
Algebraic Description of Derivational Minimalism

Jens Michaelis and Uwe Mönnich and Frank Morawietz

Seminar für Sprachwissenschaft

Universität Tübingen

Wilhelmstr. 113, 72074 Tübingen

Germany

{michael,um,frank}@sfs.nphil.uni-tuebingen.de

Abstract

In this paper we extend the work by Michaelis (1999) which shows how to encode an arbitrary
Minimalist Grammar in the sense of Stabler (1997) into a weakly equivalent multiple context-
free grammar (MCFG). By viewing MCFG rules as terms in a free Lawvere theory we can
translate a given MCFG into a regular tree grammar. The latter is characterizable by both
a tree automaton and a corresponding formula in monadic second-order (MSO) logic. The
trees of the resulting regular tree language are then unpacked into the intended “linguistic”
trees with an MSO transduction based upon tree-walking automata. This two-step approach
gives an operational as well as a logical description of the tree sets involved.

1 Introduction

Algebraic, logical and regular characterizations of (tree) languages provide a natural framework
for the denotational and operational semantics of grammar formalisms relying on the use of trees
for their intended models.

Over the last couple of years, a rich class of mildly context-sensitive grammar formalisms
has been proven to be weakly equivalent. Among others, the following families of (string) lan-
guages are equivalent: STR(HR) [languages generated by string generating hyperedge replacement
grammars], OUT (DTWT) [output languages of deterministic tree-walking tree-to-string transduc-
ers], yDTfc(REGT) [yields of images of regular tree languages under deterministic finite-copying
top-down tree transductions], MCFL [languages generated by multiple context-free grammars],
MCTAL [languages generated by multi-component tree adjoining grammars], LCFRL [languages
generated by linear context-free rewriting systems], LUSCL [languages generated by local un-
ordered scattered context grammars] (more on these equivalences can be found, e.g., in Engelfriet,
1997; Rambow and Satta, 1999; Weir, 1992).

In the present context the combination of algebraic, logical and regular techniques not only
adds another characterization of mildly context-sensitive languages to the already long list of weak
equivalences. It also makes available the whole body of techniques that have been developed in
the tradition of algebraic language theory, logic and automata theory.

Extending the work by Michaelis (1999) which shows how to encode an arbitrary minimalist
grammar (MG) in the sense of Stabler (1997) into a weakly equivalent linear context-free rewriting
system (LCFRS), we present in this paper a translation from the formalism of multiple context-
free grammars (MCFGs)—a weakly equivalent extension of LCFRSs—into regular tree grammars
(RTGs). The idea behind the translation is to “lift” the MCFG rules to RTG rules by viewing them
as Lawvere terms. Furthermore, we use the equivalence of RTGs, monadic second-order (MSO)
logic (on trees) and tree automata to give an algebraic and a logical description of the lifted
trees. Since the trees characterized by an RTG contain additional “non-linguistic” information
they are then unpacked with a monadic second-order (MSO) transduction thereby giving both an
operational and a denotational description of the tree sets involved. The MSO transduction is
built upon a tree-walking automaton (with tests) at heart.

We think that our approach has decisive advantages. First, the operations of the relevant
signature appear explicitly in the lifted trees and are not hidden in node labels coding instances of
rule application. Second, our path component is not dependent on the particular regular tree family
or, equivalently, the domain defined via the MSO formula. The instruction set of the tree-walking
automaton and the corresponding definition of the MSO transduction are universal and only serve
to reverse the lifting process. In that sense the instructions are nothing else but a restatement of
the unique homomorphism which exists between the free algebra and any other algebra of the same
signature. Thus, the translation from MCFGs to RTGs constitutes a considerable simplification in
comparison with other characterizations since it is not built upon derivation trees using productions
of the original MCFG as node labels, but rather on the operations of projection, tuple-formation
and composition alone.

In the following sections we limit ourselves to the special case of MCFG rules with only one
nonterminal on the right hand side (RHS). This allows a significant simplification in the presen-
tation since it requires only one level of tupling. The extension to the general case of using tuples
of tuples is considerably more involved and cannot be described here.

The structure of the paper is as follows. We start with some basic algebraic, logical and
automata-theoretic definitions before turning to the formal presentation of MGs. The succeeding
sections then sketch how to translate a given MG firstly into an MCFG and from there into an
RTG. Finally, in the last section, we transform the resulting trees back into a format which is
intended for linguistic analysis. We conclude with a brief outlook on further optimizations of the
presented technique.

2 Background and Basic Definitions

We are going to show how to code the grammar rules of a LCFRS (or better an MCFG) into rules
of an RTG. This is done via lifting by viewing MCFG rules as terms in a free Lawvere theory.
Since this coding makes projection, tupling and composition explicit, the resulting trees contain
these operations as labeled nodes. Therefore we use an MSO transduction—where the regular tree
language constitutes the domain—to transform the lifted trees into the intended ones. Since the
MSO formulas are implemented via automata, we also have to introduce the necessary types of
automata.

In this section we present the corresponding basic algebraic, logical and automata-theoretic
definitions before we proceed with the actual translation.

2.1 Basic Algebraic Definitions

Definition 2.1. For a given set of sorts S,1 a many-sorted signature Σ (over S) is an indexed
family 〈Σw,s |w ∈ S∗, s ∈ S〉 of disjoint sets. A symbol in Σw,s is an operator of type 〈w, s〉, arity
w, sort s and rank |w|.

The set of trees T (Σ) (over Σ) is built up using the operators in the usual way: If σ ∈ Σε,s
for some s ∈ S then σ is a (trivial) tree of sort s. If, for some s ∈ S and w = s1 · · · sn with si ∈ S,
σ ∈ Σw,s and t1, . . . , tn ∈ T (Σ) with ti of sort si then σ(t1, . . . , tn) is a tree of sort s.

In case S is a singleton {s}, i.e. in case Σ is a single-sorted signature (over sort s), we usually
write Σn to denote the (unique) set of operators of rank n ∈ IN.2

The operator symbols of a many-sorted signature Σ over some set of sorts S induce operations
on an algebra with the appropriate structure. A Σ-algebra A consists of an S-indexed family
〈As | s ∈ S〉 of disjoint sets, the carriers of A , and for each operator σ ∈ Σw,s, σA : Aw → As is a
function, where Aw = As1 × · · · ×Asn and w = s1 · · · sn with si ∈ S. The set T (Σ) can be made
into a Σ-algebra T by specifying the operations as follows. For every σ ∈ Σw,s, where s ∈ S and

1Throughout the paper the following conventions apply. IN is the set of all non-negative integers. For any set
M , M∗ is the Kleene closure of M , i.e. the set of all finite strings over M . For m ∈ M∗, |m| ∈ IN denotes the length
of m. We will use Mε to denote the set M ∪ {ε}, where ε is the empty string (over M), i.e. ε ∈ M∗ with |ε| = 0.

2 Note that for S = {s} each 〈w, s〉 ∈ S∗ × S is of the form 〈sn, s〉 for some n ∈ IN.

w = s1 · · · sn with si ∈ S, and every t1, . . . , tn ∈ T (Σ) with ti of sort si we identify σT(t1, . . . , tn)
with σ(t1, . . . , tn). Our main notion is that of an algebraic (Lawvere) theory.

Definition 2.2. Given a set of sorts S, an algebraic (Lawvere) theory, as an algebra, is an S∗×S∗-
sorted algebra A whose carriers 〈A〈u,v〉 |u, v ∈ S∗〉 consist of the morphisms of the theory and
whose operations are of the following types, where n ∈ IN, u = u1 · · ·un with ui ∈ S for 1 ≤ i ≤ n

and v, w ∈ S∗,

projection: πui ∈ A〈u,ui〉

composition: c(u,v,w) ∈ A〈u,v〉 ×A〈v,w〉 → A〈u,w〉

target tupling: ()(v,u) ∈ A〈v,u1〉 × · · · ×A〈v,un〉 → A〈v,u〉

The projections and the operations of target tupling are required to satisfy the obvious identities
for products. The composition operations must satisfy associativity, i.e.,

c(v,u,ui)

(

(α1, . . . , αn)(v,u), π
u
i

)

= αi for αi ∈ A〈v,ui〉, 1 ≤ i ≤ n

(

c(v,u,u1)(β, π
u
1), . . . , c(v,u,un)(β, π

u
n)
)

(v,u)
= β for β ∈ A〈v,u〉

c(u,v,z)
(

α, c(v,w,z)(β, γ)
)

= c(u,w,z)
(

c(u,v,w)(α, β), γ)
)

for α ∈ A〈u,v〉, β ∈ A〈v,w〉, γ ∈ A〈w,z〉

c(u,u,v)
(

(πu1 , . . . , π
u
n)(u,u), α

)

= α for α ∈ A〈u,v〉

where u = u1 · · ·un with ui ∈ S for 1 ≤ i ≤ n and v, w, z ∈ S∗.

Let Σ be a single-sorted signature and X = {x1, x2, x3, . . .} a countable set of variables. For k ∈ IN
define Xk ⊆ X as {x1, . . . , xk}. Then, the set of k-ary trees T (Σ,Xk) (over Σ) is the set of trees
T (Σ′) over the single-sorted signature Σ′ = 〈Σ′

n |n ∈ IN〉, where Σ′
0 = Σ0 ∪Xk and Σ′

n = Σn for
n > 0. Note that T (Σ,Xk) ⊆ T (Σ,Xl) for k ≤ l. Let T (Σ,X) =

⋃

k∈IN T (Σ,Xk).
The power set ℘(T (Σ,X)) of T (Σ,X) constitutes the central example of interest for formal lan-

guage theory. The carriers 〈℘(T (k,m)) | k,m ∈ IN〉 of the corresponding S∗×S∗-Lawvere algebra
are constituted by the power sets of the sets T (k,m), where each T (k,m) is the set of all m-tuples
of k-ary trees, i.e. T (k,m) = {(t1, . . . , tm) | ti ∈ T (Σ,Xk)}.3 For i, k ∈ IN with 1 ≤ i ≤ k the
projection constant πki is defined as {xi}. Composition is defined as substitution of the projection
constants and target tupling is just tupling.

As remarked previously, an arbitrary number of nonterminals on the right hand side of an
MCFG-rule entails the use of tuples of tuples in the definition of the corresponding mapping.
That is to say, each nonterminal on the RHS generates a tuple of terminal strings rather than
a single string (cf. Def. 4.1). Defining a corresponding Lawvere algebra for this general case
requires to start with a many-sorted signature over IN and a countable set of variables for
each sort. Thus, the resulting Lawvere algebra is IN∗×IN∗-sorted. Each carrier is of the form
℘(T (〈k1, . . . , kl〉, 〈m1, . . . ,mn〉) with ki,mj ∈ IN, the power set of the set of n-tuples whose com-

ponents are mi-tuples of
∑l
i=1 ki-ary trees. It seems obvious to us that this obfuscates the pre-

sentation to the point of unintelligibility.
More on Lawvere theories in general can be found in, e.g., Wagner (1994). More on the

connection to linguistics is elaborated in Mönnich (1998).

2.2 Basic Logical Definitions

After these algebraic notions, we briefly present those related to monadic second-order (MSO)
logic. MSO logic is the extension of first-order predicate logic with monadic second-order variables
and quantification over them. In particular, we are using MSO logic on trees such that individual
variables x, y, . . . stand for nodes in trees and monadic second-order ones X,Y, . . . for sets of nodes

3Since S is a singleton, S∗ can be identified with IN, because up to length each w ∈ S∗ is uniquely specified (cf.
fn. 2).

(for more details see, e.g., Rogers, 1998). It is well-known that MSO logic interpreted on trees
is decidable via a translation to finite-state (tree) automata (Rabin, 1969; Doner, 1970; Thatcher
and Wright, 1968). The decidability proof for MSO on finite trees gives us also a descriptive
complexity result: MSO on finite trees yields only recognizable trees which in turn yield context-
free string languages. These results are of particular interest, since finite trees are clearly sufficient
for linguistic purposes, and therefore form the basis for our work.

The following paragraphs go directly back to Courcelle (1997). Recall that the representation
of objects within relational structures makes them available for the use of logical description
languages. Let R be a finite set of relation symbols with the corresponding arity for each r ∈ R

given by ρ(r). A relational structure R = 〈DR, (rR)r∈R〉 consists of the domain DR and the

ρ(r)-ary relations rR ⊆ D
ρ(r)
R . In our case we choose a finite tree as our domain and the relations

of immediate, proper and reflexive dominance and precedence.
There does not seem to be a convenient machine model for tree transformations. Fortunately,

one can use logic directly to define the desired transduction. The classical technique of interpreting
a relational structures within another one forms the basis for MSO transductions. Intuitively, the
output tree is interpreted on the input tree. E.g., suppose that we want to transduce the input
tree t1 into the output tree t2. The nodes of the output tree t2 will be a subset of the nodes from
t1 specified with a unary MSO relation ranging over the nodes of t1. The daughter relation will
be specified with a binary MSO relation with free variables x and y ranging over the nodes from
t1. We will use this concept to transform the lifted trees into the intended ones.

Definition 2.3. A (non-copying) MSO transduction of a relational structure R (with set of
relation symbols R) into another one Q (with set of relation symbols Q) is defined to be a tuple
(ϕ, ψ, (θq)q∈Q). It consists of the formulas ϕ defining the domain of the transduction in R and ψ
defining the resulting domain of Q and a family of formulas θq defining the new relations Q (using
only definable formulas from the “old” structure R).

The result which gives rise to the fact that we can characterize a non-context-free tree set with
two devices which have only regular power is stated in Courcelle (1997). Viewing the relation
of intended dominance defined later by a tree-walking automaton as the cornerstone of an MSO
definable transduction, our description of non-context-free phenomena with two devices with only
regular power is an instance of the theorem that the image of an MSO-definable class of structures
under a definable transduction is not MSO definable in general (Courcelle, 1997).

2.3 Basic Automata-Theoretic Definitions

Tree automata are the result of generalizing the transition function of standard finite-state au-
tomata from (state-alphabet) symbol pairs to tuples of states. Intuitively, bottom-up tree au-
tomata creep up a tree from the leaves to the root by simultaneously taking the states of the
daughters and the alphabet symbol of the mother to make a transition to a new state. Since we
will not give an example of a tree automaton in this paper, we will not specify further details.
Details on tree automata can be found in, e.g., Gécseg and Steinby (1984).

Definition 2.4 (Tree Automaton). A (deterministic) bottom-up tree automaton A is a 5-tuple
〈A,Σ, δ, a0, F 〉 with A the (finite) set of states, Σ a ranked alphabet, a0 ∈ A the initial state,
F ⊆ A the final states and δ :

⋃

n(A
n ×Σn) → A the transition function.

We can extend the transition function inductively to trees by defining hδ(ε) = a0 and
hδ(σ(t1, . . . , tn)) = δ(hδ(t1), . . . , hδ(tn), σ), ti ∈ TΣ , 1 ≤ i ≤ n, σ ∈ Σn. An automaton A accepts
a tree t ∈ TΣ iff hδ(t) ∈ F . The language recognized by A is denoted by T (A) = {t |hδ(t) ∈ F}.

Furthermore, we have to introduce a concept which combines both automata theory and logic. We
need a particular type of finite-state automaton: tree-walking automata with MSO tests (Bloem
and Engelfriet, 1997). Intuitively, these automata make transitions from nodes in a tree to other
nodes along its branches. Each transition can test a label of a node, move up in the tree or down
to a specific daughter.

Definition 2.5 (Tree-Walking Automaton). A tree-walking automaton (with tests) over some
many-sorted signature Σ is a finite automaton A = (Q,∆, δ, I, F) with states Q, directives ∆,
transitions δ : Q×∆→ Q and the initial and final states I ⊆ Q and F ⊆ Q which traverses a tree
along connected edges using three kinds of directives: ↑i—“move up to the mother of the current
node (if it has one and it is its i-th daughter)”, ↓i—“move to the i-th daughter of the current node
(if it exists)”, and ϕ(x)—“verify that ϕ holds at the current node”.

Let Σ be a many-sorted signature. For any tree t ∈ T (Σ), a tree-walking automaton A over Σ

computes a node relation Rt(A) = {(x, y)|(x, qi)
∗
⇒ (y, qf) for some qi ∈ I and some qf ∈ F},

where for all states qk, ql ∈ Q and nodes x, y in t (x, qk) =⇒ (y, ql) iff ∃d ∈ ∆ : (qk, d, ql) ∈ δ

and y is reachable from x in t via d. Note that x is reachable from itself if the directive was a
(successful) test. It is important not to confuse this relation with the walking language recognized
by the automaton, i.e., the string of directives needed to move from the initial to the final node
in a walk. Bloem and Engelfriet show that these automata characterize the MSO definable node
relations, i.e., every tree-walking automaton we specify can be inductively transformed into an
equivalent MSO formula and vice versa.

3 Minimalist Grammars

We first give the definition of a minimalist grammar (MG) along the lines of Stabler (1997). In
order to keep the representation simple, we omit the case of strong selection (triggering head
movement), and covert movement. Thus the definition given here comes close to the one given in
Stabler (1999), where some further restrictions are formulated as to which subtrees of a given tree
may move. In fact, the example MG which will be considered below respects both the definition
in Stabler (1997) as well as that in Stabler (1999).

Definition 3.1. For a given set (of features), Feat, a five-tuple τ = (Nτ , ⊳
∗
τ ,≺τ , <τ , Labelτ)

fulfilling (E1)–(E3) is called an expression (over Feat).

(E1) (Nτ ,⊳
∗
τ ,≺τ) is a finite, binary ordered tree. Nτ denotes the non-empty set of nodes. ⊳∗τ and

≺τ denote the usual relations of dominance and precedence defined on a subset of Nτ ×Nτ ,
respectively. I.e. ⊳∗τ is the reflexive and transitive closure of ⊳τ , the relation of immediate
dominance.4

(E2) <τ⊆ Nτ × Nτ denotes the asymmetric relation of (immediate) projection which holds for
any two siblings in (Nτ ,⊳

∗
τ ,≺τ), i.e. each node different from the root either (immediately)

projects over its sibling or vice versa.

(E3) The function Labelτ assigns a string from Feat∗ to every leaf of (Nτ ,⊳
∗
τ ,≺τ), i.e. a leaf-label

is a finite sequence of features from Feat.

The set of all expressions over Feat is denoted by Exp(Feat).

Let Feat be a set of features. Consider τ =(Nτ ,⊳
∗
τ ,≺τ ,<τ ,Labelτ) ∈ Exp(Feat).

Each x∈Nτ has a head h(x)∈Nτ , a leaf such that x ⊳∗τ h(x), and such that each y∈Nτ on the
path from x to h(x) with y 6=x projects over its sister. The head of τ is the head of τ ’s root.

A subtree υ of τ is a maximal projection (in τ), if the root of υ is a node x ∈ Nτ such that x
is the root of τ or x’s sister projects over x. The sister of the head of τ is the complement (of τ).
Each maximal projection in τ which is not dominated by the mother of the head of τ is a specifier
(of τ).

τ has feature f ∈ Feat if τ ’s head-label starts with f . τ is simple (a head) if it consists of
exactly one node, otherwise τ is complex (a non-head).

4Up to an isomorphism Nτ is a unique prefix closed and left closed subset of IN∗, i.e. χ ∈ Nτ if χχ′ ∈ Nτ , and
χi ∈ Nτ if χj ∈ Nτ for χ, χ′ ∈ IN∗ and i, j ∈ IN with i < j, such that for χ, ψ ∈ Nτ hold: χ ⊳τψ iff ψ=χi for some
i ∈ IN, and χ≺τψ iff χ=ωiχ′ and ψ=ωjψ′ for some ω, χ′, ψ′ ∈ IN∗ and i, j ∈ IN with i < j.

Let rτ be the root of τ . Suppose υ and ϕ ∈ Exp(Feat) to be subtrees of τ with roots rυ and
rϕ, respectively, such that rτ ⊳τ rυ, rϕ. Then we take [<υ, ϕ] ([>ϕ, υ]) to denote τ in case that
rυ <τ rϕ and rυ ≺τ rϕ (rϕ ≺τ rυ).

Definition 3.2 (Stabler, 1997). A 4-tuple
G = 〈Non-Syn, Syn,Lex ,F〉 that obeys (M1)–(M4) is called a minimalist grammar (MG).

(M1) Non-Syn is a finite set of non-syntactic features partitioned into a set Phon of phonetic
features and a set Sem of semantic features.

(M2) Syn is a finite set of syntactic features partitioned into the sets Base, Select, Licensees and
Licensors such that for each (basic) category x ∈ Base the existence of =x ∈ Select is possible,
and for each -x ∈ Licensees the existence of +X ∈ Licensors is possible. Moreover, the set
Base contains at least the category c.

(M3) Lex is a finite set of expressions over Feat = Non-Syn ∪ Syn such that for each
tree τ = 〈Nτ , ⊳

∗
τ ,≺τ , <τ , Labelτ〉 ∈ Lex the function Labelτ assigns a string from

Select∗LicensorsεSelect
∗BaseεLicensees

∗Phon∗Sem∗ ⊆ Feat∗ to each leaf in 〈Nτ , ⊳∗τ ,≺τ 〉.

(M4) The set F consists of the structure building functions merge and move as defined in (me)
and (mo), respectively.

(me) The function merge is a partial mapping from Exp(Feat)×Exp(Feat) to Exp(Feat). A pair of
expressions (υ, ϕ) belongs to Dom(merge) if υ has feature =x and ϕ has category x for some
x ∈ Base.5 Then,

(me.1) merge(υ, ϕ) = [<υ
′, ϕ′] if υ is simple and has feature =x,

where υ′ and ϕ′ are expressions resulting from υ and ϕ, respectively, by deleting the feature
the respective head-label starts with.

(me.2) merge(υ, ϕ) = [>ϕ
′, υ′] if υ is complex and has feature =x,

where υ′ and ϕ′ are expressions as in case (me.1).

(mo) The functionmove is a partially defined mapping from Exp(Feat) to Exp(Feat). An expression
υ belongs to Dom(move) in case that υ has feature +X ∈ Licensors , and υ has exactly one
subtree ϕ that is a maximal projection and has feature -x ∈ Licensees . Then,

move(υ) = [>ϕ
′, υ′] if υ has feature +X

Here υ′ results from υ by deleting the feature +X from υ’s head-label, while the subtree ϕ
is replaced by a single node labeled ε. ϕ′ is the expression resulting from ϕ just by deleting
the licensee feature -x that ϕ’s head-label starts with.

Note that, by (me.1) and (me.2), a simple tree (head) selects another tree as its complement to
the right, whereas a complex tree selects another tree as a specifier to the left.

Example 3.3. Let Gww be the MG with Sem= ∅, Phon= {1, 2}, base= {c, a1, a2, b, c1, c2, d},
select= {=a1,

=a2,
=b, =c1,

=c2,
=d}, Licensors= {+L1, +L2}, Licensees= {-l1, -l2}, while Lex con-

sists of the following 10 simple expressions, where i ∈ {1, 2},6

αi = ai-l1i γi =
=b+L1ci-l1i ζ1 =

=b+L1d

βi =
=aib-l2i δi =

=ci+L2b-l2i ζ2 =
=d+L2c

Then e.g., for i, j ∈ {1, 2}, move(merge(δj ,move(merge(γj ,merge(βi, αi))))) ∈ Exp(Feat).
5For each (partial) mapping f from a set M1 into a set M2 we take Dom(f) to denote the domain of f , the

subset of M1 for which f is defined.
6Since all lexical entries are heads, we simply represent them by their respective (unique) labels.

Let G = (Non-Syn, Syn,Lex ,F) be an MG. Then CL(G) =
⋃

k∈IN CL
k(G) is the closure of Lex

(under the functions in F). For k ∈ IN the sets CLk(G) ⊆ Exp(Feat) are inductively defined by

CL0(G) = Lex

CLk+1(G) = CLk(G)

∪ {merge(υ, ϕ) | (υ, ϕ)∈Dom(merge)∩CLk(G)×CLk(G)}

∪ {move(υ) | υ ∈Dom(move)∩CLk(G)}

Every τ ∈ CL(G) is called an expression in G. Such a τ is complete (in G) if its head-label is in
{c}Phon∗Sem∗ and each other of its leaf-labels is in Phon∗Sem∗. Hence, a complete expression has
category c, and this instance of c is the only instance of a syntactic feature within all leaf-labels.

The (phonetic) yield Y (τ) of an expression τ ∈ Exp(Feat) is the string created by concate-
nating τ ’s leaf-labels “from left to right” and stripping off all non-phonetic features. L(G) =
{Y (τ) | τ ∈ CL(G) with τ is complete} is the (string) language (derivable by G) and is called a
minimalist language.

Example 3.3 (continued) For i ∈ {1, 2} and u ∈ {1, 2}+ the expressions belonging to CL(Gww)
can recursively be defined by

(1a) ωi = merge(βi, αi)

(1b) ϕiu = merge(γi, ωu) (1b’) ηu = merge(ζ1, ωu)

(1c) χiu = move(ϕiu) (1c’) ϑu = move(ηu)

(1d) ψiu = merge(δi, χiu) (1d’) κu = merge(ζ2, ϑu)

(1e) ωiu = move(ψiu) (1e’) ξu = move(κu)

In more detail, we have

(2a) CL1(Gww) \ CL
0(Gww) = {ω1, ω2}

while for k ∈ IN we have

(2b) CL4k+2(Gww) \ CL
4k+1(Gww) = {ϕiu, ηu | i ∈ {1, 2}, u ∈ {1, 2}+ with |u| = k}

(2c) CL4k+3(Gww) \ CL
4k+2(Gww) = {χiu, ϑu | i ∈ {1, 2}, u ∈ {1, 2}+ with |u| = k}

(2d) CL4k+4(Gww) \ CL
4k+3(Gww) = {ψiu, κu | i ∈ {1, 2}, u ∈ {1, 2}+ with |u| = k}

(2e) CL4k+5(Gww) \ CL
4k+4(Gww) = {ωiu, ξu | i ∈ {1, 2}, u ∈ {1, 2}+ with |u| = k}

The set of complete expressions in Gww is {ξu |u ∈ {1, 2}+}. Each such ξu has the phonetic yield
Y (ξu) = uu, i.e. the string language derivable by Gww is {uu |u ∈ {1, 2}+}.

Definition 3.4. For each MG G = 〈Non-Syn, Syn,Lex ,F〉, an expression τ ∈ CL(G) is called
relevant (in G) if it has property (R).

(R) For any -x∈Licensees there is at most one maximal projection τ-x in τ that has feature -x.7

For any given MG G, we take Rel(G) the set of all relevant expressions τ ∈ CL(G). Since each
complete τ ∈ CL(G) has property (R), we have L(G) = {Y (τ) | τ ∈ Rel(G), τ is complete}.

Remark 3.5. For Gww as in Example 3.3 we have Rel(Gww) = CL(Gww).

7In fact, this kind of structure is characteristic of each τ ∈ CL(G) involved in creating a complete expression in
G. Recall that move(τ) is defined for τ ∈ CL(G) only in case that there is exactly one maximal subtree of τ that
has a particular licensee feature allowing the subtree’s “movement into specifier position.”

4 Translating MGs to MCFGs

In Michaelis (1999) an algorithm is given how to transform an arbitrary MG G into a weakly
equivalent MCFG. The core idea is that for Rel(G), i.e. the set of trees appearing as intermediate
steps in converging derivations of G, one can define a finite partition. The equivalence classes
of this partition are formed by sets of trees where the features triggering movement appear in
identical structural positions. Each nonterminal in a corresponding MCFG represents such an
equivalence class, i.e., an infinite set of trees. In this paper we will concentrate on the example
from above, adopting the methods from Michaelis (1999).

Definition 4.1. A multiple context-free grammar (MCFG) is defined as a five-tuple G =
〈VN , VT , VF , P, S〉 with VN , VT , VF and P being a finite set of ranked nonterminals, terminals,
linear basic morphisms and productions, respectively. S ∈ VN is the start symbol, which has
rank 1. Each p ∈ P has the form A −→ f(A0, . . . , An−1) for A,A0, . . . , An−1 ∈ VN and f ∈ F a

function from (V ∗
T)

k to (V ∗
T)

d(A) with arity k =
∑n−1
i=0 d(Ai) (d(Ai) the rank of Ai) and d(A) the

rank of A (cf. Seki et al. 1991). Recall that basic morphisms are those which use only variables,
constants, concatenation, composition and tupling.

The derive-relation ⇒G for G is defined as follows: If A −→ f() ∈ P then A ⇒G f(), where
f() ∈ (V ∗

T)
d(A) (i.e. f is some constant tuple of terminal strings). If A −→ f(A0, . . . , An−1) ∈ P

and Ai ⇒G ti for some ti ∈ (V ∗
T)

d(Ai) then Ai ⇒G f(t0, . . . , tn−1). The language generated by G
is L(G) = {t ∈ V ∗

T |S ⇒G t}.

Example 3.3 (continued) Let Gww be the MG as given in Example 3.3. In order to define
a weakly equivalent MCFG Gww = 〈VN , VT , VF , P, S〉, we first let Phon = {1, 2} be the set of
terminals VT and proceed by constructing the set of nonterminals VN .

Each nonterminal will either be the start symbol S or a 3-tuple from Syn∗×Syn∗×Syn∗. The
leading idea is the following: Consider τ ∈ CL(Gww) \ CL0(Gww). For 1 ≤ i ≤ 2 take, if it
exists, τi to be a subtree of τ that is a maximal projection and has licensee -li.

8 Otherwise, take
τi to be a single node labeled ε. Set τ0 = τ . Let µi be the prefix of τi’s head-label consisting
of just the syntactic features. Then, 〈µ0, µ1, µ2〉 ∈ VN . The productions (and functions) of the
MCFG Gww will be defined in such a way that for each 〈p0, p1, p2〉 ∈ Phon∗ × Phon∗ × Phon∗,
〈µ0, µ1, µ2〉 ⇒Gww

〈p0, p1, p2〉 iff (wc) holds.

(wc) For 0 ≤ i ≤ 2, pi is the phonetic yield of τi except for each substring that is the phonetic
yield of some τj , 1 ≤ j ≤ 3 and i 6= j, being a proper subtree of τi.

Although CL(Gww) \ CL0(Gww) is an infinite set, VN is only finite. This is due to two reasons
emerging from the definition of merge and move. First, in each τ ∈ CL(Gww) at most 3 different
leaves are present which have syntactic features appearing in their labels.9 Second, for each MG
G the set of all leaf-labels of all τ ∈ CL(G) constitutes a finite set, because a leaf-label is always
the suffix of some leaf-label of some lexical entry, i.e. a suffix of a finite string, and the lexicon
of an MG is a finite subset of Exp(Non-Syn ∪ Syn). In fact, we have exactly 10 nonterminals
different from the start symbol S, each of which corresponds to an infinite set of expressions from
CL(Gww), namely10

(3a) U = 〈b-l2, -l1,−〉 to {ωi | i ∈ {1, 2}}

(3b) Vi = 〈+L1ci-l1, -l1, -l2〉 to {ϕiu |u ∈ {1, 2}+} , where i ∈ {1, 2}

(3c) Ui = 〈ci-l1,−, -l2〉 to {χiu |u ∈ {1, 2}+} , where i ∈ {1, 2}

8Recall that Rel(Gww) = CL(Gww). Therefore, such a τi is unique. In order to ensure this in general, we would
have to reduce the closure of an MG G to what is defined as the relevant closure RCL(G) of G in Michaelis (1999).

9Recall again Remark 3.5.
10Here, we write − instead of ε.

(3d) V = 〈+L2b-l2, -l1, -l2〉 to {ψiu |u ∈ {1, 2}+, i ∈ {1, 2}}

(3e) U = 〈b-l2, -l1,−〉 to {ωiu |u ∈ {1, 2}+, i ∈ {1, 2}}

(3b’) W1 = 〈+L1d, -l1, -l2〉 to {ηu |u ∈ {1, 2}+}

(3c’) X1 = 〈d,−, -l2〉 to {ϑu |u ∈ {1, 2}+}

(3d’) W2 = 〈+L2c,−, -l2〉 to {κu |u ∈ {1, 2}+}

(3e’) C = 〈c,−,−〉 to {ξu |u ∈ {1, 2}+}

Thus, the nonterminals different from S introduce a finite partition of CL(Gww) \ CL0(Gww).
We now define P and F , the sets of productions and functions in Gww, respectively. Each p ∈ P

in a certain way simulates an application of merge and move in Gww, but operates w.r.t. the
equivalence classes of the induced partition, rather than on single expressions. As indicated in
the introduction, we present in this paper only the significantly simpler case of using only MCFG
rules with one nonterminal on the RHS. Although merge in principle is a binary operation, i.e.,
would require two nonterminals, we can in this special case partially evaluate the merge operation.
This becomes possible since we only have “simple merges,” i.e, we merge always a head with some
complex tree, as opposed to merging two complex trees.

Let i ∈ {1, 2}. P consists of 2 terminating rules,

(4a) U → merge〈βi,αi〉()

and 12 nonterminating rules,

(4b) Vi → merge〈γi,ω 〉(U) (4b’) W1 → merge〈ζ1,ω 〉(U)

(4c) Ui → move〈ϕ 〉(Vi) (4c’) X1 → move〈η 〉(W1)

(4d) V → merge〈δi,χ 〉(Ui) (4d’) W2 → merge〈ζ2,ϑ 〉(X1)

(4e) U → move〈ψ 〉(V) (4e’) C → move〈κ 〉(W2)

(4f’) S → π3
1(C) (the initial rule)

The 9 basic functions in F are defined as follows:

(5a) merge〈βi,αi〉 : ({1, 2}
∗)0 → ({1, 2}∗)3 with 〈 〉 7→ 〈i, i, ǫ〉 for i ∈ {1, 2}

(5b) merge〈γi,ω 〉 : ({1, 2}
∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈i, x2, x1〉 for i ∈ {1, 2}

(5c) moveϕ : ({1, 2}∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x2x1, ǫ, x3〉

(5d) merge〈δi,χ 〉 : ({1, 2}
∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈i, x1, x3〉 for i ∈ {1, 2}

(5e) moveψ : ({1, 2}∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x3x1, x2, ǫ〉

(5b’) merge〈ζ1,ω 〉 : ({1, 2}
∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈ǫ, x2, x1〉

(5c’) moveη : ({1, 2}∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x2x1, ǫ, x3〉

(5d’) merge〈ζ2,ϑ 〉 : ({1, 2}
∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x1, ǫ, x3〉

(5e’) moveκ : ({1, 2}∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x3x1, x2, ǫ〉

(5f’) π3
1 : ({1, 2}∗)3 → {1, 2}∗ with 〈x1, x2, x3〉 7→ x1

Note that moveϕ = moveη and moveψ = moveκ . The 3-tuples of terminal strings derivable
from the nonterminals different from S are the following, where i ∈ {1, 2} and u ∈ {1, 2}+,

(6a) U ⇒Gww
〈i, i, ǫ〉

(6b) Vi ⇒Gww
〈i, u, u〉 (6b’) W1 ⇒Gww

〈ǫ, u, u〉

(6c) Ui ⇒Gww
〈ui, ǫ, u〉 (6c’) X1 ⇒Gww

〈u, ǫ, u〉

(6d) V ⇒Gww
〈i, ui, u〉 (6d’) W2 ⇒Gww

〈u, ǫ, u〉

(6e) U ⇒Gww
〈iu, iu, ǫ〉 (6e’) C ⇒Gww

〈uu, ǫ, ǫ〉

Thus, we finally have: (6f’) S ⇒Gww
uu iff u ∈ {1, 2}+.

5 Translating MCFGs to RTGs

In this section we will show how to translate the rules of a given MCFG into an RTG. We start
by giving a formal definition of regular tree grammars.

Definition 5.1. A regular tree grammar (RTG) is a 4-tuple G = 〈Σ, F0, S,P〉, where for some set of
sorts S, Σ = 〈Σw,s |w ∈ S∗, s ∈ S〉 is a many-sorted signature of inoperatives and F0 = 〈Fε,s | s ∈
S〉 a (reduced) many-sorted signature of operatives of rank 0. Moreover,

⋃

(w,s)∈S∗×S Σw,s and
⋃

s∈S Fε,s are finite. S ∈ F0 is the starting symbol and P is a finite set of productions. Each p ∈ P

has the form F −→ t, where F ∈ Fε,s for some s ∈ S and t ∈ T (Σ ∪ F0), i.e. a term (tree) over
Σ ∪ F0, such that t is of sort s.

Let t′, t′′ ∈ T (Σ ∪ F0) and p = F −→ t ∈ P . t′ directly derives t′′ (by the application of p), also
denoted by t′ ⇒G t

′′, if t′ has a leaf-node F and t′′ results from t′ by substituting this node F by
t. Let ⇒∗

G be the reflexive and transitive closure of ⇒G . The tree-language generated by G is the
set LT (G) = {t ∈ T (Σ) |S ⇒∗

G t}.
The yield Y (t) of a t ∈ T (Σ ∪ F0) is the string resulting from concatenating the leaf-nodes of

t “from left to right.” Thus, Y (t) ∈ (
⋃

s∈S Σε,s ∪
⋃

s∈S Fε,s)∗. The string-language generated by
G is the set LY = {Y (t) | t ∈ LT (G)} ⊆ (

⋃

s∈S Σε,s)
∗.

Since RTG rules always just substitute some tree for a leaf-node, it is easy to see that they
generate recognizable sets of trees, i.e., context-free string languages (Mezei and Wright, 1967).

Now we turn to the actual translation. Each rule of a given MCFG is recursively transformed into a
RTG rule by coding the implicit operations of projection, tupling and composition as nonterminals
or terminals. This becomes possible simply by viewing the terms appearing in the rules of the
MCFG as elements of a free IN×IN-sorted Lawvere algebra. The resulting RTG then “operates
on” this Lawvere algebra.

Example 3.3 (continued) As an example, we show how to translate the MCFG Gww given in
Ex. 3.3 into the weakly equivalent RTG. Intuitively, we have to make the implicit operations which

are “hidden” in the standard presentation of the MCFG rules explicit. Simply using a tuple, e.g.,
the pair 〈a, b〉, means that we need an explicit tupling operator () to combine a and b. In the same
spirit, using x0x1 means that the values of the two variables are concatenated with an implicit
concatenation operator. And finally, applying a function to some arguments is a composition ◦
of the function with its arguments. Note that thereby the function becomes a constant. In this
sense, a term such as f(a, b) becomes more complex: (f ◦ (()(x1, x2))) ◦ ()(a, b). Now we have
to translate these single-sorted terms into the corresponding many-sorted Lawvere algebra.

For 1 ≤ i ≤ 3, let π3
i denote the i-th projection which maps a 3-tuple of strings from V ∗

T to
its i-th component, i.e. a 1-tuple. Therefore the corresponding Lawvere arity of π3

1 , π
3
2 and π3

3 is
(3, 1). Let • denote the usual binary operation of concatenation defined for strings from V ∗

T , i.e.,
• maps a 2-tuple to a 1-tuple. Thus • is of Lawvere arity (2, 1). Similarly, the corresponding
(Lawvere) arity of S, 1, 2 and ε is (0, 1) and of U, V, C,W1,W2, X1, Ui, Vi (0, 3).

We use the composition symbols c(i,j,k) introduced in Sec. 2.1 for the composition ◦.
Let Gww = 〈VN , VT , VF , P, S〉 be the MCFG successively constructed in the preceeding section.

Applying the translation T : P −→ F0 × T (Σ ∪ F0) given below to the rules of the MCFG Gww
results in the RTG G′

ww= 〈Σ, F0, S(0,1),P〉 with inoperatives Σ= 〈Σw,s |w∈ (IN×IN)∗, s∈ IN×IN〉,
operatives F0 of rank 0, and productions P which (in tree notation) look as given in Fig. 1, where
i ∈ {1, 2}.11 We have Σε,(3,0) = {()(3,0)}, Σε,(2,1) = {•(2,1)}, Σε,(0,1) = {1(0,1), 2(0,1), ε(0,1)},
Σε,(3,1) = {π3

1(3,1), π
3
2 (3,1), π

3
3 (3,1)},

Σ(0,3)(3,3),(0,3) = {c(0,3,3)} Σ(3,1)(3,1),(3,2) = {()(3,2)}
Σ(0,3)(3,1),(0,1) = {c(0,3,1)} Σ(0,1)(0,1)(0,1),(0,3) = {()(0,3)}
Σ(3,2)(2,1),(3,1) = {c(3,2,1)} Σ(3,1)(3,1)(3,1),(3,3) = {()(3,3)}
Σ(3,0)(0,1),(3,1) = {c(3,0,1)}

and F0 = Fε,(0,1) ∪ Fε,(0,3) with Fε,(0,1) = {S(0,1)} and Fε,(0,3) = {U(0,3), Ui(0,3), V(0,3), Vi(0,3),

W1(0,3), W2(0,3), X1(0,3), C(0,3)}.
12

As one can see in Fig. 1, the basic functions have been realized as terms with their respective
implicit operations as nonterminal (composition and tupling) or terminal (projection and empty
tupling) nodes. In the following paragraphs, we sketch the translation T from nonterminal rules of
the example MCFG to RTG rules. T takes each rule X −→ f(Y), where X,Y ∈ VN and f ∈ VF ,
of the MCFG including the corresponding definition of the mapping f(x1, . . . , xk) with k ≥ 0 and
transforms it into a RTG rule as follows. We create a mother node labeled with the appropriate
binary composition c(j,k,l) such that the left daughter contains the “lifted” version of f(x1, . . . , xk)
under T and the right daughter the translation of the nonterminal Y . Both nonterminals X and
Y are used “unchanged”, but annotated with the corresponding Lawvere arity resulting in the
following schematic presentation of the translation: X(j,l) −→ c(j,k,l)(T(f(x1, . . . , xk)), Y(j,k)),
where f is a mapping from k-tuples to l-tuples of terminal strings.

The easiest case of translating a mapping f ∈ F from our example via T is constituted by the
terminal U -rules (4a). We simply view the mapping as a Lawvere term. The function merge〈βi,αi〉

just returns a triple built from i, i and ε. The corresponding tree has a mother node labeled with
a ternary tupling symbol and the three unary arguments of the mapping as daughters.13 The
nonterminating U-rule (4e) is more complicated: the function move〈ψ 〉 takes three arguments,
concatenates the last and first ones in the first argument slot, leaves the second slot untouched
and inserts ε into the last one. The definition of the function can be written explicitly as the Law-
vere term ()(3,3)(c(3,2,1)(•(2,1), ()(3,2)(π

3
3(3,1), π

3
1(3,1))), π

3
2(3,1), ε(3,1)). Note again that the implicit

binary concatenation • in move〈ψ 〉 now becomes the constant •(2,1). The variables are simply

11Note that we simplified the presentation of the rules at two points: i(3,1) and ε(3,1) represent trees resulting
from lifting the “real” elements of Σε,(0,1) to the Lawvere arity (3, 1), i.e., i(3,1) stands for c(3,0,1)(i(0,1), ()(3,0))
and ε(3,1) for c(3,0,1)(ε(0,1), ()(3,0)).

12For simplicity and readability we will sometimes drop the subscript notion (k,m) from the inoperatives and
operatives of rank 0, and sometimes even from the composition symbol c(k,l,m).

13Note that we do not need to use a further composition symbol dominating T(f) in case there is no nonterminal
on the RHS of the rule of the MCFG.

U(0,3) −→
()(0,3)

1(0,1) 1(0,1) ε(0,1)

|
()(0,3)

2(0,1) 2(0,1) ε(0,1)

|

c(0,3,3)

()(3,3) V(0,3)

c(3,2,1) π
3
2(3,1) ε(3,1)

•(2,1) ()(3,2)

π3
3(3,1) π3

1(3,1)

Vi(0,3) −→

c(0,3,3)

()(3,3) U(0,3)

i(3,1) π3
2(3,1) π

3
1(3,1)

X 1(0,3) −→

c(0,3,3)

()(3,3) W1(0,3)

c(3,2,1) ε(3,1) π3
3(3,1)

•(2,1) ()(3,2)

π3
2(3,1) π3

1(3,1)

Ui(0,3) −→

c(0,3,3)

()(3,3) Vi(0,3)

c(3,2,1) ε(3,1) π3
3(3,1)

•(2,1) ()(3,2)

π3
2(3,1) π3

1(3,1)

W2(0,3) −→

c(0,3,3)

()(3,3) X 1(0,3)

π3
1(3,1) ε(3,1) π3

3(3,1)

V(0,3) −→

c(0,3,3)

()(3,3) Ui(0,3)

i(3,1) π3
1(3,1) π

3
3(3,1)

C(0,3) −→

c(0,3,3)

()(3,3) W2(0,3)

c(3,2,1) π
3
2(3,1) ε(3,1)

•(2,1) ()(3,2)

π3
3(3,1) π3

1(3,1)

W1(0,3) −→

c(0,3,3)

()(3,3) U(0,3)

ε(3,1) π3
2(3,1) π

3
1(3,1)

S(0,1) −→

c(0,3,1)

π3
1(3,1) C(0,3)

Figure 1: The translated example grammar G′
ww

c Immediate Dominance

π3
1 c Intended Dominance

() c π3-link

c π3
2 ǫ () c

() π3
1 ǫ π3

3 () c

π3
3 π3

1 c ǫ π3
3 () ()

• • ǫ

() π3
2 π3

1 ǫ

possible daughters 1

π3
2 π3

1 1

Figure 2: Reconstructing the Intended Structures

replaced by the projections and concatenated. The resulting term is then applied via composition
to the operative V(0,3) such that we get the RHS displayed in the last disjunct of the U(0,3)-rule
in Fig. 1. A comparable procedure is followed with respect to the other MCFG-rules.

Since RTGs can only generate recognizable (tree) languages, we can characterize them with
both MSO logic on trees and tree automata. The tree automaton AG′

ww
is constructed by trans-

forming the grammar into a normal form such that each RHS is of depth one by introducing
auxiliary operatives. Then we can easily construct appropriate transitions by basically reversing
the arrow: the nonterminals become state names and the mother node will be read as alphabet
symbol. It is know from Thomas (1990) how to transform this tree automaton into a Σ1

1-formula
ϕAG′

ww
by encoding its behaviour. In short, assuming an enumeration of A’s states {0, . . . ,m} such

that the initial state is represented by 0, the formula uses sets Xi to label the nodes where the
automaton assumes state i. The first line of the formula says that we cannot have a node which
is in two states and that X0 is our “initial” set; the second one licenses the distribution of the
sets according to the transitions and says that we need a root node which is in a “final” set. Pa
stands for the predicate labeling a node with the symbol a. For n-ary tree automata the formula
ϕA looks as follows:

(∃X0, . . . , Xm)[
∧

i6=j

(¬∃y)[y ∈ Xi ∧ y ∈ Xj] ∧ (∀x)[(¬∃y)[x ⊳ y] → x ∈ X0] ∧

(∀x1, . . . , xn, y)[
∨

(i1 ,...,in,σ,j)∈α

1≤k≤n

xk ∈ Xik ∧ y ⊳ xk ∧ y ∈ Xj ∧ y ∈ Pσ]
∨

i∈F

(∃x∀y)[x ⊳∗ y ∧ x ∈ Xi]

A more detailed description how to construct both the tree automaton and the corresponding
MSO formula can be found in Kolb et al. (2000).

6 Reconstructing the Intended Trees

Unfortunately, the terminal tree in Fig. 2, generated/recognized by G′
ww given in Fig. 1, does not

seem to have much in common with the structures linguists want to talk about.
Rogers (1998) has shown the suitability of an MSO description language for linguistics which

is based upon the primitive relations of immediate (⊳), proper (⊳+) and reflexive (⊳∗) dominance

and proper precedence (≺). We will show how to define these relations with an MSO transduc-
tion thereby implementing the unique homomorphism mapping the terms into elements of the
corresponding multiple context-free tree language, i.e., the trees linguists want to talk about.

The MSO transduction is in a certain sense universal, so we will not refer back to our particular
example to present it. The only variable part is the number of different projection constants
appearing in the RTG, i.e., π3

1 , π
3
3 and π3

3 .
At the core of the transduction is a tree-walking automaton defining the binary relation of

immediate dominance (⊳) on the nodes belonging to the intended structures. It is based on some
simple observations. The reader is encouraged to check them against the example tree t′ generated
by G′

ww given in Fig. 2.

1. Our trees feature three families of labels: the “linguistic” symbols L, i.e., the lifted symbols
of the underlying MCFG; the “composition” symbols C = {c(u,v,w)}; the “tupling” symbols

()(v,u) and the “projection” symbols Π = {πki }.

2. All nonterminal nodes in t′ are labeled by some c ∈ C or a “tupling” symbol. Note that no
terminal node is labeled by some c.

3. The terminal nodes in t′ are either labeled by some “linguistic” symbol, a “tupling” symbol
of the form ()(k,0), i.e. the “empty” tuple, or by some “projection” symbol πki .

4. Any “linguistic” node dominating anything in the intended tree is on some left branch in t′,
i.e., it is the left daughter of some c ∈ C and the sister of a tupling symbol whose daughters
evaluate to the intended daughters.

5. For any node ν labeled with some “projection” symbol πui ∈ Π in t′ there is a unique node
µ (labeled with some c ∈ C) which properly dominates ν and which immediately dominates
a node labeled with a “tupling” symbol whose i-th daughter will eventually evaluate to the
value of πki . Moreover, µ will be the first node properly dominating ν which is on a left
branch and bears a composition symbol. This crucial fact is arrived at by induction on the
construction of G′

ww from Gww.

By 4. it is not hard to find possible dominees in any t′ (e.g., the curved arrows in Fig. 2). It is the
problem of determining the actual “filler” of a candidate-dominee which makes up the complexity
of the definition of ⊳. There are three cases to account for:

1. If the node considered carries a “linguistic” label, it evaluates to itself;

2. if it has a “composition” label c, it evaluates to whatever its leftmost daughter evaluates to;

3. if it carries a “projection” label πki , it evaluates to whatever the node it “points to”—by (5.)
the ith daughter of a “tupling” node which is dominated by the first C-node on a left branch
dominating it—evaluates to.

Note that cases 2. and 3. are inherently recursive. In general, recursive definitions in MSO may
lead to undecidability and are therefore disallowed. Fortunately, the use of tree-walking automata
ensures the definability. In Fig. 2 the π3

3-link is an example of such a path from the projection
symbol to the corresponding filler.

According to the observations made above, a tree-walking automaton is defined to relate those
nodes x and y which stand in the intended immediate dominance relation, i.e., x ⊳ y. The au-
tomaton given graphically in Fig. 3. It starts on any node with a “linguistic” label (denoted here
by L) which means for the given example •, 1, 2, ε. Then it has to go up the first branch, read
a composition symbol and descend to its sister. If it reads a “linguistic” node, the automaton
stops. If it reads a composition symbol, the automaton goes to the left daughter and tries again.
If it reads a tupling symbol, the automaton proceeds with its daughters (again, see the curved
arrows in Fig. 2). On finding a projection symbol, it searches for the appropriate “filler” by going
upwards until it is on a leftmost branch which is labeled with a composition symbol. Then it

i

u1 u2 u3

u4 u5 u6

u7 u8 u9s1 s2 s3

e dt

dc

d1 d2 d3

d4 d5 d6

d7 d8 d9

f

L(x)�↑ 1�C(x)�↓ 2 ()(x)

C(x)

L(x)
(↓1 j ↓2)

↓1

(↑2j↑3) (↑2j↑3) (↑2j↑3)

� 1(x) � 2(x) � 3(x)

↑1 ↑1 ↑1()(x) ()(x) ()(x)

C(x)

↓2

C(x)

↓2

C(x)

↓2

()↑1 ()↑1 ()↑1C(x)↓1 C(x)↓1 C(x)↓1

↓1 ↓2 ↓3

Figure 3: The tree-walking automaton for immediate dominance: A⊳

walks to the second sister or further down the leftmost branch until it hits a tupling node to
whose appropriate daughter it descends to find the filler. The whole process is recursive, i.e., on
finding another projection symbol, the automaton again tries to find an appropriate filler (see the
π3
3-link in Fig. 2.)
However, there is another interpretation of such an automaton. Viewed as an ordinary finite-

state automaton over the alphabet ∆, A⊳ recognizes a regular (string-) language, the walking
language W⊳ = L(x) · ↑1 · C(x)· ↓2 · (W() ∪WC ∪WΠ1 ∪WΠ2 ∪WΠ3)

∗ · L(x) with

W() = ()(x) · (↓1 ∪ ↓2)
WC = C(x) · ↓1
WΠ1 = Π1(x) · (↑2 ∪ ↑3)

∗ · ↑1 · (()(x)· ↑1)
∗ · C(x) · ↓2 · (C(x) · ↓1)

∗ · ()(x) · ↓1
WΠ2 = Π2(x) · (↑2 ∪ ↑3)∗ · ↑1 · (()(x)· ↑1)∗ · C(x) · ↓2 · (C(x) · ↓1)∗ · ()(x) · ↓2
WΠ3 = Π3(x) · (↑2 ∪ ↑3)∗ · ↑1 · (()(x)· ↑1)∗ · C(x) · ↓2 · (C(x) · ↓1)∗ · ()(x) · ↓3

which can be translated recursively into an MSO formula transW⊳
defining the relation ⊳ (see

Bloem and Engelfriet, 1997).

trans∅(x, y) ≡ ⊥

trans↓i
(x, y) ≡ edgi(x, y)

trans↑i
(x, y) ≡ edgi(y, x)

transϕ(x)(x, y) ≡ ϕ(x) ∧ x = y

transW1∪W2(x, y) ≡ transW1(x, y) ∨ transW2(x, y)

transW1·W2(x, y) ≡ (∃z)[transW1(x, z) ∧ transW2(z, y)]

transW∗(x, y) ≡ trans∗W (x, y)

trans∗W (x, y) ≡ (∀X)(∀v, w)[(v ∈ X ∧ transW (v, w) → w ∈ X) ∧ x ∈ X → y ∈ X]

where the edge relation is defined as follows

edgn(x, y)
def
⇐⇒ (∃x1, . . . , xn−1)[x ⊳x1 ∧ · · · ∧ x ⊳xn−1 ∧ x ⊳ y ∧ x1 ≺ x2 ∧ · · · ∧ xn−1 ≺ y

∧ (∀w)[x ⊳w ∧ w 6≈ x1 ∧ · · · ∧ w 6≈ xn−1 ∧w 6≈ y → y≺w]]

and ϕ(x) in transϕ(x)(x, y) stands in our case for the tests ()(x), C(x) and L(x). We leave the
rather tedious process of converting the walking language for the automaton given in Fig. 3 to the
reader (a full example of such a conversion can be found in Kolb et al. 2000).

To present the actual MSO transduction, we need one further auxiliary definition. It is a
well-known fact (e.g. Bloem and Engelfriet 1997) that the reflexive transitive closure R∗ of a
binary relation R on nodes is (weakly) MSO-definable, if R itself is. This is done via a second-
order property which holds of the sets of nodes which are closed under R: R−closed(X) ⇐⇒def

(∀x, y)[x ∈ X ∧R(x, y) → y ∈ X].
Finally, the MSO transduction (ϕ, ψ, (θq)q∈Q) with Q = {⊳, ⊳∗, ⊳+,≺, . . . } we use to transform

the lifted structures into the intended ones is given as follows:

ϕ ≡ ϕAG′
ww

ψ ≡ (∃y)[transW⊳
(x, y) ∨ transW⊳

(y, x)]

θ⊳(x, y) ≡ transW⊳
(x, y)

θ⊳∗(x, y) ≡ (∀X)[⊳−closed(X) ∧ x ∈ X → y ∈ X]

θ⊳+(x, y) ≡ x ⊳∗ y ∨ x 6≈ y

θ≺(x, y) ≡ another tree-walking automaton

θlabels ≡ taken over from R

As desired, the domain of the transduction is characterized by the MSO formula ϕAG′
ww

for the

lifted trees. The domain, i.e., the set of nodes, of the intended tree is characterized by the formula
ψ which identifies the nodes with a “linguistic” label which stand indeed in the new dominance
relation to some other node. Building on it, we define the other primitives of a tree description
language suited to linguistic needs. For reasons of space, we have to leave the specification of
the precedence relation open. It is more complicated than dominance, but can be achieved with
another tree-walking automaton.

7 Conclusion

Taking the result of Michaelis’ translation of MGs as the input we have shown how to define a
RTG by lifting the corresponding MCFG-rules by viewing them as terms of a free Lawvere theory.
This gives us both a regular (via tree and tree-walking automata) and a logical characterization
(via MSO logic and an MSO definable transduction) of the intended syntactic trees. Equivalently,
we provide both an operational and a denotational account of Stabler’s version of Minimalism
without having to go via derivation trees.

It remains to be seen whether one can find a machine model for the entire MSO transduction.
A likely candidate are the macro tree transducers (MTT) introduced in Engelfriet and Maneth
(1999). Since they characterize the class of MSO definable tree translations if extended with
regular look-ahead and restricted to finite-copying, we are quite optimistic that we will be able
to use them to efficiently implement the transduction. This would also characterize the class of
languages we can handle. Engelfriet and Maneth show that the result of applying MTTs to a
regular tree languages yields the tree languages generated by context-free graph grammars.

Acknowledgements

The research presented in this paper was supported by the Deutsche Forschungsgemeinschaft
within the Sonderforschungsbereich 340, TP A8. The authors wish to thank Kai-Uwe Kühnberger
and Stephan Kepser for helpful discussions.

References

Bloem, R. and Engelfriet, J. (1997). Characterization of properties and relations defined in
monadic second order logic on the nodes of trees. Technical Report 97-03, Leiden University.

Courcelle, B. (1997). The expression of graph properties and graph transformations in monadic
second-order logic. In Rozenberg, G., editor, Handbook of Graph Grammars and Computing by
Graph Transformation. Vol. I: Foundations, chapter 5, pages 313–400. World Scientific.

Doner, J. E. (1970). Tree acceptors and some of their applications. J. Comput. System Sci.,
4:406–451.

Engelfriet, J. (1997). Context-free graph grammars. In Rozenberg, G. and Salomaa, A., editors,
Handbook of Formal Languages. Vol. III: Beyond Words, chapter 3, pages 125–213. Springer.

Engelfriet, J. and Maneth, S. (1999). Macro tree transducers, attribute grammars, and MSO
definable tree translations. Information and Computation, 154:34–91.

Gécseg, F. and Steinby, M. (1984). Tree Automata. Akadémiai Kiadó, Budapest.

Kolb, H.-P., Mönnich, U., and Morawietz, F. (2000). Descriptions of cross-serial dependencies.
To appear in a special issue of Grammars. Draft available under http://tcl.sfs.nphil.

uni-tuebingen.de/~frank/.

Mezei, J. and Wright, J. (1967). Algebraic automata and contextfree sets. Information and
Control, 11:3–29.

Michaelis, J. (1999). Derivational minimalism is mildly context-sensitive. In Moortgat, M., editor,
LACL ’98, LNAI. Springer. To appear.

Mönnich, U. (1998). TAGs M-constructed. In TAG+ 4th Workshop, Philadelphia.

Rabin, M. O. (1969). Decidability of second-order theories and automata on infinite trees. Trans-
actions of the American Mathematical Society, 141:1–35.

Rambow, O. and Satta, G. (1999). Independent parallelism in finite copying parallel rewriting
systems. Theoretical Computer Science, 223(1–2):87–120.

Rogers, J. (1998). A Descriptive Approach to Language-Theoretic Complexity. Studies in Logic,
Language, and Information. CSLI Publications and FoLLI.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars.
Theoretical Computer Science, 88(2):191–229.

Stabler, E. (1997). Derivational minimalism. In Retoré, C., editor, Logical Aspects of Computa-
tional Linguistics, pages 68–95, Berlin. Springer. LNAI 1328.

Stabler, E. (1999). Remnant movement and complexity. In Bouma, G., Kruijff, G.-J. M., Hinrichs,
E., and Oehrle, R. T., editors, Constraints and Resources in Natural Language Syntax and
Semantics, volume II of Studies in Constrained Based Lexicalism, pages 299–326. CSLI.

Thatcher, J. W. and Wright, J. B. (1968). Generalized finite automata theory with an application
to a decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81.

Thomas, W. (1990). Automata on infinite objects. In van Leeuwen, J., editor, Handbook of
Theoretical Computer Science, chapter 4, pages 133–191. Elsevier Science Publishers B. V.

Wagner, E. G. (1994). Algebraic semantics. In Abramsky, S., Gabbay, D. M., and Maibaum, T.
S. E., editors, Semantic Structures, volume 3 of Handbook of Logic in Computer Science, pages
323–393. Oxford University Press.

Weir, D. J. (1992). Linear context-free rewriting systems and deterministic tree-walk transducers.
In 30th Meeting of the Association for Computational Linguistics (ACL’92).

