordingly,it follows that

(3.5)
?

F l :=
?
xk(

?

∆{l}) = ck ⊗ (
?

∆l) + dk

has Maschler–Perles measure

θ(
?

F l) = θ(ck ⊗ (
?

∆{l})) = θ(ck ⊗
t0

K
∆{l})

=

(
t0

K

)n−1

θ(ck ⊗∆{l}) =

(
t0

K

)n−1
n

√√√√
(
∏

i∈I

(ciki)

)n−1

.

(3.6)

4. Hence, the Maschler–Perles measure of F {k,t0} is

(3.7) θ(F {k,t0}) = θ(
⋃

l∈Lk

F l?) =

(
t0

K

)n−1

|Lk| n

√√√√
(
∏

i∈I

(ciki)

)n−1

.

5. Therefore, the Maschler–Perles measure of the Pareto surface of the taxoid
Π{f ,t0} is

(3.8) θ(∂Π{f ,t0}) =
∑

k∈
◦
K

θ(F {k,t0}) =

(
t0

K

)n−1∑

k∈
◦
K

|Lk| n

√√√√
(
∏

i∈I

(ciki)

)n−1

. .

• ˜˜˜ ◦˜˜˜ •

Proof:

No proof is offered.

q.e.d.
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4 The Maschler–Perles–Shapley Value

The Shapley value for NTU games has a long–standing history beginning with Shap-
ley’s presentation on “La Decision” ([15])and branching for applications in various
directions. Here we want to discuss the Maschler–Perles–Shapley value for the TF
game of Definition 1.3. This topic is a continuation of the Maschler–Perles solution
as presented in [12] as well as of the Maschler–Perles–Shapley value developed in
[11].

First (Remark 4.2) we recall the motivation of the Maschler–Perles solution ([2], see
also [10] for a textbook version). This demonstrates the connection of the original
Maschler–Perles solution (based on their “donkey cart”) and the Maschler–Perles
surface measure which allows seeing the solution as the image of a weighted barycen-
ter. That is, the solution is viewed as a centerpoint with respect to a simplex
constructed according to adjusted utils.

The set–up for the Maschler–Perles–Shapley value will proceed in a directly analo-
gous way (Remark 4.6). However, the application of an (induced) utility space has
to be extended as the side payment Shapley value is involved. This context requires
the introduction of the adjusted TU game which we have to provide in advance
(Definition 4.4).

The basic axiom of the Maschler–Perles solution is superadditivity. The immediate
consequence of this axiom is that players are induced to evaluate concessions and
gains in accordance to an adjusted version of utility. In two dimensions (for two
players in a bargaining problem) the “donkey card” of Maschler–Perles reflects this
idea.

Given a bargaining problem V = (0,U), imagine a point traveling along the Pareto
surface ∂U with a certain speed. This speed is determined by two forces pulling in
the direction of the axes (the donkeys pulling in different directions). The speed at
each particular point is dictated by the superadditivity axiom to be

√
dx1dx2. The

resulting movement reflects the evaluation of concessions and gains. Accordingly, let
both players continuously travel from their bliss point towards the solution point.

Both players are yielding to the demands of the opponent continuously until a point
of stability is reached, at which both travelling points meet. This final point defines
the Maschler–Perles solution: Each player has conceded the same amount of “utils”
measured in the speed of concessions of the “donkey cards”.

To be more intuitive we discuss the following traditional example.

Example 4.1. Consider two players involved in a a bargaining problem with piece-
wise linear Pareto curve. This curve consists of 5 line segments, hence the feasible
set is an algebraic sum of 5 simplices as indicated by Figure 4.1.

As a consequence of the superadditivity axiom, players make equal concessions when-
ever they travel along a Pareto segment such that both terms

√
a1a2 are equal. The

solution is obtained when this term has been equal continuously on both sides during
the movement.
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∆a(5)

τ 5∆
e

τ 1∆
e

∆a(1)

τ∆e

µ̂µ κ̂
−1 =

?
x(•)

x1

y1

x2

y2

Figure 4.1: The M–P solution as the inverse image of the center point

We introduce the terms τ i :=

√
a
(i)
1 a

(i)
2 . The concession of player 1, when moving

from the bliss point x1 to x2 along ∆a(1)
is considered to be equal to the concession of

player 2 moving from y1 to y2 along ∆a(5)
whenever τ 1 = τ 5 holds true. Continuing

this procedure the motions end at the Maschler–Perles solution µ at which both
players have made equal overall concessions (in terms of

√
dx1dx2).

Now we change our intuition: we consider a surface measure defined on the Pareto
curve with a density corresponding to the traveling speed specified above. Then the
evaluation of concessions is performed via a density (replacing the “speed” concept).
This evaluation of utils defines the Maschler–Perles measure. The density of this
measure is

√
−dx1dx2. Along some simplex/triangle in Figure 4.1 this amounts to

τ i :=

√
a
(i)
1 a

(i)
2 .

In order to construct the solution, the total sum τ :=
∑5

k=1 τ k determines the

size of a new Simplex τ∆e. Each line segment ∆a(k)
is bijectively mapped onto

a copy τ k∆
e ⊆ τ∆e, the size of this copy is the surface measure τ k of the line

segment. This constitutes a bijective mapping κ̂ of the Pareto curve ∂U onto a
multiple τ∆e of the unit simplex. We regard the simplex τ∆e as an adjusted utility
space. Measurement within this simplex reflects measuring utils of ∂U in terms of
the MaschlerPerles density

√
−dx1dx2.

In Figure 4.1 the right hand side reflects the adjusted utility space. The intervals in
length correspond to the Maschler–Perles measure of the Pareto faces of the left side.
The centerpoint µ̂ of τ∆e is the barycenter of gravity of the transported measure,
hence corresponds to the weighted centerpoint of the left hand side Pareto curve.

Next, the barycenter µ̂ is mapped onto the weighted center point µ of ∂U by the
inverse mapping κ̂

−1, i.e., we obtain the solution µ of the bargaining problem left
hand by

(4.1) µ = κ̂
−1(µ̂).

This procedure defines the Maschler–Perles solution. A condensed verbal rephrasing
runs as follows.
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The adjusted utility space is the bijective image of the Pareto
curve onto a multiple of the unit simplex endowed with the
Maschler–Perles measure. The Maschler–Perles solution in
turn is the inverse image of the barycenter of the adjusted util-
ity space. It reflects the fair solution when utils are measured
in accordance with the superadditivity axiom.

◦ ˜˜˜˜˜˜ ◦

Now we turn to our present context: tax games and TF games. Then the Maschler
Perles measure of a Pareto surface ∂U = ∂Π{f ,t0} is given by θ(∂Π{f ,t0}) as in
(3.8). We adjust the traditional set up to our present framework. First we elaborate
on a taxatioin bargaining problem. The mapping κ̂

−1(•) is now regarded as a

parametrization and replaced by
?
x(•).

Remark 4.2. Consider a bargaining problem (0,U {t0}) resulting from a taxation
game and a TF system f . Within this context, the feasible set is a taxoid, i.e.,
U {t0} = Π{f ,t0}. Then we know the Pareto surface to be

(4.2) ∂U {f ,t0} =
⋃

k∈
◦
K

F {k,t0}.

1. The simplex ∆t0e is regarded as the utility space with respect to the distribu-
tion of t0 units of currency available for taxation. According to Corollary 2.2,
see (2.10), we obtain the parametrization

(4.3)
?
x(•) : ∆t0e → ∂U {t0} ,

which is the composition of the local parametrizations

(4.4)
?
xk(•) := ∆t0e

k
→ F {k,t0}

2. The measure θ is defined via (3.8) and transported from ∂U {t0} to ∆t0e via(
?
x(•)

)−1

; the image is called
?

θ:

(4.5)
?

θ(•) := θ ◦
(

?
x(•)

)−1

= θ(
?
x(•))

(the transportation of measures occcurs contravariant) . We regard θ to supply
the measurements of utils according to the rationale of the Maschler–Perles
solution as above.

3. The barycenter of ∆t0e
k

with respect to the measure
?

θ is

(4.6)
?

βk =
1

?

θ(∆t0e
k

)

∫

∆
t0e
k

t

?

θ(dt) .
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Therefore, the barycenter of ∆t0e is

?

β :=
∑

k∈
◦
K

?

θ(∆t0e
k

)

?

βk

∑
l∈

◦
K

?

θ(∆t0e
l

)

=
1

∑
l∈

◦
K

?

θ(∆t0e
l

)

∑

k∈
◦
K

∫

∆
t0e
k

t

?

θ(dt)

=
1

?

θ(∆t0e)

∫

∆t0e

t

?

θ(dt) ∈ ∆t0e .

(4.7)

As in the traditional approach, the barycenter is the weighted centerpoint of
the adjusted utility space. Te weights are supplied by the Maschler–Perles
surface measure θ. Thus, concessions and gains are weighted accordingly,
based on the superadditivity axiom.

4. Finally, the Maschler–Perles solution to the bargaining problem V t0 = (0,U t0)

is obtained by inverse transporting of
?

β to ∂U {t0}, i.e.,

(4.8) µ(V t0) :=
?
x(

?

β) =
?
x


 1

?

θ(∆t0e)

∫

∆t0e

t

?

θ(dt)


 ∈ ∂U {t0} .

We refer to the last sentence in Example 4.1 as to a short verbal rephrasing.

◦ ˜˜˜˜˜˜ ◦

This development now leads to the final step: we extend the procedure in order to
present the Maschler–Perles–Shapley value of a TF game. In this case, the simple
notion of an adjusted utility space (defined by a multiple of the unit simplex) does
not suffice. The generalization is provided by the adjusted TU game (I,P, v̂). The
values {v̂(S) (S ∈ P)} each constitute an adjusted utility space for the coalitions.

We formulate this version within the framework of Remarks 4.3 and 4.6.

Remark 4.3. Consider the profit game (I,P, v) and a TF system

(4.9) f {v(I)} = (f
{v(I)}
1 , . . . , f {v(I)}

n )

for the distribution of v(I). As in Definition 1.3, we assume that the function

(4.10) f {v(S)} := f {v(I)}

| [0,v(S)] .

serves as a TF system for coalition S ∈ P. This constitutes the TF game (I,P,V {v})
via (1.21), Definition 1.3. That is, for some S ∈ P we have

(4.11) ∂V {v(S)} = f{v(S)}
(
∆{v(S)e}

)
(S ∈ P) .
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as in (2.1).

In the context of Definition 1.3 the local linear parametrizations are defined by
(2.4),(2.7) and hence do not change in dependence of the coalitions. Thus we have
(cf. Definition 2.1)

(4.12) f |∆v(S)e
k

=
?
x(•)|∆v(S)e

k

=
?
xk(•) (k ∈

◦

K
{v(S)}) .

The composition of these mappings is the universal linearization

(4.13)
?
x(•) : ∆v(I)e → ∂V {v}(I) .

We use this notation uniformly for the representation, i.e.,

?
x(•) : ∆v(S)e → ∂V {v}(S) (S ∈ P)

implying
?
x(•)|∆v(S)e = f{v(S)}

(4.14)

Observe that all values {v(S)}S∈P are adapted to the grid K
{v(I)} and in turn gen-

erate (sub–)grids K
{v(S)}. For S ∈ P, we can then speak of relevant sequences

k ∈
◦

K
{v(S)} adapted to v(S). Recall that the grid size is referring to K ′ = K

v(S)
v(I)

as

in (1.14).

The Maschler–Perles measure on the Pareto surface of the taxoid V {v(S)} is computed
according to formula (3.8). Thus, we find

(4.15) θ(∂V {v}(S)) =

(
v(S)

K ′

)n−1 ∑

k∈
◦
K{v}

(S)|Lk| n

√√√√
(
∏

i∈I

(ciki)

)n−1

(S ∈ P).

which in view of (4.11) and (4.12) reads

(4.16) θ(∂V {v}(S)) = θ
(
f {v(S)}(∆{v(S)e})

)
= θ

(
?
x(∆{v(S)e})

)

using the locally linear representation
?
x(•) of f .

◦ ˜˜˜˜˜˜ ◦

The following definition incorporates the measurements of concessions and gains in
terms of the Maschler–Perles measure to the context of the profit game. As such we
view the adjusted game to be the appropriate generalization of the adjusted utility
space exemplified in Remark 4.2.

Definition 4.4. [The Adjusted Game]

Let (I,P, v) be the profit game and let

(4.17) f {v(I)} = (f
{v(I)}
1 , . . . , f {v(I)}

n )
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be a TF system for the distribution of v(I). For S ∈ P let f {v(S)} be the derived
TF system according to (1.19), see also (4.10) and (4.11).

The adjusted TU game induced by v and f {v(•)} is the coalitional function

(4.18) v̂ = v̂
f = v̂

v,f{v(I)}

: P → �

given by

v̂(S) =

(
v(S)

K ′

)|S|−1 ∑

k∈
◦
K{v(S)}

|Lk| |S|

√√√√
(
∏

i∈I

(ciki)

)|S|−1

= θ(∂V {v}(S)) = θ
(

?
x(∆{v(S)e})

)
(S ∈ P).

(4.19)

In particular, we obtain for the grand coalition

v̂(I) =

(
v(I)

K

)n−1 ∑

k∈
◦
K{v(I)}

|Lk| n

√√√√
(
∏

i∈I

(ciki)

)n−1

= θ(∂V {v}(I)) = θ
(

?
x(∆{v(I)e})

)
(4.20)

• ˜˜˜˜˜˜ •

We illustrate the concept by an example of a linear TF system. The measurement
in terms of adjusted utils (Remark 4.2) is particularly obvious within this context.

Example 4.5. [The Linear TF System ]

Let n ≤ 3 and let v : P → �
+ be the profit game. Then, for any relevant sequence

k we know that |Lk| = 1 ([12], Section 2).

First, let |S| = 2. Then V v(S) is a two–dimensional cephoid. The relevant sequences
are given by (k, (K ′ − (k − 1)) for k, 1 ≤ k ≤ K ′.

That is,

(4.21) ∂V {v}(S) =

K ′∑

k=1

= ∆
c
k

K

is a concave Pareto curve consisting of line segments. We specify the example so

that, for k ∈
◦

K, all slopes are equal, say ck = co for all k ∈
◦

K. Then Pareto curve
degenerates into the straight line

(4.22) ∂V {v}(S) = K ′∆co
v(I)
K = ∆

K
′v(I)
K

co = ∆v(S)co .

This indicates that ∂V {v(S)} reflects the NTU version of a side payment game with
fixed rates of utility transfer specified by co. Now, if we turn to the adjusted TU



? Section 4: The Value ? 18

game, we obtain by (4.19) for |S| = 2:

v̂(S) =

(
v(S)

K ′

) ∑

k∈
◦
K{v(S)}

√√√√
(
∏

i∈S

(ciki)

)

=

(
v(S)

K ′

) ∑

k∈
◦
K{v(S)}

√
(c2

o
c3
o
)

=

(
v(S)

K ′

) K ′∑

k=1

√
(c2oc

3
o)

=

(
v(S)

K ′

)
K ′
√
(c2oc

3
o) = v(S)

√
(c2oc

3
o)

(4.23)

Thus, the worth of coalition S ∈ P is adjusted by the density of the Maschler–Perles
measure in two dimensions. In particular, v̂ and v coincide whenever co = e is
the unit vector and hence V {v(S)} = ∆v(S)e.

Next, consider the case n = 3. As |Lk| = 1 holds true as well, we come up with an
analogous result, i.e.,

(4.24) v̂(I) = v(I)
3

√
(c1oc

2
oc

3
o)

2

with the same interpretation: the adjustment is induced by the Maschler–Perles
measure in 3 dimensions.

◦ ˜˜˜˜˜˜ ◦

Now we present the construction of the Maschler–Perles–Shapley value for a TF
game, based on the notion of the adjusted TU game (Definition 4.4 ).

Formulae (4.19) and (4.20) are analogs to (3.8): the Maschler–Perles measure for
the Pareto surface of a bargaining problem is replaced by the Pareto measures with
respect to the TF game, that is by the adjusted TU game. Next the barycenter
of the transported measure is replaced by the Shapley value and the solution is

obtained by the inverse mapping κ−1(•) or rather ?
x(•) onto the Pareto set of V {v}.

Thus, other than the traditional approach of “admitting side payments” (initiated
by Shapley [13]) we do not just take the Lebesgue measure of a util for its worth
but the corresponding Maschler–Perles measure. This explains the introduction of
the adjusted TU game.

Remark 4.6. We proceed analogously to the development in Remark 4.2.

1. Given a profit game (I,P, v) and a TF system f {v(I)}, we construct the TF

game (I,P,V {v} accoeding to Definition 1.3.

2. The mapping
?
x(•) is suitably modified to be the universal linearization sug-

gested by (4.13). It satisfies

(4.25)
?
x(•) : ∆v(S)e → ∂V v(S) (S ∈ P)
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This mapping provides a parametrization. Essentially we obtain for the grand
coalition:

(4.26) (∆v(I)e,
?
x(•)) parametrizes ∂V {v}(I).

The parametrization plays the role of the inverse mapping κ̂
−1 in Example

4.1.

3. The Maschler–Perles measure θ (see (3.8)) is transported from ∂V {v(I)} to

∆v(I)e via
(

?
x(•)

)−1

. The image is called
?

θ.

(4.27)
?

θ(•) := θ ◦
(

?
x(•)

)−1

= θ(
?
x(•))

We obtain

?

θ(∆v(I)e) = θ(
?
x(∆v(I)e)) = θ(∂V {v}(I))

= =

(
v(I)

K

)n−1 ∑

k∈
◦
K{v(I)}

|Lk| n

√√√√
(
∏

i∈I

(ciki)

)n−1

= v̂
f (I) ,

(4.28)

by (4.20). Thus, the adjusted game enters the scene in analogy to the adjusted
utility space. For S ∈ P, there is a relation analogue to (4.28), namely

(4.29)
?

θ(∆v(S)e) = v̂
f (S) (S ∈ P) .

4. The barycenter is replaced by the (side payment) Shapley value Φ of the
adjusted game. The correct normalization is implied by Φ(v̂)(I) = v̂(I) As
a consequence we obtain

(4.30) Φ(v̂) ∈ v̂(I)∆e hence
v(I)

v̂(I)
Φ(v̂) ∈ v(I)∆e .

5. By means of
?
x(•) this quantity is now transported to ∂V v(I). The result

obtained this way is MPS value.

◦ ˜˜˜˜˜˜ ◦

Combining, we obtain the the following definition.

Definition 4.7. Let (I,P, v) be the profit game and let f{v(I)} be a TF system

for the distribution of v(I). Let (I,P,V {v}) be the TF game resulting from v and

f {v(I)} and let (∆v(I)e,
?
x(•)) be the global parametrization of ∂V {v}(I). Moreover,



? Section 4: The Value ? 20

let v̂f be the corresponding adjusted TU game. The Maschler–Perles–Shapley
value (the MPS value) of V {v} is

(4.31) χ(V {v}) :=
?
x

(
v(I)

v̂
f(I)

Φ(v̂f )

)
=

?
x

(
v(I)

v̂
v,f{v(I)}

(I)
Φ(v̂v,f{v(I)}

)

)
.

We offer a short verbal rephrasing analogous to the one in Example 4.1.

The adjusted TU game reflects a bijective image of the Pareto
curve for each coalition onto a multiple of the unit simplex
endowed with the Maschler–Perles measure. The Maschler–
Perles–Shapley value in turn is the inverse image of the Shapley
value of the adjusted TU game. It constitutes the “value” or
“power index” when utils are measured in accordance with the
superadditivity axiom.

• ˜˜˜˜˜˜ •

Within the remaining part we prove that the Maschler–Perles–Shapley value enjoys
the traditional covarianvce properties. It is Pareto efficient, covariant with affine
transformations of utility, and anonymous.

Lemma 4.8. The MPS–value provides an assignment feasible for the grand coalition
of the NTU game V {v}, i.e., χ is a Pareto efficient solution concept.

• ˜˜˜ ◦˜˜˜ •

Proof: Obvious because of (4.30) we have

(4.32)
v(I)

v̂(I)
Φ(v̂) ∈ v(I)∆e

and therefore by (4.13)

(4.33) χ(V {v}) =
?
x

(
v(I)

v̂
f(I)

Φ(v̂f )

)
∈ ?
x(v(I)∆e) = ∂V {v}(I) .

q.e.d.

Lemma 4.9. The MPS–value is covariant with linear transformations of utility
(l.t.u.). That is, for a linear mapping

(4.34) L :
�n → �n, L(u1, . . . , un) = (α1u1, . . . , αnun)

with positive coefficients (α1, . . . , αn) it follows that

(4.35) χ(LV {v}) = L(χ(V {v}))

• ˜˜˜ ◦˜˜˜ •
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Proof:

Given a profit game (I,P, v) and a TF system f {v(I)}, the proof comprises clarifying
the action of an l.t.u. on the various objects involved.

1stSTEP :

Let (I,P,V {v}) be the TF game generated. The action of an l.t.u. on V {v} is
induced by the action on f . For t0 ∈

�
+ we have

(4.36) Lf {t0}(•) = L
(
f
{t0}
1 (·), . . . , f {t0}

n (·)
)

=
(
α1f

{t0}
1 (·), . . . , αnf

{t0}
n (·)

)
.

The action on the NTU game is suitably taken to be

LS(V
{v}(S)) =

(
αif

{v(S)}
)
i∈S

(S ∈ P) ,
(
LV {v}

)
(S) :=

∏
i∈I αi∏
i∈S αi

LS(V
{v}(S)) (S ∈ P) ,

(4.37)

and in particular
(4.38)(

LV {v}
)
(I) := L

(
V {v}(I)

)
= L(fv(I)(t) t ∈ ∆v(I)e) = (Lfv(I))(t) t ∈ ∆v(I)e)

2ndSTEP :

The action of L on the adjusted game v̂ = v̂
{v,f{v(I)}} follows from an inspection of

(4.20). By (4.37) it follows that the “local coefficients” cik as specified to represent
f {v} in (4.20) are just multiplied by the factor

(4.39)
∏

i∈I

αi =: Pα .

We obtain

(4.40) v̂
{v,Lf{v(I)}} = θ

(
∂LV {v}(I)

)
= Pαθ

(
∂V {v(I)}

)
= Pαv̂

{v,f{v(I)}} ;

for short

(4.41) v̂
Lf = Pαv̂

f
.

3rdSTEP :

Finally, we discuss the parametrizing mappings. We have

?
x(•) = ∆v(I)e → ∂V v(I)

with inverse
?
κ(•) = ∂V v(I) → ∆v(I)e .

(4.42)

Analogously, the inverse for the transformed NTU game is

∧
κ(•) : ∂LV {v}(I) → Pα∆v(I)e

which provides the parametrization

x̂(•) : Pα∆v(I)e → ∂LV {v}(I) = ∂L(V {v}(I)) .

(4.43)
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The first line in (4.43) writes

(4.44)
∧
κ(L(•)) = Pα ?

κ(•) .

This is now reformulated

(4.45)
∧
κ(L(

?
x(◦))) = Pα◦

or

(4.46)
∧
x(Pα◦) = L(

?
x(◦)) .

4thSTEP :

Combining these results, we obtain :

(4.47)

χ(LV {v}) = x̂
(

Pαv(I)

v̂Lf (I)
Φ(v̂Lf)

)
− applying (4.43) ,

= x̂
(

Pαv(I)

Pαv̂f (I)
Φ(P αv̂

f )
)

− by (4.41) ,

= x̂
(
Pα v(I)

v̂f (I)
Φ(v̂f)

)
− by linearity of Φ ,

= L
(

?
x
(

v(I)

v̂f (I)
Φ(v̂f )

))
− by (4.46) ,

= L(χ(V {v})) .

q.e.d.

Lemma 4.10. The MPS–value is anonymous. That is, for a permutation

(4.48) π : I → I,

it follows that

(4.49) χ(πV {v}) = π(χ(V {v}))

• ˜˜˜ ◦˜˜˜ •

Proof:

Again we first clear up the action of a permutation on vectors, games, etc. Recall
that, for u ∈ �n and a coalitional function v, the action of π is given by

(4.50) (π(u))i := uπ−1(i) (i ∈ I)

and

(4.51) (πv)(S) := v(π−1(S)) (S ∈ P) .
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1stSTEP : Given a profit game (I,P, v) and a TF system f{v(I)} we have

(4.52) (πf{t0})(•) = π
(
f
{t0}
1 (.), . . . , f {t0}

n (.)
)

=
(
f
{t0}

π−1(i)

)
i∈I

The action on the NTU game (listed for I only) is, therefore,

(
πV {v}

)
(I) := π(V {v}(I)) =

{
(πf {v(I)})(t) t ∈ ∆v(I)e

}

= {π−1
(
f
{v(I)}
1 (t), . . . , f {v(I)}

n (t)
)

t ∈ ∆v(I)e}
(4.53)

2ndSTEP :

The action of π on the adjusted game v̂ = v̂
{v,f{v(I)}} follows from the way permu-

tations act on measures. This is

(4.54) πθ(•) : = θ(π−1(•)) .

We obtain

(4.55) v̂
{v,πf{v(I)}} = θ

(
∂(πV {v})(I)

)
= πθ

(
∂V {v(I)}

)
= πv̂

{v,f{v(I)}}
.

3rdSTEP :

Finally, we discuss the parametrizing mappings. We have

?
x(•) = ∆v(I)e → ∂V v(I)

with inverse
?
κ(•) = ∂V v(I) → ∆v(I)e .

(4.56)

Analogously, the inverse for the permuted NTU game is (as πv̂(I) = v̂(I))

∧
κ(•) : ∂(πV ){v}(I) → ∆v(I)e = ∆πv(I)e

which provides the parametrization

x̂(•) : ∆πv(I)e → ∂(πV ){v}(I) = ∂π(V {v}(I)) .

(4.57)

The first line in (4.57) writes

(4.58)
∧
κ(π(•)) = π(

?
κ(•)) .

This is now reformulated

(4.59)
∧
κ(π(

?
x(◦))) = π(◦)

or

(4.60)
∧
x(π(◦)) = π(

?
x(◦)) .

4thSTEP :
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Combining these results we obtain :

(4.61)

χ(πV {v}) = x̂
(

v(I)

v̂πf (I)
Φ(v̂v,πf)

)
− applying (4.57) ,

= x̂
(

v(I)

πv̂f (I)
Φ(πv̂f )

)
− by (4.55) ,

= x̂
(

v(I)

πv̂f (I)
πΦ(v̂f )

)
− by anonymity of Φ ,

= x̂
(

v(I)

v̂f (I)
πΦ(v̂f )

)
− as πv̂(I) = v̂(I)

= x̂
(
π
(

v(I)

v̂f (I)
Φ(v̂f)

))
− as π is a linear mapping

= π
(

?
x
(

v(I)

v̂f (I)
Φ(v̂f )

))
− by (4.60) ,

= π(χ(V {v})) .

q.e.d.

We conclude this presentation by collecting all results.

Theorem 4.11. The Maschler-Perles–Shapley value for TF games is Pareto effi-
cient, covariant with affine transformations of utility, and anonymous.

• ˜˜˜ ◦˜˜˜ •
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