
An Introduction to Minimalist Grammars:

Locality - Late Adjunction and Extraposition

(July 23, 2009)

Gregory Kobele

Humboldt Universität zu Berlin

University of Chicago

kobele@rz.hu-berlin.de

Jens Michaelis

Universität Bielefeld

jens.michaelis@uni-bielefeld.de

Further outlook (taken from slides July 22)

��� MGs can be extended with the operations adjoin and scramble

involving two new types of syntactic features and a unilateral

checking of their instantiations (Frey & Gärtner 2002, Gärtner &

Michaelis 2003).

��� If, in particular, categorial features are not deleted after checking,

but marked as checked — and thus are still accessible — acyclic

(“late”) adjunction can be defined as a subtype of adjoin.

��� As to the interaction of the SMC and a corresponding adjunct

island constraint (AIC), the addition of the AIC has no effect,

independently of the presence of the SMC.

Minimalist expressions

Vocabulary non-syntactic features / terminals

SynFeatures syntactic features >

<

.

<

. . . >

α #α′ <

.finite, binary labeled trees such that . . .

• non-leaf-labels are from { < , > } [“projection”]

• leaf-labels are from SynFeatures∗{#} SynFeatures∗ . Vocabulary∗

Minimalist expressions

< “left daughter projects”

> “right daughter projects”

>

specifier >

specifier >

specifier <

head

complement

Minimalist expressions

< “left daughter projects”

> “right daughter projects”

>

>

>

<

α#fα′

tree displays feature f :⇐⇒ head-label is of the form . . . #f . . .

Building minimalist expressions

��� Starting from a finite set of simple expressions (a lexicon),

minimalist expressions can be built up recursively

- by applying structure building functions

checking off instances of syntactic features “from left to right,”

- and after an application the

triggering feature instances are marked as checked.

Structure building functions

merge : Trees × Trees −→part Trees

... #=f ...

φ

... #f ...

ψ

selecting φ complexselecting φ simple

<

...=f# ...

...f# ...

ψ′

>

...f# ...

ψ′

...=f# ...

φ′

merge (selecting tree is simple)

.=v .=d .i . ∅ <

=d . # .v .like <

=n .d . # .-wh .which n .book

merge (selecting tree is simple)

.=v .=d .i . ∅ <

=d . # .v .like <

=n .d . # .-wh .which n .book

<

=v . # .=d .i . ∅ <

=d .v . # .like <

=n .d# .-wh .which n . # .book

merge (selecting tree is complex)

<

=v . # .=d .i . ∅ <

=d .v . # .like <

=n .d . # .-wh .which n . # .book

.d .she

merge (selecting tree is complex)

<

=v . # .=d .i . ∅ <

=d .v . # .like <

=n .d . # .-wh .which n . # .book

.d .she

 >

d . # .she <

=v .=d . # .i . ∅ <

=d .v . # .like <

=n .d . # .-wh .which n . # .book

Structure building functions

move : Trees −→part 2Trees

... #+f ...

... #-f ...

ψ

φ

>

...-f# ...

ψ′

...+f# ...

φ′

move

<

=i.#.+wh.c.did >

d.#.she <

=v .=d.i.#. ∅ <

=d.v.#.like <

=n.d.#.-wh.which n.#.book

move

<

=i.#.+wh.c.did >

d.#.she <

=v .=d.i.#. ∅ <

=d.v.#.like <

=n.d.#.-wh.which n.#.book

>

<

=n.d.-wh.#.which n.#.book

<

=i.+wh.#.c.did >

d.#.she <

=v.=d.i.#. ∅ <

=d.v.#.like ε

SMC and SPIC — restricting the move-operator domain

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

(Michaelis 1998, 2001; Harkema 2001)

LCFRS

$$$ LCFRS (Michaelis 2001, 2002, 2005)

MELL-proof-search (Salvati 2008)

type 0

(Kobele & Michaelis 2005)

MG-Diamond /* Incorporating Late Adjunction */

MG +late adjunction

Countercyclic adjunction — a “classical” motivation

a) *Shei denied the claim [that Maryi fell asleep]

b) *Shei liked the book [that Maryi read]

c) *Which claim [that Maryi fell asleep] did shei deny

d) Which book [that Maryi read] did shei like

Principle C:

R-expressions like Mary must not be c-commanded

by any coindexed constituent

which book [that Maryi read] did shei like (derived acyclically)

[DP which book]

...

[C′ did [IP shei [VP like [DP which book]]]]

[CP [DP which book] [C′ did [IP shei [VP like t]]]]

[CP [DP [which book] [that Maryi read]] [C′ did [IP shei [VP like t]]]]

Countercyclic Adjunction

��� Adjunction is a variant of merge.

��� Late adjunction allows this kind of merge countercyclically inside

a tree, wherever there is an “adjunction site” of the right category.

��� Incorporating late adjunction into the MG(+SMC)-formalism has

a very desirable effect: multiple extraposition can be captured.

Extraposition: example

[nur diejenigen Aufsätze t k] hat [jeder t j] gelesen

only those papers has everyone read

[der den Kurs besuchte]j [die sich mit Adjunktion beschäftigen]k

who the class visited which REFL with adjunction deal

Only those papers which deal with adjunction did everyone

who visited the class read.

Extraposition: example

[nur diejenigen Aufsätze t k] hat [jeder t j] gelesen

only those papers has everyone read

[der den Kurs besuchte]j [die sich mit Adjunktion beschäftigen]k

who the class visited which REFL with adjunction deal

Only those papers which deal with adjunction did everyone

who visited the class read.

��� Roughly comparable to:

[CP [[[a man t i t j] came in] [with blond hair]i] [who was laughing]j]

Extraposition and MGs

��� Problem: SMC-violation

∧
α

∧
α

∗ [CP CP2 CP1]

Two features of same kind displayed silmutaneously block movement

��� Derivational way out:

start here[CP CPα1]

CP 6α
1

move CP1, check α[CP __]

CP 6α
1

late adjoin CP2[CP CPα2 __]

CP 6α
2CP 6α

1
move CP2, check α[CP __ __]

Extraposition and MGs

��� Adjoining adjuncts lately which allow subsequent extraction opens

up the possibility of “bypassing” the SMC.

��� But, we will not treat extraposition by means of the move-operator

introduced earlier.

Instead, we formally employ the scramble-operator introduced in

Frey & Gärtner 2002.

Syntactic features

��� Different structure building operations are triggered by different

types of syntactic features.

(basic) categories:

(merge-) selectors:

(move-) licensees:

(move-) licensors:

a(djoin)-selectors:

s(cramble)-licensees:

x , y , z , . . .

=x , =y , =z , . . .

-x , -y , -z , . . .

+x , +y , +z , . . .

≈x , ≈y , ≈z , . . .

∼x , ∼y , ∼z , . . .

Structure building functions

adjoin : Trees × Trees −→part 2Trees

��� 〈φ ,ψ〉 ∈ Domain(adjoin) :⇐⇒

• the head-label of ψ is of the form . . . # ≈f . . .

• the head-label of φ is of the form . . . #f . . . or (— not

exclusively —) there is a maximal projection χ within φ

whose head-label is of the form . . .f . . .# . . .

Distinguish two cases of adjunction

adjoin : Trees × Trees −→part 2Trees

... # ≈f ...

φ
ψ

Cyclic adjunction (Frey & Gärtner 2002)

adjoin : Trees × Trees −→part 2Trees

... # ≈f ...

φ

... #f ...

ψ

<

... #f ...

ψ

...≈f# ...

φ′

Acyclic/late adjunction (Gärtner & Michaelis 2003)

adjoin : Trees × Trees −→part 2Trees

... # ≈f ...

φ
ψ

...f ... # ...

χ

<

ψ

...f ... # ...

χ

...≈f # ...

φ′

(late) adjunction

<

=i.#.≈d.that i.#.Mary_read

(late) adjunction

<

=i.#.≈d.that i.#.Mary_read

>

<

=n.d.-wh.#.which n.#.book

<

did_she_like

(late) adjunction

<

=i.#.≈d.that i.#.Mary_read

>

<

=n.d.-wh.#.which n.#.book

<

did_she_like

>

<

<

=n.d.-wh.#.which n.#.book
<

=i.≈d.#.that i.#.Mary_read

<

did_she_like

Structure building functions (Frey & Gärtner 2002)

scramble : Trees −→part 2Trees

��� φ ∈ Domain(scramble) :⇐⇒

• φ displays feature f ∈ Base

• there is a (unique [SMC]) maximal projection ψ within φ that

displays feature ∼f ∈ S-Licensees

��� scramble(φ[. . .]) =
<

φ[. . .]{ψ[. . . # ∼f . . .] 7−→ ε} ψ[. . . ∼f# . . .]

Structure building functions (Frey & Gärtner 2002)

scramble : Trees −→part 2Trees

... #f ...

... # ∼f ...

ψ

φ

<

...∼f# ...

ψ′

... #f ...

φ′

extraposition

>

<

<

a_man

<

. . . #.∼c.with >

blond_hair

<

. . . #.c. ∅ >

came_in

extraposition

<

>

<

<

a_man

ε

<

. . . #.c. ∅ >

came_in

<

. . .∼c.#.with >

blond_hair

Generative capacity: MGs vs. MGs+late adjunction

��� ML(- adjunction) = ML(+ cyclic adjunction)

��� ML(- adjunction)
?
= ML(+ generalized adjunction)

Generative capacity: MGs vs. MGs+late adjunction

��� ML(- adjunction) = ML(+ cyclic adjunction)

��� ML(- adjunction)
?
= ML(+ generalized adjunction)

��� MG(+ cyclic adjunction)
?
= MG(+ generalized adjunction)

Generative capacity: MGs vs. MGs+late adjunction

��� ML(- adjunction) = ML(+ cyclic adjunction)

��� ML(- adjunction)
?
= ML(+ generalized adjunction)

��� MG(+ cyclic adjunction)
?
= MG(+ generalized adjunction)

No difference between cyclic (“earliest”) adjunction and late

adjunction as long as the adjuncts do not introduce unchecked

instances of licensees that allow subsequent extraction.

Generative capacity: MGs vs. MGs+late adjunction

��� ML(- adjunction) = ML(+ cyclic adjunction)

��� ML(- adjunction)
?
= ML(+ generalized adjunction)

��� MG(+ cyclic adjunction)
?
= MG(+ generalized adjunction)

No difference between cyclic (“earliest”) adjunction and late

adjunction as long as the adjuncts do not introduce unchecked

instances of licensees that allow subsequent extraction.

� There is an effect on what can be called the derivational generative

capacity in the sense of Becker et al. 1992.

Generative capacity: MGs vs. MGs+late adjunction

��� ML(- adjunction) = ML(+ cyclic adjunction)

��� ML(- adjunction)
?
= ML(+ generalized adjunction)

��� MG(+ cyclic adjunction)
?
= MG(+ generalized adjunction)

No difference between cyclic (“earliest”) adjunction and late

adjunction as long as the adjuncts do not introduce unchecked

instances of licensees that allow subsequent extraction.

� There is an effect on what can be called the derivational generative

capacity in the sense of Becker et al. 1992.

a man came in with blond hair who was laughing

[a man t j t k] came in [with blond hair]j [who was laughing]k

a man came in with blond hair who was laughing (derived acyclically)

...

[CP [a man] came in]

[CP [[a man] [with blond hair]] came in]

[CP [[a man t i] came in] [with blond hair]i]

[CP [[[a man t i] [who was laughing]] came in] [with blond hair]i]

[CP [[[a man t i t j] came in] [with blond hair]i] [who was laughing]j]

a man came in with blond hair who was laughing (derived cyclically)

...

[CP [a man [
α.#.∼c
with blond hair] [

β.#.∼c
who was laughing]] came in]

Complexity of late adjunction

��� Abstractly, the problem with late adjunction is that in order to

locate the adjunction sites, an a priori not bounded amount of

(categorial) information has to be stored during a derivation.

��� In fact, this prevents us from directly adopting the methods, in

particular,

��� developed to prove that MGs provide a weakly equivalent

subclass of LCFRSs (cf. Michaelis 1998), and

��� leading to the succinct, chain-based MG-reformulation

presented in Stabler & Keenan 2000 [2003] — reducing

“classical” MGs to their “bare essentials.”

Reducing an MG(+ SMC,- late adjunction)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

Reducing an MG(+ SMC,- late adjunction)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

Reducing an MG(+ SMC,- late adjunction)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

〈

σ0 .w1w2w0 , σ4 .w3w4w7 , σ5 .w5w6

〉

Reducing an MG(+ SMC,- late adjunction)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

〈

σ0 , σ4 , σ5

〉

Reducing an MG(+ SMC,- late adjunction)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

〈

σ0 , σ4 , σ5

〉

Reducing an MG(+ SMC,- late adjunction)

>

<

ρ1 # .w1 ρ2 # .w2

<

ρ0 #σ0 .w0 >

ρ3 # .w3 <

ρ4 #σ4 .w4 >

<

ρ5 #σ5 .w5 ρ6 # .w6

ρ7 # .w7

〈

σ0 , σ4 , σ5

〉

Reducing an MG(+ SMC,- late adjunction)

>

<

ρ1 # .w1 ρ2 # .w2

<

ρ0 #σ0 .w0 >

ρ3 # .w3 <

ρ4 #σ4 .w4 >

<

ρ5 #σ5 .w5 ρ6 # .w6

ρ7 # .w7

〈

σ0 .w1w2w0 , σ4 .w3w4w7 , σ5 .w5w6

〉

Reducing an MG(+ SMC,+ late adjunction)

>

<

ρ1 # .w1 ρ2 # .w2

<

ρ0 #σ0 .w0 >

ρ3 # .w3 <

ρ4 #σ4 .w4 >

<

ρ5 #σ5 .w5 ρ6 # .w6

ρ7 # .w7

fi

ρ0 # σ0 .w0 , ρ1 # .w1 , ρ2 # .w2 , ρ3 # .w3 , ρ4 # σ4 .w4 , ρ5 # σ5 .w5 , ρ6 # .w6 , ρ7 # .w7

fl

Complexity of late adjunction

��� The proof that MGs without late adjunction are mildly context-

sensitve rests on the technical possibility of removing checked

features from the structures.

Therefore it is unclear, whether, in general, MGs allowing late

adjunction still belong to the same complexity class.

��� If, however, the AIC (adjunct island condition) is imposed, we can

apply a specific reduction method in proving that for the resulting

MGs the old complexity result holds.

Adjunct island condition (AIC) (Frey & Gärtner 2002)

��� If at all, only full adjuncts but no proper subpart of them can extract.

∧

∗

<

>

adjunct

Complexity of late adjunction

Distinguish three cases

(i) late-adjoined adjuncts and their subtrees cannot extract further,

(ii) late-adjoined adjuncts, but not proper subtrees can extract further,

(iii) late-adjoined adjuncts and their subtrees can extract further.

Complexity of late adjunction

Distinguish three cases

(i) late-adjoined adjuncts and their subtrees cannot extract further,

Solutions allowing a modified method of MG-reducing in order to
define a weakly equivalent LCFRS:

(i) (strong equivalent MG-) treatment in terms of cyclic adjunction,

Complexity of late adjunction

Distinguish three cases

(ii) late-adjoined adjuncts, but not proper subtrees can extract further,

Solutions allowing a modified method of MG-reducing in order to
define a weakly equivalent LCFRS:

(ii) an additional “0|1-register” for each basic category recording the

absence|presence of at least one instance of that category,

Complexity of late adjunction

Distinguish three cases

(iii) late-adjoined adjuncts and their subtrees can extract further.

Solutions allowing a modified method of MG-reducing in order to
define a weakly equivalent LCFRS:

(iii) none (?) /* cyclic adjunction-treatment causes SMC-conflict */

MG-diamond — shortest move (SMC) and adjunct islands (AIC)

MG +late adjunction

– SMC , – AIC

+ SMC , – AIC – SMC , + AIC

+ SMC , + AIC

! !LCFRS

	Further outlook (taken from slides July 22)
	Minimalist expressions
	Minimalist expressions
	Building minimalist expressions
	makebox [0cm][l]{Structure building functions}
	$merge $hspace *{6.5cm}(selecting tree is simple)
	$merge $hspace *{6cm}(selecting tree is complex)
	Structure building functions
	$move $
	SMC and SPIC makebox [0cm][l]{untilSlide {2}{small ,---, restricting the move-operator domain}}
	makebox [0cm][l]{MG-Diamond}hspace *{13.2cm}makebox [0cm][r]{,/* Incorporating Late Adjunction */}
	Countercyclic adjunction makebox [0cm][l]{untilSlide {2}{small ,---, a ``classical'' motivation}}
	{small which book [that {color [rgb]{0,.54,.94}{Mary$�m {_{	extbf {	iny i}}}$}} read] did {color [rgb]{0,.54,.94}{she$�m {_{	extbf {	iny i}}}$}} like hspace *{5.3cm}makebox [0cm][r]{emph {(derived acyclically)}}}
	Countercyclic Adjunction
	Extraposition: example
	Extraposition and MGs
	Extraposition and MGs
	Syntactic features �romSlide {3}{,/, non-syntactic features (terminals)}
	makebox [0cm][l]{Structure building functions}
	�romSlide {1}{untilSlide {1}{makebox [0cm][l]{Distinguish two cases of adjunction}}}�romSlide {2}{untilSlide {2}{makebox [0cm][l]{hspace *{-.5leftmargini }Cyclic adjunction,hspace *{9cm},makebox [0cm][r]{(Frey & G{"a}rtner 2002)}}}}�romSlide {3}{untilSlide {3}{makebox [0cm][l]{hspace *{-1.0leftmargini }Acyclic/late adjunction,hspace *{7.85cm},makebox [0cm][r]{(G{"a}rtner & Michaelis 2003)}}}}
	(late) adjunction
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{(Frey & G{"a}rtner 2002)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{(Frey & G{"a}rtner 2002)}
	extraposition
	extraposition
	Generative capacity: MGs vs. $MGs $
	Generative capacity: MGs vs. $MGs $
	{small a man came in with blond hair who was laughing}
	{small a man came in with blond hair who was laughing {makebox [4.25cm][r]{emph {(derived acyclically)}}}}
	{small a man came in with blond hair who was laughing {makebox [4.25cm][r]{emph {(derived cyclically)}}}}
	Complexity of late adjunction
	Reducing an MG({+,SMC,-,late adjunction})
	Reducing an MG({+,SMC,-,late adjunction})
	Reducing an MG({+,SMC,-,late adjunction})
	Reducing an MG({+,SMC,-,late adjunction})
	Reducing an MG({+,SMC,+,late adjunction})
	Complexity of late adjunction
	makebox [0cm][l]{Adjunct island condition (AIC)}hspace *{13.2cm}makebox [0cm][r]{small (Frey & G"artner 2002)}
	Complexity of late adjunction
	Complexity of late adjunction
	Complexity of late adjunction
	Complexity of late adjunction
	MG-diamond makebox [0cm][l]{�romSlide {1}{small ,---, shortest move (SMC), and ,adjunct islands (AIC)}}

