An Introduction to Minimalist Grammars:

Locality - Late Adjunction and Extraposition

(July 23, 2009)

Gregory Kobele
Humboldt Universität zu Berlin

Jens Michaelis
Universität Bielefeld
University of Chicago

```
kobele@rz.hu-berlin.de
```

jens.michaelis@uni-bielefeld.de

- MGs can be extended with the operations adjoin and scramble involving two new types of syntactic features and a unilateral checking of their instantiations (Frey \& Gärtner 2002, Gärtner \& Michaelis 2003).
- If, in particular, categorial features are not deleted after checking, but marked as checked - and thus are still accessible - acyclic ("late") adjunction can be defined as a subtype of adjoin.
- As to the interaction of the SMC and a corresponding adjunct island constraint (AIC), the addition of the AIC has no effect, independently of the presence of the SMC.

Minimalist expressions

Vocabulary non-syntactic features/terminals
SynFeatures syntactic features

- non-leaf-labels are from $\{<,>\} \quad$ ["projection"]
- leaf-labels are from SynFeatures*\{\#\} SynFeatures*. Vocabulary*

Minimalist expressions

Minimalist expressions

tree displays feature $f: \Longleftrightarrow$ head-label is of the form $\ldots \# f \ldots$

Building minimalist expressions

- Starting from a finite set of simple expressions (a lexicon),
minimalist expressions can be built up recursively
- by applying structure building functions
checking off instances of syntactic features "from left to right,"
- and after an application the triggering feature instances are marked as checked.

Structure building functions

merge : Trees \times Trees $\xrightarrow{\text { part }}$ Trees

\leadsto

selecting ϕ simple

selecting ϕ complex
\#. $=\mathrm{v} .=\mathrm{d} . \mathrm{i} . \emptyset$

$$
\begin{aligned}
& \text { =d.\#.v.like } \widehat{C l}_{\text {ench }}^{\text {n.book }}
\end{aligned}
$$

merge

\#. $=\mathrm{v} .=\mathrm{d} . \mathrm{i} . \emptyset$

\leadsto
=v.\#. =d.i. $\emptyset<$
=d.v.\#.like <
=n.d\#.-wh.which n.\#.book

merge

(selecting tree is complex)

\#.d.she

$$
\begin{aligned}
& =\mathrm{v} \cdot \# .=\mathrm{d} \cdot \mathrm{i} \cdot \emptyset \mathrm{C} \\
& =\text { d.v.\#.like } \\
& =\text { n.d.\#.-wh.which n.\#.book }
\end{aligned}
$$

merge

(selecting tree is complex)

$$
\begin{aligned}
& \text { \#.d.she } \\
& \text { =v.\#. =d.i. } \emptyset \\
& \text { =d.v.\#.Iike < } \\
& \text { =n.d.\#.-wh.which n.\#.book }
\end{aligned}
$$

Structure building functions

move : Trees $\xrightarrow{\text { part }} 2^{\text {Trees }}$

\leadsto

move

=i.\#.+wh.c.did

=n.d.-wh.\#.which n.\#.book =i.+wh.\#.c.did

=i.\#.+wh.c.did >

MELL-proof-search (Salvati 2008)

(Michaelis 1998, 2001; Harkema 2001)
(Kobele \& Michaelis 2005)

Countercyclic adjunction - a "classical" motivation

a) *She ${ }_{i}$ denied the claim [that Mary y_{i} fell asleep]
b) *She ${ }_{i}$ liked the book [that Mary ${ }_{i}$ read]
c) *Which claim [that Mary y_{i} fell asleep] did she e_{i} deny
d) Which book [that Mary ${ }_{i}$ read] did she $_{i}$ like

Principle C:
R-expressions like Mary must not be c-commanded by any coindexed constituent

[DP which book]

[C^{\prime} did [IP She i_{i} [vp like [DP which book]]]]

> [cp [dp which book] [ć did [lp shei [vp like t]]]]
[cp [op [which book] [that Maryi read]] [ć' did [ip shei [vp like t]]]]

Countercyclic Adjunction

- Adjunction is a variant of merge.
- Late adjunction allows this kind of merge countercyclically inside a tree, wherever there is an "adjunction site" of the right category.
- Incorporating late adjunction into the MG(+SMC)-formalism has a very desirable effect: multiple extraposition can be captured.
[nur diejenigen Aufsätze t_{k}] hat [jeder t_{j}] gelesen only those papers has everyone read
$[\text { der den Kurs besuchte }]_{\mathrm{j}}[\text { die sich mit Adjunktion beschäftigen }]_{k}$ who the class visited which REFL with adjunction deal

Only those papers which deal with adjunction did everyone who visited the class read.
[nur diejenigen Aufsätze t_{k}] hat [jeder t_{j}] gelesen only those papers has everyone read
$[\text { der den Kurs besuchte }]_{\mathrm{j}}[\text { die sich mit Adjunktion beschäftigen }]_{k}$ who the class visited which REFL with adjunction deal

Only those papers which deal with adjunction did everyone who visited the class read.

- Roughly comparable to:
[cp [[[a man $\left.t_{i} t_{j}\right]$ came in][with blond hair $\left.\left.]_{i}\right][\text { who was laughing }]_{j}\right]$

■ Problem: SMC-violation

* [CP

Two features of same kind displayed silmutaneously block movement
■ Derivational way out:

$$
\begin{aligned}
& \text { [CP } \\
& \text { [CP } \\
& \left.\mathrm{CP}_{1}^{\alpha}\right] \\
& \text { -] } \mathrm{CP}_{1}^{\alpha} \\
& \text { [CP } \\
& \text { [CP } \\
& C P_{1}^{\alpha<} \\
& \mathrm{CP}_{2}^{\alpha} \text { _ } \quad \mathrm{CP}_{1}^{\alpha,} \\
& \text { - _] } \mathrm{CP}_{1}^{\alpha} \mathrm{CP}_{2}^{\alpha \mathrm{L}} \\
& \text { start here } \\
& \text { move } \mathrm{CP}_{1} \text {, check } \alpha \\
& \text { late adjoin } \mathrm{CP}_{2} \\
& \text { move } \mathrm{CP}_{2} \text {, check } \alpha
\end{aligned}
$$

- Adjoining adjuncts lately which allow subsequent extraction opens up the possibility of "bypassing" the SMC.
- But, we will not treat extraposition by means of the move-operator introduced earlier.

Instead, we formally employ the scramble-operator introduced in
Frey \& Gärtner 2002.

- Different structure building operations are triggered by different types of syntactic features.
(basic) categories: $\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots$
(merge-) selectors: $=\mathrm{x},=\mathrm{y},=\mathrm{z}, \ldots$
(move-) licensees:

$$
-x,-y,-z, \ldots
$$

(move-) licensors:
$+x,+y,+z, \ldots$
a(djoin)-selectors:
$\approx \mathrm{x}, \approx \mathrm{y}, \approx \mathrm{z}, \ldots$
s (cramble)-licensees: $\sim x, \sim y, \sim z, \ldots$

Structure building functions

adjoin : Trees \times Trees $\xrightarrow{\text { part }} 2^{\text {Trees }}$

■ $\langle\phi, \psi\rangle \in$ Domain(adjoin) $: \Longleftrightarrow$

- the head-label of ψ is of the form ...\# $\approx f \ldots$
- the head-label of ϕ is of the form ...\#f... or (—not exclusively -) there is a maximal projection χ within ϕ whose head-label is of the form ...f.... ...

Distinguish two cases of adjunction

adjoin: Trees \times Trees $\xrightarrow{\text { part }} 2^{\text {Trees }}$

Cyclic adjunction

adjoin : Trees \times Trees $\xrightarrow{\text { part }} 2^{\text {Trees }}$

adjoin : Trees \times Trees $\xrightarrow{\text { part }} 2^{\text {Trees }}$

(late) adjunction

(late) adjunction

=i.\#. \approx d.that i.\#.Mary_read

$$
\text { =n.d.-wh.\#.which n.\#.book } \widehat{\text { did_she_like }}
$$

(late) adjunction

=i.\#. \approx d.that i.\#.Mary_read

Structure building functions

scramble : Trees part $2^{\text {Trees }}$

■ $\phi \in$ Domain(scramble) $: \Longleftrightarrow$

- ϕ displays feature $f \in$ Base
- there is a (unique [SMC]) maximal projection ψ within ϕ that displays feature $\sim f \in S$-Licensees
- scramble $(\phi[\ldots])=$

$$
\phi[\ldots]\{\psi[\ldots \# \sim £ \ldots] \longmapsto \varepsilon\} \quad \psi[\ldots \sim f \# \ldots]
$$

extraposition

extraposition

Generative capacity: MGs vs. MGs +late adjunction

■ $\mathcal{M} \mathcal{L}(-$ adjunction $)=\mathcal{M} \mathcal{L}(+$ cyclic adjunction $)$

■ $\mathcal{M} \mathcal{L}(-$ adjunction $) \stackrel{?}{=} \mathcal{M} \mathcal{L}(+$ generalized adjunction $)$

Generative capacity: MGs vs. MGs +late adjunction

■ $\mathcal{M} \mathcal{L}(-$ adjunction $)=\mathcal{M} \mathcal{L}(+$ cyclic adjunction $)$

■ $\mathcal{M} \mathcal{L}(-$ adjunction $) \stackrel{?}{=} \mathcal{M} \mathcal{L}(+$ generalized adjunction $)$

■ $\mathcal{M} \mathcal{G}(+$ cyclic adjunction $) \stackrel{?}{=} \mathcal{M} \mathcal{G}$ (+ generalized adjunction)

Generative capacity: MGs vs. MGs ${ }^{\text {+late adjunction }}$

- $\mathcal{M} \mathcal{L}(-$ adjunction $)=\mathcal{M} \mathcal{L}(+$ cyclic adjunction $)$
- $\mathcal{M} \mathcal{L}(-$ adjunction $) \stackrel{?}{=} \mathcal{M} \mathcal{L}(+$ generalized adjunction $)$

■ $\mathcal{M} \mathcal{G}(+$ cyclic adjunction $) \stackrel{?}{=} \mathcal{M} \mathcal{G}(+$ generalized adjunction $)$
No difference between cyclic ("earliest") adjunction and late adjunction as long as the adjuncts do not introduce unchecked instances of licensees that allow subsequent extraction.

Generative capacity: MGs vs. MGs ${ }^{\text {+late adjunction }}$

- $\mathcal{M} \mathcal{L}(-$ adjunction $)=\mathcal{M} \mathcal{L}(+$ cyclic adjunction $)$
- $\mathcal{M} \mathcal{L}(-$ adjunction $) \stackrel{?}{=} \mathcal{M} \mathcal{L}(+$ generalized adjunction $)$
- $\mathcal{M G}(+$ cyclic adjunction $) \stackrel{?}{=} \mathcal{M} \mathcal{G}(+$ generalized adjunction $)$

No difference between cyclic ("earliest") adjunction and late adjunction as long as the adjuncts do not introduce unchecked instances of licensees that allow subsequent extraction.

- There is an effect on what can be called the derivational generative capacity in the sense of Becker et al. 1992.

Generative capacity: MGs vs. MGs ${ }^{\text {+late adjunction }}$

- $\mathcal{M L}(-$ adjunction $)=\mathcal{M L}(+$ cyclic adjunction $)$
- $\mathcal{M L}(-$ adjunction $) \stackrel{?}{=} \mathcal{M} \mathcal{L}(+$ generalized adjunction $)$

■ $\mathcal{M} \mathcal{G}(+$ cyclic adjunction $) \stackrel{?}{=} \mathcal{M} \mathcal{G}$ (+ generalized adjunction)

No difference between cyclic ("earliest") adjunction and late adjunction as long as the adjuncts do not introduce unchecked instances of licensees that allow subsequent extraction.

- There is an effect on what can be called the derivational generative canacity in the sense of Becker et al 1992.

[a man $t_{j} t_{k}$] came in [with blond hair $]_{j}[\text { who was laughing }]_{k}$

[cp [a man] came in]

[cp [[a man] [with blond hair]] came in]

[cp [[a man t_{i}] came in] [with blond hair]i]

[cp [[[a man t_{i}] [who was laughing]] came in] [with blond hair $]_{i}$]

[CP [[[a man $\left.t_{i} t_{j}\right]$ came in] [with blond hair $\left.\left.]_{i}\right][\text { who was laughing }]_{j}\right]$

$$
\alpha . \# . \sim \mathrm{c} \quad \beta . \# . \sim \mathrm{c}
$$

[cp [a man [with blond hair] [who was laughing]] came in]

Complexity of late adjunction

- Abstractly, the problem with late adjunction is that in order to locate the adjunction sites, an a priori not bounded amount of (categorial) information has to be stored during a derivation.
- In fact, this prevents us from directly adopting the methods, in particular,
- developed to prove that MGs provide a weakly equivalent subclass of LCFRSs (cf. Michaelis 1998), and
- leading to the succinct, chain-based MG-reformulation presented in Stabler \& Keenan 2000 [2003] — reducing "classical" MGs to their "bare essentials."

Reducing an MG(+ SMC,-- late adjunction)

Reducing an MG(+ SMC,-- late adjunction)

Reducing an MG(+ SMC,-late adjunction)

Reducing an MG(+SMC,- late adjunction)

Reducing an MG(+SMC,-late adjunction)

Reducing an MG(+ SMC,-late adjunction)

Reducing an MG(+ SMC,-late adjunction)

Reducing an MG(+ SMC,+ late adjunction)

$\left\langle\rho_{0} \# \sigma_{0} \cdot w_{0}, \rho_{1} \# \cdot W_{1}, \rho_{2} \# \cdot w_{2}, \rho_{3} \# \cdot w_{3}, \rho_{4} \# \sigma_{4} \cdot \sigma_{4}, \rho_{5} \# \sigma_{5} \cdot \sigma_{5}, \rho_{6} \# \cdot w 6, \rho_{7} \# \cdot w 7\right\rangle$

Complexity of late adjunction

- The proof that MGs without late adjunction are mildly contextsensitve rests on the technical possibility of removing checked features from the structures.

Therefore it is unclear, whether, in general, MGs allowing late adjunction still belong to the same complexity class.

- If, however, the AIC (adjunct island condition) is imposed, we can apply a specific reduction method in proving that for the resulting MGs the old complexity result holds.

Adjunct island condition (AIC)

- If at all, only full adjuncts but no proper subpart of them can extract.

Complexity of late adjunction

Distinguish three cases

(i) late-adjoined adjuncts and their subtrees cannot extract further,
(ii) late-adjoined adjuncts, but not proper subtrees can extract further,
(iii) late-adjoined adjuncts and their subtrees can extract further.

Complexity of late adjunction

Distinguish three cases

(i) late-adjoined adjuncts and their subtrees cannot extract further,

Solutions allowing a modified method of MG-reducing in order to define a weakly equivalent LCFRS:
(i) (strong equivalent MG-) treatment in terms of cyclic adjunction,

Complexity of late adjunction

Distinguish three cases

(ii) late-adjoined adjuncts, but not proper subtrees can extract further,

Solutions allowing a modified method of MG-reducing in order to define a weakly equivalent LCFRS:
(ii) an additional "0|1-register" for each basic category recording the absence|presence of at least one instance of that category,

Complexity of late adjunction

Distinguish three cases

(iii) late-adjoined adjuncts and their subtrees can extract further.

Solutions allowing a modified method of MG-reducing in order to define a weakly equivalent LCFRS:
(iii) none (?) /* cyclic adjunction-treatment causes SMC-conflict */

MG-diamond - shortest move (SMC) and adjunct islands (AIC)

