
An Introduction to Minimalist Grammars

Gregory M. Kobele Jens Michaelis

Humboldt-Universität zu Berlin
University of Chicago

Universität Bielefeld

ESSLLI 2009
Bordeaux

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 1 / 42

Outline

Use MGs to introduce you to something like a status quo in
Minimalism

Will investigate:

raising to subject
raising to object
passive
Expletive-it

While details of these analyses might not coincide with those of every
other minimalist analysis of these phenomena, they will at least be
easily recognizable in these

Sometimes, as with it-insertion, the formal precision of MGs allows us
to formulate proposals which have yet to gain wide acceptance in the
linguistic literature

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 2 / 42

Head movement in the auxiliary system

We begin with simple intransitive sentences, such as the below.

1 John died.

2 John will die.

3 John had died.

4 John has been dying.
...

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 3 / 42

Head movement in the auxiliary system

We treat these sentences as being divided into a subject (John), and
a predicate (the rest). The predicate is treated as right branching,
with elements to the left projecting over those to their right.

1 John died.

>

John died

1

2 John will die.
>

John <

will die

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 4 / 42

Head movement in the auxiliary system

A slightly bigger example. . .

4 John has been dying.

>

John <

has <

been dying

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 5 / 42

Head movement in the auxiliary system

We want our grammar to generate these expressions.

Recall: to specify a grammar, we need to specify four things:
1 The features

(which features we will use in our grammar)
2 The lexicon

(which syntactic feature sequences are assigned to which words)
3 The grammatical operations

(here, these will always be move, merge, and agree, so I will leave
them implicit in the following)

4 The start category
(what is the category of complete sentences)

Breaking with tradition, I will call the start category s – it reminds me
of sentence, as well as start!

Thus, all that is left is to determine the features we will use, and the
lexical items we have

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 6 / 42

Head movement in the auxiliary system

Given a sentence like the below, we know that its head must have
category s, and that no other leaves may have syntactic features.

>

.John s.died

1

What features must John and died have in order to combine into the
structure above of category s?

We can only build the above structure from lexical items of the
following shape:

x.John =x(l).s.died

What should ‘x’ be? It doesn’t matter! All that matters is whether
two features match, not what they are called. Let’s take ‘x’ to be ‘d’
(for ‘DP’), as a nod to tradition.

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 7 / 42

Head movement in the auxiliary system

We can perform the same line of reasoning on the structure on the
left below, too.

>

John <

s.will die

1

<

=x(l).s.will die

1

The structure on the left must be the result of merging a lexical item
x.John with the structure on the right
This righthand structure then must be the result of merging the
following two lexical items.

=y(r).=x(l).s.will y.die

As feature names don’t matter, lets call ‘y’ ‘v’, and ‘x’ ‘d’.

d.John =v(r).=d(l).s.will v.die

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 8 / 42

Is this right? – A sanity check

So we have decomposed the tree we assigned to the sentence John
will die into the three lexical items below – Let’s make sure they allow
us to derive this sentence!

d.John =v(r).=d(l).s.will v.die

1 merge(=v(r).=d(l).s.will, v.die) =

<

=d(l).s.will die

1

2 merge(1, d.John) =

>

John <

s.will die

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 9 / 42

Head movement in the auxiliary system

In the same way, from a structure like that below, we obtain the
following lexical items:

>

John <

s.has <

been dying

1

d.John =perf(r).=d(l).s.has
=prog(r).perf.been prog.dying

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 10 / 42

Head movement in the auxiliary system

In this way, from the sentences below, we arrive at the following set of
lexical items, which determine a grammar.

John dies
John died
John will die
John has died
John had died
John is dying

John was dying
John has been dying
John had been dying
John will be dying
John will have died
John will have been dying

v.die =v(r).=d(l).s.will =prog(r).=d(l).s.is
perf.died =prog(r).=d(l).s.was
prog.dying =perf(r).v.have =prog(r).v.be
=d(l).s.died =perf(r).=d(l).s.has =prog(r).perf.been
=d(l).s.dies =perf(r).=d(l).s.had

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 11 / 42

Head movement in the auxiliary system

v.die =v(r).=d(l).s.will =prog(r).=d(l).s.is
perf.died =prog(r).=d(l).s.was
prog.dying =perf(r).v.have =prog(r).v.be
=d(l).s.died =perf(r).=d(l).s.has =prog(r).perf.been
=d(l).s.dies =perf(r).=d(l).s.had

These lexical items are highly redundant:
1 all of the be forms select for something in the progressive
2 all the have forms something in the perfective
3 all and only the tensed forms (died,dies, has, had, . . .) select an

argument

Whenever a new verb is added to the language, we need to add five
new lexical items:

v.laugh perf.laughed
prog.laughing =d(l).s.laughed
=d(l).s.laughs

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 12 / 42

Head movement in the auxiliary system

Let’s begin by looking at lexical items of category perf (died and
been, but also broken,. . .)
Instead of looking at these expressions as lexical items, let’s think of
them as containing the perfective suffix -en as well as a verb (die) or
auxiliary (be)

perf.died =⇒ <

perf.die-en ∅

1

 v.die =>v(r).perf.-en

<

perf.been prog

=⇒ <

perf.be-en <

∅ prog

1

=prog(r).y.be
=>y(r).perf.-en

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 13 / 42

Head movement in the auxiliary system

Let’s begin by looking at lexical items of category perf (died and
been, but also broken,. . .)
Instead of looking at these expressions as lexical items, let’s think of
them as containing the perfective suffix -en as well as a verb (die) or
auxiliary (be)

perf.died =⇒ <

perf.die-en ∅

1

 v.die =>v(r).perf.-en

<

perf.been prog

=⇒ <

perf.be-en <

∅ prog

1

=prog(r).y.be
=>y(r).perf.-en

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 13 / 42

Head movement in the auxiliary system

Let’s begin by looking at lexical items of category perf (died and
been, but also broken,. . .)
Instead of looking at these expressions as lexical items, let’s think of
them as containing the perfective suffix -en as well as a verb (die) or
auxiliary (be)

perf.died =⇒ <

perf.die-en ∅

1

 v.die =>v(r).perf.-en

<

perf.been prog

=⇒ <

perf.be-en <

∅ prog

1

=prog(r).y.be
=>y(r).perf.-en

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 13 / 42

Head movement in the auxiliary system

Let’s begin by looking at lexical items of category perf (died and
been, but also broken,. . .)
Instead of looking at these expressions as lexical items, let’s think of
them as containing the perfective suffix -en as well as a verb (die) or
auxiliary (be)

perf.died =⇒ <

perf.die-en ∅

1

 v.die =>v(r).perf.-en

<

perf.been prog

=⇒ <

perf.be-en <

∅ prog

1

=prog(r).y.be
=>y(r).perf.-en

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 13 / 42

Head movement in the auxiliary system

Similarly, we decompose

=>perf(r).=d(l).s.has
=perf(r).x.have
and =>x(r).=d(l).s.-s

=>perf(r).=d(l).s.had
=perf(r).x.have
and =>x(r).=d(l).s.-ed

=>prog(r).=d(l).s.is
=prog(r).y.be
and =>y(r).=d(l).s.-s

=>prog(r).=d(l).s.was
=prog(r).y.be
and =>y(r).=d(l).s.-ed

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 14 / 42

Head movement in the auxiliary system

Note though that now we have two versions each of the present and
past tense morphemes:

=>x(r).=d(l).s.-s =>x(r).=d(l).s.-ed
=>y(r).=d(l).s.-s =>y(r).=d(l).s.-ed

There are three options:
1 collapse x and y into a third category (perhaps v):

=>v(r).=d(l).s.-s =>v(r).=d(l).s.-ed

2 allow an isa-relationship to obtain between x and y (x is a y):

=>y(r).=d(l).s.-s =>y(r).=d(l).s.-ed
=>x(r).y.∅

3 allow an isa-relationship to obtain between x and y (y is a x):

=>x(r).=d(l).s.-s =>x(r).=d(l).s.-ed
=>y(r).x.∅

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 15 / 42

Head movement in the auxiliary system

Note that whenever have and be occur together, have always precedes
be:

John has been dying
*John is having died
John will have been dying
*John will be having died

and that, whenever be occurs incorporated into -s or -ed, have is not
present:

John is dying
*John is having died
John was dying
*John was having died

These facts argue against the first option (treating have and be as
having the same category)

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 16 / 42

Head movement in the auxiliary system

We have the same difficulty with the perfective -en!

=>v(r).perf.-en =>y(r).perf.-en

There are again three options:
1 collapse v and y together:

=>v(r).perf.-en

2 allow an isa-relationship to obtain between v and y (v is a y):

=>v(r).perf.-en
=>v(r).y.∅

3 allow an isa-relationship to obtain between v and y (y is a v):

=>y(r).perf.-en
=>y(r).v.∅

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 17 / 42

Head movement in the auxiliary system

Note that whenever be and die occur together, be always precedes
die:

John has been dying
*John has died be
John will have been dying
*John will have died be

and that, whenever die occurs incorporated into -en, be is not
present:

John has died

The first option again is seen to be incorrect

Note that if we assume that v isa y, and that y isa x, then we predict
that die can incorporate into -s and -ed!

John dies
John died

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 18 / 42

Head movement in the auxiliary system

Following similar reasoning, we arrive at the lexicon below:

=x(r).=d(l).s.will =perf(r).x.have =prog(r).y.be v.die
=>x(r).=d(l).s.-s =>y(r).perf.-en =>v(r).prog.-ing
=>x(r).=d(l).s.-ed =>y(r).x.∅ =>v(r).y.∅

S

will, {-s, -ed} X

have Perf

-en Y

be Prog

-ing V

V

1

To add a new verb, we add just a single lexical item: v.laugh

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 19 / 42

Raising to Subject

Verbs like seem allow for the following alternation:
1 It seems that John died
2 John seems to have died

Observations:
1 it as main clause subject requires finite that-complement
2 DP as main clause subject forbids finite that-complement

New lexical items:
=x(r).i.to =i(r).v.seem1

=s(r).c.that =c(r).v.seem2

but how to enforce the dependency between the choice of lexical item
(seem1 vs seem2) and the choice of subject type?
Possibilities:

1 Semantic type; [[it]] = id, and [[seem1]](P)(i) = [[seem2]](P(i))
2 Syntactic feature percolation

=c(r).vexpl.seem2 =xexpl(r).=d(l).s.will

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 20 / 42

Raising to Subject

The strategy pursued in minimalism (all the way back to generative
semantics) is to satisfy dependencies ASAP, and then to
transformationally re-arrange structures, as appropriate

As seem doesn’t semantically select for a subject, we assign it the
following category:

=i(r).v.seem

The embedded predicate, die, on the other hand, does select a
semantic argument:

=d(r).v.die

But now we have a problem: subjects surface in front of the
auxiliaries, not after them! Accordingly, we assign to DPs the type:

d.-k

this encodes that the base position of the DP (d) is different from its
surface position (-k).

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 21 / 42

Raising to Subject

The =d(l) feature on the lexical items will, -s, and -ed were originally
intended to introduce the predicate’s argument in its surface position.
Now the argument is already present, but not in its surface position.

We thus assign the tense lexical items the type:

=x(r).+k.s

This indicates that a lexical item like will provides a surface position
(for something with a -k feature, like a DP)

Crucially, to doesn’t provide a surface position:

=x(r).i.to

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 22 / 42

Raising to Subject

Thus, surface subjects in simple intransitive sentences raise to this
position from within the vP:

<

+k.s.will <

die <

∅ <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 23 / 42

Raising to Subject

Thus, surface subjects in simple intransitive sentences raise to this
position from within the vP:

>

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 23 / 42

Raising to Subject

The same is true of surface subjects of the matrix verb seem

<

v.seem <

to <

die <

∅ <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 24 / 42

Raising to Subject

The same is true of surface subjects of the matrix verb seem

>

John <

seem-s <

∅ <

∅ <

∅ <

to <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 24 / 42

Raising to Subject

Note that we can add as many seem to’s as we want; only after we
add a tense item do we trigger raising of the embedded DP:

>

John <

seem-s <

∅ <

∅ <

∅ <

to <

seem <

∅ <

∅ <

to <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 25 / 42

Raising to Subject

How do we deal with the alternation?
1 It seems that John died
2 John seems to have died

We observe that it appears as the subject of tensed clauses without
semantic subjects:

it seems. . .
it rains

From the perspective of our analysis thus far, it appears whenever we
have a +k feature with nothing available to check it.

Thus, within the present framework, we need to assign it a complex
feature sequence ending in -k.

As it doesn’t have the same distribution as a regular DP, we don’t
give it the same category:

expl.-k.it

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 26 / 42

Raising to Subject

We implement the ‘last-resort’ distribution of it (it appears only when
nothing else can check the +k feature) as follows:

1 treat it as a vP adjunct, allowing it to appear anywhere. Formally, a vP
is something which can optionally select an expl:

=>v(r).=expl(l).v.∅
2 This allows it to occur even when it isn’t wanted!
3 However, the SMC causes to crash any derivation in which it is merged

while there is a DP still looking to check its -k feature.

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 27 / 42

Raising to Subject

This expression is generated by our grammar

Note that it has two subtrees displaying -k! It can never become a
complete expression of category s.

>

-k.it <

v.die <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 28 / 42

Raising to Subject

This expression is generated by our grammar

Note that it has two subtrees displaying -k! It can never become a
complete expression of category s.

>

-k.it <

v.seem <

∅ <

to <

die <

∅ <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 28 / 42

Raising to Subject

Even crazier things are now in the closure of our lexicon under the
generating functions.

They are all blocked by the SMC from ever becoming complete
expressions.

>

-k.it <

v.seem <

∅ <

to >

-k.it <

die <

∅ <

∅ <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 29 / 42

Raising to Subject

Even crazier things are now in the closure of our lexicon under the
generating functions.

They are all blocked by the SMC from ever becoming complete
expressions.

>

-k.it <

v.die >

-k.it <

∅ >

-k.it <

∅ >

-k.it <

∅ <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 29 / 42

Raising to Subject

We still have two lexical entries for seem:

=c(r).v.seem2 =i(r).v.seem1

However, there is no point to the distinction between i and c in our
grammar. We unify these categories throughout our lexicon:

=x(r).+k.s.will =perf(r).x.have =prog(r).y.be =d(r).v.die
=>x(r).+k.s.-s =>y(r).perf.-en =>v(r).prog.-ing d.-k.John
=>x(r).+k.s.-ed =>y(r).x.∅ =>v(r).y.∅
=s(r).c.that =x(r).c.to expl.-k.it =c(r).v.seem

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 30 / 42

Raising to Subject

We assign the it-sentence the following structure:

<

v.seem <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 31 / 42

Raising to Subject

We assign the it-sentence the following structure:

>

-k.it <

v.seem <

∅ <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 31 / 42

Raising to Subject

We assign the it-sentence the following structure:

<

x.seem <

∅ >

-k.it <

∅ <

∅ <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 31 / 42

Raising to Subject

We assign the it-sentence the following structure:

<

+k.s.seem-s <

∅ <

∅ >

-k.it <

∅ <

∅ <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 31 / 42

Raising to Subject

We assign the it-sentence the following structure:

>

it <

s.seem-s <

∅ <

∅ >

ε <

∅ <

∅ <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 31 / 42

Raising to Subject

Verbs like rain, or snow are represented as the below, allowing for
it-insertion:

v.rain

We can then derive the following sentences:
1 It is raining.
2 It seems to be raining.
3 It seems that it is raining.

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 32 / 42

Raising to Object

Raising to object, as in:
1 Bill expects John to die.
2 Bill expects that John will die.

can be accommodated by assigning expect the types below:
1 =c(r).+k.=d(l).v.expect
2 =c(r).=d(l).v.expect

<

+k.d= .v.expect <

to <

die <

∅ <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 33 / 42

Raising to Object

Raising to object, as in:
1 Bill expects John to die.
2 Bill expects that John will die.

can be accommodated by assigning expect the types below:
1 =c(r).+k.=d(l).v.expect
2 =c(r).=d(l).v.expect

>

John <

d= .v.expect <

to <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 33 / 42

Raising to Object

Raising to object, as in:
1 Bill expects John to die.
2 Bill expects that John will die.

can be accommodated by assigning expect the types below:
1 =c(r).+k.=d(l).v.expect
2 =c(r).=d(l).v.expect

>

-k.Bill >

John <

v.expect <

to <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 33 / 42

Passive

Using the idea that DPs have distinct deep and surface positions lets
us use our current technology to account for passivization:

1 Bill expects John to die.
2 John is expected to die.
3 Bill expects that Mary will die.
4 It is expected that Mary will die.

In the first case, the +k of the surface position of the object and the
=d(l) of the deep position of the subject are suppressed:

=c(r).+k.=d(l).v.expect =c(r).pass.expected
=pass(r).v.be

We again see regularities lurking beneath the surface:

=c(r).pass.expected =c(r).V.expect, =>V(r).pass.-en

=c(r).+k.=d(l).v.expect =v(r).V.expect, =>V(r).+k.=d(l).∅

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 34 / 42

Passive

<

V.expect <

to <

die <

∅ <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 35 / 42

Passive

<

pass.expect-en <

∅ <

to <

die <

∅ <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 35 / 42

Passive

<

+k.s.be-s <

∅ <

∅ <

∅ <

expect-en <

∅ <

to <

die <

∅ <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 35 / 42

Passive

>

John <

s.be-s <

∅ <

∅ <

∅ <

expect-en <

∅ <

to <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 35 / 42

Passive

With these lexical entries, we already derive both passive forms:
1 John is expected to die
2 It is expected that John will die

<

V.expect <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 36 / 42

Passive

With these lexical entries, we already derive both passive forms:
1 John is expected to die
2 It is expected that John will die

<

v.be <

expect-en <

∅ <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 36 / 42

Passive

With these lexical entries, we already derive both passive forms:
1 John is expected to die
2 It is expected that John will die

>

-k.it <

v.be <

∅ <

expect-en <

∅ <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 36 / 42

Passive

With these lexical entries, we already derive both passive forms:
1 John is expected to die
2 It is expected that John will die

<

+k.s.be-s <

∅ <

∅ >

-k.it <

∅ <

∅ <

expect-en <

∅ <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 36 / 42

Passive

With these lexical entries, we already derive both passive forms:
1 John is expected to die
2 It is expected that John will die

>

it <

s.be-s <

∅ <

∅ >

ε <

∅ <

∅ <

expect-en <

∅ <

that >

John <

will <

die <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 36 / 42

Raising to Object

What can we say about the two lexical entries for expect?
1 =c(r).V.expect
2 =c(r).=d(l).v.expect

The latter we can decompose into

=c(r).V.expect =>V(r).=d(l).v.∅

The element on the right looks similar to our ‘active voice head’:
=>V(r).+k.=d(l).v.∅
We decompose once more, extracting case assignment and external
argument selection:

=c(r).V.expect =>V(r).+k.agrO.∅ =>agrO(r).=d(l).v.∅
=>V(r).agrO.∅

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 37 / 42

Raising to Object

Our lexicon looks as follows:

=x(r).+k.s.will =perf(r).x.have =prog(r).y.be =d(r).v.die
=>x(r).+k.s.-s =>y(r).perf.-en =>v(r).prog.-ing d.-k.John
=>x(r).+k.s.-ed =>y(r).x.∅ =>v(r).y.∅
=s(r).c.that =x(r).c.to expl.-k.it =c(r).v.seem

=>agrO(r).=d(l).v.∅ =>V(r).+k.agrO.∅ =>V(r).agrO.∅ v.rain
=>V(r).pass.-en =pass(r).v.be =c(r).V.expect

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 38 / 42

Transitivity

A simple transitive verb looks as follows:

=d(r).V.kill

The SMC ensures that, in the active voice, agrO must check the
object’s case

<

V.kill -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 39 / 42

Transitivity

A simple transitive verb looks as follows:

=d(r).V.kill

The SMC ensures that, in the active voice, agrO must check the
object’s case

<

+k.agrO.kill <

∅ -k.John

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 39 / 42

Transitivity

A simple transitive verb looks as follows:

=d(r).V.kill

The SMC ensures that, in the active voice, agrO must check the
object’s case

>

John <

agrO.kill <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 39 / 42

Transitivity

A simple transitive verb looks as follows:

=d(r).V.kill

The SMC ensures that, in the active voice, agrO must check the
object’s case

<

=d.v.kill >

John <

∅ <

∅ ε

1

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 39 / 42

Obligatory Raising to Object

Some raising to object verbs do not allow for that-complements
1 Bill caused John to die.
2 *Bill caused that John died.

In order to describe verbs like these, we need to reimplement a
distinction between finite and non-finite complements (c and i)

=i(r).V.cause =x(r).i.to

However, in order to continue to be able to describe the distribution
of seem with a single lexical item, we want to say that there is a
relation between i and c; namely, that i isa c:

=>i(r).c.∅

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 40 / 42

Obligatorily Passive

Some verbs only appear in the passive:
1 It is rumored that John died.
2 John is rumored to have died.
3 *Bill rumors that John died.
4 *Bill rumors John to have died.

If we view this as a grammatical fact (as opposed to one of
frequency), we can assign such verbs the following type:

=c(r).pass.rumored

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 41 / 42

What is not under the sun

What this analysis doesn’t really allow to be stated elegantly:
a sentential complement taking verb which

1 is passivizable
2 takes only a that-complement in the active
3 but takes either a that-complement or a to-complement in the passive

Like think?
1 Bill thinks that John is dying
2 *Bill thinks John to be dying.
3 It is thought that John is dying.
4 John is thought to be dying.

But:
1 “you might think him to be a reasonable person” (‘‘think him to’’,

29k Google hits)
2 “she’s not the person they think her to be.” (‘‘think her to’’, 84k

Google hits)
3 “I am not as powerful as you think me to be.” (‘‘think me to’’,

266k Google hits)

Kobele & Michaelis (Day Two) Intro to MGs ESSLLI 2009 42 / 42

