
A Note on the Complexity of Constraint
Interaction: Locality Conditions and Minimalist

Grammars?

Hans-Martin Gärtner1 and Jens Michaelis2

1 ZAS, Jägerstr. 10–11, 10117 Berlin, Germany
gaertner@zas.gwz-berlin.de

2 Universität Potsdam, Institut für Linguistik, PF 601553, 14415 Potsdam, Germany
michael@ling.uni-potsdam.de

Appeared in: P. Blache, E. Stabler, J. Busquets and R. Moot (eds.), Logical As-

pects of Computational Linguistics (LACL ’05), Lecture Notes in Artificial Intelligence

Vol. 3492, pp. 114-130, c©Springer, Berlin, Heidelberg, 2005.

Abstract. Locality Conditions (LCs) on (unbounded) dependencies have
played a major role in the development of generative syntax ever since the
seminal work by Ross [22]. Descriptively, they fall into two groups. On
the one hand there are intervention-based LCs (ILCs) often formulated
as “minimality constraints” (“minimal link condition,” “minimize chain
links,”“shortest move,”“attract closest,” etc.). On the other hand there
are containment-based LCs (CLCs) typically defined in terms of (general-
ized) grammatical functions (“adjunct island,”“subject island,”“specifier
island,” etc.). Research on LCs has been dominated by two very general
trends. First, attempts have been made at unifying ILCs and CLCs on the
basis of notions such as “government” and “barrier” (e.g. [4]). Secondly,
research has often been guided by the intuition that, beyond empirical
coverage, LCs somehow contribute to restricting the formal capacity of
grammars (cf. [3, p. 125], [6, p. 14f]). Both these issues, we are going
to argue, can be fruitfully studied within the framework of minimalist
grammars (MGs) as defined by Stabler [25]. In particular, we are going
to demonstrate that there is a specific asymmetry between the influence
of ILCs and CLCs on complexity. Thus, MGs, including an ILC, namely,
the shortest move condition (SMC) have been shown to belong to the
mildly context-sensitive grammar formalisms by Michaelis [14]. The same
has been shown in [16, 18] for a revised version of MGs introduced in [26],
which includes the SMC and an additional CLC, namely, the specifier is-
land condition (SPIC). In particular [14] and [16, 18] show that, in terms
of derivable string languages, both the original MG-type and the revised
MG-type constitute a subclass of the class of linear context-free rewrit-
ing systems (LCFRSs) in the sense of [28, 29], and thus, a series of other
formalism classes all generating the same class of string languages as
LCFRSs. Here we will demonstrate that removing the SMC from the re-
vised MG-version increases the generative power in such a way that the
resulting formalism is not mildly context-sensitive anymore. This sug-
gests that intuitions to the contrary notwithstanding, imposing an LC
as such, here the SPIC, does not necessarily reduce formal complexity.

? This work has been carried out partially funded by DFG-grant. Thanks to two
anonymous referees for valuable comments on a previous version of this paper.

1 Introduction

Locality Conditions (LCs) on (unbounded) dependencies have played a major
role in the development of generative syntax ever since the seminal work by
Ross [22]. Descriptively, they fall into two groups. On the one hand there are
intervention-based LCs (ILCs), very sketchily illustrated in (1).

[. . . α . . . [. . . β . . . γ . . .]] (1)

An ILC constrains dependencies between α and γ across an intervening β,
where intervention is defined in terms of c-command as well as the features and
position of β relative to the features and positions of α and γ. ILCs are often for-
mulated as “minimality constraints” (“minimal link condition,”“minimize chain
links,”“shortest move,”“attract closest,” etc.) on the assumption that more min-
imal dependencies could have been formed between α and β, and/or β and γ.
On the other hand containment-based LCs (CLCs) exist such as given in (2).

[. . . α . . . [β . . . γ . . .]] (2)

A CLC constrains dependencies between α and γ across a constituent β
containing γ but excluding α. Typically the containers are defined in terms of
(generalized) grammatical functions (“adjunct island,”“subject island,”“specifier
island,” etc.). Research on LCs has been dominated by two very general trends.
First, attempts have been made at unifying ILCs and CLCs on the basis of
notions such as “government” and “barrier” (see e.g. [4]). Secondly, research has
often been guided by the intuition that, beyond empirical coverage, LCs somehow
contribute to restricting the formal capacity of grammars (cf. [3, p. 125], [6, p.
14f]). Both these issues, we are going to argue, can be fruitfully studied within
the framework of minimalist grammars (MGs) as defined by Stabler [25].3 In
particular, we are going to show that there is a specific asymmetry between
the influence of ILCs and CLCs on complexity. Crucial starting point for our
demonstration is the fact that MGs, including an ILC, namely, the shortest
move condition (SMC) have been shown to belong to the mildly context-sensitive

3 Research on LCs in terms of categorial grammar (CG) has taken at least two rather
divergent directions. Within the combinatory brand of CG, CCG, there has been a
tendency to refrain from syntactically encoding LCs. This is based on the intuition
that “the origin of constraints on long-range dependencies ultimately lies in semantic
coherence properties of the nonstandard constituents that combination into islands
creates [. . .]” [27, p. 65]. The type logical approach to CG has implemented CLCs
rather directly in terms of unary operators that “block associativity” [19] or cause
“structural inhibition” [20]. For one complexity result on the resulting multi-modal
CGs, showing that under certain conditions they preserve the weak context-freeness
of the Lambek calculus, see [9]. It would be attractive to compare and contrast
our results on MGs more closely with CG-approaches. (In particular, it might be
worth to explore hybrid versions of both CG-brands, especially given the fact that
CCGs undergoing certain restrictions have been shown to constitute a mildly context-
sensitive formalism (cf. [28, 29]), and thus, to be rather closely related to MGs.)
However, this will have to be left for further research.

grammar formalisms by Michaelis [14]. The same has been shown in [16] for a
revised version of MGs defined in [26], which includes the SMC and an additional
CLC, namely, the specifier island condition (SPIC).

The type of MG introduced in [25] provides an attempt at a rigorous algebraic
formalization of the perspectives currently adopted within the linguistic frame-
work of transformational grammar (see e.g. [5]). An MG, roughly speaking, is
a formal device which specifies a countable set of finite, binary (ordered) trees
each being equipped with a leaf-labeling function assigning a string of features
to each leaf, and with an additional binary relation, the asymmetric relation of
(immediate) projection, defined on the set of pairs of siblings. The base of an
MG is formed by a lexicon (a finite set of single node trees in the above sense)
and two structure building functions: merge (combining two trees) and move
(transforming a given tree). Both functions build structure by canceling partic-
ular matching instances of features within the leaf-labels of the trees to which
they are applied. The closure of the lexicon under these two functions is the set
of trees characterized by the MG. As shown in [14], this MG-type constitutes a
mildly context-sensitive formalism in the sense that it provides a weakly equiv-
alent subclass of linear context-free rewriting systems (LCFRSs) [28, 29]. Inde-
pendent work in [8] and [17] has proven the reverse to hold as well. Hence, MGs
as defined in [25], beside LCFRSs, join to a series of formalism classes—among
which there are e.g. the class of local unordered scattered context grammars [21],
the class of multicomponent tree adjoining grammars in their set-local variant of
admitted adjunction (cf. [29]), the class of multiple context-free grammars [24],
or the class of simple positive range concatenation grammars [1]—all generating
the same class of string languages. For a list of some further of such classes of
generating devices see e.g. [21].

Inspired, i.a., by the linguistic work presented in [12], in [26] a revised type of
an MG has been proposed whose departure from the version in [25] can be seen
as twofold: the revised type of an MG neither employs any kind of head move-
ment nor covert phrasal movement, and an additional restriction is imposed on
the move-operator regulating which maximal projection may move overtly into
the highest specifier position. Deviating from the operator move as originally
defined in [25], a constituent has to belong to the transitive complement closure
of a given tree or to be a specifier of such a constituent in order to be movable
at all. Employing and extending the methods developed in [14] and [17], it was
shown in [16, 18] and [15] that, in terms of derivable string languages, the re-
vised MG-type is not only subsumed by LCFRSs, but is identical to a particular
subclass of the latter: the righthand side of each rewriting rule of a correspond-
ing LCFRS involves at most two nonterminals, and if two nonterminals appear
on the righthand side then only simple strings of terminals are derivable from
the first one. Whether the respective classes of string languages derivable by
the corresponding LCFRS-subclass and the class of all LCFRSs—and thus the
respective classes of string languages derivable by the class of revised MGs as
defined in [26] and the class of MGs as defined in [25]—are identical seems to
be an open problem. Here, we will demonstrate that removing the SMC from

the revised MG-version increases the generative power in such a way that the
resulting formalism is not mildly context-sensitive. This suggests that intuitions
to the contrary notwithstanding, imposing an LC as such, here the SPIC, does
not necessarily reduce formal complexity.

The paper is structured as follows: Section 2 introduces (revised) minimalist
grammars in two versions, one standard (MGs, Definition 3) and one without the
SMC (MG-SMCs, Definition 4). In Section 3 we show, how to derive the language
{a2n |n ∈ IN}, i.e. a language without the constant growth property, and thus
a non-mildly context-sensitive language. Section 4 provides a short conclusion
and an outlook on further research. Throughout the rest of the paper we use the
term minimalist grammar and its abbreviation MG in order to refer to an MG
of the revised type as defined in [26], unless explicitly indicated otherwise.

2 (Revised) Minimalist Grammars

Throughout we let ¬Syn and Syn be a finite set of non-syntactic features and
a finite set of syntactic features, respectively, in accordance with (F1) and (F2)
below. We take Feat to be the set ¬Syn ∪ Syn.

(F1) ¬Syn is disjoint from Syn and partitioned into a set Phon of phonetic features
and a set Sem of semantic features.

(F2) Syn is partitioned into a set Base of (basic) categories, a set Select of se-
lectors, a set Licensees of licensees and a set Licensors of licensors. For
each x∈Base, usually typeset as x, the existence of a matching x′ ∈Select ,
denoted by =x, is possible. For each x∈Licensees, usually depicted as -x,
the existence of a matching x′ ∈Licensors, denoted by +X, is possible. Base
includes at least the category c.

Definition 1. An expression (over Feat) is a five-tuple 〈Nτ , /
∗
τ ,≺τ , <τ , labelτ 〉

obeying (E1)–(E4).

(E1) 〈Nτ , /
∗
τ ,≺τ 〉 is a finite, binary (ordered) tree defined in the usual sense: Nτ

is the finite, non-empty set of nodes, and /∗τ and ≺τ are the respective binary
relations of dominance and precedence on Nτ .4

(E2) <τ⊆ Nτ × Nτ is the asymmetric relation of (immediate) projection that
holds for any two siblings in 〈Nτ , /

∗
τ ,≺τ 〉, i.e., for each x ∈ Nτ different

from the root of 〈Nτ , /
∗
τ ,≺τ 〉 either x <τ siblingτ (x) or siblingτ (x) <τ x

holds.5

4 Thus, /
∗
τ is the reflexive-transitive closure of /τ ⊆ Nτ ×Nτ , the relation of immediate

dominance on Nτ
5 For each x ∈ Nτ different from the root of 〈Nτ , /

∗
τ ,≺τ 〉, siblingτ (x) is the (unique)

sibling of x. If x <τ y for any x, y ∈ Nτ , x is said to (immediately) project over y.

>

<

gα1 α2

<

fκ >

β1 <

hβ2 β3

Fig. 1. A typical expression over Feat .

(E3) labelτ is the leaf-labeling function, i.e., a total function from the set of all
leaves of 〈Nτ , /

∗
τ ,≺τ 〉 into Syn∗Phon∗Sem∗.6

(E4) 〈Nτ , /
∗
τ ,≺τ 〉 is a subtree of the natural interpretation of a tree domain.7

We take Exp(Feat) to denote the set of all expressions over Feat .

Let τ = 〈Nτ , /
∗
τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat).8

For each x ∈ Nτ , the head of x (in τ), denoted by headτ (x), is the (unique)
leaf of τ with x/∗τ headτ (x) such that each y ∈ Nτ on the path from x to headτ (x)
with y 6= x projects over its sibling, i.e. y <τ siblingτ (y). The head of τ is the
head of τ ’s root. τ is said to be a head (or simple) if Nτ consists of exactly one
node, otherwise τ is said to be a non-head (or complex).

A five-tuple υ= 〈Nυ , /
∗
υ ,≺υ , <υ , labelυ 〉 is a subexpression of τ if 〈Nυ , /

∗
υ ,≺υ 〉

is a subtree of 〈Nτ , /
∗
τ ,≺τ 〉, and if <υ=<τ ¹Nυ×Nυ

and labelυ= labelτ ¹Nυ
hold.9

Thus, υ ∈ Exp(Feat). Such an υ is a maximal projection (in τ) if υ’s root is
a node x ∈ Nτ such that x is the root of τ , or such that siblingτ (x) <τ x.
MaxProj (τ) is the set of all maximal projections in τ .

6 For each set M , M∗ is the Kleene closure of M , including ε, the empty string. Mε
denotes the set M ∪ {ε}. For any K,L ⊆M∗, KL is the product of K and L under
concatenation, i.e., the (string) set {kl | k ∈ K, l ∈ L} ⊆M∗.

7 We take IN to denote the set of all non-negative integers. A tree domain is a non-
empty set Nυ ⊆ IN∗ such that for all χ ∈ IN∗ and i ∈ IN it holds that χ ∈ Nυ

if χχ′ ∈ Nυ for some χ′ ∈ IN∗, and χi ∈ Nυ if χj ∈ Nυ for some j ∈ IN with
i < j. 〈Nυ , /

∗
υ ,≺υ 〉 is the natural (tree) interpretation of Nυ in the case that for all

χ,ψ ∈ Nυ it holds that χ /υ ψ iff ψ = χi for some i ∈ IN, and χ ≺υ ψ iff χ = ωiχ′

and ψ = ωjψ′ for some ω, χ′, ψ′ ∈ IN∗ and i, j ∈ IN with i < j.
8 Note that the leaf-labeling function labelτ can easily be extended to a total labeling

function `τ from Nτ into Feat∗∪{< , >}, where < and > are two new distinct symbols:
to each non-leaf x ∈ Nτ we can assign a label from {< , >} by `τ such that `τ (x) = <

iff y <τ z for y, z ∈ Nτ with x /τ y, x /τ z, and y ≺τ z. In this sense a concrete
τ ∈ Exp(Feat) is depictable in the way demonstrated in Fig. 1.

9 For a binary relation r ⊆ A×B, A and B being two sets, and for any two sets A′ and
B′, r ¹A′×B′ is the restriction of r to A′×B′, i.e., the set {〈a, b〉 ∈ r | a ∈ A′, b ∈ B′}.
In case r is a function, we also write r ¹A′ instead of r ¹A′×B′ .

>

specifier >

specifier >

specifier <

head

complement

Fig. 2. The typical structure of a (minimalist) expression over Feat .

compτ ⊆ MaxProj (τ)×MaxProj (τ) is the binary relation defined such that
for all υ, φ ∈ MaxProj (τ) it holds that υ compτ φ iff headτ (rυ) <τ rφ, where
rυ and rφ are the roots of υ and φ, respectively. If υ compτ φ holds for some
υ, φ ∈ MaxProj (τ) then φ is a complement of υ (in τ). comp+

τ is the transitive
closure of compτ . Comp+(τ) is the set {υ | τ comp+

τ υ}.
specτ ⊆ MaxProj (τ) ×MaxProj (τ) is the binary relation defined such that

for all υ, φ ∈ MaxProj (τ) it holds that υ specτ φ iff rφ = siblingτ (x) for some
x ∈ Nτ with rυ /

+
τ x /

+
τ headτ (rυ), where rυ and rφ are the roots of υ and φ,

respectively. If υ specτ φ for some υ, φ ∈ MaxProj (τ) then φ is a specifier of υ
(in τ). Spec(τ) is the set {υ | τ specτ υ}.

An υ ∈ MaxProj (τ) is said to have, or likewise, to display (open) feature f if
the label assigned to υ’s head by labelτ is non-empty and starts with an instance
of f ∈ Feat .10

τ is complete if its head-label is in {c}Phon∗Sem∗, and if the label of each
other leaf is in Phon∗Sem∗. Hence, a complete expression over Feat is an expres-
sion that has category c, and this instance of c is the only instance of a syntactic
feature within all leaf-labels.

The phonetic yield of τ , denoted by YPhon(τ), is the string which results
from concatenating in “left–to–right–manner” the labels assigned to the leaves
of 〈Nτ , /

∗
τ ,≺τ 〉 via labelτ , and replacing all instances of non-phonetic features

with the empty string, afterwards.
An υ = 〈Nυ , /

∗
υ ,≺υ , <υ , labelυ 〉 ∈ Feat(Exp) is (label preserving) isomorphic

to τ if there is a bijective function i from Nτ onto Nυ with x/τ y iff i(x) /υ i(y),
x ≺τ y iff i(x) ≺υ i(y), x <τ y iff i(x) <υ i(y) for x, y ∈ Nτ , and with
labelτ (x) = labelυ (i(x)) for each x ∈ Nτ being a leaf of τ . i is an isomorphism
(from τ to υ).

Definition 2. For τ = 〈Nτ , /
∗
τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat) with Nτ = tNυ for

some t∈ IN∗ and some tree domain Nυ , and for r∈ IN∗, (τ)r denotes the expres-
sion shifting τ to r, i.e., the expression 〈Nτ(r) , /

∗
τ(r) ,≺τ(r) , <τ(r) , labelτ(r)〉 over

10 Thus the expression depicted in Fig. 1 has feature f , while its specifier and its
complement have feature g and h, respectively.

Feat with Nτ(r) = rNυ such that the function iτ(r) from Nτ onto Nτ(r) with
iτ(r)(tx) = rx for all x ∈ Nυ is an isomorphism from τ to (τ)r .11

For υ, φ ∈ Exp(Feat) let χ = 〈Nχ , /
∗
χ ,≺χ , <χ , labelχ〉 be a complex expression

over Feat with root ε such that (υ)0 and (φ)1 are the two subexpressions of χ
whose roots are immediately dominated by ε. Then χ is of one of two forms: in
order to refer to χ we write [<υ, φ] if 0 <χ 1, and [>υ, φ] if 1 <χ 0.

Definition 3 ([26]). A minimalist grammar (MG) is a five-tuple of the form
G = 〈¬Syn,Syn,Lex , Ω, c〉 with Ω being the operator set consisting of the struc-
ture building functions merge and move defined w.r.t. Feat as in (me) and (mo)
below, respectively, and with Lex being a lexicon (over Feat), i.e., Lex is a fi-
nite set of simple expressions over Feat , and each lexical item τ ∈ Lex is of the
form 〈Nτ , /

∗
τ ,≺τ , <τ , labelτ 〉 such that Nτ = {ε}, and such that labelτ (ε) is in

(Select ∪ Licensors)∗Base Licensees∗Phon∗Sem∗.

(me) merge is a partial mapping from Exp(Feat) × Exp(Feat) into Exp(Feat).
A pair 〈υ, φ〉 with υ, φ ∈ Exp(Feat) belongs to Dom(merge) if for some
x ∈ Base and κ, λ ∈ Feat∗, conditions (i) and (ii) are fulfilled:12

(i) the head-label of υ is =xκ (i.e. υ has selector =x), and

(ii) the head-label of φ is xλ (i.e. φ has category x).

Then,

(me.1) merge(υ, φ) = [<υ′, φ′] if υ is simple, and

(me.2) merge(υ, φ) = [>φ′, υ′] if υ is complex,

where υ′ and φ′ result from υ and φ, respectively, just by deleting the instance
of the feature that the respective head-label starts with (cf. Fig. 3).

=xκ

υ

xλ

φ Ã
>

if υ is complex

λ

φ′

κ

υ′

if υ is simple

<

κ

λ

φ′

Fig. 3. merge(υ, φ) according to (me).

(mo) move is a partial mapping from Exp(Feat) to Exp(Feat). An υ ∈ Exp(Feat)
is in Dom(move) if for some -x ∈ Licensees and κ ∈ Feat∗, (i)–(iii) are true:

11 For any t ∈ IN∗ and N ⊆ IN∗, tN is just the concatenation product {t}N , i.e., the
set {tx |x ∈ N} ⊆ IN∗ (cf. fn. 6). Note that for each τ = 〈Nτ , /

∗
τ ,≺τ , <τ , labelτ 〉

from Exp(Feat), a t ∈ IN∗ and tree domain Nυ with Nτ = tNυ exist by (E4).
12 For a partial function f from a set A into a set B, Dom(f) is the domain of f , i.e.,

the set of all x ∈ A for which f(x) is defined.

(i) the head-label of υ is +Xκ (i.e. υ has licensor +X),

(ii) there is exactly one φ ∈ MaxProj (υ) with head-label -xλ for some
λ ∈ Feat∗ (i.e. there is exactly one φ ∈ MaxProj (υ) that has feature -x),
and

(iii) there exists a χ ∈ Comp+(υ) with φ = χ or φ ∈ Spec(χ).

Then,

move(υ) = [>φ′, υ′] ,

where υ′ ∈ Exp(Feat) results from υ by canceling the instance of +X the
head-label of υ starts with, while the subtree φ is replaced by a single node
labeled ε. φ′ ∈ Exp(Feat) arises from φ by deleting the instance of -x the
head-label of φ starts with (cf. Fig. 4).

+Xκ
-xλ

υ

φ

>

λ

φ′

Ã
κ

υ′

Fig. 4. move(υ) according to (mo).

Note that it is condition (ii) of (mo) which can be seen as providing a strict imple-
mentation of the shortest movement condition (SMC): competing open licensees
in one and the same given expression do not allow one to derive a complete
expression from the given one. It is condition (iii) of (mo) which provides an
implementation of the specifier island condition (SPIC): a constituent has to
belong to the transitive complement closure of a given tree or to be a specifier
of such a constituent in order to be movable at all.

Since we are interested in the question of whether the generative capacity of
our formalism is affected by giving up the SMC and sticking to the SPIC, we
next present the definition of an MG without SMC.

Definition 4. A minimalist grammar without SMC (MG-SMC) is a five-tuple
of the form 〈¬Syn,Syn,Lex , Ω, c〉 where Ω is the operator set consisting of the
structure building functions merge and move-SMC defined w.r.t. Feat as in (me)
above and (mo-SMC) below, respectively, and where Lex is a lexicon over Feat
defined as in Definition 3.

(mo-SMC) move-SMC is a partial mapping from Exp(Feat) to Pfin(Exp(Feat)).13

An υ ∈ Exp(Feat) is in Dom(move) if for some -x ∈ Licensees and κ ∈ Feat∗,
(i)–(iii) are true:

13 Pfin(Exp(Feat)) is the class of all finite subsets of Exp(Feat).

(i) the head-label of υ is +Xκ (i.e. υ has licensor +X),

(ii) there is some φ ∈ MaxProj (υ) with head-label -xλ for some λ ∈ Feat∗

(i.e. there is some φ ∈ MaxProj (υ) that has feature -x), and

(iii) there exists a χ ∈ Comp+(υ) with φ = χ or φ ∈ Spec(χ).

Then,

move-SMC(υ) =

[>φ′, υ′]

∣∣∣∣∣∣∣

φ ∈ MaxProj (φ) with head-label -xλ
for some λ ∈ Feat∗ such that there is
a χ ∈ Comp+(υ) for which φ = χ or
φ ∈ Spec(χ)

,

where υ′ ∈ Exp(Feat) results from υ by canceling the instance of +X the
head-label of υ starts with, while the subtree φ is replaced by a single node
labeled ε. φ′ ∈ Exp(Feat) arises from φ by deleting the instance of -x the
head-label of φ starts with (cf. Fig. 4).

Let G = 〈¬Syn,Syn,Lex , Ω, c〉 be an MG, respectively an MG-SMC. Then the
closure of G, CL(G), is the set

⋃
k∈IN CLk(G), where CL0(G) = Lex , and for

k ∈ IN, CLk+1(G) ⊆ Exp(Feat) is recursively defined as the set

CLk(G) ∪ {merge(υ, φ) | 〈υ, φ〉 ∈ Dom(merge) ∩ CLk(G)× CLk(G)}
∪ {move(υ) | υ ∈ Dom(move) ∩ CLk(G)}

in case G is an MG, respectively as the set

CLk(G) ∪ {merge(υ, φ) | 〈υ, φ〉 ∈ Dom(merge) ∩ CLk(G)× CLk(G)}
∪

⋃
υ∈Dom(move-SMC)∩CLk(G)

move-SMC(υ),

in case G is an MG-SMC. The set {YPhon(τ) | τ ∈ CL(G) and τ complete}, denoted
by L(G), is the (string) language derivable by G.

Definition 5. A set L is a minimalist language (ML) if L = L(G) for some
MG G, and it is a minimalist language without SMC (ML-SMC), if L = L(G) for
some MG-SMC G.

Corollary 1. Each ML has the constant growth property.14 ¤

This corollary is an immediate consequence of the fact (cf. [16, 18]) that each
language derivable by an MG in the sense of Definition 3 is a language derivable
by a linear context-free rewriting system (LCFRS) in the sense of [28, 29].

14 For each set M and each L ⊆ M∗, L has the constant growth property, if there is
an N ∈ IN such that for all w1, w2 ∈ L with |w1| < |w2|, and for which there is no
w3 ∈ L with |w1| < |w3| < |w2|, it holds that |w2| − |w1| ≤ N . Here, for w ∈ M∗,
|w| denotes the length of w.

2.1 The notion of a relevant expression

The notion of what is a relevant expression within the closure of an MG, respec-
tively MG-SMC, G, is of some importance. We refer to an expression τ ∈ CL(G)
as relevant if it serves to derive a complete expression. In particular, we want to
emphasize that both in the case of an MG and in the case of an MG-SMC, condi-
tion (iii) of the definition of the move-operator guarantees the following: when-
ever an expression υ ∈ CL(G) can be employed in order to generate a complete
expression, there is no maximal projection ψ ∈ MaxProj (υ) such that ψ displays
an unchecked licensee and is properly contained within some χ ∈ Comp+(υ).

To put it differently, if we applied the move-operator to some υ ∈ CL(G)
such that some χ ∈ Comp+(υ) becomes a specifier of the resulting expression, it
would be impossible to check off in a later derivation step any licensee feature
displayed by some ψ ∈ MaxProj (υ) properly contained in χ, because applying
the move-operator to υ, ψ would end up in a position not matching condition
(iii) of the definition of the move-operator, and this property is inherited by any
expression subsequently derived. In the syntactic literature this is often referred
to as a “freezing effect.” Complying with this effect, we can, in the case of an
MG-SMC, “hide” an unbounded, finite number of different instances of the same
licensee “along” the transitive complement closure of a single expression; and we
exploit exactly this possibility in the next section, when we define an MG-SMC

deriving a language which is not mildly context-sensitive.

3 A non-mildly context-sensitive ML-SMC

We are now going to present an MG-SMC deriving a language which does not
fulfil the constant growth property, namely, the language {a2n |n ∈ IN}.

Example 1. Assume Gex = 〈¬Syn,Syn,Lex , Ω, c〉 to be the MG-SMC for which

Sem = ∅ Base = {c, w, x, y, z} Licensees = {-l, -m}
Phon = {a} Select = {=c, =w, =x, =y, =z} Licensors = {+L, +M}

and for which Lex consists of the following 9 simple expressions:15

β1 = w-m β2 = =wx-l

γ1 = =x+My-m γ2 = =y+Lz-l γ3 = =zy-l γ4 = =zx-l

δ1 = =x+Mc δ2 = =c+Lca

Instead of a strictly formal proof that L(Gex) = {a2n |n ∈ IN} we will give
the crucial details in a descriptive manner.

15 Since all lexical entries of Gex are heads, we simply represent each of them by its
(unique) label.

<

x-l -m

Fig. 5. The expression merge(β2, β1).

<

+My-m <

-l ...
<

-l

-m

Fig. 6. Starting the derivation cycle by merging with γ1.

Each derivation of an expression belonging to CL(Gex) necessarily starts by
merging expressions β2 and β1, yielding an expression which displays category
x and contains a maximal projection displaying licensee -m (cf. Fig. 5). Hence,
the expression merge(β2, β1) can be selected by γ1 as well as δ1.

The lexical items γ1, γ2, γ3 and γ4 can be employed to run a derivation cycle
in order to double the number of maximal projections appearing in a given ex-
pression and displaying licensee -l. The cycle starts by merging with expression
γ1 (cf. Fig. 6) and next checking an instance of licensee -m; and the cycle stops
by merging with γ4, yielding an expression displaying category x (cf. Fig. 9). In
between, repeatedly carrying out sequences of applying merge with γ2, apply-
ing move-SMC, and applying merge with γ3 lead to the doubling of unchecked
instances of licensee -l (cf. Fig. 7 and 8). The end of the cycle is “indicated”
by an appearance of licensee -m: after a maximal projection displaying -m has
become the lowest embedded constituent displaying any unchecked licensee at
all, we necessarily have to merge with γ4 to prevent the derivation from running
into a configuration which makes it impossible to finally generate a complete
expression.

Note that, whenever move-SMC can be applied to some υ ∈ CL(Gex), a max-
imal projection φ ∈ MaxProj (υ) displaying the corresponding licensee trigger-
ing move-SMC always belongs to the transitive complement closure of υ, i.e.
Comp+(υ). The crucial point now is that, although υ may contain even several
different maximal projections displaying the same licensee, in any case only the
lowest maximal projection from Comp+(υ) can be moved in order to derive a
complete expression.16

16 Recall the notion of a relevant expression.

<

+Lz-l <

-l ...
<

-l >

<

-m <

-l ...
<

-l ε

Fig. 7. Within the cycle after merging with γ2: “preparing” the doubling of the lowest
instance of licensee -l which now gets checked off by move-SMC, but, virtually, has
already been ”reinstantiated” within the label of γ2.

<

y-l >

<

-l <

-l ...
<

-l >

<

-m <

-l ...

Fig. 8. Within the cycle after merging with γ3: the instance of licensee -l “reinstanti-
ated” before by means of the label of γ2 (cf. Fig. 7), now has been “doubled” by means
of the label of γ3.

After having merged with γ4, the repetition of the derivational cycle, just
described, is blocked by merging with δ1 instead of merging with γ1 (cf. Fig. 10).

<

x-l <

-l ...
<

-l

-m

Fig. 9. Stopping the derivation cycle by merging with γ4.

<

+Mc <

-l ...
<

-l

-m

Fig. 10. Leaving the derivation cycle by merging with δ1.

<

+Lya >

<

a ...
<

a >

<

<

-l ...
<

-l ε

Fig. 11. Finishing the derivation by successively merging with δ2 and checking off the
remaining instances of licensee -l, thereby introducing an instance of an a for each -l.

Then, after the “cycle end–marking” instance of licensee -m has been checked
through an application of move-SMC, all instances of licensee -l get successively
checked by first merging with δ2 and applying move-SMC afterwards. Hence,
in particular, for each instance of licensee -l exactly one instance of (phonetic)
feature a is introduced via merging with δ2 (cf. Fig. 11). Therefore, {a2n |n ∈ IN}
is in fact the language derived by Gex.

4 Conclusion and Outlook

We have shown that removing the SMC from MGs increases their generative
capacity beyond mild context-sensitivity. In particular, we have provided an
exemplary MG-SMC deriving the language {a2n |n ∈ IN}, i.e. a language lacking
the constant growth property. Importantly, this effect arises in spite of the fact
that MG-SMCs are constrained by a CLC, namely, the SPIC. This suggests that,
intuitions to the contrary notwithstanding, the imposition of LCs on grammars
as such, in the case at hand the SPIC, does not automatically reduce their
generative capacity.

Note also that closely in keeping with some further suggestions in [12], a
certain type of a strict minimalist grammar (SMG) has been introduced in [26]
as well. This MG-type allows only movement of constituents belonging to the
transitive complement closure of a tree. But in contrast to the MG-type match-
ing our Definition 3, the triggering licensee feature may head the head-label of
any constituent within the reflexive-transitive specifier closure of a moving con-
stituent. Furthermore, due to the general definition of a lexical item of an SMG,
an SMG does not permit the creation of multiple specifiers during the course of
a derivation. Beside these differences, SMGs have implemented the SMC within
the definition of the move-operator in the same way MGs have. SMGs and MGs
have been shown to be weakly equivalent in [15, 18] confirming a conjecture ex-
plicitly stated in [26]. Note that, if we defined strict minimalist grammars without
SMC (SMG-SMC) by relaxing the condition (ii) of the move-operator as we did
for MGs in Definition 4, our example MG-SMC would also match the criteria
such an SMG-SMC had to fulfil. This, of course, is of interest, since it suggests
that providing the implementation of the SPIC with a “final strictness,” does
not prevent us from being able to derive non-mildly context-sensitive languages
when giving up the SMC.

There has recently been made another interesting attempt, namely, by Kobele
[11], to look at the consequences concerning the generative capacity of MGs when
changing the original definition from [25] and allowing a certain kind of feature
percolation. In fact, Kobele proved that, if the syntactic features of a head are
presented as strings which are checked “from left to right,” and if movement to a
specifier position generally allows for the possibility that the syntactic features
of the specifier’s head are inherited by the attracting head in such a way that
they become an integral part of the syntactic features of the attracting head,
then MGs modified in this respect allow one to derive any language of type

0.17,18 We conjecture that this is true of MG-SMCs as well. The reason for this
is that MG-SMCs (i.e. MGs for which the SPIC, the specifier island condition,
SPIC, but not the SMC, the shortest move condition, hold) on the one hand and
MGs of the Kobele-type (i.e. MGs generally allowing for feature percolation from
specifiers to heads) on the other appear to constitute complementary pictures of
one and the same thing. The sort of feature percolation Kobele considers allows
to “collect” instantiations of the same feature type within a single head-label
without violating the SMC, since only the first feature instantiation within the
head-label is visible to the move-operator. The implementation of the SPIC in
MGs discussed in our paper and the simultaneous dropping of the SMC allows to
“collect” instantiations of the same feature type within the transitive complement
closure, since only the lowest, i.e. most deeply embedded, instantiation can be
checked off without leading to a crashing derivation. This connection certainly
deserves more attention and has to be elaborated quite carefully.19

To end on a more linguistic note, we observe that constraint interaction
among LCs (ILCs/CLCs) and its impact on the generative capacity of gram-
mars is still deplorably understudied and consequently not very well understood.
Our own attempts here have obviously been rather sketchy. Further research
will have to provide an exact characterization of the LC/complexity connection.
This would involve a clearer picture of the tight relation between the SMC and
LCFRSs, which has guided much of the research on the complexity of MGs.20

17 This is at least true, when—by means of an “MG-external” encoding—we treat type
0-languages as recursively enumerable subsets of the natural numbers, because what
Kobele concretely proves, is that each arbitrary abacus in the sense of [13] can be
simulated by a corresponding MG. How to define such an MG directly deriving a
given type 0-language, seems to be an open problem.

18 Note also that “permitting percolation of unchecked features of the attracted head
into the attracting one,”“representing head-features as strings” and, depending on
this representation, “demanding a left–to–right–checking of features” should be seen
as properties of a particular instantiation of a slightly more general case still im-
plying the same result on generative capacity (cf. [11]). Here we concentrate on this
particular instantiation, just with the intend of keeping our exposition somewhat
simpler and more accessible.

19 To support our conjecture, it should also be mentioned here that Kobele [10] pointed
out, how in a different framework, namely, mirror theoretic grammars (MTGs) de-
veloped in [10] as a formalization of the syntactic theory proposed in [2], it is possible
to define an (unrestricted) MTG deriving the language {a2n |n ∈ IN}. In fact, MTGs
in their unrestricted version can be seen as strongly related to the MG-type Kobele
considers in [11] exactly in the way they allow for feature percolation—though, in
place of percolation from specifiers to heads, we are concerned with percolation from
complements to (selecting) heads in the MTG-case—and the corresponding kind of
percolation is employed to derive {a2n |n ∈ IN} by an MTG.

20 Note that a prima facie problematic domain of grammar, namely, multiple-wh-
fronting constructions (cf. [23]) can be harmonized with the SMC if, among other
things, one assumes wh-cluster formation triggered by special clustering features.

References

[1] Pierre Boullier. Proposal for a natural language processing syntactic backbone.
Report No. 3342, INRIA research reports, INRIA Rocquencourt, 1998. Available
at http://www.inria.fr/rrrt/rr-3342.html.

[2] Michael Brody. Mirror theory. Syntactic representation in perfect syntax. Lin-
guistic Inquiry, 31:29–65, 2000.

[3] Noam Chomsky. On wh-movement. In P. Culicover, T. Wasow, and A. Akmajian,
editors, Formal Syntax, pages 71–132. Academic Press, New York, NY, 1977.

[4] Noam Chomsky. Barriers. MIT Press, Cambridge, MA, 1986.

[5] Noam Chomsky. The Minimalist Program. MIT Press, Cambridge, MA, 1995.

[6] Noam Chomsky. Beyond explanatory adequacy. MIT Occasional Papers in Lin-
guistics (MITOPL #20), Massachusetts Institute of Technology, Department of
Linguistics and Philosophy, Cambridge, MA, 2001.

[7] Philippe de Groote, Glyn Morrill, and Christian Retoré, editors. Logical Aspects
of Computational Linguistics (LACL ’01), LNAI Vol. 2099. Springer, Berlin,
Heidelberg, 2001.

[8] Henk Harkema. A characterization of minimalist languages. In de Groote et al.
[7], pages 193–211.

[9] Gerhard Jäger. On the generative capacity of multi-modal categorial grammars.
Research on Language and Computation, 1:105–125, 2003.

[10] Gregory M. Kobele. Formalizing mirror theory. Grammars, 5:177–221, 2003.

[11] Gregory M. Kobele. Features moving madly. Research on Language and Com-
putation, to appear. Draft version available at http://www.linguistics.ucla.

edu/people/grads/kobele/papers.htm.

[12] Hilda Koopman and Anna Szabolcsi. Verbal Complexes. MIT Press, Cambridge,
MA, 2000.

[13] Joachim Lambek. How to program an (infinite) abacus. Canadian Mathematical
Bulletin, 4:295–302, 1961.

[14] Jens Michaelis. Derivational minimalism is mildly context-sensitive. In M. Moort-
gat, editor, Logical Aspects of Computational Linguistics (LACL ’98), LNAI Vol.
2014, pages 179–198. Springer, Berlin, Heidelberg, 2001.

[15] Jens Michaelis. Observations on strict derivational minimalism. In FGMOL ’01.
Preproceedings. Joint conference of the 6th conference on Formal Grammar and
the 7th meeting of the Association for Mathematics of Language, Helsinki, 2001.

[16] Jens Michaelis. On Formal Properties of Minimalist Grammars. PhD thesis,
Potsdam University, Potsdam, 2001.

[17] Jens Michaelis. Transforming linear context-free rewriting systems into minimalist
grammars. In de Groote et al. [7], pages 228–244.

[18] Jens Michaelis. Implications of a revised perspective on minimalist grammars.
Draft, Potsdam University, 2002. Available at http://www.ling.uni-potsdam.

de/~michael/papers.html.

[19] Michael Moortgat. Multimodal linguistic inference. Journal of Logic, Language
and Information, 5:349–385, 1996.

[20] Glyn Morrill. Type Logical Grammar. Kluwer, Dordrecht, 1994.

[21] Owen Rambow and Giorgio Satta. Independent parallelism in finite copying par-
allel rewriting systems. Theoretical Computer Science, 223:87–120, 1999.

[22] John R. Ross. Constraints on Variables in Syntax. PhD thesis, MIT, Cambridge,
MA, 1967.

[23] Catherine Rudin. On multiple questions and multiple wh-fronting. Natural Lan-
guage and Linguistic Theory, 6:445–501, 1988.

[24] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On mul-
tiple context-free grammars. Theoretical Computer Science, 88:191–229, 1991.

[25] Edward P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects
of Computational Linguistics (LACL ’96), LNAI Vol. 1328, pages 68–95. Springer,
Berlin, Heidelberg, 1997.

[26] Edward P. Stabler. Remnant movement and complexity. In G. Bouma, G.-J. M.
Kruijff, E. Hinrichs, and R. T. Oehrle, editors, Constraints and Resources in Natu-
ral Language Syntax and Semantics, pages 299–326. CSLI Publications, Stanford,
CA, 1999.

[27] Mark Steedman. Surface Structure and Interpretation. MIT Press, Cambridge,
MA, 1996.

[28] K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Characterizing structural
descriptions produced by various grammatical formalisms. In 25th Annual Meeting
of the Association for Computational Linguistics (ACL ’87), Stanford, CA, pages
104–111. ACL, 1987.

[29] David J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms.
PhD thesis, University of Pennsylvania, Philadelphia, PA, 1988.

