
An Introduction to Minimalist Grammars:

Formalism

(July 20, 2009)

Gregory Kobele

Humboldt Universität zu Berlin

University of Chicago

kobele@rz.hu-berlin.de

Jens Michaelis

Universität Bielefeld

jens.michaelis@uni-bielefeld.de

Introduction

��� Research on natural language syntax in terms of transformational

grammar (TG) has always been accompanied by questions on the

complexity of the individual grammars allowed by the general theory.

��� From the perspective of formal language theory, special emphasis

has more generally been placed on two specific aspects:

a) the location within the Chomsky hierarchy of any grammars

supposed to be adequate models for natural languages,

b) the complexity of the parsing problem for such grammars.

Introduction

Chomsky hierarchy

regular

context-free

context-sensitive

recursively enumerable

Introduction

��� Peters and Ritchie (1971, 1973) proved the Aspects-model

of TG (Chomsky 1965) to be Turing equivalent.

⇒ For every recursively enumerable set (i.e., type 0-language),

there is a particular Aspects-grammar deriving it.

��� Subsequently, locality conditions (LCs) — established in Ross 1967

and Chomsky 1973, 1977 — were studied intensively in work

by many others searching for ways to reduce expressive power.

��� See, e.g., Huang (1982), Chomsky (1986), Rizzi (1990), Cinque

(1991), Manzini (1992), Müller & Sternefeld (1993), Szabolcsi &

Zwarts (1993).

Introduction

��� Complexity results, however, have been largly absent for those

grammars with LC-add-ons. (Notable exception: Rogers 1998.)

The picture changed with minimalist grammars (MGs) (Stabler

1997, 1999) as a formalization of “minimalism” (Chomsky 1995).

MGs in that format constitute a mildly context-sensitive grammar

formalism in the sense of Joshi 1985 (Michaelis 1998, 2001).

��� Two crucial features of MGs helped achieving this result:

– the resource sensitivity (encoded in the checking mechanism),

– the implementation of the shortest move condition (SMC).

Mild context-sensitivity (Joshi 1985)

��� A concept motivated by the intention of characterizing a narrow

class of formal grammars which are

– “only slightly more powerful than context-free grammars,”

– nevertheless allowing for natural language descriptions in a

linguistically significant way.

��� A mildly context-sensitive grammar (MCSG) fulfills three criteria,

understood as a “rough characterization” (cf. Joshi 1985, p. 225).

1) Parsing problem is solvable in polynomial time.

2) Language has the constant growth property.

3) Finite upper bound on the number of different instantiations of

factorized cross-serial dependencies occurring in any sentence.

Mild context-sensitivity (Joshi 1985)

��� A concept motivated by the intention of characterizing a narrow

class of formal grammars which are

– “only slightly more powerful than context-free grammars,”

– nevertheless allowing for natural language descriptions in a

linguistically significant way.

��� A mildly context-sensitive grammar (MCSG) fulfills three criteria,

understood as a “rough characterization” (cf. Joshi 1985, p. 225).

1) Parsing problem is solvable in polynomial time.

2) Language has the constant growth property.

3) Finite upper bound on the number of different instantiations of

factorized cross-serial dependencies occurring in any sentence.

MCSG-landscape

MCSG

MG(-SMC,+/-SPIC)

Lexical Functional Grammar

Indexed Grammar
NNN

NNN

NNN

NNN

NNN
NNN

NNN

NNN

NNN

NNNNNN
NNN

NNN

NNN

NNN

NNN

NNN
Linear Context-Free
Rewriting Systems

MG(+SMC,-SPIC)

MG(+SMC,+SPIC)

Linear Indexed Grammar

Tree Adjoining Grammar

Combinatory
Categorial Grammar

Context-Free Grammar
(GPSG)

MCSG-landscape

MCSG

MG(-SMC,+/-SPIC)

Lexical Functional Grammar

Indexed Grammar
NNN

NNN

NNN

NNN

NNN
NNN

NNN

NNN

NNN

NNNNNN
NNN

NNN

NNN

NNN

NNN

NNN
Linear Context-Free
Rewriting Systems

MG(+SMC,-SPIC)

MG(+SMC,+SPIC)

Linear Indexed Grammar

Tree Adjoining Grammar

Combinatory
Categorial Grammar

Context-Free Grammar
(GPSG)

Minimalist grammars (1)

��� Minimalist grammars (MGs) provide an attempt at a rigorous

algebraic formalization (of some) of the perspectives adopted in

the minimalist branch of generative grammar.

Work on MGs defined in this sense can be seen as having led

to a realignment of “grammars found ‘useful’ by linguists” and

formal complexity theory.

Two types of locality conditions (LCs)

��� In particular, a study in terms of MGs can enhance our

understanding of the complexity/restrictiveness of LCs.

In fact, such a study shows that, though the addition of an LC may

reduce complexity in an appropriate and intuitively natural way, it

does not necessarily do so, and may even increase complexity.

��� One can formally distinguish two types of LCs.

Two types of locality conditions (LCs)

��� Intervention-based LCs (ILCs)

• often in terms of minimality constraints, such as

minimal link, minimal chain, shortest move, attract closest etc.

in MGs: shortest move condition (SMC) (Stabler 1997, 1999)

��� Containment-based LCs (CLCs)

• often in terms of (generalized) grammatical functions, such as

adjunct islands, specifier islands, subject island etc.

in MGs: specifier island condition (SPIC) (Stabler 1999)

in MGs: adjunct island condition (AIC)

(Frey & Gärtner 2002, Gärtner & Michaelis 2003)

Two types of locality conditions (LCs)

��� Intervention-based LCs (ILCs)

• often in terms of minimality constraints

essential structure: [. . . α . . . [. . . β . . . γ . . .]]

��� Containment-based LCs (CLCs)

• often in terms of (generalized) grammatical functions

essential structure: [. . . α . . . [
β

. . . γ . . .]]

Minimalist grammars (1)

��� More generally, MGs are capable of integrating (if needed) a

variety of (arguably) “odd” items from the syntactician’s toolbox

such as:

• head movement (Stabler 1997, 2001)

• (strict) remnant movement (Stabler 1997, 1999)

• affix hopping (Stabler 2001)

• adjunction and scrambling (Frey & Gärtner 2002)

• late adjunction and extraposition (Gärtner & Michaelis 2003)
— to some extent without rise in generative power

• copy-movement (Kobele 2006)

• wh-clustering (Gärtner & Michaelis 2007)

Minimalist expressions

��� The objects generated by an MG are called minimalist expressions.

Minimalist expressions

��� Not: DP

D’

D

the

NP

N’

N

idea

Not: the

the idea

But: <

D .the idea

The < “points towards” the projecting daughter,

and thus — by means of transitivity — towards

the head of the phrase.

Minimalist expressions

finite, binary labeled trees such that . . .

• non-leaf-labels are from { < , > } [“projection”]

>

<

α1 α2

<

κ >

β
1

<

β2 β3

Minimalist expressions

< “left daughter projects”

> “right daughter projects”

finite, binary labeled trees such that . . .

• non-leaf-labels are from { < , > } [“projection”]

>

<

α1 α2

<

κ >

β
1

<

β2 β3

Minimalist expressions

< “left daughter projects”

> “right daughter projects”

maximal projections :

each subtree whose root does not project

>

<

α1 α2

<

κ >

β
1

<

β2 β3

Minimalist expressions

< “left daughter projects”

> “right daughter projects”

maximal projections :

each subtree whose root does not project

>

<

α1 α2

<

κ >

β
1

<

β2 β3

Minimalist expressions

< “left daughter projects”

> “right daughter projects”

maximal projections :

each subtree whose root does not project

>

<

α1 α2

<

κ >

β
1

<

β2 β3

Minimalist expressions

< “left daughter projects”

> “right daughter projects”

maximal projections :

each subtree whose root does not project

>

<

α1 α2

<

κ >

β
1

<

β2 β3

Minimalist expressions

< “left daughter projects”

> “right daughter projects”

maximal projections :

each subtree whose root does not project

>

<

α1 α2

<

κ >

β
1

<

β2 β3

Minimalist expressions

< “left daughter projects”

> “right daughter projects”

>

specifier >

specifier >

specifier <

head

complement

Minimalist expressions

Vocabulary (terminals)

SynFeatures (syntactic features)

>

< <

>

<

finite, binary labeled trees such that . . .

• non-leaf-labels are from { < , > } [“projection”]

Minimalist expressions

Vocabulary (terminals)

SynFeatures (syntactic features)

>

< <

>

f1f2 . . .fk .v1 . . .vm <

finite, binary labeled trees such that . . .

• leaf-labels are from SynFeatures∗

.Vocabulary∗

Minimalist expresssions (displaying feature f)

< “left daughter projects”

> “right daughter projects”

>

>

>

<

f . . .

tree displays feature f :⇐⇒ head-label is of the form f . . .

Minimalist expresssions (syntactic features)

��� There are different types of syntactic features.

(basic) categories:

(merge-) selectors:

(move-) licensees:

(move-) licensors:

. . .

x , y , z , . . .

=x , =y , =z , . . .

-x , -y , -z , . . .

+x , +y , +z , . . .

[Base]

[Selectors]

[Licensees]

[Licensors]

Minimalist expresssions (examples)

(a) =d .=d .v .like (b) <

=d .v .like <

-wh .which book

(c) d .she (d) <

+wh .c .did >

she <

like <

-wh .which book

Building minimalist expressions

��� Starting from a finite set of simple expressions (a lexicon),

minimalist expressions can be built up recursively

– by applying structure building functions

checking off instances of syntactic features “from left to right,”

where, after having applied a structure building function, the

triggering feature instances are canceled.

��� Different types of syntactic features trigger different structure

building functions.

Structure building functions

merge : Trees × Trees −→part Trees

��� 〈φ ,ψ〉 ∈ Domain(merge) :⇐⇒

• ψ displays feature f ∈ Base

• φ displays feature =f ∈ Selectors

Structure building functions

merge : Trees × Trees −→part Trees

=f ...

φ

f ...

ψ

Structure building functions

merge : Trees × Trees −→part Trees

=f ...

φ

f ...

ψ

selecting φ complexselecting φ simple

Structure building functions

merge : Trees × Trees −→part Trees

=f ...

φ

f ...

ψ

selecting φ complexselecting φ simple

<

=f ...=f

f ...f

ψ′

Structure building functions

merge : Trees × Trees −→part Trees

=f ...

φ

f ...

ψ

selecting φ complexselecting φ simple

<

=f ...=f

f ...f

ψ′

>

f ...f

ψ′

=f ...=f

φ′

merge (selecting tree is simple)

=v .=d .i . ∅ + <

v .like <

-wh .which book

merge (selecting tree is simple)

=v .=d .i . ∅ + <

v .like <

-wh .which book

<

=d .i . ∅ <

like <

-wh .which book

merge (selecting tree is complex)

<

=d .i . ∅ <

like <

-wh .which book

+ d .she

merge (selecting tree is complex)

<

=d .i . ∅ <

like <

-wh .which book

+ d .she

 >

she <

i . ∅ <

like <

-wh .which book

Structure building functions (overt phrasal movement)

move : Trees −→part 2Trees

��� φ ∈ Domain(move) :⇐⇒

• φ displays feature +f ∈ Licensors

• there is a maximal projection ψ within φ that displays

feature -f ∈ Licensees

��� move(φ[+f . . .]) =
>

ψ[. . .] φ[. . .]{ψ[-f . . .] 7−→ ε}

Structure building functions (overt phrasal movement)

move : Trees −→part 2Trees

+f ...

-f ...

ψ

φ

>

-f ...-f

ψ′

+f ...+f

φ′

move

<

+wh .c .did >

she <

∅ <

like <

-wh .which book

move

<

+wh .c .did >

she <

∅ <

like <

-wh .which book

>

<

which book

<

c .did >

she <

∅ <

like ε

Minimalist expresssions (syntactic features enhanced)

��� There are different types of syntactic features.

(basic) categories:

(merge-) selectors:

(move-) licensees:

(move-) licensors:

. . .

x , y , z , . . .

. . .

-x , -y , -z , . . .

+x , +y , +z , . . .

+x , +y , +z , . . .

[Base]

[Selectors]

[Licensees]

[Licensors , strong]

[Licensors , weak]

Structure building functions (agree)

agree : Trees −→part 2Trees

��� φ ∈ Domain(agree) :⇐⇒

• φ displays feature +f ∈ Licensors

• there is a maximal projection ψ within φ that displays

feature -f ∈ Licensees

��� agree(φ[+f . . .]) = φ[. . .]{ψ[-f . . .] 7−→ ψ[. . .]}

Structure building functions (agree)

agree : Trees −→part 2Trees

+f ...

-f ...

ψ

φ

+f ...+f
-f ...-f

ψ′

φ′

Minimalist expresssions (syntactic features enhanced)

��� There are different types of syntactic features.

(basic) categories:

(merge-) selectors:

(move-) licensees:

(move-) licensors:

. . .

x , y , z , . . .

=x , =y , =z , . . .

=>x , =>y , =>z , . . .

x<= , y<= , z<= , . . .

-x , -y , -z , . . .

+x , +y , +z , . . .

[Base]

[Selectors , weak]

[Selectors , strong]

[Licensees]

[Licensors]

Structure building functions

merge : Trees × Trees −→part Trees

��� 〈φ ,ψ〉 ∈ Domain(merge) :⇐⇒

• ψ displays feature f ∈ Base

• φ displays feature =f , =>f , or f<= ∈ Selectors

Structure building functions (weak selection)

merge : Trees × Trees −→part Trees

=f ~v

φ

f ~w

ψ

selecting φ complexselecting φ simple

<

=f ~v =f

f ~w f

ψ′

>

f ~w f

ψ′

=f ~v =f

φ′

Structure building functions (strong selection)

merge : Trees × Trees −→part Trees

=>f ~v

φ

f ~w

ψ

selecting φ simple , head-incorporation left

<

f ~w~v f

f ∅ f

ψ′

Structure building functions (strong selection)

merge : Trees × Trees −→part Trees (HMC)

=>f ~v

φ

f ~w

ψ

selecting φ simple , head-incorporation left

<

f ~w~v f

f ∅ f

ψ′

Structure building functions (strong selection)

merge : Trees × Trees −→part Trees

f<= ~v

φ

f ~w

ψ

selecting φ simple , head-incorporation right

<

f ~v~w f

f ∅ f

ψ′

Structure building functions (strong selection)

merge : Trees × Trees −→part Trees (HMC)

f<= ~v

φ

f ~w

ψ

selecting φ simple , head-incorporation right

<

f ~v~w f

f ∅ f

ψ′

merge (head-incorporation left)

=>v .=d .i .-s + <

v .like <

-wh .which book

merge (head-incorporation left)

=>v .=d .i .-s + <

v .like <

-wh .which book

<

=d .i . like-s <

∅ <

-wh .which book

merge (head-incorporation right)

y<= .x .a + >

d <

y .-l .ab c

merge (head-incorporation right)

y<= .x .a + >

d <

y .-l .ab c

<

x . aab >

d <

-l . ∅ c

Minimalist grammars

G = 〈 Features , Lexicon , Ω , c 〉

��� Features = SynFeatures ∪ Vocabulary [features]

SynFeatures = Base ∪ Selectors ∪ Licensees ∪ Licensors

x =x ,
=>x ,x<= -x +x ,+x

��� Lexicon a finite set of simple expressions [lexicon]

��� Ω = { merge , move , agree } [structure building functions]

��� c ∈ Base [distinguished category]

Minimalist languages MG, G = 〈 Features , Lexicon , Ω ,c 〉

The closure of G [Closure(G)] :⇐⇒

closure of the lexicon under finite applications of the functions in Ω.

The tree language of G [T(G)] :⇐⇒

trees in the closure with essentially no unchecked syntactic features
— only head-label contains exactly one unchecked instance of c.

The string language of G [L(G)] :⇐⇒

(terminal) yields of the trees belonging to the tree language.

A simple MG-lexicon

n .book d .she

=d .v .like =n .d .-wh .which

=v .=d .i . ∅ =i .+wh .c .did

i .Mary_read =i .≈d .that

Vocabulary = {book , did , like , she , which}

Head movement constraint (HMC) (Stabler 1997)

��� The implementation of

head movement in MGs is in accordance with the HMC

– demanding

a moving head not to pass over the closest c-commanding head.

To put it differently,

whenever we are concerned with a case of successive head

movement, i.e. recursive adjunction of a (complex) head to a

higher head, it obeys strict cyclicity.

Successive cyclic left head adjunction

.
X’

WPX

W X
W’

VPt W

Y’

XPY

X Y

W X X’

WPt X

W’

VPt W

Z’

YPZ

Y Z

X Y

XW

Y’

XPt Y

X’

WPt X

W’

VPt W

Successive cyclic right head adjunction

.
X’

WPX

X W
W’

VPt W

Y’

XPY

Y X

X W X’

WPt X

W’

VPt W

Z’

YPZ

Z Y

XY

X W

Y’

XPt Y

X’

WPt X

W’

VPt W

Successive cyclic (mixed) head adjunction

.
X’

WPX

W X
W’

VPt W

Y’

XPY

Y X

XW X’

WPt X

W’

VPt W

Z’

YPZ

Y Z

Y X

XW

Y’

XPt Y

X’

WPt X

W’

VPt W

Shortest movement condition (SMC) (Stabler 1997, 1999)

��� The number of competing licensee features triggering a

movement is (finitely) bounded by n.

In the strictest version n = 1, i.e., there is at most one

maximal projection displaying a matching licensee feature:

∗

<

+f
∣

∣

∣

+f ...

-f ...

Specifier island condition (SPIC) (Stabler 1999)

��� Proper “extraction” from specifiers is blocked.

∧

∗

<

+f
∣

∣

∣

+f ...
>

specifier

-f ...

SMC and SPIC — restricting the move-operator domain

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

(Michaelis 1998, 2001; Harkema 2001)

LCFRS

$$$ LCFRS (Michaelis 2001, 2002, 2005)

MELL-proof-search (Salvati 2008)

type 0

(Kobele & Michaelis 2005)

MCSG-landscape

MCSG

MG(-SMC,+/-SPIC)

Lexical Functional Grammar

Indexed Grammar
NNN

NNN

NNN

NNN

NNN
NNN

NNN

NNN

NNN

NNNNNN
NNN

NNN

NNN

NNN

NNN

NNN
Linear Context-Free
Rewriting Systems

MG(+SMC,-SPIC)

MG(+SMC,+SPIC)

Linear Indexed Grammar

Tree Adjoining Grammar

Combinatory
Categorial Grammar

Context-Free Grammar
(GPSG)

MCSG-landscape (enhanced)

MCSG

MG(-SMC,+/-SPIC)

Lexical Functional Grammar

Indexed Grammar
NNN

NNN

NNN

NNN

NNN
NNN

NNN

NNN

NNN

NNNNNN
NNN

NNN

NNN

NNN

NNN

NNN
Linear Context-Free
Rewriting Systems

MG(+SMC,-SPIC)

MG(+SMC,+SPIC)

Linear Indexed Grammar

Tree Adjoining Grammar

Combinatory
Categorial Grammar

Context-Free Grammar
(GPSG)

MCSG-landscape (enhanced)

MCSG

MG(-SMC,+/-SPIC)

Lexical Functional Grammar

Indexed Grammar

Linear Context-Free
Rewriting Systems

MG(+SMC,+SPIC)

NNN

NNN

NNN

NNN

NNN
NNN

NNN

NNN

NNN

NNNNNN

NNN

NNN

NNN

NNN

NNN

MG(+SMC,-SPIC)

Linear Indexed Grammar

Tree Adjoining Grammar

Combinatory
Categorial Grammar

Context-Free Grammar
(GPSG)

NNN

Minimalist expresssions (syntactic features enhanced)

��� There are different types of syntactic features.

(basic) categories:

(merge-) selectors:

(move-) licensees:

(move-) licensors:

. . .

x , y , z , . . .

=x(r) , =y(r) , =z(r) , . . .

. . .

=x(l) , =y(l) , =z(l) , . . .

. . .

-x , -y , -z , . . .

+x , +y , +z , . . .

[Base]

[Selectors , right]

[Selectors , left]

[Licensees]

[Licensors]

Structure building functions (right selection)

merge : Trees × Trees −→part Trees

=f(r) ...

φ

f ...

ψ

selecting φ complexselecting φ simple

<

=f ...=f

f ...f

ψ′

<

f ...f

φ′

=f ...=f

ψ′

Structure building functions (left selection)

merge : Trees × Trees −→part Trees

=f(l) ...

φ

f ...

ψ

selecting φ complexselecting φ simple

>

=f ...=f

f ...f

ψ′

>

f ...f

ψ′

=f ...=f

φ′

Minimalist expresssions (syntactic features enhanced)

��� There are different types of syntactic features.

(basic) categories:

(merge-) selectors:

(move-) licensees:

(move-) licensors:

. . .

x , y , z , . . .

. . .

-x , -y , -z , . . .

+x(l) , +y(l) , +z(l) , . . .

+x(r) , +y(r) , +z(r) , . . .

[Base]

[Selectors]

[Licensees]

[Licensors , left]

[Licensors , right]

Structure building functions (phrasal movement — left)

move : Trees −→part 2Trees

+f(l) ...

-f ...

ψ

φ

>

-f ...-f

ψ′

+f ...+f

φ′

Structure building functions (phrasal movement — right)

move : Trees −→part 2Trees

+f(r) ...

-f ...

ψ

φ

<

-f ...-f

ψ′

+f ...+f

φ′

Minimalist expresssions (syntactic features enhanced)

��� There are different types of syntactic features.

(basic) categories:

(merge-) selectors:

(move-) licensees:

(move-) licensors:

. . .

x , y , z , . . .

. . .

-x , -y , -z , . . .

+x , +y , +z , . . .

+x(l) , +y(l) , +z(l) , . . .

+x(r) , +y(r) , +z(r) , . . .

[Base]

[Selectors]

[Licensees]

[Licensors , weak]

[Licensors , strong]

Structure building functions (overt phrasal movement — left)

move : Trees −→part 2Trees

+f(l) ...

-f ...

ψ

φ

>

-f ...-f

ψ′

+f ...+f

φ′

Structure building functions (overt phrasal movement — right)

move : Trees −→part 2Trees

+f(r) ...

-f ...

ψ

φ

<

-f ...-f

ψ′

+f ...+f

φ′

Further outlook

��� MGs can be extended with the operations adjoin and scramble

involving two new types of syntactic features and a unilateral

checking of their instantiations (Frey & Gärtner 2002, Gärtner &

Michaelis 2003).

��� If, in particular, categorial features are not deleted after checking,

but marked as checked — and thus are still accessible — acyclic

(“late”) adjunction can be defined as a subtype of adjoin.

��� As to the interaction of the SMC and a corresponding adjunct

island constraint (AIC), the addition of the AIC has no effect,

independently of the presence of the SMC.

	Introduction
	Introduction
	Introduction
	Introduction
	makebox [0cm][l]{Mild context-sensitivity}hspace *{13.2cm}makebox [0cm][r]{small (Joshi 1985)}
	makebox [0cm][l]{Mild context-sensitivity}hspace *{13.2cm}makebox [0cm][r]{small (Joshi 1985)}
	MCSG-landscape
	MCSG-landscape
	Minimalist grammars (1)
	Two types of locality conditions (LCs)
	Two types of locality conditions (LCs)
	Two types of locality conditions (LCs)
	Minimalist grammars (1)
	Minimalist expressions
	Minimalist expressions
	Minimalist expressions
	Minimalist expressions
	Minimalist expressions
	Minimalist expressions
	Minimalist expressions
	Minimalist expressions
	Minimalist expressions
	Minimalist expressions
	Minimalist expressions
	makebox [0cm][l]{Minimalist expresssions}hspace *{13.2cm}makebox [0cm][r]{small (displaying feature $category {emph {	extbf {
ormalsize f}}}$,)}
	makebox [0cm][l]{Minimalist expresssions}hspace *{13.2cm}makebox [0cm][r]{small (syntactic features)}
	makebox [0cm][l]{Minimalist expresssions}hspace *{13.2cm}makebox [0cm][r]{small (examples)}
	Building minimalist expressions
	makebox [0cm][l]{Structure building functions}
	makebox [0cm][l]{Structure building functions}
	$merge $hspace *{6.5cm}(selecting tree is simple)
	$merge $hspace *{6cm}(selecting tree is complex)
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{small (overt phrasal movement)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{small (overt phrasal movement)}
	$move $
	makebox [0cm][l]{Minimalist expresssions}hspace *{13.2cm}makebox [0cm][r]{small (syntactic features enhanced)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{small (agree)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{small (agree)}
	makebox [0cm][l]{Minimalist expresssions}hspace *{13.2cm}makebox [0cm][r]{small (syntactic features enhanced)}
	makebox [0cm][l]{Structure building functions}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{(weak selection)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{(strong selection)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{(strong selection)}
	$merge $hspace *{6.5cm}(head-incorporation left)
	makebox [0cm][l]{merge},hspace *{13cm},makebox [0cm][r]{(head-incorporation right)}
	Minimalist grammars
	Minimalist languageshspace *{8.6cm}{makebox [0cm][r]{small MG, $�m {	extsl {G},=,langle ,Feat ,,,Lex ,,,Omega ,,category {c},angle }$}}
	A simple MG-lexicon
	makebox [0cm][l]{Head movement constraint (HMC)}hspace *{13.2cm}makebox [0cm][r]{small (Stabler 1997)}
	makebox [0cm][l]{Successive cyclic left head adjunction}hspace *{13.2cm}makebox [0cm][r]{}
	makebox [0cm][l]{Successive cyclic right head adjunction}hspace *{13.2cm}makebox [0cm][r]{}
	makebox [0cm][l]{Successive cyclic (mixed) head adjunction}hspace *{13.2cm}makebox [0cm][r]{}
	makebox [0cm][l]{Shortest movement condition (SMC)}hspace *{13.2cm}makebox [0cm][r]{small (Stabler 1997, 1999)}
	makebox [0cm][l]{Specif/ier island condition (SPIC)}hspace *{13.2cm}makebox [0cm][r]{small (Stabler 1999)}
	SMC and SPIC makebox [0cm][l]{untilSlide {2}{small ,---, restricting the move-operator domain}}
	MCSG-landscape
	makebox [0cm][l]{MCSG-landscape}hspace *{13.2cm}makebox [0cm][r]{small (enhanced)}
	makebox [0cm][l]{MCSG-landscape}hspace *{13.2cm}makebox [0cm][r]{small (enhanced)}
	makebox [0cm][l]{Minimalist expresssions}hspace *{13.2cm}makebox [0cm][r]{small (syntactic features enhanced)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{(right selection)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{(left selection)}
	makebox [0cm][l]{Minimalist expresssions}hspace *{13.2cm}makebox [0cm][r]{small (syntactic features enhanced)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{small (phrasal movement,,---,,left)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{small (phrasal movement,,---,,right)}
	makebox [0cm][l]{Minimalist expresssions}hspace *{13.2cm}makebox [0cm][r]{small (syntactic features enhanced)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{small (overt phrasal movement,,---,,left)}
	makebox [0cm][l]{Structure building functions},hspace *{13cm},makebox [0cm][r]{small (overt phrasal movement,,---,,right)}
	Further outlook

