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Abstract

The Taxation Game is a cooperative game played between a set of coun-
tries I = {1, . . . , n} admitting the operation of a multinational enterprise
(MNE, “the firm” ) within their jurisdiction. The firm, when operating
within the territory of a subgroup S ⊆ I of countries (a coalition) will
generate a profit. Cooperating countries can agree about a share of the
profit to be available for imposing taxes according to their rules and
specifications, i.e., their tax rate or tariff.

If the taxation basis, i.e., the profit obtained by the firm, is taken
as the (monetary) value of the game, then we obtain a side payment or

TU game, represented by a coalitional function
◦
v defined on coalitions.

This version is discussed by W. F. Richter [5],[6]. This author suggests
that countries should agree on an allocation of the tax basis, i.e., the to-
tal profit v(I) generated when the firm is operating in all participating
countries. However, the profit obtained by the firm when (hypotheti-
cally) operating in in a subgroup (a coalition) S ⊆ I of all countries
should be taken into account. Consequently, the share of the tax basis
alloted to a country should be determined by the Shapley value of the
taxation game.

The Shapley value “as a tool in theoretical economics” [14], [15] has
widely been applied in Game Theory and Equilibrium Theory, but also
in applications to Cost Sharing problems. We recall the Tenessee valley
project ([18]), the determination of airport fees ([1]), and many others .
By his approach Richter creates an interesting new field of applications.

Within this paper we present a modification of this model by intro-

ducing the game
?
v dual to

◦
v. Moreover, we introduce the tariffs of

countries, as the incentives of all parties involved (and actually of the
firm) are based on their actual tax income depending on the tariffs.

Then the resulting game is of NTU character and involves the tariffs.
To this NTU game we apply a version of the Shapley NTU value. This
way we characterize an agreement of the countries involved regarding
the share of profit and the taxes resulting.

A particular version of an NTU–game is given by a “bargaining
problem” for n countries. For simplicity of the argument we start out
with this version and dicusse the bargaining solution which are taylored
versions of a Shapley version concept. We particularly deal with the
Maschler–Perles solution ([4]) based on superadditivity. Here, we focus
on a suitable generalization of the Maschler–Perles solution as presented
in [12].
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1 Profit and Tariffs

The coalitional function as a concept in Game Theory appears in the TU and NTU
version, i.e., Transferable Utility games and Non Transferable Utility games. We
recall some essential definitions.

Definition 1.1. A cooperative (“side payment”) TU game is a triple

(1.1) (I,P, v) .

I = {1, . . . , n} is the set of players , P = {S S ⊆ I} is the system of coalitions ,
and

v : P →
�

+ , v(∅) = 0 , v({i}) = 0 (i ∈ I)

is the coalitional function .

• ˜˜˜˜˜˜ •

Intuitively, for any coalition S ∈ P of players, v(S) denotes the worth coalition S
can achieve whenever the members cooperate.

We consider a Multinational Enterprise (“MNE”, the firm) operating in certain n

countries (“jurisdictions”) that consider an agreement about how to allot the firms
profit for taxation purposes. Thus, the firm induces a cooperative game between
the countries, the coalitional function of which is specified by its profit generated
within various groups of countries available to the firm for operation. This model is
formulated byW.F. Richter [5], [6]. The author suggests that a firm residing in one of
the cooperating countries is allowed to carry out business in each of those country
and that the profit earned on such business is taxed according to a jointly agreed
system of rules. Within this model only the tax basis is considered for allocation,
the tariffs of the various countries are not mentioned.

The model involves a simplified version to the profit concept: it is “pure return
earned on know how”. We accept this approach for further discussion.

Based on this idea, a firm allowed to be operating in various groups of countries

determines a coalitional function. We obtain a cooperative TU game (I,P,
◦
v) as

follows.

The players in I = {1, . . . , n} are the countries to engage in bargaining about an
agreement regarding the allocation of the firm’s profit for taxation. P = {S S ⊆ I}
describes subgroups (“coalitions”) of countries that will agree about the taxation

of the total revenue of the firm. The coalitional function
◦
v denotes the taxable

profit (“earned on know how”) obtained by the firm whenever it operates freely
within the territory/jurisdiction of all members of a coalition S. Then following
Richter’s definition ([5],[6]) we obtain

Definition 1.2. (I,P,
◦
v) is the profit game.

• ˜˜˜˜˜˜ •
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For a TU game v, an imputation is a vector x ∈
�

n
+ satisfying

∑
i∈I xi = v(I).

Equivalently, this amounts to an additive function

x : P →
�

+, x(I) = v(I) ,x(S) =
∑

i∈S

xi (S ∈ P) .

An imputation is a possible distribution of the worth obtainable by the grand coali-

tion. In the present context, an imputation for
◦
v can be seen as a “profit allocation”,

meaning that the share xi = x({i}) is allotted for taxation to country i ∈ I if all
countries i ∈ I (the grand coalition) agree on x.

The question arises which imputation x will be supported, justified, or agreed upon.
This discussion does not take place on the scene but its incorporated in a weighing
of power derived from the game. That is, a player/country i ∈ I derives influence or
power from their abilities reflected by their membership in various coalitions S ∈ P.
From the viewpoint of Game Theory, this points to an imputation identified as a
“power index” based on an axiomatization, that is, to the Shapley value Φ(v),
a concept widely used in Game Theory. The Shapey value provides an imputation
which is based on axioms of Pareto efficiency (i.e., it yields a imputation), symmetry
(i.e., it is independent on the players names or appearance in an ordering), a dummy
axiom (i.e., a player who never contributes will not get a share), and additivity.

This additivity axiom is crucial and far reaching and, as always in Game Theoretical
models, stimulates debate. It is frequently based on von Neumann–Morgenstern
utility (which requires the introduction of lotteries) and thus emphasizes the side
payment character of the set–up. However, there occurs a serious problem inasmuch
as “adding two firms” or considering the “expected firm” under the rule of lotteries
can be justified in the present context. Richter does not argue additivity directly
but considers the “extension” of one and the same firm when its market is opened
up to another country i ∈ I. This amounts to exploiting marginal properties of the
Shapley value which result from additivity.

This approach (according to the rationale of the Shapley value) implies, that even-
tually all countries agree to cooperate within the grand coalition I, that is, the firm
is permitted to operate in the full market of all countries involved.

Presently we entertain some doubts regarding the profit game to constitute the
appropriate framework. The actual payoff for a country depends essentially on its
tariff. Also, the firm reporting tax returns may find itself in a different situation
after its payoffs are computed according to the tariff of countries involved.

Taxable revenue obtained via the firm causes various incentives in the countries
involved because of the varying tariffs. In addition, the variation of tariffs causes
friction between countries. This holds typically true for the members of the EU.
Tariffs are used strategically to provide incentives to a firm for moving operations
to a more benevolent country. Critically, this could provide incentives to the firm
after countries have agreed upon a share of its profit for taxation.

The firm is not a player in the context of the profit game, but it may well influence
the profit by a decision no to enter a “common market” after its tax burden has
been agreed upon.
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Thus, one could argue that – contrary to the generally accepted character of the
coalitional function – a coalition S of countries is not capable of ensuring itself the

profit
◦
v(S). In particular, an agreement according to the Shapley value that allots

certain shares of the firms profit to countries for taxation completely disregards the
reaction of the firm to this situation – which seems to constitute a self contradictory
element in the model. If countries - after an agreement is known – set up high tariffs
in order to increase their income, this may result in a reaction of the firm not to
operate in such countries – rendering the model obsolete.

A firm forced to operate in a high taxation country (Germany) via an agreed “profit
allocation” may well decide to shift operations to a low taxation country (Ireland) –
which is actually the present situation and which the attempt to share taxes should
counterbalance. The firm could thus decrease or stop activities in the high taxation
country for the benefit of competing countries. This basic instability reflects the
nature of the profit game – it shows “increasing returns to scale” for the countries
involved. By contrast, the firm faces increasing incentives to leave a country when
its share to be taxed in this country is growing.

At this stage we suggest, therefore, that the game under consideration should be
given by the dual profit game. We recall the general definition.

Definition 1.3. Let (I,P, v) be a a cooperative side payment game. The dual

game (I,P,
?
v) is provided by the coalitional function

(1.2)
?
v : P →

�
+ ,

defined via

(1.3)
?
v(S) := v(I)− v(Sc) (S ∈ P)

• ˜˜˜˜˜˜ •

Intuitively, for any coalition S ∈ P,
?
v(S) denotes the worth coalition Sc can prevent

coalition S to achieve.

We interpret this in our context of the profit game:
◦
v(Sc) denotes the profit the

firm can achieve by operating completely outside of S. Then
◦
v(I) −

◦
v(Sc) is the

possible profit coalition S can be prevented to make use of (eventually in I) by
the firm completely blocking all operations within S. That is, as the discussion is

centered around the distribution of the profit
◦
v(I) =

?
v(I), the quantity

?
v(S) reflects

the bargaining power of S with respect of what S could definitely be blocked off
if the firm decides to act most unfriendly towards S. If these quantities are being
regarded as to influence the final outcome for I, the firm would be considered to
have no incentive to deviate from the distribution agreed upon.

Now luckily, all of Richters arguments are being preserved when switching from
◦
v to

?
v. This follows from the invariance of the Shapley value under the duality operation,
i.e., from

(1.4) Φ(
?
v) = Φ(v) .
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for any coalitional function v. Thus, his model can be upheld and is even strength-
ened by considering the dual game. This justifies our emphasis on the dual game
within what follows.

Obviously, the tariffs of the countries are essential. We, therefore, aim to incorporate
tariffs thus generating a more elaborate model of a game without side payments.

We recall

Definition 1.4. A (cooperative) NTU game is a triple (I,P,V ). Here, I =
{1, . . . , n} is the set of players , P = {S|S ⊆ I} is the system of coalitions ,
and V : P → P(

�
n
+) is the coalitional function . V assigns to any coalition S a

compact and comprehensive set of “utility vectors” V (S) ⊆
�

n
S+.

We assume

(1.5) V ({i}) = {0} (i ∈ I) .

• ˜˜˜˜˜˜ •

The standard interpretation has it that V (S) is the set of utility vectors that can
be ensured to the members of coalition S by cooperation. The (utility) vector 0
reflects the fall back position (“status quo”) for all players should cooperation fail
in every coalition. The assumption that utilities are nonnegative and the status quo
is 0 is not severe. Casually, we refer to V as to “the game” as well.

A particular version of an NTU game is obtained when only the grand coalition
V (I) is effective. Formally, all coalition S except I satisfy V (S) = {∅}. This
situation is emphasized by

Definition 1.5. A bargaining problem is a pair V 0 = (0,U) such that U ⊆
�

n
+

is a nonempty and comprehensive set.

• ˜˜˜˜˜˜ •

Within NTU territory, the concept of an imputation is generalized to the one of a
Pareto efficient vector.

Definition 1.6. The Pareto surface of U is denoted ∂U . For S ∈ P, the
Pareto surface of V (S) is denoted ∂V (S). A vector x ∈ ∂U (x ∈ ∂V (S)) is
called Pareto efficient for U or V (S) respectively.

• ˜˜˜˜˜˜ •

Now we describe situations derived from the distribution of a financial asset when
players apply different revenue generating tax systems. In most countries tariffs are
convex functions, at least in a certain domain. This property reflects increasing
returns to scale of revenue for the state – allegedly by arguments of “fairness”
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and “just distribution of burdens”. The concept frequently flounders when the
marginal taxation is set to be constant, e.g., once the 50% mark is reached. Yet we
will consider a tariff to be a continuous, monotone, convex, and piecewise linear
function. Such a function can be written as the convex hull of a family of linear
functions, say

(1.6) f(t) = min
k∈K

ckt+ dk (t ∈
�

+k, k ∈ K)

with suitable coefficients ck, dk (k = 1, . . . , K). We introduce the “grid” suggested
by this notation via

(1.7) K = {1, . . . , K} .

Then a tariff equals a linear function within each interval of the grid. When we
assign a tariff to each player/country i ∈ I, we end up with

Definition 1.7. Let t0 ∈
�

+, t0 ≤ K.

1. A tariff (for taxation in [0, t0], adapted to K) is a continuous, monotone,
convex, and piecewise linear function

◦

f{t0} : [0, t0] →
�

+,
◦

f(0) = 0 .

◦

f {t0}(t) =
◦
ckt+

◦

dk

(
(k − 1)t0

K
≤ t ≤

kt0

K

)
, (k ∈ K)

(1.8)

with suitable coefficients
◦
ck,

◦

dk (k ∈ K) satisfying the necessary boundary
conditions.

2. A set of positive coefficients (i.e., two matrices)

(1.9)
◦

C =
(
◦
cik

)i∈I
k∈K

,
◦

D =

(
◦

dik

)i∈I

k∈K

obeys the boundary conditions (for the construction of a tariff system), if

For i ∈ I, cik is monotone in k ∈ K ,

for i ∈ I, dik is antitone in k ∈ K ,

cik
(k − 1)t0

K
+ dik = cik−1

(k − 1)t0
K

+ dik for (i ∈ I, k ∈ K)

(1.10)

holds true.

3. A tariff system (for taxation in [0, t0], adapted to K) is a family of tariffs

(1.11)
◦

f{t0} = (
◦

f
{t0}
1 , . . . ,

◦

f {t0}
n )

such that for i ∈ I

(1.12)
◦

f
{t0}
i (t) : [0, t0] →

�
+
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satisfies

(1.13)
◦

f
{t0}
i (t) =

◦
cikt+

◦

dik

(
(k − 1)t0

K
≤ t ≤

kt0

K

)
, (k ∈ K)

with coefficients

(1.14)
◦
cik,

◦

dik (i ∈ I, k ∈ K) .

satisfying the conditions (1.10).

• ˜˜˜˜˜˜ •

Figure 1.1 depicts a typical tariff.

?

dki

k
K
t0

k−1
K

t0

◦
cik •+

◦

dik

t

◦

f
{t0}
i (•)

Figure 1.1: A tariff of country i

The above formulation does not constitute a severe restriction, one can partition
intervals in several subintervals and keep the coefficients c•• and d•• unchanged so as
to imitate any more general version. And by choosing K sufficiently large, one can
adapt a tariff system to every requirement needed. Indeed, in the context of legal
formulation tariffs are always represented as piecewise linear functions.

Now, in view of of our propensity regarding the dual version of a game, we introduce
the dual version of tariffs.

Definition 1.8. 1. Let
◦

f : [0, t0] →
�

be a tariff. The dual tariff is the
continuous, monotone, concave, and piecewise linear function

?

f{t0} : [0, t0] →
�

+, f(0) = 0 ,

given by
?

f {t0}(s) :=
◦

f {t0}(t0)−
◦

f {t0}(t0 − s) (s ∈ [0, t0]) .

(1.15)

2. Let K = {1, . . . , K} and let f {t0} be a tariff system (adapted to K). The
dual tariff system is the family of dual tariffs

(1.16)
?

f{t0} = (
?

f
{t0}
1 , . . . ,

?

f {t0}
n ) ,
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such that for i ∈ I

(1.17)
?

f
{t0}
i (t) =

?
cikt +

?

dik

(
(k − 1)t0

K
≤ t ≤

kt0

K

)
, (k ∈ K) .

holds true. The coefficients

(1.18)
?
cik,

?

dik (i ∈ I, k ∈ K)

result from the coefficients (1.14). E.g. we have

(1.19)
?
cik =

◦
ci(K−k+1) (i ∈ I, k ∈ K) .

and the boundary conditions (1.10) are satisfied with due modifications.

• ˜˜˜˜˜˜ •

?

dik

k
K
t0

k−1
K

t0

?
cik •+

?

dik

t

?

f
{t0}
i (•)

Figure 1.2: A dual tariff of country i

Figure 1.2 indicates the dual tariff to the one depicted in Figure 1.1.

A distribution of monetary values is represented by a vector t = (t1, . . . , tn) ∈
�

n
+. A tariff system reflects the taxes obtained by such monetary distributions.

Simultaneously we obtain the bargaining problem presented by such data.

Definition 1.9. Let f{t0} be a tariff system (primal or dual) and let t0 ≥ 0. Then

(1.20) Π{f} = Π{f ,t0} :=

{
f {t0}(t) t ∈

�n
+ ,

∑

i∈I

ti ≤ t0

}

is called a taxoid . The resulting bargaining problem (for the distribution of t0) is
the pair V {t0} = (0,U{t0}) with U {t0} = Π{f ,t0}.

• ˜˜˜˜˜˜ •
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More generally, consider a TU game. We assume that each of the quantities v(S) (S ∈

P) is multiple of v(I)
K

. Within the following definition, v can represent a profit game
and f may be primal or dual.

Definition 1.10. Let (I,P, v) be a TU game. Also, for S ∈ P. let

(1.21) f {v(S)} = (f
{v(S)}
1 , . . . , f {v(S)}

n )

be a tariff system for the distribution of v(S) (primal or dual). The tariff game

(resulting from v and f {v(•)} ) is the NTU game (I,P,V {v}) defined via

(1.22) V {v}(S) :=

{
f{v(S)}(t) t ∈

�S
+ ,

∑

i∈S

ti ≤ v(S)

}
(S ∈ P) .

• ˜˜˜˜˜˜ •

The dilemma regarding the definition of cooperative games in the taxation context
appears even more obvious for the NTU version. If f is primal, then the feasible
sets U or V {v}(S) are not convex as the Pareto boundary is a convex curve. This
is in eclatant contradiction to generally accepted versions of NTU Theory; with
“increasing returns to scale” one obtaines a situation intractable for solution con-
cepts. Obviously this is a very real obstacle for any agreement within governments:
if shares of taxable income are firmly allotted to tax–happy governments, they will
have a tendency to raise taxes in the name of social benefits.

This we feel motivates our emphasis on dual versions of the game.
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2 Taxoids: The Pareto Surface

Given t0 ∈
�

+ and a tariff system f {t0} we consider the Pareto surface of the taxoid
Π{f} = Π{f ,t0}, i.e.,

(2.1) ∂Π{f ,t0} :=

{
f{to}(t) t ∈

�n
+ ,

∑

i∈I

ti = t0

}
= f{t0}(∆t0e) .

For i ∈ I

f
{t0}
i (s) = ciks+ dik (

(k − 1)t0
K

≤ s ≤
kt0

K
) (i ∈ I, k ∈ K)(2.2)

holds true. Let
k = (k1, . . . , kn) ki ∈ K (i ∈ I)

be a sequence of indices taken from K. Then, f restricted to

(2.3) Q
{t0}
k

= Q
{t0}
k1,...,kn

:=




t = (t1, . . . , tn) ∈

�n
+

(k1−1)t0
K

≤ t1 ≤ k1t0
K

·
·
·

(kn−1)t0
K

≤ tn ≤ knt0
K





coincides with the (affine) linear mapping

?
xk(•) :

�n
+ →

�n
+ ,

t = (t1, . . . , tn) → (c1k1t1 + d1k1, . . . , c
n
kn
tn + dnkn)

?
xk(t) = ck ⊗ t+ dk (t ∈ Q

{t0}
k

)

(2.4)

Definition 2.1. 1. Let

(2.5) K := {k = (k1, . . . , kn) ki ∈ K (i ∈ I)}

denote the system of all possible choices of indices taken from K. For k ∈ K

define Q
{t0}
k

by (2.3) and

(2.6) ∆t0e
k

:= Q
{t0}
k

∩∆t0e .

such that

(2.7) f |∆t0e
k

=
?
xk(•)|∆t0e

k

(k ∈ K)

holds true.

2. We call a sequence k = (k1, . . . , kn) such that ∆t0e
k

6= ∅ has full dimension rele-
vant. Also, ∆t0e

k
is called a relevant polyhedron. The set of relevant sequences

is denoted
◦

K.

• ˜˜˜˜˜˜ •
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Note that ∆t0e
k

(t0 > 0) has full dimension if and only if ∆e
k
has full dimension,

i.e., the relevance of some sequence k ∈
◦

K does not depend on the dilatation factor
t0. For a relevant polyhedron the image suggested by (2.7) has full dimension and
constitutes a Pareto face of the taxoid under consideration. More precisely we have

Corollary 2.2. Let t0 ∈
�

and let Π{f} = Π{f ,t0} be the taxoid induced by a tariff
system f{t0}. The Pareto faces of this taxoid are

(2.8) F k = F {k,t0} :=
?
xk(∆t0e

k
) ⊆ ∂Π{f} (k ∈

◦

K) .

The bijection

(2.9)
?
xk(•) : ∆t0e

k
→ F k (k ∈

◦

K) .

provides a parametrization of the Pareto face F {k} in the sense of [12] and [13].
Therefore, there is a canonical global parametrization of the Pareto surface of the
taxoid

(2.10)
?
x(•) : ∆t0e → ∂Π{f} , t →

?
xk(t) (t ∈ ∆t0e

k
, k ∈

◦

K)

which is just the composition of the local parametrizations, i.e.,

(2.11)
?
x(•)|∆t0e

k

=
?
xk(•) (k ∈

◦

K) .

• ˜˜˜ ◦˜˜˜ •

We emphasize that
?
xk(•) is an (affine) linear mapping, the composed mapping

?
x(•),

is in general not linear. Indeed,
?
x(•) coincides with f {t0}, however the unifying no-

tation of (2.9) and (2.10) emphasizes the locally linear character represented by

coefficient matrices
◦

C and
◦

D (or rather their dual versions) of the boundary condi-
tions (1.9) or (1.19) .

We approach the concept of a taxoid by discussing a set of examples. We start out
for n = 2. Here the situation is well accessible. For, in two dimensions every convex
comprehensive polyhedron is a Cephoid, so we combine both aspects.

Example 2.3. Let n = 2 and let f be a dual taxation system. Then the ∂Πf is
described by a piecewise linear concave curve. As all such polyhedra are Cephoids
(Maschler–Perles [4], see also [10] for a textbook treatment) we can describe
the taxoid Πf in two ways.

On one hand we have to consider a Cephoid Π =
∑

k∈K Πa(k)
. The Pareto surface

consists of line segments which are the translates of the simplices ∆(k) = ∆a(k)
,

typically we have a Pareto face

(2.12) F (k) =
∑

κ∈K,κ<k

a(κ)1 +∆a(k) +
∑

κ∈K,κ>k

a(κ)2 = ∆a(k)

+ a(−k) ,
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∆a(1)

∆a(K)

F (k)

Πa(k)

a(−k)

Figure 2.1: A Cephoid Π in two dimensions

assuming the enumeration follows the slope of the triangles (see Figure 2.1).

On the other hand,the taxoid Πf = Πf ,t0 has Pareto faces

∂Πf ,t0
k1,k2

=
{
f t0(t) t1 + t2 = t0,

=
k1 − 1

K
t0 ≤ t1 ≤

k1

K
t0,

k2 − 1

K
t0 ≤ t2 ≤

k2

K
t0

}
.

(2.13)

We obtain a relevant sequence k = (k1, k2) if and only if we choose k1 = k and
k2 = K − (k− 1), i.e., k = (k,K − (k− 1)). The corresponding relevant polyhedron
(i.e., triangle) is

∂Πf ,t0
k

=
{
f t0(t) t1 + t2 = t0,

=
k − 1

K
t0 ≤ t1 ≤

k

K
t0,

K − k

K
t0 ≤ t2 ≤

K − (k − 1)

K
t0

}

=
{
f t0(t) t ∈ ∆t0e

k

}

=
?
xk(∆t0e

k
) = {ck ⊗ t t ∈ ∆t0e

k
} + dk

= F k .

(2.14)

Hence, as a consequence to enumerating the simplices (triangles) involved according
to slope, we find the system of relevant sequences to be

(2.15) K = {(1, K), (2, K − 1), . . . , (K − 1, 2), (K, 1)} .

The Pareto faces of ∂Π{f} are listed according to the slope of the boundary simplices
∆{ak}.

For completeness we note the data when comparing the representations (2.14) and
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(2.12). After some computation it turns out that

ck =
K

t0
a(k) , dk = a(−k) −

(
(k − 1)a

(k)
1 , (K − k)a

(k)
2

)

= a(−k) − ka(k) + a(k) =
∑

k∈K

a(k) − ka(k) .
(2.16)

◦ ˜˜˜˜˜˜ ◦

Next we turn to 3 dimensions. Here it is no longer true that taxoids and Cephoids
coincide. Hence the theory of Cephoids is not applicable. Rather we have to develop
an autonomous theory of taxoids. To initiate this, we continue with a set of examples
in 3 and 4 dimensions.

The graphical description of relevant polyhedra is simplified by tentatively choosing
t0 = K. We can then study the decomposition of ∆Ke into relevant subsimplices
∆Ke

k
. This version is easily translated into the version for ∆t0e and ∆t0e

k
via

(2.17) ∆t0e =
t0

K
∆Ke , ∆t0e

k
=

t0

K
∆Ke

k
.

The structure of relevant sequences and polyhedra is not affected by the transition
suggested by (2.17).

Example 2.4. Figure 2.2 reflects the case n = 3, K = 4. First we exhibit the
situation for t0 = K = 4, i.e., we study ∆4e. There are two types of n − 1 = 2
dimensional simplices. One type is just a (translated) unit simplex, the other one is
a rotated version.

(1, 0, 3)

(2, 2, 0)

(0, 1, 3)

(1, 1, 2)

(2, 0, 2)

∆4e
(1,1,3)

∆4e
(1,0,3)

4e1 4e2

4e3

Figure 2.2: Relevant polyhedra in ∆4e for n = 3, K = 4

Each of these constitutes a relevant polyhedron. To see this, consider the subsimplex
∆4e

k
of ∆4e given by k = (2, 1, 3), i.e.,

(2.18) ∆4e
(2,1,3) =

(
t ∈ ∆4e 1 ≤ t1 ≤ 2, 0 ≤ t2 ≤ 1, 2 ≤ t3 ≤ 3

)
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with vertices

(2.19) (2, 0, 2), (1, 1, 2), (2, 1, 3)

which is a translated copy of the unit simplex ∆e. The parametrization of ∆4e
(2,1,3)

can be directly taken from the sketch of Figure 2.2, we obtain

(2.20) ∆4e
(2,1,3) = {(t et = 4, 1 ≤ t1 ≤ 2, 0 ≤ t2 ≤ 1, 2 ≤ t3 ≤ 3)} .

For general t0 this leads to
(2.21)

∆t0e
(2,1,3) =

t0

4
∆4e

(2,1,3) =

{
t et = t0,

t0

4
≤ t1 ≤

2t0
4
, 0 ≤ t2 ≤

t0

4
,
2t0
4

≤ t3 ≤
3t0
4

}
.

Given some taxation system f and its linear representation
?
xk, the corresponding

Pareto face of the taxoid is

F k = F (2,1,3) =
?
x(2,1,3)(∆t0e

(2,1,3))

= {c(2,1,3) ⊗ t t ∈ ∆t0e
(2,1,3)}+ d(2,1,3)

=

{
(c12t1, c

2
1t2, c

3
3t3) et = t0,

t0

4
≤ t1 ≤

2t0
4
, 0 ≤ t2 ≤

t0

4
,
2t0
4

≤ t3 ≤
3t0
4

}
+ d(2,1,3)

(2.22)

On the other hand consider the subsimplex of ∆4e given by k = (1, 1, 3), i.e.,

(2.23) ∆4e
(1,1,3) =

(
t ∈ ∆4e 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1, 2 ≤ t3 ≤ 3

)

with vertices

(2.24) (0, 1, 3) , (1, 0, 3) , (1, 1, 2) .

which is an rotated copy of the unit simplex. The corresponding taxoidal face is

F (1,1,3) =
?
x(1,1,3)(∆t0e

(1,1,3))

= {c(1,1,3) ⊗ t t ∈ ∆t0e
(1,1,3)} + d(113)

= {c(1,1,3) ⊗ t et = t0, 0 ≤ t1 ≤
t0

4
, 0 ≤ t2 ≤

t0

4
,
2t0
4

≤ t3 ≤
3t0
4
}

+ d(113)

(2.25)

◦ ˜˜˜˜˜˜ ◦

These results are generalized for 3 dimensions:

Lemma 2.5. Let n = 3 and let f {t0} be a tariff system. Then the relevant sequences
are given by

(2.26)
◦

K = {k ∈ K ek = K + 1} ∪ {k ∈ K ek = K + 2} . =:
◦

K
K+1 ∪

◦

K
K+2

Accordingly, Πf has Pareto faces

(2.27) F k =
?
xk(∆t0e

k
) = {ck ⊗ t t ∈ ∆t0e

k
} + dk

such that
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1. ∆Ke
k

, ∆t0e
k

, and F k =
?
xk(∆t0e

k
) are (deGua) simplices if and only if

(2.28) k ∈
◦

K
K+2,

2. ∆Ke
k

, ∆t0e
k

, and F k =
?
xk(∆t0e

k
) are rotated simplices if and only if

(2.29) k ∈
◦

K
K+1 .

3.

In particular, for K = 4 we have

(2.30)
◦

K = {k ∈ K ek = 3} ∪ {k ∈ K ek = 4} =:
◦

K
3 +

◦

K
4

Hence Πf has Pareto faces

(2.31) F k =
?
xk(∆t0e

k
) = {ck ⊗ t t ∈ ∆t0e

k
} + dk

such that

1. ∆4e
k
, ∆t0e

k
, and F k =

?
xk(∆t0e

k
) are (deGua) simplices if and only if

(2.32) k ∈
◦

K
6 = {(4, 1, 1), (3, 2, 1), (2, 2, 2) (and permutations) }

2. ∆4e
k
, ∆t0e

k
, and F k =

?
xk(∆t0e

k
) are rotated simplices if and only if

(2.33) k ∈
◦

K
5 = {(3, 1, 1), (2, 2, 1) (and permutations) } .

• ˜˜˜ ◦˜˜˜ •

For dimensions n ≥ 4 it turns out that the Pareto faces of a taxoid are not necessarily
simplices.

Example 2.6. Figure 2.3 represents the relevant polyhedra of ∆2e for n = 4, K = 2.
A simplex is located in each vertex. E.g., the simplex

(2.34) ∆2e
(2,1,1,1) = {t ∈ ∆2e 1 ≤ t1 ≤ 2, 0 ≤ ti ≤ 1(i = 2, 3, 4)}

is located at the vertex 2e1. This is a unit simplex and the Maschler–Perles measure
is

(2.35) θ(∆2e
(2,1,1,1)) = 1 .

However, the polyhedron

(2.36) ∆2e
(1,1,1,1) = {t ∈ ∆2e 0 ≤ ti ≤ 1(i = 1, 2, 3, 4)}
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(1, 1, 0, 0)

(1, 0, 0, 1)
(0, 1, 0, 1)

(0, 0, 1, 1)

(0, 1, 1, 0)

2e1

2e2

2e3

2e4

∆2e
(2,1,1,1)

∆2e
(1,1,1,1)

Figure 2.3: The octahedron ∆2
1111

is not a simplex but an octahedron. The Maschler Perles volume of this octahedron
is

(2.37) θ(∆2e
(1,1,1,1)) = 4 ,

as the total measure of D2e equals 8 and each of the simplices in the corner has
measure 1.

◦ ˜˜˜˜˜˜ ◦

Example 2.7. Consider the case n = 4 and K = 6. We demonstrate the construc-
tion of simplices with unit Maschler–Perles measure filling the simplex ∆6e.

1stSTEP : The simplex

(2.38) ∆6e
(6,1,1,1)

has vertices

a1 := (6, 0, 0, 0), a2 := (5, 1, 0, 0),

a3 := (5, 0, 1, 0), a4 := (5, 0, 0, 1),
(2.39)

this is the unit simplex located at the vertex 6e1 of ∆6e see Figure 2.4.

we have ek = 9 and θ(∆6e
(6,1,1,1)) = 1.

Next,

(2.40) ∆6e
(5,2,1,1)
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has ek = 9 and vertices

(5, 1, 0, 0) (4, 2, 0, 0)

(4, 1, 1, 0) (4, 1, 0, 1)
(2.41)

This is a unit simplex as well with θ(∆6e
(5,2,1,1)) = 1.

2ndSTEP : Next consider

(2.42) ∆6e
(4,1,1,1)

This simplex is a rotated version of the unit simplex, it can be identified in Figure
2.4. We obtain ek = 7 and vertices

a234 = (3, 1, 1, 1), a134 = (4, 0, 1, 1),

a124 = (4, 1, 0, 1), a123 = (4, 1, 1, 0).
(2.43)

Up to rotation, this is a unit simplex and the Maschler–Perles measure, therefore,
equals

(2.44) θ(∆6e
(4,1,1,1)) = 1 .

4thSTEP : Next consider

(2.45) ∆6e
(3,2,1,1)

which is rotated with ek = 7 and θ(∆6e
(3,2,1,1)) = 1. Vertices are

(3, 2, 1, 0) (3, 2, 0, 1)

(3, 1, 1, 1) (2, 2, 1, 1) .
(2.46)

Similarly

(2.47) ∆6e
(2,2,2,1)

has ek = 7 and is rotated, thus θ(∆6e
(2,2,2,1)) = 1. Vertices are

(2, 2, 2, 0) (2, 2, 1, 1)

(2, 1, 2, 1) (1, 2, 2, 1)
(2.48)

3rdSTEP :

Finally, we focus on

(2.49) ∆6e
(5,1,1,1)

whic has ek = 8 and vertices

a12 := (5, 1, 0, 0), a13 := (5, 0, 1, 0),

a14 := (5, 0, 0, 1), a23 := (4, 1, 1, 0),

a24 := (4, 1, 0, 1), a34 := (4, 0, 1, 1).

(2.50)
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(5, 1, 0, 0)

(5, 0, 0, 1)

(4, 1, 0, 1)

(4, 0, 1, 1)

(5, 0, 1, 0)

(3, 3, 0, 0)

(4, 2, 0, 0)

(3, 1, 1, 1)

(3, 0, 3, 0)

(4, 1, 1, 0)
6e1

Figure 2.4: Focus on the octahedron

This is not a simplex. The vertices are depicted in Figure 2.4. It is seen that ∆6e
(5,1,1,1)

is a regular octahedron . The Maschler–Perles measure of this polyhedron is

(2.51) θ(∆6e
(5,1,1,1)) = 4 ,

which we obtain as in Example 2.6.

We conclude; for n = 4, K = 6 we find that the relevant sequences are

◦

K = K
7 ∪K

8 ∪K
9

such that

(2.52) K
7 = {k ek = 7}

contains rotated simplices,

(2.53) K
9 = {k ek = 9}

contains unit simplices, and

(2.54) K
8 = {k ek = 8}

contains octahedra.

◦ ˜˜˜˜˜˜ ◦
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Based on these examples we now describe the Pareto surface of a taxoid.

Theorem 2.8. [The Pareto Surface of a Taxoid]

Let f be a tariff system and let t0 > K. Let Π{f} = Π{f ,t0} be the taxoid generated.

1. Let k ∈
◦

K be a relevant sequence. Then

(2.55) F k =
?
xk(∆t0e

k
) = ck ⊗∆t0e

k
+ dk

is a Pareto face of Π{f}. The relevant sequences describe exactly all Pareto
faces.

2. Because of

(2.56) ∆t0e =
⋃

k∈
◦
K

∆t0e
k

the Pareto surface of Π{f} is described by

(2.57) ∂Π{f} =
⋃

k∈
◦
K

F k .

3. Let k ∈
◦

K be a relevant sequence. Then there exists a family of simplices{
?

∆l l ∈ L
k

}
such that

(2.58) ∆t0e
k

=
⋃

l∈Lk

?

∆l

4. For l ∈ L
k let

(2.59)
?

F l :=
?
xk(

?

∆l) = ck ⊗
?

∆l + dk .

Then
?

F l is a simplex on ∂Π{f} and

(2.60) F k =
⋃

l∈Lk

?

F l

holds true.

• ˜˜˜ ◦˜˜˜ •

Proof: No proof is offered. q.e.d.
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3 The Maschler–Perles Solution

We wish to extend the solution concept of Maschler–Perles [4] as developed in [10] to
tariff bargaining solutions. In a later version we will further extend this concept to
tariff games. Within this section we start out with the (generalized) Maschler–Perles
bargaining solution. Thus we focus on the bargaining problem V t0 = (0,U {t0})
with U {t0} = Π{f ,t0} (Definition 1.9).

This version may be relevant whenever the countries involved in the bargaining
process need to come up with a unanimous agreement and no data regarding the
profit of the firm within the jurisdiction of subcoalitions are available. The solution
will assign a distribution of payoffs µ(V {t0}) to the players/countries involved. This
amounts also to a share of the total revenue t0.

Let f̄ and f̂ be tariff systems and let Π̄ = Π{f̄} and Π̂ = Π{f̂} be the corresponding
taxoids. For n = 2, both taxoids are cephoids (Section Example 2.3). The (al-

gebraic) sum
?

Π = Π{f̄} + Π{f̂} is a cephoid as well and represented by some tariff

system, say
?

f . In general, the Pareto curve of
?

Π will consist of 2K line segments,

so
?

f is a tariff system constructed by means of the grid
?

K = {1, . . . , 2K}.

For n = 2 we know that the Maschler–Perles solution µ is superadditive, that is, it
satisfies

(3.1) µ(V̄
t0) + µ(V̂

t0
) ≤ µ(V̄

t0 + V̂
t0
) = µ(

?

V t0)

with the bargaining problem
?

V t0 generated by the tariff system
?

f .

Superadditivity is rationalized via the concept of von Neumann Morgenstern utility
in Game Theoretical context. However, we provide an argument without referring
to vNM-utility as provided in [10].

Assume that two groups of countries – let us call them US and EU – are engaged
in two “remote” tariff bargaining problems V 1 and V 2 ( one in Brussels and one
in Washington) simultaneously. Initially, these are separate affairs of two sets of
administrations. Each one regards liberalizing the markets and introducing tariffs
for the mutual unions of countries. This way, joint standards are provided for firms
operating in the complete area of both jurisdictions. Given a solution concept, in
our case the Maschler–Perles solution µ, the representing officials settle for µ(V 1)
and µ(V 2) respectively and separately.

Later on negotiations are initiated between the upper political echelons of the US and
the EU concerning a joint tariff system and taxation of firms active in both unions.
It is consent that the result should be advantageous for both parties, otherwise there
would be no possible agreement. Both administrations consider concessions in V 1

versus gains in V 2 and vice versa. The utilities and the status quo point available are
now {x1+x2|x1 ∈ U 1,x2 ∈ U 2} =: U 1+U 2 and 0+0 = 0. That is, the countries
involved face the bargaining problem V 1 + V 2. The solution is then µ(V 1 + V 2).
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Now, as the solution concept is superadditive, i.e., µ(V 1 + V 2) ≥ µ(V 1) + µ(V 2),
then all countries of both communities profit from a quid quo pro.

For general n we cannot claim a version of superadditivity as the structure of taxoids
does not allow for algebraic summation. However, the axiomatic justification of the
Maschler–Perles solution in case of 2 dimensions is applied to justify generalization
to higher dimensions, see the development for cephoids in [10].

Now we summarize shortly a version of the Maschler–Perles solution adapted to
tariff bargaining solutions (and tariff games). To this end, let us first recall the
definition of the surface measures involved.

Remark 3.1. The Maschler–Perles measure ι∆ is defined for Cephoids and – by
a limiting procedure – for smooth bodies, see [10], [11]. It is normalized such that

ι∆(∆
e) = 1 holds true for the unit simplex and ι∆(∆

a) = n

√(∏
i∈I ai

)n−1
for a

deGua simplex ∆a. The Maschler Perles Measure ι∆ is then defined for Cephoids by
additive extension, i.e., via the particular structure of such polyhedra. By contrast,
the deGua measure ϑ is obtained by a standard calculus of measure and integral
defined on certain surfaces. Formally, for some integrable function F defined on a
surface Γ, a parametrization x(•) : � → Γ with functional determinants Di, we
have

∫

∂Γ

Fdϑ =

∫

∂Γ

F
n

√
dn1 · · · dnn

=

∫

�
F (x(�)) n

√
D1(x(�)) · · ·Dn(x(�))dt1 · · ·dtn .

(3.2)

Here, n1, . . . , nn describes a linear system of normals in direction of the axes. As the
continuous version is not applied in our context, we do not elaborate on the subject.
We refer to [12], in particular Lemma 3.8., for the details.

The relation between both “surface measures“ for a deGua Simplex ∆a is given by

(3.3) ι∆(•) = o(n)ϑ(•) on ∆a ,

with some constant o(n) depending on the dimension only. In order to avoid per-
manent reference to the factor o(n) we introduce a measure

(3.4) θ := o(n)ϑ .

Then we have θ = ι∆ on cephoids and in particular for two dimensions on line
segments. Hence, we continue calling θ the Maschler–Perles measure. The extension
to taxoids is then naturally given by (3.2) and does not require a reference to ι∆.

◦ ˜˜˜˜˜˜ ◦

Based on our results in Section 2 we collect the data for taxoids.

Theorem 3.2. [The Maschler–Perles Measure]

Let f be a tariff system and let t0 > K. Let Π{f} = Π{f ,t0} be the taxoid induced.
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1. For n = 2 and k ∈
◦

K, ∆Ke
k

is a unit simplex, consequently θ(∆Ke
k

) = 1.
Moreover, for some k = (k,K − (k − 1)),

(3.5) θ(F k) =
2

√
a
(k)
1 a

(k)
2 =

t0

K
2

√
c1k1c

2
k2

=
t0

K
2

√
c1kc

2
K−(k−1) ,

by (2.12) and (2.16).

2. For n = 3, Lemma 2.5 characterizes the relevant sequences. The Maschler-

Perles measure for k ∈
◦

K is

(3.6) θ(∆Ke
k

) = 1, θ(∆t0e
k

) =

(
t0

K

)2

, θ(F k) =

(
t0

K

)2
3

√√√√
(
∏

i∈I

ciki

)2

3. In general , by (2.58) and (2.59), a Pareto face F k of a taxoid Π{f} is a union
of simplices and the measure θ for some F k is given by additivity. For amy

relevant sequence k ∈
◦

K and the corresponding Pareto face F k :=
?
xk(∆t0e

k
)

of Π{f}, let

{
?

∆l l ∈ L
k

}
be the family provided by Theorem 2.8, item 3.

The simplex
?

∆{l} has Maschler–Perles measure

(3.7) θ(
?

∆{l}) =
t0

K
.

Accordingly,it follows that

(3.8)
?

F l :=
?
xk(

?

∆{l}) = ck ⊗ (
?

∆l) + dk

has Maschler–Perles measure

θ(
?

F l) = θ(ck ⊗ (
?

∆{l})) = θ(ck ⊗
t0

K
∆{l})

=

(
t0

K

)n−1

θ(ck ⊗∆{l}) =

(
t0

K

)n−1
n

√√√√
(
∏

i∈I

(ciki)

)n−1

.

(3.9)

4. Hence, the Maschler–Perles measure of F k is

(3.10) θ(F k) = θ(
⋃

l∈Lk

F l?) =

(
t0

K

)n−1

|Lk| n

√√√√
(
∏

i∈I

(ciki)

)n−1

.

5. Therefore, the Maschler–Perles measure of the Pareto surface of the taxoid is

(3.11) θ(∂Π{f}) =
∑

k∈
◦
K

θ(F {k}) =

(
t0

K

)n−1∑

k∈
◦
K

|Lk| n

√√√√
(
∏

i∈I

(ciki)

)n−1

. .
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• ˜˜˜ ◦˜˜˜ •

Proof:

Obvious.

q.e.d.

We shorten our notation as follows.

Corollary 3.3. Let t0 ∈
�

+ and let f {t0} be a tariff system. For k ∈
◦

K define

(3.12) σk :=

(
t0

K

)n−1

|Lk| n

√√√√
(
∏

i∈I

(ciki)

)n−1

=

(
t0

K

)
n

√√√√
(
∏

i∈I

(ciki)

)
.

Then, for relevant k ∈
◦

K and l ∈ L we have

(3.13) θ(
?

F l) = σn−1
k

, θ(F k) = |Lk|σn−1
k

,

and hence

(3.14) θ(∂Π{f ,t0}) =
∑

k∈
◦
K

|Lk|σn−1
k

• ˜˜˜ ◦˜˜˜ •

We follow the procedure for the Maschler Perles solution as in [12].

1. For k ∈
◦

K the measure θ is transported from F k = F {k,t0} to ∆t0e
k

via(
?
xk(•)

)−1

. As
?
xk(•) acts contravariant on measures we write

(3.15)
?

θk := θ ◦
?
xk(•) :=

(
?
xk(•)

)−1

θ

The transported measure
?

θk on ∆t0e
k

has a constant density w.r.t the measure
θ – which, on ∆t0e

k
– is a multiple of the Lebesgue measure. Thus,

(3.16)
?

θ(∆t0e
k

) = θ(F {k,t0}) = |Lk|σn−1
k

,

as seen in (3.13).

2. The barycenter of ∆t0e
k

w.r.t. θ is

(3.17)
?

βk :=
1

|Lk|

∫

∆
t0e
k

t θ(dt) ,
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3. This quantity is also the barycenter of ∆t0e
k

w.r.t to the transported measure
?

θk. Indeed, for k ∈
◦

K, we have

?

βk =
1

|Lk|

∫

∆
t0e
k

t θ(dt) =
1

θ(∆t0e
k

)

∫

∆
t0e
k

t θ(dt) ,

=
1

?

θk(∆t0e
k

)

∫

∆
t0e
k

t

?

θk(dt) ,

(3.18)

as the density factor cancels out.

4. Therefore, the barycenter of the total transported mass on ∆t0e is

?

β :=
∑

k∈
◦
K

?

θk(∆t0e
k

)

?

βk

∑
k∈

◦
K

?

θl(∆t0e
l

)

=
1∑

l∈K σl

∑

k∈
◦
K

σk

∫

∆
t0e
k

t θ(dt)

(3.19)

5. Finally, the Maschler–Perles solution to the bargaining problem V t0 = (0,U t0)
is obtained by a transporting backwards to ∂U {t0}. More precisely, it is the

image of the barycenter
?

β under the mapping
?
x(•), i.e.,

µ(V t0) :=
?
x(

?

β) =
?
x




1∑
l∈

◦
K
σl

∑

k∈
◦
K

σk

∫

∆
t0e
k

t θ(dt)




=
?
x




1

θ(∂U {t0})

∫

∂U{t0}

(
?
x(•)

)−1

dθ(•)


 .

(3.20)

We mention that the above version is exactly the one presented and elaborated in
[12]. The factor o(n) that appeared previously cancels in the above formulae, so we
may use the deGua measure ϑ as well as the Maschler–Perles ι∆ measure within
the above context. Using θ unifies our notation.

The subsequent example is generated by a linear tariff system. The result obtained
is then analogous to side payment bargaining solution with constant rates of utility
transfer. This result is not exactly an innovation compared to the profit game as is
represents just the embedding of a TU game into the NTU framework. However it
serves as a convenient test to scrutiny the consistency of our concepts.

Example 3.4. A simple example is provided by a linear tariff system which
results in a hyperplane NTU game. The situation is quite analogous to the
one in the context of Cephoid Theory, see [9],[10] (in particular Example 2.2 in
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Chapter XIV). We obtain an NTU game V {t0} which reflects a side payment game
with constant rates of utility transfer.

The result obtained is analogous to side payment bargaining solution with constant
rates of utility transfer. This result is not exactly progress compared to the profit
game as is represents just the embedding of a TU game into the NTU framework.
However it serves as a convenient test to scrutiny the consistency of our concepts.
More elaborate examples will be left for separate treatment.

We start out with n ≤ 3. Then |Lk| = 1 holds true for any relevant sequence k (see
Sec 2, Examples 2.3 and 2.4).

Recall (2.57) and (2.55). With regard to

(3.21) ∂Π{f} =
⋃

k∈
◦
K

F k .

with

(3.22) F k =
?
xk(∆t0e

k
) = ck ⊗∆t0e

k
+ dk (k ∈

◦

K) ,

we observe that every ∆t0e
k

and hence every F k is a simplex as the decomposition
suggested by Theorem 2.8 item 3 and formula (2.58) degenerates to a simpleton.

Assume now for the “linear case” that all coefficients ci• are equal, say c•k = c•o (k ∈

K) so that each f
{t0}
i is indeed a linear function with slope cio. then for every

relevant sequence k = (k1, . . . , kn) we write

(3.23) ck = (c1k1, . . . , c
n
kn
) = (c1o, . . . , c

n
o ) = co .

Next, by (2.56) and (2.57) and (2.55) we derive for the Pareto surface

∂Π{f} =
⋃

k∈
◦
K

F k =
⋃

k∈
◦
K

?
xk(∆t0e

k
) =

⋃

k∈
◦
K

ck ⊗∆t0e
k

+ dk

= co ⊗
⋃

k∈
◦
K

∆t0e
k

+ do = co ⊗∆t0e + do = ∆t0co + do ,
(3.24)

with a sight abuse of notation regarding do. In other words, the Pareto surface
(up to a shift with do degenerates into a simplex representing constant transfer of
utilities dictated by co.

It is clear that the Maschler–Perles solution is the midpoint of this simplex, i.e., for
V {t0} = (0,U {t0}) we have

(3.25) µ(V {t0}) = t0

(
1

c1o
, . . . ,

1

cno

)
+ do ;

some formal computations are e.g.listed in Example 5.3 of [12].

◦ ˜˜˜˜˜˜ ◦
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Essentially, the example demonstrates that, in a unanimous taxation bargaining
problem, all players/countries will get an equal share - adjusted to transfer rates if
need be. This is not a surprising result, we will have to provide stronger examples
to support our concept. This we leave to further work in progress.
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