An Introduction to Minimalist Grammars:

Complexity of the Shortest Move Constraint

(July 22, 2009)

Gregory Kobele Humboldt Universität zu Berlin Jens Michaelis Universität Bielefeld

kobele@rz.hu-berlin.de

jens.michaelis@uni-bielefeld.de

The implementation of

head movement in MGs is in accordance with the HMC

- demanding

a moving head not to pass over the closest c-commanding head.

(Stabler 1997)

To put it differently,

whenever we are concerned with a case of successive head movement, i.e. recursive adjunction of a (complex) head to a higher head, it obeys strict cyclicity.

Successive cyclic left head adjunction

The number of competing licensee features triggering a movement is (finitely) bounded by n.

In the strictest version n = 1, i.e., there is at most one maximal projection displaying a matching licensee feature:

Specifier island condition (SPIC)

Proper "extraction" from specifiers is blocked.

(Stabler 1999)

SMC and SPIC — restricting the move-operator domain

SMC and SPIC — restricting the move-operator domain

+ SMC , - SPIC — generative capacity

The crucial methods, in particular,

- developed to prove that MGs provide a weakly equivalent subclass of LCFRSs (cf. Michaelis 1998), and
- Ieading to the succinct, chain-based MG-reformulation presented in Stabler & Keenan 2000 [2003] — reducing "classical" MGs to their "bare essentials:"
- Defining a finite partition on the "relevant" MG-tree set,
 - giving rise to a finite set of nonterminals in LCFRS-terms,
 - deriving all possible "terminal yields."

Let $G = \langle Features, Lexicon, \Omega, c \rangle$ be an MG

A minimal expression $\tau \in Closure(G)$ is relevant : \iff

for each licensee -x, there is at most one maximal projection in τ that displays -x.

Let $G = \langle Features, Lexicon, \Omega, C \rangle$ be an MG

A minimal expression $\tau \in Closure(G)$ is relevant : \iff

for each licensee -x, there is at most one maximal projection in τ that displays -x.

In fact, this kind of structure is characteristic of each expression $\tau \in \text{Closure}(G)$ involved in creating a complete expression in G due to the SMC.

A finite partition of set of relevant expressions

<u>Basic idea</u>: consider relevant $\tau \in Closure(G)$

Reduce \(\tau\) to a tuple such that for each maximal projection displaying an unchecked syntactic feature, there is exactly one component of the tuple consisting of the projection's head-label, but with the suffix of non-syntactic features truncated.

A finite partition of set of relevant expressions

<u>Basic idea</u>: consider relevant $\tau \in Closure(G)$

- Reduce \(\tau\) to a tuple such that for each maximal projection displaying an unchecked syntactic feature, there is exactly one component of the tuple consisting of the projection's head-label, but with the suffix of non-syntactic features truncated.
- only finitely many equivalence classes

Relevance :

The resulting tuple has at most m+1 components, m = |Licensees|.

Structure building by cancellation of features :

Each tuple component is the suffix of the syntactic prefix of the label of a lexical item.

A finite partition of set of relevant expressions

<u>Basic idea</u>: consider relevant $\tau \in Closure(G)$

- Reduce \(\tau\) to a tuple such that for each maximal projection displaying an unchecked syntactic feature, there is exactly one component of the tuple consisting of the projection's head-label, but with the suffix of non-syntactic features truncated.
- only finitely many equivalence classes

Relevance :

The resulting tuple has at most m+1 components, m = |Licensees|.

Structure building by cancellation of features :

Each tuple component is the suffix of the syntactic prefix of the label of a lexical item.

regarding the partition, applications of 'merge' and 'move' do not depend on the chosen representatives

 $\sigma_0 \cdot W_1 W_2 W_0$, $\sigma_4 \cdot W_3 W_4 W_7$, $\sigma_5 \cdot W_5 W_6$

 $\left\langle \left[\sigma_{0} \right], \left[\sigma_{4} \right], \left[\sigma_{5} \right] \right\rangle \implies \left\langle \left[W_{1}W_{2}W_{0} \right], \left[W_{3}W_{4}W_{7} \right], \left[W_{5}W_{6} \right] \right\rangle$

 (α_0) =t.c.that (α_5) v.laugh $(\alpha_1) = t.+wh.c.\emptyset$ (α_6) = n.d.-k.the (α_7) = n.d.-k.-wh.which $(\alpha_2) = \widetilde{v} + k \cdot t \cdot \emptyset$ (α_8) n.king $(\alpha_3) = v = d \cdot \tilde{v} \cdot \emptyset$ $(\alpha_4) = d_1 + k_1 \cdot v_1 \cdot e_{at}$ $(\alpha_9) = n_1 \cdot p_1 \cdot e_{at}$

=n d -k -wh which

n.pie

 $:: \widehat{=} \text{ simple }, : \widehat{=} \text{ complex }$

=n.d.-k.-wh.which

 $\langle = n.d.-k.-wh.which, :: \rangle$

n.*pie*

 $\langle n.pie, :: \rangle$

 $:: \widehat{=} \text{ simple }, : \widehat{=} \text{ complex }$

=n.d.-k.-wh.which

 $\langle = n.d.-k.-wh.which, :: \rangle$

n.pie

< d.-k.-wh.which pie $\langle n.pie, :: \rangle$

 $:: \widehat{=} simple , : \widehat{=} complex$

=n d -k -wh which

 $\langle = n.d.-k.-wh.which, :: \rangle$

n.pie

(n.pie,::)

(d-k-wh.whichpie,:)

 $:: \widehat{=} simple$, $: \widehat{=} complex$

(+k.v.eat, -k.-wh.which pie, :)

$:: \widehat{=} simple , : \widehat{=} complex$

 $\langle \tilde{v}.eat, -wh.which pie, -k.the king, : \rangle$

SMC and SPIC — restricting the move-operator domain

- SMC , + SPIC — generative capacity

- Gärtner & Michaelis 2005 shows that MG(–SMC,+SPIC)s allow derivation of non-mildly context-sensitive languages.
- Kobele & Michaelis 2005 shows that, in fact, every recursively enumerable language can be derived by an MG(–SMC,+SPIC). This is true for essentially two reasons:

- SMC , + SPIC — generative capacity

- Because of the SPIC, movement of a constituent α into a specifier position freezes every proper subconstituent β within α .
- Without the SMC, therefore, the complement line of a tree can technically be used as two independent counters, or, as a queue.

An example of a non-mildly context-sensitive MG(–SMC,+SPIC) deriving a language without constant growth property, namely,

$$\left\{ \, \mathrm{a}^{2^n} \, | \, \mathrm{n} \geq 0 \,
ight\} \, = \, \left\{ \, \mathrm{a} \, , \, \mathrm{a} \, \mathrm$$

MG-example — complexity results concerning LCs

- Starting the "outer" cycle, the currently derived tree shows 2ⁿ successively embedded complements on the complement line each with an unchecked instance of -1, and a lowest one with an unchecked instance of -m.
- Going through the cycle provides a successive "roll-up" of those complements in order to check the displayed features. Thereby, 2ⁿ⁺¹ successively embedded complements on the complement line are created, again, all displaying feature -1 and a lowest one displaying feature -m.
- Leaving the cycle procedure after a cycle has been completed, leads to a final checking of the displayed licensees, where for each instance of -1 an instance of a is introduced in the structure.

+ SMC , + SPIC — generative capacity

In contrast to the − SMC, + SPIC - case,

adding the SPIC to the SMC has a restrictive effect (Michaelis 2005)

+ SMC , + SPIC — generative capacity

LCFRS(1,2) — a restricted LCFRS-normal form

An LCFRS $G = \langle N, T, F, R, S \rangle$ is an LCFRS(1, 2) iff

- each nonterminating rule is of the form $A \rightarrow f(B)$ or $A \rightarrow f(B,C)$,
- if $A \rightarrow f(B, C)$, nonterminal B derives only simple terminal strings.

LCFRS(1,2) — a restricted LCFRS-normal form

- each nonterminating rule is of the form $A \rightarrow f(B)$ or $A \rightarrow f(B,C)$,
- if $A \rightarrow f(B, C)$, nonterminal B derives only simple terminal strings.

Excludes a non-indexed, but LCFRS-string language such as:

$$w_1 \cdots w_n z_n w_n \cdots z_1 w_1 z_0 w_n^R \cdots w_1^R | w_i \in \{a, b\}^+, z_n \cdots z_0$$
 Dyck word

LCFRS(1,2) — a restricted LCFRS-normal form

SMC and SPIC — restricting the move-operator domain

SMC and SPIC — restricting the move-operator domain

SMC and SPIC — restricting the move-operator domain

A further extension — multiple wh-movement and the SMC

A potential objection against MG(+SMC)'s : you cannot deal with multiple wh-movement. /* example from Bulgarian */

koj _i	kogo _j	kakvo _k	ti	е	pital	tj	t _k	
who	whom	what		AUX	ask			

- Recall the SMC-implementation in MGs: the number of competing licensee features triggering a movement is (finitely) bounded.
- Answer: we can, if we implement the wh-cluster hypothesis going back to Rudin (1988) such that we introduce two new syntactic feature types and a corresponding operator.

A further extension — multiple wh-movement and the SMC

 \blacksquare c(luster)-licensees: $^{\triangle}x, ^{\triangle}y, ^{\triangle}z, \ldots$ c(luster)-licensors: $^{\triangledown}x, ^{\triangledown}y, ^{\triangledown}z, ...$

Structure building functions

cluster : Trees part 2^{Trees}

- $\phi \in \text{Domain}(\text{cluster}) : \iff$
 - The highest specifier χ of ϕ displays c-licensor $^{
 abla}\mathbf{x}$
 - there is a (unique [SMC]) maximal projection ψ within ϕ that displays the corresponding c-licensee ${}^{\Delta}\mathbf{x}$

Structure building functions

cluster : Trees part 2 Trees

 $\sim \rightarrow$

A further extension — multiple wh-movement and the SMC

In order to outline the general case, we next sketch derivations for wh-clustering with two wh-phrases: crucially exactly one -wh licensee is necessary for deriving a well-formed cluster, and no more than one [△]wh is displayed at any derivation step.

Wh-clustering, n = 2, crucial step 1

Wh-clustering, n = 2, crucial step 2

