An Introduction to Minimalist Grammars:

Complexity of the Shortest Move Constraint

(July 22, 2009)

Gregory Kobele
Humboldt Universität zu Berlin
Universität Bielefeld

```
kobele@rz.hu-berlin.de
jens.michaelis@uni-bielefeld.de
```

- The implementation of
head movement in MGs is in accordance with the HMC
- demanding
a moving head not to pass over the closest c-commanding head.

To put it differently,
whenever we are concerned with a case of successive head movement, i.e. recursive adjunction of a (complex) head to a higher head, it obeys strict cyclicity.

Successive cyclic left head adjunction

- The number of competing licensee features triggering a movement is (finitely) bounded by n .

In the strictest version $\mathrm{n}=1$, i.e., there is at most one maximal projection displaying a matching licensee feature:

Specifier island condition (SPIC)

■ Proper "extraction" from specifiers is blocked.

SMC and SPIC - restricting the move-operator domain

SMC and SPIC - restricting the move-operator domain

- The crucial methods, in particular,
- developed to prove that MGs provide a weakly equivalent subclass of LCFRSs (cf. Michaelis 1998), and
- leading to the succinct, chain-based MG-reformulation presented in Stabler \& Keenan 2000 [2003] — reducing "classical" MGs to their "bare essentials:"
- Defining a finite partition on the "relevant" MG-tree set,
- giving rise to a finite set of nonterminals in LCFRS-terms,
- deriving all possible "terminal yields."

Reducing an MG(+SMC,-/+SPIC)

Let $G=\langle$ Features, Lexicon, $\Omega, \mathrm{c}\rangle$ be an $M G$

A minimal expression $\tau \in \operatorname{Closure}(\mathrm{G})$ is relevant $: \Longleftrightarrow$
for each licensee -x , there is at most one maximal projection in
τ that displays -x .

Reducing an MG(+SMC,-/+SPIC)

Let $G=\langle$ Features, Lexicon, $\Omega, \mathrm{c}\rangle$ be an $M G$

A minimal expression $\tau \in \operatorname{Closure}(\mathrm{G})$ is relevant $: \Longleftrightarrow$
for each licensee -x , there is at most one maximal projection in τ that displays -x .

- In fact, this kind of structure is characteristic of each expression $\tau \in \operatorname{Closure}(\mathrm{G})$ involved in creating a complete expression in G due to the SMC.

A finite partition of set of relevant expressions

Basic idea: consider relevant $\tau \in$ Closure(G)

- Reduce τ to a tuple such that for each maximal projection displaying an unchecked syntactic feature, there is exactly one component of the tuple consisting of the projection's head-label, but with the suffix of non-syntactic features truncated.

A finite partition of set of relevant expressions

Basic idea: consider relevant $\tau \in$ Closure(G)

- Reduce τ to a tuple such that for each maximal projection displaying an unchecked syntactic feature, there is exactly one component of the tuple consisting of the projection's head-label, but with the suffix of non-syntactic features truncated.
\longrightarrow only finitely many equivalence classes
Relevance:
The resulting tuple has at most $m+1$ components, $m=\mid$ Licensees \mid.
Structure building by cancellation of features:
Each tuple component is the suffix of the syntactic prefix of the label of a lexical item.

A finite partition of set of relevant expressions

Basic idea: consider relevant $\tau \in$ Closure(G)

- Reduce τ to a tuple such that for each maximal projection displaying an unchecked syntactic feature, there is exactly one component of the tuple consisting of the projection's head-label, but with the suffix of non-syntactic features truncated.
only finitely many equivalence classes
Relevance:
The resulting tuple has at most $\mathrm{m}+1$ components, $\mathrm{m}=\mid$ Licensees \mid.
Structure building by cancellation of features:
Each tuple component is the suffix of the syntactic prefix of the label of a lexical item.
regarding the partition, applications of 'merge' and 'move' do not depend on the chosen representatives

Reducing an MG(+SMC,-/+SPIC)

Reducing an MG(+SMC,-/+SPIC)

Reducing an MG(+SMC,-/+SPIC)

Reducing an MG(+SMC,-/+SPIC)

$\left\langle\sigma_{0}\right.$
, σ_{4}
, σ_{5}

Reducing an MG(+SMC,-/+SPIC)

$\left\langle\sigma_{0}, \sigma_{4}, \sigma_{5}\right\rangle$

Reducing an MG(+SMC,-/+SPIC)

MG-example 2

$$
\begin{aligned}
& \left(\alpha_{0}\right)=t . c . t h a t \quad\left(\alpha_{5}\right) \quad \text { v.laugh } \\
& \left(\alpha_{1}\right)=\text { t. }+\underline{w h} . \mathrm{C} . \emptyset \\
& \left(\alpha_{6}\right)=n . d .-k . t h e \\
& \left(\alpha_{2}\right)=\tilde{\mathrm{v}} .+\underline{\mathrm{k}} . \mathrm{t} . \emptyset \\
& \left(\alpha_{7}\right)=n . d .-\mathrm{k} .-\mathrm{wh} \text {. which } \\
& \left(\alpha_{3}\right) \quad=\mathrm{v} .=\mathrm{d} . \tilde{\mathrm{V}} . \emptyset \\
& \text { (} \alpha_{8} \text {) n.king } \\
& \left(\alpha_{4}\right)=d .+\underline{k} . v . e a t \quad\left(\alpha_{9}\right) \text { n.pie }
\end{aligned}
$$

MG-example 2

=n.d.-k.-wh.which
n.pie

MG－example 2

$:: \widehat{=}$ simple,\quad 人 complex
＝n．d．－k．－wh．which
$\langle=n . d .-\mathrm{k} .-$ wh．which，：：\rangle
n．pie
〈n．pie，：：〉

MG-example 2

$:: \widehat{=}$ simple $, ~: \widehat{=}$ complex
=n.d.-k.-wh.which
n.pie
$\langle=n . d .-k .-w h . w h i c h,::\rangle$

$\langle n . p i e,::\rangle$

MG－example 2

$:: \widehat{=}$ simple $, ~: \widehat{=}$ complex
＝n．d．－k．－wh．which
n．pie

〈=n.d.-k.-wh.which,:: 〉
〈n.pie,:: 〉

〈d．－k．－wh．which pie，：〉

MG-example 2

$\langle+\underline{k} . v . e a t,-k .-w h . w h i c h$ pie, : \rangle

MG-example 2

MG-example 2

$:: \widehat{=}$ simple $, \quad: \hat{=}$ complex

SMC and SPIC - restricting the move-operator domain

■ Gärtner \& Michaelis 2005 shows that MG(-SMC,+SPIC)s allow derivation of non-mildly context-sensitive languages.

■ Kobele \& Michaelis 2005 shows that, in fact, every recursively enumerable language can be derived by an MG(-SMC,+SPIC). This is true for essentially two reasons:

- SMC , + SPIC - generative capacity

- Because of the SPIC, movement of a constituent $\boldsymbol{\alpha}$ into a specifier position freezes every proper subconstituent $\boldsymbol{\beta}$ within $\boldsymbol{\alpha}$.

■ Without the SMC, therefore, the complement line of a tree can technically be used as two independent counters, or, as a queue.

MG-example - complexity results concerning LCs

■ An example of a non-mildly context-sensitive MG(-SMC,+SPIC) deriving a language without constant growth property, namely,

$$
\begin{array}{r}
\left\{\mathrm{a}^{2^{n}} \mid \mathrm{n} \geq 0\right\}=\{\text { a, aa, a a a a, a a a a a a a }, \ldots\} \\
124
\end{array}
$$

$$
\begin{aligned}
& \mathrm{w} \cdot-\mathrm{m} \\
& =\mathrm{w} \cdot \mathrm{x} \cdot-\mathrm{l} \\
& =\mathrm{x} \cdot+\mathrm{m} \cdot \mathrm{y} \cdot-\mathrm{m} \\
& =\mathrm{y} \cdot+\mathrm{l} \cdot \mathrm{z} \cdot-1 \\
& =\mathrm{z} \cdot \mathrm{y} \cdot-\mathrm{l} \\
& =\mathrm{z} \cdot \mathrm{x} \cdot-\mathrm{l} \\
& =\mathrm{x} \cdot+\mathrm{m} \cdot \mathrm{c} \\
& =\mathrm{c} \cdot+\mathrm{l} \cdot \mathrm{c} \cdot \mathrm{a}
\end{aligned}
$$

MG-example - complexity results concerning LCs

licensee -m "marks"
end/start of "outer" cycle
w.-m
"initialize"
=w.x.-1
end "outer" cycle "appropriately:" check licensee -m
start new "outer" cycle: introduce new licensee -m
"reintroduce" and "double" the just checked licensee -l
leave final cycle "appropriately:" check licensee -m
check successively licensee -l, each time introducing an a
=x.+m.C
=c.+l.c.a
"outer" cycle
"inner" cycle

MG-example - complexity results concerning LCs

MG-example - complexity results concerning LCs

- Starting the "outer" cycle, the currently derived tree shows 2^{n} successively embedded complements on the complement line each with an unchecked instance of -1 , and a lowest one with an unchecked instance of $-m$.
- Going through the cycle provides a successive "roll-up" of those complements in order to check the displayed features. Thereby, 2^{n+1} successively embedded complements on the complement line are created, again, all displaying feature -1 and a lowest one displaying feature -m .
- Leaving the cycle procedure after a cycle has been completed, leads to a final checking of the displayed licensees, where for each instance of -l an instance of a is introduced in the structure.
- In contrast to the - SMC , + SPIC - case, adding the SPIC to the SMC has a restrictive effect (Michaelis 2005)

(Michaelis 1998, 2001; Harkema 2001)
(Kobele \& Michaelis 2005)

LCFRS(1,2) (Michaelis 2001, 2002)

LCFRS(1,2) - a restricted LCFRS-normal form

An LCFRS $G=\langle N, T, F, R, S\rangle$ is an $\operatorname{LCFRS}(1,2)$ iff

- each nonterminating rule is of the form $A \rightarrow f(B)$ or $A \rightarrow f(B, C)$,
- if $A \rightarrow f(B, C)$, nonterminal B derives only simple terminal strings.

LCFRS(1,2) - a restricted LCFRS-normal form

An LCFRS $G=\langle N, T, F, R, S\rangle$ is an $\operatorname{LCFRS}(1,2)$ iff

- each nonterminating rule is of the form $A \rightarrow f(B)$ or $A \rightarrow f(B, C)$,
- if $A \rightarrow f(B, C)$, nonterminal B derives only simple terminal strings.

■ Excludes a non-indexed, but LCFRS-string language such as:
$\left\{w_{1} \cdots w_{n} z_{n} w_{n} \cdots z_{1} w_{1} z_{0} w_{n}{ }^{R} \cdots w_{1}{ }^{R} \mid w_{i} \in\{a, b\}^{+}, z_{n} \cdots z_{0}\right.$ Dyck word $\}$

LCFRS(1,2) - a restricted LCFRS-normal form

SMC and SPIC - restricting the move-operator domain

SMC and SPIC - restricting the move-operator domain

MELL-proof-search (Salvati 2008)

SMC and SPIC - restricting the move-operator domain

A further extension - multiple wh-movement and the SMC

- A potential objection against $\mathrm{MG}(+S M C)$'s: you cannot deal with multiple wh-movement. /* example from Bulgarian */

$$
\begin{array}{llllllll}
\text { koj }_{i} & \text { kogo }_{j} & \text { kakvo }_{k} & t_{i} & \text { e } & \text { pital } & t_{j} & t_{k} \\
\text { who } & \text { whom } & \text { what } & & \text { AUx } & \text { ask } & &
\end{array}
$$

- Recall the SMC-implementation in MGs: the number of competing licensee features triggering a movement is (finitely) bounded.

■ Answer : we can, if we implement the wh-cluster hypothesis going back to Rudin (1988) such that we introduce two new syntactic feature types and a corresponding operator.

A further extension - multiple wh-movement and the SMC

- c(luster)-licensees: ${ }^{\Delta_{\mathrm{X}}},{ }^{{ }_{\mathrm{V}}^{\mathrm{Y}}},{ }^{\Delta_{\mathrm{Z}}}, \ldots$ c(luster)-licensors: ${ }^{\nabla} \mathrm{X},{ }^{\nabla}{ }_{\mathrm{Y}},{ }_{\mathrm{Z}}, \ldots$

Structure building functions

cluster: Trees part $2^{\text {Trees }}$

■ $\phi \in$ Domain(cluster) $: \Longleftrightarrow$

- The highest specifier χ of ϕ displays c-licensor ${ }^{\nabla} \mathrm{X}$
- there is a (unique [SMC]) maximal projection ψ within ϕ that displays the corresponding c-licensee ${ }^{{ }^{X}}$

Structure building functions

cluster : Trees $\xrightarrow{\text { part }} 2^{\text {Trees }}$

\leadsto

A further extension - multiple wh-movement and the SMC

■ In order to outline the general case, we next sketch derivations for wh-clustering with two wh-phrases: crucially exactly one -wh licensee is necessary for deriving a well-formed cluster, and no more than one ${ }^{\Delta_{\text {wh }}}$ is displayed at any derivation step.

Wh-clustering, $\mathrm{n}=2$, crucial step 1

Wh-clustering, $\mathrm{n}=2$, crucial step 2

