
10

An Additional Observation on Strict

Derivational Minimalism

Jens Michaelis

Abstract
We answer a question which, so far, was left an open problem: does—

in terms of derivable string languages—the type of a minimalist grammar
(MG) as originally introduced in Stabler 1997 defines a proper superclass
of the revised type of an MG and, therefore, the type of a strict MG both
introduced in Stabler 1999, and known to be weakly equivalent? For both
the revised as well as the strict MG-type, the essential difference to the
original MG-definition consists in imposing—in addition to the corresponding
implementation of the shortest move condition—a second condition on the
move-operator providing a formulation of the specifier island condition, and
as such, restricting (further) the domain to which the operator can apply.
It has been known already that this additional condition, in fact, ensures
that—in terms of derivable string languages—the revised and, therefore, the
strict MG-type both constitute a subclass of the original MG-type. We here
present a string language proving that the inclusion is proper.

Keywords (strict) minimalist grammars, specifier island con-
dition, multiple context-free grammars/linear context-free
rewriting systems, (linear) context-free tree grammars

10.1 Introduction

The minimalist grammar (MG) formalism introduced in Stabler 1997
provides an attempt at a rigorous algebraic formalization of the per-
spectives currently adopted within the linguistic framework of trans-
formational grammar. As has been shown (Michaelis 2001a, 2001b,
Harkema 2001), this MG-type determines the same class of derivable
string languages as linear context-free rewriting systems (LCFRSs)
(Vijay-Shanker et al. 1987, Weir 1988).

101

FG-MoL 2005.
James Rogers (ed.).
Copyright c© 2009, CSLI Publications.

102 / Jens Michaelis

Inspired, i.a., by the linguistic work presented in Koopman and Sz-
abolcsi 2000, in Stabler 1999 a revised MG-type has been proposed
whose essential departure from the version in Stabler 1997 can be seen
as the following: in addition to the shortest move constraint (SMC), a
second locality condition, the specifier island constraint (SPIC), is im-
posed on the move-operator regulating which maximal projection may
move overtly into the highest specifier position. Deviating from the op-
erator move as originally defined in Stabler 1997, a constituent has to
belong to the transitive complement closure of a given tree or to be a
specifier of such a constituent in order to be movable. An MG of this
type, henceforth, is referred to as MG+SPIC.

Closely in keeping with some further suggestions in Koopman and
Szabolcsi 2000, a certain type of a strict minimalist grammar (SMG)
has been introduced in Stabler 1999 as well: implementing the SPIC
with somewhat more “strictness,” leading to heavy pied-piping construc-
tions, the SMG-type allows only movement of constituents belonging
to the transitive complement closure of a tree. But in contrast to the
MG+SPIC-type, the triggering licensee feature may head the head-label
of any constituent within the reflexive-transitive specifier closure of a
moving constituent.

MG+SPICs and SMGs have been shown to be weakly equivalent by
Michaelis (2004, 2002) confirming a conjecture explicitly stated in
Stabler 1999. The equivalence turned out proving that, in terms of
derivable languages, MG+SPICs and SMGs not only are subsumed by
LCFRSs, but both are equivalent to a particular subclass of the latter,
referred to as LCFRS1,2 -type: the righthand side of each rewriting
rule of a corresponding LCFRS involves at most two nonterminals,
and if two nonterminals appear on the righthand side then only simple
strings of terminals are derivable from the first one.1 It was, however,
left unsolved, whether the respective classes of string languages deriv-
able by LCFRS1,2s and unrestricted LCFRSs—and thus the respective
classes of string languages derivable by MG+SPICs (or, likewise, SMGs)
as defined in Stabler 1999 and MGs as defined in Stabler 1997—are
identical.2

In this paper we show that the inclusion is in fact proper. We im-
plicitly do so by expressing the reduced structural generative capacity

1Exactly this condition expresses the strict opacity of specifiers within the
MG+SPIC-version.

2Note that, instead of adding the SPIC to the original MG-formalism, using it to
simply replace the SMC does not lead to a reduction of the class of derivable string
languages. Quite the opposite, the resulting type of MG even allows derivation of
every type 0-language (Kobele and Michaelis 2005).

An Additional Observation on Strict Derivational Minimalism / 103

in terms of a homomorphism mapping trees to strings. Explicitly, we
show that, although a particular language (combining “string rever-
sal,” “simple copying” and “intervening balanced bracketing in terms of
the context-free Dyck language”) is derivable by an LCFRS, it’s not
derivable by an LCFRS1,2. The most crucial part of our proof consists
in showing that for each LCFRS1,2, there is a linear context-free tree
grammar (cf. Rounds 1970a,b, Fischer 1968, Engelfriet and Schmidt
1977) deriving, modulo a homomorphism, the same string language in
inside-out mode.

10.2 Context-Free Tree Grammars

Giving our definition of a context-free tree grammar (CFTG) as it goes
back to the work Rounds (1970a,b) and Fischer (1968), we mainly lean
on the presentation in Engelfriet and Schmidt 1977.

Definition 25 A ranked alphabet, Σ, is an indexed family 〈Σn |n ∈
IN〉 of pairwise disjoint sets.3 For n ∈ IN, a σ ∈ Σn is an operator of rank
n, whose rank is denoted by rank(σ). The set of trees (over Σ), T (Σ),
is built up recursively using the operators in the usual way: if for some
n ∈ IN, we have σ ∈ Σn and t1, . . . , tn ∈ T (Σ) then t = σ(t1, . . . , tn) is
a tree. The yield of t, yield(t) ∈ Σ∗0, is defined by yield(t) = σ if n = 0,
and yield(t) = yield(t1) · · · yield(tn) otherwise. A tree t′ ∈ T (Σ) is a
subtree (of t) if t′ = t, or if t′ is a subtree of ti for some 1 ≤ i ≤ n.

Throughout we let X = {x1, x2, x3, . . .} be a countable set of variables,
and for k ∈ IN, we define Xk ⊆ X as {x1, . . . , xk}. Then for a ranked
alphabet Σ, the set of k-ary trees (over Σ), T (Σ, Xk), is the set of trees
T (Σ′) over the ranked alphabet Σ′ = 〈Σ′n |n ∈ IN〉, where Σ′0 = Σ0∪Xk,
and Σ′n = Σn for n > 0. Let T (Σ, X) =

⋃
k∈IN T (Σ, Xk).

Definition 26 A context-free tree grammar (CFTG), Γ, is a 5-tuple
〈Σ,F ,S, X, P 〉, where Σ and F are finite ranked alphabets of inoper-
atives and operatives, respectively. S is a distinguished element in Fn

for some n ∈ IN, the start symbol. P is a finite set of productions. Each
p ∈ P is of the form F (x1, . . . , xn)→ t for some n ∈ IN, where F ∈ Fn,
x1, . . . , xn ∈ X, and t ∈ T (Σ ∪ F , Xn). If, in addition, for each such
p ∈ P , no xi occurs more than once in t then Γ is linear.

For t, t′ ∈ T (Σ ∪ F , X), t′ is directly derivable from t (t ⇒ t′) if for
some m and n ∈ IN, there are a t0 ∈ T (Σ∪F , Xn+1) containing exactly
one occurrence of xn+1, a production F (x1, . . . , xm) → t′′ ∈ P , and
t1, . . . , tm ∈ T (Σ ∪ F , X) such that t = t0[x1, . . . , xn, F (t1, . . . , tm)]

3Throughout the paper the following conventions apply: IN is the set of all non-
negative integers. For any set M , M∗ denotes the Kleene closure of M , including ǫ,
the empty string. Mǫ is the set M ∪ {ǫ}.

104 / Jens Michaelis

and t′ = t0[x1, . . . , xn, t
′′[t1, . . . , tm]].4 If xn+1 is not dominated in t0

by an operative then t′ is derived from t by an outside-in (OI) step
(t⇒OI t

′).5 If t1, t2, . . . , tn ∈ T (Σ, X) then t′ is derived by an inside-out
(IO) step (t⇒IO t′). ⇒∗, ⇒∗OI and ⇒∗IO denote the reflexive-transitive
closures of ⇒, ⇒OI and ⇒IO, respectively.

The (tree) languages derivable by Γ in unrestricted, OI- and IO-mode
are L(Γ) = {t ∈ T (Σ) | S ⇒∗ t}, LOI(Γ) = {t ∈ T (Σ) | S ⇒∗OI t} and
LIO(Γ) = {t ∈ T (Σ) | S ⇒∗IO t}, respectively. The corresponding string
languages derivable by Γ are the sets L(Γ) = {yield(t) | t ∈ L(Γ)},
LOI(Γ) = {yield(t) | t ∈ LOI(Γ)} and LIO(Γ) = {yield(t) | t ∈ LIO(Γ)},
each of which being a subset of Σ∗0.

6

10.3 Linear Context-Free Rewriting Systems

The formalism of a linear context-free rewriting systems (LCFRSs) in
the sense of Vijay-Shanker et al. 1987 can be seen as presenting a
subtype of the formalism a multiple context-free grammar (MCFG) in
the sense of Seki et al. 1991, where in terms of derivable string languages
the generative power of LCFRSs is identical to that of MCFGs.

Definition 27 (Seki et al. 1991, Vijay-Shanker et al. 1987) A
multiple context-free grammar (MCFG), G, is a 5-tuple 〈N,T, F,R, S〉,
where N and T are the finite sets of nonterminals and terminals, re-
spectively. Each A ∈ N is associated with some dG(A) ∈ IN \ {0}. S is
a distinguished symbol from N , the start symbol, with dG(S) = 1. F
and R are the finite sets of functions and (rewriting) rules, respectively,
such that each r ∈ R is of the form A0 → f(A1, . . . , An) for some f ∈ F
and A0, A1, . . . , An ∈ N for some n ∈ IN, where f is a linear regular
function from (T ∗)dG(A1) × · · · × (T ∗)dG(An) into (T ∗)dG(A0), allowing
deletion of single components. r is nonterminating in case n > 0, oth-
erwise r is terminating. If the latter, we have f(∅) ∈ (T ∗)dG(A0), and
we usually denote r in the form A0 → f(∅).

For A ∈ N and k ∈ IN, Lk
G(A) ⊆ (T ∗)dG(A) is given recursively by

means of θ ∈ L0
G(A) for each terminating A → θ ∈ R, and for k ∈ IN,

θ ∈ Lk+1
G (A) if θ ∈ Lk

G(A), or if there are A → f(A1, . . . , An) ∈ R

4For each k ∈ IN, and given trees τ ∈ T (Σ∪F , Xk) and τ1,. . . , τk ∈ T (Σ∪F ,X),
τ [τ1, . . . , τk] is the tree in T (Σ ∪ F , X) resulting from substituting for 1 ≤ i ≤ k,
each occurrence of the (trivial) subtree xi of τ by an instance of τi.

5xn+1 is said to be dominated in t0 by an operative A ∈ Fk for some k ∈ IN, if
there are τ1,. . . , τk ∈ T (Σ ∪ F , X) such that A(τ1, . . . , τk) is a subtree of t0 which
contains the unique occurrence of xn+1 in t0.

6Note that L(Γ) = LOI(Γ) holds for each CFTG Γ, but the class of context-free
tree languages derivable in OI-mode and the one of those derivable in IO-mode are
not comparable in full general (Fischer 1968).

An Additional Observation on Strict Derivational Minimalism / 105

and θi ∈ Lk
G(Ai) for 1 ≤ i ≤ n such that f(θ1, . . . , θn) = θ. The

set LG(A) =
⋃

k∈IN L
k
G(A) is the language derivable from A (by G).7

LG(S), also denoted by L(G), is the multiple context-free language
(MCFL) (derivable by G). We have L(G) ⊆ T ∗, because dG(S) = 1. The
rank of G, rank(G), is the number max{n |A0 → f(A1, . . . , An) ∈ R},
the fan-out of G is the number max{dG(A) |A ∈ N}.

If each f ∈ F appearing in some A0 → f(A1, . . . , An) ∈ R, in
addition, has the property that no component of the tuples of tuples
of (T ∗)dG(A1) × · · · × (T ∗)dG(An) is erased by mapping under f into
(T ∗)dG(A0), then G is a (string based) linear context-free rewriting sys-
tem (LCFRS), and L(G) is a (string based) linear context-free rewriting
language (LCFRL).

Example An LCFRS which has rank 2 and fan-out 3 is the LCFRS
Gex = 〈{S,A,B} , {a , b , [,]} , {conc , id , e[] , ea , eb , fa, fb , g , h} , R , S〉
with d(A) = d(B) = 3, where R consists of the following rules:

S → conc(B) ,

A → ea(∅) | eb(∅) | fa(A) | fb(A) |h(B,B) and

B → e[](∅) | id(A) | g(B) ,

and where the functions are given by:

conc : 〈x0 , x1 , x2 〉 7→ x0x1x2

id : 〈x0 , x1 , x2 〉 7→ 〈x0 , x1 , x2 〉
e[] : ∅ 7→ 〈 ǫ , [] , ǫ 〉
ea : ∅ 7→ 〈 a , a , a 〉
eb : ∅ 7→ 〈 b , b , b 〉
fa : 〈x0 , x1 , x2 〉 7→ 〈x0a , x1a , ax2 〉
fb : 〈x0 , x1 , x2 〉 7→ 〈x0b , x1b , bx2 〉
g : 〈x0 , x1 , x2 〉 7→ 〈x0 , [x1] , x2〉
h : 〈〈x0 , x1 , x2 〉 , 〈 y0 , y1 , y2 〉 〉 7→ 〈x0y0 , y1x1 , y2x2 〉

The language derivable by Gex is

L(Gex) = {w1 · · ·wnznwn · · · z1w1z0w
R
n · · ·w

R
1 |

n ∈ IN \ {0}, wi ∈ {a, b}+ for 1 ≤ i ≤ n, zn · · · z0 ∈ D},

where D is the Dyck language of balanced parentheses, generated by
the context free grammar GD = 〈 {S}, { [,] }, {S → SS | [S] | ǫ}, S 〉,
and where for each w ∈ T ∗, wR denotes the reversal of w.8

7Thus, employing the notion of the CFTG-derivation modes introduced above,
an MCFG can be considered to derive a tuple of strings in IO-mode.

8Thus for each set M and w ∈ M∗, wR ∈ M∗ is defined recursively by ǫR = ǫ,
and (av)R = vRa for a ∈ M and v ∈ M∗.

106 / Jens Michaelis

The class of MCFLs and the class of LCFRLs are known to be identical
(cf. Seki et al. 1991, Lemma 2.2). Theorem 11 in Rambow and Satta
1999, therefore, shows that for each MCFG G there is an LCFRS G′

with rank(G′) ≤ 2 for which L(G) = L(G′) holds.

Definition 28 An LCFRS1,2 is an LCFRS G according to Definition
27 such that rank(G) = 2, and dG(A1) = 1 for each A0 → f(A1, A2) ∈
R. In this case L(G) is an LCFRL1,2 .

Definition 29 A given LCFRS1,2 G = 〈N,T, F,R, S〉 is in LCFRS1,2 -
normalform (LCFRS1,2 -NF) if each f ∈ F is of one of the forms (i)–(iii)
for some m ∈ IN \ {0}, or of the form (iv) for some a ∈ Tǫ.

(i) 〈〈y1〉, 〈x1, x2, . . . , xm〉〉 7→ 〈y1, x1, x2, . . . , xm〉
(ii) 〈〈y1〉, 〈x1, x2, . . . , xm〉〉 7→ 〈y1x1, x2, . . . , xm〉
(iii) 〈x1, x2, . . . , xm+1〉 7→ 〈xm+1x1, x2, . . . , xm〉
(iv) ∅ 7→ a

Proposition 32 For every LCFRS1,2 G, there exists an LCFRS1,2

G′ = 〈N,T, F,R, S〉 in LCFRS1,2 -NF such that L(G) = L(G′).

Proof. The proposition can essentially be proven applying a “double
transformation” to a given LCFRS1,2: first, using the construction pre-
sented in Michaelis 2004, the LCFRS1,2 is transformed into an MG+SPIC

deriving the same string language. Then, using the construction pre-
sented in Michaelis 2002, the resulting MG+SPIC is transformed into
an LCFRS1,2 of the corresponding normal form still deriving the same
string language, but with (iv’) instead of (iv).9

(iv’) ∅ 7→ w , w ∈ T ∗

Verifying that (iv’) can be strengthened to (iv) is straightforward.10 �

10.4 Proper Inclusion within LCFRLs

Let G = 〈N,T, F,R, S〉 be an LCFRS1,2 in LCFRS1,2-NF.

Construction We now construct a linear CFTG Γ = 〈Σ,F ,S, X, P 〉
with Σ0 = T ∪ {Λ} for a new symbol Λ, and with h[LIO(Γ)] = L(G),11

where h is the homomorphism from Σ∗0 to T ∗ determined by h(a) = a
for a ∈ T , and h(Λ) = ǫ. In constructing Γ, we assume • and S to be
two further, new distinct symbols and let

9Here, (i) and (ii) simulate the behavior of the merge-operator, (iii) simulates
the behavior of the move-operator, and (iv’) provides “lexical insertion.”

10If need be, we simply add new nonterminals, functions and rules of the form
A → a and B → f(C,D) to G′, where a ∈ Tǫ and f is in line with (ii), and
successively replace all rules of the form (iv’) not being in line with (iv).

11For any two sets M1 and M2, and any mapping g from M1 into M2, g[M1]
denotes the image of M1 under g, i.e., the set {g(m) |m ∈M1} ⊆M2.

An Additional Observation on Strict Derivational Minimalism / 107

Σ0 = T ∪ {Λ}

Σ2 = {•} ∪ {A′ |A ∈ N and dG(A) = 2}

Σn = {A′ |A ∈ N and dG(A) = n} for n ∈ IN \ {0, 2}

F0 = {S} ∪ {B̃ |B ∈ N}

Fn = {ÃD |A,D ∈ N and dG(A) = n} for n ∈ IN \ {0}

Defining the set of productions in Γ, we first let

(s) S → S̃ ∈ P .

For each terminating A→ θ ∈ R for some A ∈ N and θ ∈ (T ∗)dG(A),
we have dG(A) = 1 and θ ∈ Tǫ, because of (iv).

If θ 6= ǫ we let
(t.1) B̃ → ÃB(θ) ∈ P for each B ∈ N , and
(t.2) Ã→ A′(θ) ∈ P .

If θ = ǫ we let
(t.1) B̃ → ÃB(Λ) ∈ P for each B ∈ N , and
(t.2) Ã→ A′(Λ) ∈ P .

For each nonterminating A → f(B) ∈ R for some A,B ∈ N and
f ∈ F , we have f : 〈x1, . . . , xdG(B)〉 7→ 〈xdG(B)x1, x2, . . . , xdG(B)−1〉,
because of (iii).

We let
(iii.1) B̃D(x1, . . . , xdG(B))→ ÃD(•(xdG(B), x1), x2, . . . , xdG(B)−1) ∈ P

for each D ∈ N , and
(iii.2) B̃A(x1, . . . , xdG(B))→ A′(•(xdG(B), x1), x2, . . . , xdG(B)−1) ∈ P .

For each nonterminating A → f(B,C) ∈ R for some A,B,C ∈ N
and f ∈ F , because of (i) and (ii), we either have (i’) or (ii’).

(i’) f : 〈〈ydG(B)〉, 〈x1, . . . , xdG(C)〉〉 7→ 〈ydG(B), x1, . . . , xdG(C)〉

(ii’) f : 〈〈ydG(B)〉, 〈x1, x2, . . . , xdG(C)〉〉 7→ 〈ydG(B)x1, x2, . . . , xdG(C)〉

If (i’), we let
(i.1) C̃D(x1, . . . , xdG(C))→ ÃD(B̃, x1, x2, . . . , xdG(C)) ∈ P

for each D ∈ N , and
(i.2) C̃A(x1, . . . , xdG(C))→ A′(B̃, x1, x2, . . . , xdG(C)) ∈ P .

If (ii’), we let
(ii.1) C̃D(x1, . . . , xdG(C))→ ÃD(•(B̃, x1), x2, . . . , xdG(C)) ∈ P

for each D ∈ N , and
(ii.2) C̃A(x1, . . . , xdG(C))→ A′(•(B̃, x1), x2, . . . , xdG(C)) ∈ P .

108 / Jens Michaelis

We will not provide a strictly formal proof, but briefly emphasize, why Γ
does its job as desired: the way in which Γ simulates G crucially depends
on the possibility to rewrite blindly a nonterminal B ∈ N by starting
with rewriting B as any A ∈ N for which there is a terminating rule in
R available, cf. (t.1). In terms of Γ, this A gets indexed by B storing
the necessity that A has to be successively developed inside-out, finally
creating a tree rooted in B. That is to say, in some later derivation
step the blind rewriting of B simulated by Γ must get legitimated by
an application of a rule of the sort (i.2), (ii.2) or (iii.2), in order to create
a convergent derivation. This sort of simple information inheritance is
possible because of the fact that the complex productions in G, those
which are of rank 2, are still “simple enough,” i.e., the contribution of at
least one of the nonterminals on the righthand side consists in a simple
string of terminals.

Proposition 33 Each LCFRL1,2 is, up to a homomorphism, the
string language derivable by some linear CFTG in IO-mode. �

An indexed language (IL) is the string language derived by an indexed
grammar (IG) in the sense of Aho 1968.

Corollary 34 Each LCFRL1,2 is an IL.

Proof. By Proposition 33, because for linear CFTGs, IO- and OI-mode
derive identical (string) languages (cf. Kepser and Mönnich forthcom-
ing). Furthermore the class of string languages derived by CFTGs in OI-
mode is included in the class of ILs (Fischer 1968, Rounds 1970a,b),12

and the class of ILs is closed under homomorphisms (Aho 1968). �

Proposition 35 The class of LCFRL1,2 s is properly included in the
class of LCFRLs.

Proof. By Corollary 34, because the LCFRL from our example above,
L(Gex), is known not to be an IL (Staudacher 1993). �

Corollary 36 The class of languages derivable by MG+SPICs is prop-
erly included in the class of languages derivable by MGs. ⊔⊓

10.5 Summary

We have shown that—in terms of derivable string languages—the type
of a minimalist grammar (MG) as originally introduced in Stabler 1997
defines a proper superclass of the revised type of an MG and, there-
fore, the type of a strict MG both introduced in Stabler 1999, and
known to be weakly equivalent. In order to achieve the result we have

12Note that, vice versa, for each IL L, L \ {ǫ} is the string language derived by
some CFTG in OI-mode (cf. Fischer 1968, Rounds 1970a,b).

References / 109

CFTG-IO-string languages
(modulo a homomorphism)

CFTG-OI-string languages
(modulo a homomorphism)

LCFRLs

� L(G
ex

)

LCFRL1,2s

FIGURE 1: Proving the proper inclusion of LCFRL1,2s within LCFRLs.

proven that the class of (string based) linear context-free rewriting lan-
guages (LCFRLs) properly subsumes a particular subclass of LCFRLs,
referred to as the class of LCFRL1,2 s. This was motivated by the fact
that LCFRLs and LCFRL1,2s coincide with the two classes of deriv-
able string languages defined by the original and the revised MG-type,
respectively.

The most crucial part of our proof consists in showing that every
LCFRL1,2 is, modulo a homomorphism, the string language derivable
in inside-out (IO) mode by a linear context-free tree grammar (CFTG).
For linear CFTGs it holds that the class of languages derivable in IO-
mode is not distinguishable from the class of languages derivable in
outside-in (OI) mode; and the class of string languages generally deriv-
able by CFTGs in OI-mode is known to be subsumed by the class of
languages derivable by indexed grammars (IGs). Since the latter class
of languages is closed under homomorphisms, the intended result finally
followed from presenting an LCFRL known not to be derivable by an
IG, namely, the language L(Gex) (cf. Figure 1).

References

Aho, Alfred V. 1968. Indexed grammars—An extension of context-free gram-
mars. Journal of the Association for Computing Machinery 15:647–671.

110 / Jens Michaelis

de Groote, Philippe, Glyn Morrill, and Christian Retoré, eds. 2001. Logi-
cal Aspects of Computational Linguistics (LACL ’01), Lecture Notes in
Artificial Intelligence Vol. 2099. Berlin, Heidelberg: Springer.

Engelfriet, Joost and Erik M. Schmidt. 1977. IO and OI. I. Journal of
Computer and System Sciences 15:328–353.

Fischer, Michael J. 1968. Grammars with macro-like productions. In Confer-
ence Record of 1968 Ninth Annual Symposium on Switching and Automata
Theory , Schenectady, NY, pages 131–142. IEEE.

Harkema, Henk. 2001. A characterization of minimalist languages. In
de Groote et al. (2001), pages 193–211.

Kepser, Stephan and Uwe Mönnich. forthcoming. Closure properties of
linear context-free tree languages with an application to optimality the-
ory. Theoretical Computer Science. Preprint available at http://tcl.sfs.
uni-tuebingen.de/~kepser/papers/pubs.html.

Kobele, Gregory M. and Jens Michaelis. 2005. Two type-0 variants of mini-
malist grammars. In FG-MoL 2005. The 10th conference on Formal Gram-
mar and The 9th Meeting on Mathematics of Language, Edinburgh. This
volume.

Koopman, Hilda and Anna Szabolcsi. 2000. Verbal Complexes. Cambridge,
MA: MIT Press.

Michaelis, Jens. 2001a. Derivational minimalism is mildly context–sensitive.
In M. Moortgat, ed., Logical Aspects of Computational Linguistics (LACL
’98), Lecture Notes in Artificial Intelligence Vol. 2014, pages 179–198.
Berlin, Heidelberg: Springer.

Michaelis, Jens. 2001b. Transforming linear context-free rewriting systems
into minimalist grammars. In de Groote et al. (2001), pages 228–244.

Michaelis, Jens. 2002. Implications of a revised perspective on minimalist
grammars. Draft, Potsdam University. Available at http://www.ling.

uni-potsdam.de/~michael/papers.html.

Michaelis, Jens. 2004. Observations on strict derivational minimalism. Elec-
tronic Notes in Theoretical Computer Science 53:192–209. Proceedings of
the joint meeting of the 6th Conference on Formal Grammar and the 7th
Meeting on Mathematics of Language (FGMOL ’01), Helsinki, 2001.

Rambow, Owen and Giorgio Satta. 1999. Independent parallelism in finite
copying parallel rewriting systems. Theoretical Computer Science 223:87–
120.

References / 111

Rounds, William C. 1970a. Mappings and grammars on trees. Mathematical
Systems Theory 4:257–287.

Rounds, William C. 1970b. Tree-oriented proofs of some theorems on context-
free and indexed languages. In Proceedings of the 2nd Annual ACM Sympo-
sium on Theory of Computing, Northhampton, MA, pages 109–116. ACM.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991.
On multiple context-free grammars. Theoretical Computer Science 88:191–
229.

Stabler, Edward P. 1997. Derivational minimalism. In C. Retoré, ed., Log-
ical Aspects of Computational Linguistics (LACL ’96), Lecture Notes in
Artificial Intelligence Vol. 1328, pages 68–95. Berlin, Heidelberg: Springer.

Stabler, Edward P. 1999. Remnant movement and complexity. In G. Bouma,
G.-J. M. Kruijff, E. Hinrichs, and R. T. Oehrle, eds., Constraints and Re-
sources in Natural Language Syntax and Semantics, pages 299–326. Stan-
ford, CA: CSLI Publications.

Staudacher, Peter. 1993. New frontiers beyond context-freeness: DI-gram-
mars and DI-automata. In 6th Conference of the European Chapter of
the Association for Computational Linguistics (EACL ’93), Utrecht, pages
358–367. ACL.

Vijay-Shanker, K., David J. Weir, and Aravind K. Joshi. 1987. Characteriz-
ing structural descriptions produced by various grammatical formalisms.
In 25th Annual Meeting of the Association for Computational Linguistics
(ACL ’87), Stanford, CA, pages 104–111. ACL.

Weir, David J. 1988. Characterizing Mildly Context-Sensitive Grammar For-
malisms. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.

