
An Introduction to Minimalist Grammars:

Complexity of the Shortest Move Constraint

(July 22, 2009)

Gregory Kobele

Humboldt Universität zu Berlin

kobele@rz.hu-berlin.de

Jens Michaelis

Universität Bielefeld

jens.michaelis@uni-bielefeld.de

Head movement constraint (HMC) (Stabler 1997)

��� The implementation of

head movement in MGs is in accordance with the HMC

– demanding

a moving head not to pass over the closest c-commanding head.

To put it differently,

whenever we are concerned with a case of successive head

movement, i.e. recursive adjunction of a (complex) head to a

higher head, it obeys strict cyclicity.

Successive cyclic left head adjunction

.
X’

WPX

W X
W’

VPt W

Y’

XPY

X Y

W X X’

WPt X

W’

VPt W

Z’

YPZ

Y Z

X Y

XW

Y’

XPt Y

X’

WPt X

W’

VPt W

Shortest movement condition (SMC) (Stabler 1997, 1999)

��� The number of competing licensee features triggering a

movement is (finitely) bounded by n.

In the strictest version n = 1, i.e., there is at most one

maximal projection displaying a matching licensee feature:

∗

<

+f
∣∣∣+f ...

-f ...

Specifier island condition (SPIC) (Stabler 1999)

��� Proper “extraction” from specifiers is blocked.

∧

∗

<

+f
∣∣∣+f ...

>

specifier

-f ...

SMC and SPIC — restricting the move-operator domain

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

SMC and SPIC — restricting the move-operator domain

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

(Michaelis 1998, 2001; Harkema 2001)

LCFRS

⊆ LCFRS (Michaelis 2001, 2002)

+ SMC , – SPIC — generative capacity

��� The crucial methods, in particular,

��� developed to prove that MGs provide a weakly equivalent

subclass of LCFRSs (cf. Michaelis 1998), and

��� leading to the succinct, chain-based MG-reformulation

presented in Stabler & Keenan 2000 [2003] — reducing

“classical” MGs to their “bare essentials:”

• Defining a finite partition on the “relevant” MG-tree set,

– giving rise to a finite set of nonterminals in LCFRS-terms,

– deriving all possible “terminal yields.”

Reducing an MG(+SMC,-/+SPIC)

Let G = 〈 Features , Lexicon , Ω , c 〉 be an MG

A minimal expression τ ∈ Closure(G) is relevant :⇐⇒

for each licensee -x , there is at most one maximal projection in

τ that displays -x .

Reducing an MG(+SMC,-/+SPIC)

Let G = 〈 Features , Lexicon , Ω , c 〉 be an MG

A minimal expression τ ∈ Closure(G) is relevant :⇐⇒

for each licensee -x , there is at most one maximal projection in

τ that displays -x .

��� In fact, this kind of structure is characteristic of each expression

τ ∈ Closure(G) involved in creating a complete expression in G

due to the SMC.

A finite partition of set of relevant expressions

Basic idea : consider relevant τ ∈ Closure(G)

��� Reduce τ to a tuple such that for each maximal projection
displaying an unchecked syntactic feature, there is exactly one
component of the tuple consisting of the projection’s head-label,
but with the suffix of non-syntactic features truncated.

A finite partition of set of relevant expressions

Basic idea : consider relevant τ ∈ Closure(G)

��� Reduce τ to a tuple such that for each maximal projection
displaying an unchecked syntactic feature, there is exactly one
component of the tuple consisting of the projection’s head-label,
but with the suffix of non-syntactic features truncated.

 only finitely many equivalence classes

Relevance :
The resulting tuple has at most m+1 components , m = |Licensees| .

Structure building by cancellation of features :
Each tuple component is the suffix of the syntactic prefix of the label
of a lexical item.

A finite partition of set of relevant expressions

Basic idea : consider relevant τ ∈ Closure(G)

��� Reduce τ to a tuple such that for each maximal projection
displaying an unchecked syntactic feature, there is exactly one
component of the tuple consisting of the projection’s head-label,
but with the suffix of non-syntactic features truncated.

 only finitely many equivalence classes

Relevance :
The resulting tuple has at most m+1 components , m = |Licensees| .

Structure building by cancellation of features :
Each tuple component is the suffix of the syntactic prefix of the label
of a lexical item.

 regarding the partition, applications of ‘merge’ and ‘move’
do not depend on the chosen representatives

Reducing an MG(+SMC,-/+SPIC)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

Reducing an MG(+SMC,-/+SPIC)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

Reducing an MG(+SMC,-/+SPIC)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

〈
σ0 .w1w2w0 , σ4 .w3w4w7 , σ5 .w5w6

〉

Reducing an MG(+SMC,-/+SPIC)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

〈
σ0 , σ4 , σ5

〉

Reducing an MG(+SMC,-/+SPIC)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

〈
σ0 , σ4 , σ5

〉

Reducing an MG(+SMC,-/+SPIC)

>

<

.w1 .w2

<

σ0 .w0 >

.w3 <

σ4 .w4 >

<

σ5 .w5 .w6

.w7

〈
σ0 , σ4 , σ5

〉
=⇒

〈
w1w2w0 , w3w4w7 , w5w6

〉

MG-example 2

(α0) =t .c .that (α5) v .laugh

(α1) =t .+wh .c . ∅ (α6) =n .d .-k .the

(α2) =ṽ .+k .t . ∅ (α7) =n .d .-k .-wh .which

(α3) =v .=d .ṽ . ∅ (α8) n .king

(α4) =d .+k .v .eat (α9) n .pie

MG-example 2

=n .d .-k .-wh .which

n .pie

MG-example 2 :: =̂ simple , : =̂ complex

=n .d .-k .-wh .which 〈 =n .d .-k .-wh .which , :: 〉

n .pie 〈 n .pie , :: 〉

MG-example 2 :: =̂ simple , : =̂ complex

=n .d .-k .-wh .which 〈 =n .d .-k .-wh .which , :: 〉

n .pie 〈 n .pie , :: 〉

<

d .-k .-wh .which pie

MG-example 2 :: =̂ simple , : =̂ complex

=n .d .-k .-wh .which 〈 =n .d .-k .-wh .which , :: 〉

n .pie 〈 n .pie , :: 〉

<

d .-k .-wh .which pie

〈 d .-k .-wh .which pie , : 〉

MG-example 2

<

+k . v .eat <

-k . -wh .which pie

MG-example 2 :: =̂ simple , : =̂ complex

<

+k . v .eat <

-k . -wh .which pie

〈 +k .v .eat , -k . -wh .which pie , : 〉

MG-example 2

>

<

-k .the king

<

ṽ . ∅ >

<

-wh .which pie

<

eat ε

MG-example 2 :: =̂ simple , : =̂ complex

>

<

-k .the king

<

ṽ . ∅ >

<

-wh .which pie

<

eat ε

〈 ṽ .eat , -wh .which pie , -k .the king , : 〉

SMC and SPIC — restricting the move-operator domain

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

(Michaelis 1998, 2001; Harkema 2001)

LCFRS

⊆ LCFRS (Michaelis 2001, 2002)

?

– SMC , + SPIC — generative capacity

��� Gärtner & Michaelis 2005 shows that MG(–SMC,+SPIC)s allow

derivation of non-mildly context-sensitive languages.

��� Kobele & Michaelis 2005 shows that, in fact, every recursively

enumerable language can be derived by an MG(–SMC,+SPIC).

This is true for essentially two reasons:

– SMC , + SPIC — generative capacity

��� Because of the SPIC, movement of a constituentα into a specifier

position freezes every proper subconstituent β within α.

��� Without the SMC, therefore, the complement line of a tree can

technically be used as two independent counters, or, as a queue.

∧ <

α

β

<

complement line

MG-example — complexity results concerning LCs

��� An example of a non-mildly context-sensitive MG(–SMC,+SPIC)

deriving a language without constant growth property, namely,

{
a2n

| n ≥ 0
}

=
{

a , a a , a a a a , a a a a a a a a , . . .
}

1 2 4 8 . . .

MG-example — complexity results concerning LCs

w.-m

=w.x .-l

=x .+m.y .-m

=y .+l .z .-l

=z .y .-l

=z .x .-l

=x .+m.c

=c .+l .c .a

MG-example — complexity results concerning LCs

licensee -m “marks”
end/start of “outer” cycle “initialize”

w.-m

=w.x .-l

=x .+m.y .-m

∧ “outer” cycle
end “outer” cycle “appropriately:”
check licensee -m

start new “outer” cycle:
introduce new licensee -m ∧

∧

=y .+l .z .-l

=z .y .-l

∧

“inner” cycle“reintroduce” and “double”
the just checked licensee -l

∧

=z .x .-l

=x .+m.c

=c .+l .c .a
“finalize”

leave final cycle “appropriately:”
check licensee -m

check successively licensee -l ,
each time introducing an a

MG-example — complexity results concerning LCs

end k-th “inner” cycleYP(-l)

start k-th “inner” cycleZP(6+l ,-l)

YP(-l)

ZP(6+l ,-l)

end 2j- j -th “inner” cycle

start 2j- j -th “inner” cycle

end j-th / start j+1-th “outer” cycle:
check and “reintroduce” -mYP(6+m,-m)

“double” last checked -lXP(-l)

check and “reintroduce” -lZP(6+l ,-l)

end i-th “inner” cycle:
“double” last checked -l

start i-th “inner” cycle:
check and “reintroduce” -l

YP(-l)

ZP(6+l ,-l)

MG-example — complexity results concerning LCs

YP(-l)

ZP(-l)

YP(-l)

ZP(-l)

YP(-m)

XP(-l)

ZP(-l)

YP(-l)

ZP(-l)

MG-example — complexity results concerning LCs

��� Starting the “outer” cycle, the currently derived tree shows 2n

successively embedded complements on the complement line

each with an unchecked instance of -l , and a lowest one

with an unchecked instance of -m.

��� Going through the cycle provides a successive “roll-up” of those

complements in order to check the displayed features. Thereby,

2n+1 successively embedded complements on the complement

line are created, again, all displaying feature -l and a lowest one

displaying feature -m.

��� Leaving the cycle procedure after a cycle has been completed,

leads to a final checking of the displayed licensees, where for each

instance of -l an instance of a is introduced in the structure.

+ SMC , + SPIC — generative capacity

��� In contrast to the – SMC , + SPIC - case,

adding the SPIC to the SMC has a restrictive effect (Michaelis 2005).

+ SMC , + SPIC — generative capacity

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

(Michaelis 1998, 2001; Harkema 2001)

LCFRS

LCFRS(1,2) (Michaelis 2001, 2002)

type 0

(Kobele & Michaelis 2005)

LCFRS(1,2) — a restricted LCFRS-normal form

An LCFRS G = 〈 N ,T ,F ,R ,S 〉 is an LCFRS(1, 2) iff

��� each nonterminating rule is of the form A → f(B) or A → f(B ,C),

��� if A → f(B ,C), nonterminal B derives only simple terminal strings.

LCFRS(1,2) — a restricted LCFRS-normal form

An LCFRS G = 〈 N ,T ,F ,R ,S 〉 is an LCFRS(1, 2) iff

��� each nonterminating rule is of the form A → f(B) or A → f(B ,C),

��� if A → f(B ,C), nonterminal B derives only simple terminal strings.

��� Excludes a non-indexed, but LCFRS-string language such as:

{
w1· · · wn zn wn· · · z1 w1 z0 wn

R· · · w1
R

∣∣∣ wi ∈ {a ,b}+, zn· · · z0 Dyck word
}

LCFRS(1,2) — a restricted LCFRS-normal form

Indexed Grammar

LCFRS

� Lexample

LCFRS(1,2)

SMC and SPIC — restricting the move-operator domain

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

↓↓↓ ↓↓↓

SMC and SPIC — restricting the move-operator domain

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

LCFRS type 0

MELL-proof-search (Salvati 2008)

SMC and SPIC — restricting the move-operator domain

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

↓↓↓ ↓↓↓
???↓↓↓ ???↑↑↑

A further extension — multiple wh-movement and the SMC

��� A potential objection against MG(+SMC)’s : you cannot deal with

multiple wh-movement. /* example from Bulgarian */

koji kogoj kakvok ti e pital tj tk

who whom what AUX ask

� Recall the SMC-implementation in MGs: the number of competing

licensee features triggering a movement is (finitely) bounded.

� Answer : we can, if we implement the wh-cluster hypothesis going

back to Rudin (1988) such that we introduce two new syntactic

feature types and a corresponding operator.

A further extension — multiple wh-movement and the SMC

��� c(luster)-licensees:

c(luster)-licensors:

△x , △y , △z , . . .
▽x , ▽y , ▽z , . . .

Structure building functions

cluster : Trees −→part 2Trees

��� φ ∈ Domain(cluster) :⇐⇒

• The highest specifier χ of φ displays c-licensor ▽x

• there is a (unique [SMC]) maximal projection ψ within φ that

displays the corresponding c-licensee △x

��� cluster(φ) =

>

<

χ[. . .] ψ[. . .]

φ{ψ[△x . . .] 7−→ ε}

Structure building functions

cluster : Trees −→part 2Trees

>
φ

χ

▽x ...

ψ

△x ...

>
φ′

<
χ′

▽x ...
▽x

ψ′

△x ...
△x

A further extension — multiple wh-movement and the SMC

��� In order to outline the general case, we next sketch derivations for

wh-clustering with two wh-phrases: crucially exactly one -wh

licensee is necessary for deriving a well-formed cluster, and no

more than one △wh is displayed at any derivation step.

Wh-clustering, n = 2, crucial step 1

<

+wh ... >

▽wh . -wh ...

△wh ...

<

+wh ... >

<

-wh ... △wh ...
△wh

Wh-clustering, n = 2, crucial step 2

>

<

▽wh ...
▽wh△wh ...

△wh <

+wh ... +wh >

ε

<

+wh ... >

<

-wh ... △wh ...
△wh

	makebox [0cm][l]{Head movement constraint (HMC)}hspace *{13.2cm}makebox [0cm][r]{small (Stabler 1997)}
	makebox [0cm][l]{Successive cyclic left head adjunction}hspace *{13.2cm}makebox [0cm][r]{}
	makebox [0cm][l]{Shortest movement condition (SMC)}hspace *{13.2cm}makebox [0cm][r]{small (Stabler 1997, 1999)}
	makebox [0cm][l]{Specif/ier island condition (SPIC)}hspace *{13.2cm}makebox [0cm][r]{small (Stabler 1999)}
	SMC and SPIC makebox [0cm][l]{untilSlide {2}{small ,---, restricting the move-operator domain}}
	makebox [0cm][l]{+ SMC , -- SPIC {small ,---, generative capacity}}
	Reducing an MG(+SMC,-/+SPIC)
	A finite partition of set of relevant expressions
	Reducing an MG(+SMC,-/+SPIC)
	Reducing an MG(+SMC,-/+SPIC)
	Reducing an MG(+SMC,-/+SPIC)
	MG-example 2
	MG-example 2
	makebox [0cm][l]{MG-example 2}hspace *{13.2cm}makebox [0cm][r]{small $�m {:: widehat {=}}$ simple , , , $�m {: widehat {=}}$ complex}
	makebox [0cm][l]{MG-example 2}hspace *{13.2cm}makebox [0cm][r]{�romSlide {2}{small $�m {:: widehat {=}}$ simple , , , $�m {: widehat {=}}$ complex}}
	makebox [0cm][l]{MG-example 2}hspace *{13.2cm}makebox [0cm][r]{�romSlide {2}{small $�m {:: widehat {=}}$ simple , , , $�m {: widehat {=}}$ complex}}
	SMC and SPIC makebox [0cm][l]{untilSlide {2}{small ,---, restricting the move-operator domain}makebox [0cm][l]{�romSlide {3}{small ,---, shortest move (SMC) and specifier islands (SPIC)}}}
	makebox [0cm][l]{-- SMC , + SPIC {small ,---, generative capacity}}
	makebox [0cm][l]{-- SMC , + SPIC {small ,---, generative capacity}}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	makebox [0cm][l]{+ SMC , + SPIC {small ,---, generative capacity}}
	makebox [0cm][l]{+ SMC , + SPIC {small ,---, generative capacity}}
	LCFRS(1,2) makebox [0cm][l]{untilSlide {2}{small ,---, a restricted LCFRS-normal form}}
	makebox [0cm][l]{LCFRS(1,2) {small ,---, a restricted LCFRS-normal form}}
	SMC and SPIC makebox [0cm][l]{untilSlide {3}{small ,---, restricting the move-operator domain}makebox [0cm][l]{�romSlide {4}{small ,---, shortest move (SMC) and specifier islands (SPIC)}}}
	A further extension {small ,---, multiple wh-movement and the SMC}
	A further extension {small ,---, multiple wh-movement and the SMC}
	Structure building functions
	Structure building functions
	A further extension {small ,---, multiple wh-movement and the SMC}
	Wh-clustering, n $�m {=}$ 2, crucial step 1
	Wh-clustering, n $�m {=}$ 2, crucial step 2

