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Abstract The phenomenon of Inverse Linking has proven challenging for theories of

the syntax-semantics interface; a noun phrase within another behaves with respect

to binding as though it were structurally independent. In this paper I show that,

even within an LF-movement style approach to the syntax-semantics interface, we can

derive all and only the appropriate meanings for such constructions using no semantic

operations other than function application and composition. The solution relies not

on a proliferation of lexical ambiguity, but rather on a straightforward (and standard)

reification of assignment functions, which allows us to define abstraction operators

within our models.

1 Introduction

Inverse linking (see May and Bale (2005) for an historical overview) refers to the

phenomenon of a quantificational noun phrase (QNP) embedded as the argument of a

prepositional phrase attached to another QNP taking semantic scope over that noun

phrase, as in reading b of example 1, the gross surface structure of which is as sketched

in figure 1.

(1) At least two senators on every committee voted against the bill.

a. At least two senators who are on every committee voted against the bill.

b. For every committee, there are at least two senators on that committee who

voted against the bill.

The challenge the simple existence of inversely linked readings poses for a theory of

grammar is to account for how the embedded PP-internal QNP is able to semantically

outscope the noun phrase which contains it. There are two major classes of analyses.1

Address(es) of author(s) should be given

1 Another alternative is offered by continuations (see, for example,Barker (2002)). Syntactic
movement, as presented in minimalist grammars, has at the very least intuitive relations to
continuations (of the bounded variety (of which there are many)), but the analysis of quantifica-
tion presented in Barker (2002) is not a natural fit with the syntactic analyses in the minimalist
program, even if and when this latter is reanalyzed in terms of (string-)continuations. The same
is true of analyses written in the context of syntactic frameworks, such as categorial grammar,
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Fig. 1 The gross surface structure of example 1

The first option (May, 1977; Sauerland, 2005), sketched in figure 2, is to interpret the

embedded QNP as taking sentential scope (i.e. as scoping entirely outside of the QNP

which contains it). The second option (May, 1985; Larson, 1985; Heim and Kratzer,
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Fig. 2 Explaining inverse linking: Sentential scope

1998), as in figure 3, is to interpret the embedded QNP as forming a complex quantifi-

cational element with the QNP which contains it. There are two additional empirical

constraints on a theory of inverse linking. First is the fact, called Larson’s generalization

in May and Bale (2005), that quantificational noun phrases external to the containing

in which type changing operations are more natural than in the minimalist framework used
here.
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Fig. 3 Explaining inverse linking: Complex quantifier formation

QNP cannot intervene semantically between the embedded and containing QNPs, as

shown in example 2.

(2) Two politicians spy on someone from every city.

If the sentence in 2 had a reading in which every city took widest scope, and someone

narrowest, with two politicians in between, then it should be true of a situation in

which each city has different politicians (∀ < 2), but where no two politicians spy on

the same individual (2 < ∃). However, it doesn’t seem to be.

The second empirical constraint on a theory of inverse linking comes from the fact

that pronouns external to the containing QNP can be bound by the embedded QNP

on the inversely linked reading, as in example 3.

(3) Some man from every city secretly despises it.

Example 3 can be true of a situation in which the city despised varies across individuals,

i.e. Garrison from Lake Wobegon secretly despises Lake Wobegon, Garth from Waco

secretly despises Waco, Gary from Wasilla secretly despises Wasilla, etc.

The sentential scope approach to inverse linking (as in figure 2) immediately ac-

counts for the ability of embedded QNPs to bind variables external to their containing

QNP, but requires additional stipulations to correctly rule out cases of scope-splitting.

The complex quantifier approach to inverse linking (as in figure 3) on the other hand,

while seeming as though it may provide a simple explanation of the scope-splitting pro-

hibition, requires that some method of interpreting ‘complex quantifiers’ be specified

before it is able to make predictions. What would seem to be needed is the follow-

ing, where Q is the embedded QNP denotation, and D(N(x)) is the containing QNP

denotation, where x is the interpretation of the trace of the embedded QNP.2

λAet.Q(λxe.D(N(x))(A))

2 Thus, the denotation of the NP in figure 3 should be the following.

λAet.every(committee)(λxe.two(senator ∧ on(x))(A))
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As can be verified by inspecting the term above, this denotation correctly rules out the

scope splitting cases discussed above (see example 2). It also allows for the embedded

quantifier (denoting Q) to take scope over the rest of the sentence (replacing the

variable A), which we want in order to account for the binding facts. However, the

representation here doesn’t allow pronouns in the sentence to be bound by Q, as the λ-

calculus prohibits ‘variable capture.’3 Thus, either pronoun binding in these sentences

must not be identified with variable binding (an option might be something like E-

type anaphora), or we need to find a way of implementing this idea without using

the λ-calculus. Another problem with fleshing out of the complex quantifier approach

to inverse linking in this way is that it seems to require construction specific semantic

machinery for its description: how does the meaning of the embedded QNP, Q combine

with the meaning of the containing QNP, D(N(x)), so as to result in the (or something

like the) meaning representation above?4

The solution I will propose in §3 is that the mechanism underlying complex quan-

tifier formation is simply function composition. Mixing meta- and object-language for

the moment, the complex quantifier a friend of every senator will have the following

form, where ◦ denotes function composition.

(every(senator) ◦ λy) ◦ some(λx.friend(x, y))

Applied to a predicate denotation, A, this will yield the following.

((every(senator) ◦ λy) ◦ some(λx.friend(x, y)))(A)

= (every(senator) ◦ λy)(some(λx.friend(x, y))(A))

= every(senator)(λy.some(λx.friend(x, y))(A))

This provides a simple solution to the ability of inversely scoped quantifiers to bind

into the scope argument of their containing QNP; at the point at which the scope

argument is introduced, the variable binding of the inversely scoping QNP has not yet

been performed.

Strictly speaking, however, the formula written above is nonsense: λ-abstraction

is not a function in our model, and thus it cannot be ‘composed’ with something

that is. This, however, is due to the fact that it has become common to think of

assignment functions as parameterizing model-theoretic interpretation, rather than,

equivalently, as part of the models themselves. In §2 I review how to reify assignment

functions, and interpret predicate logic, and dynamic predicate logic in these terms.

This allows me to find a ‘lambda abstraction’ function in our models, which I use

in §3 to make legitimate the solution outlined above. In contrast to the solution put

forth in Sternefeld (1997), mine does not treat the binding relation in inverse-linking

constructions dynamically. In the next section (§4) I provide an interpreted grammar

3 Λ-terms provide an overly fine grained representation of functions, in the sense that in-
finitely many distinct terms can represent the same function. An example: λx.x is a different
term than λy.y, although they stand for the very same function. β-conversion is defined so as
to make sure that, if α and α′ are terms denoting the same function, then α(β) and α′(β)
also denote the same object. For example, λx.λy.x and λx.λz.x both denote the function
K(a)(b) = a, and so (λx.λy.x)(y) must denote the same function as (λx.λz.x)(y), namely the
function denoted by λx.y. For this reason, variable capture is ruled out, as it, being sensitive
to accidental properties of our representations, disrupts the equivalences between terms that
the λ-calculus enforces.

4 An unsatisfying solution is to posit rampant otherwise unjustified lexical ambiguity.
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fragment written in the minimalist grammar formalism, which assigns appropriate

meanings to sentences with complex DP quantifiers. I show that the compositional

semantic interpretation proposed herein, coupled with natural syntactic assumptions,

derives Larson’s generalization. Section 5 is the conclusion.

2 The Status of Assignment Functions

It is standard in presentations of the semantics of first-order logic to treat formulae as

having interpretations in the models only with respect to assignment functions. In other

words, there is no single monolithic interpretation function [[·]]M, but instead a family

of interpretation functions ([[·]]g
M

)g∈G parameterized by assignments. An equivalent

perspective reifies the family G of assignment functions, allowing there to be a single

interpretation function [[·]]M, the relation of which to the family ([[·]]g
M

)g∈G can be

schematized as per the below.

[[φ]]M := {g : [[φ]]g
M

= true}

In other words, this alternative perspective takes the meaning of a sentence φ to be

the set of all assignment functions with respect to which φ is true on the standard

perspective. Despite being equivalent from the perspective of entailment, moving the

assignment functions into the model gives access to first rate model theoretic objects

which behave like lambda abstraction, but which can be composed with, among other

things, generalized quantifier denotations to yield semantic objects of the kind alluded

to at the end of the previous section.

In order to familiarize the reader with this perspective, I use the remainder of this

section to present a semantics for predicate logic and (a slightly modified version of)

dynamic predicate logic in these terms. Subsection 2.1 introduces the notation used in

further subsections, §2.2 presents the standard syntax and (this alternative perspective

on the standard) semantics of predicate logic, which is in §2.3 modified so as to recast

sentential quantifiers (of type tt) as generalized quantifiers (of type (et)t), and introduce

a (restricted) lambda abstraction operator. The syntax presented in §2.3 is carried over

to §2.4, where it is fitted with a dynamic interpretation.

2.1 Models

Our models are built from the following objects:

– E is the set of entities

– T is the set of propositions

– G is the set of contexts of use

Here, I will take T to be the set {0, 1} of truth values, and G to be the set EN of

assignment functions, where N = {0, 1, 2, . . .} is the set of natural numbers and BA the

set of functions with domain A and codomain B.5 Given g, h ∈ G, I write gi for g(i),

and g ≈i h is true just in case if g and h differ, then only in the value they take at i

5 To deal with intensionality, we can instead take T = {0, 1}W , for W an arbitrary set (of
possible worlds) (Keenan and Faltz, 1985). Furthermore, as will be discussed later, we can take
G = EN × EN to deal with dynamic binding (Groenendijk and Stokhof, 1991).
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(i.e. for any j, if gj 6= hj then j = i). The notation g[i:=a] denotes the assignment h,

such that hi = a, and g ≈i h. I write x ∈ y as an abbreviation for y(x) = 1.

Natural language expressions denote in domains built from these sets in the follow-

ing way.

– De := EG

– Dt := TG

– Dαβ := Dβ
Dα

My use of G is thus similar to Montague’s type s, as used in Montague (1970).

Viewed from this perspective, my type e is Montague’s type se (individual concepts),

and my type t Montague’s type st (propositions). The difference between my use of G

and Montague’s s is that the ‘denotation domain’ of type s was for Montague not just

the set of assignment functions (as it is here), but rather the set of pairs of assignment

functions and possible worlds.6

I will call functions in the set De individuals, those in Dt sets of assignments, func-

tions from individuals to sets of assignments properties, functions from properties to

sets of assignments generalized quantifiers, and functions from properties to general-

ized quantifiers determiners. I will also call sets of assignments nullary relations, and

functions from individuals to n-ary relations n+1-ary relations (and so properties are

unary relations).

2.2 Predicate Logic

I give an interpretation of a simple fragment of the predicate calculus, with individ-

ual constants john, mary, one-place predicate constant giggle, and two-place predicate

constant tickle. In addition, our language contains a countably infinite set of variable

symbols Var = {x0, x1, x2, . . .}, and the logical symbols ∃, ∀, &, and ¬, as well as the

punctuation symbols ‘(’ and ‘)’.

The well-formed formulae of our language are defined as follows.

1. if v1, . . . , vi are variables or individual constants, and ri is an i-place predicate,

then ri(v1, . . . , vi) is a well-formed formula

2. if φ is a well-formed formula, so too is ¬φ

3. if φ and ψ are well-formed formulae, so is (φ&ψ)

4. if φ is a well-formed formula, and x is a variable, then ∃x.φ is a well-formed formula

5. if φ is a well-formed formula, and x is a variable, then ∀x.φ is a well-formed formula

A model M = 〈E, I〉 provides an interpretation function I mapping elements of

individual constants to elements of E, and i-ary relation symbols to i-ary relations over

E. A variable xi denotes a function [[xi]]M ∈ De from G to E, such that [[xi]]M(g) = gi.

We extend [[·]]M to our other constants in the following way:

– for c an individual constant, [[c]]M ∈ De

[[c]]M(g) = I(c)

6 In Montague (1973), the ‘denotation domain’ of type s was understood of pairs of worlds
and times, with assignment functions relegated to parameters on the interpretation function.
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– for ri an i-place predicate constant, [[ri]]M ∈ Deit

g ∈ [[ri]]M(a1) . . . (ai) iff 〈a1(g), . . . , ai(g)〉 ∈ I(ri)

The primary difference between this system and the one presented in Montague

(1974) is lies in the denotation of predicates, which in Montague’s system are

functions with domain Ei → G → T , and which are here functions with domain
“

EG
”i

→ G→ T .

– Finally, (sentential) conjunction and negation are given the obvious constant inter-

pretations:

[[¬]]M(H) := {g : g 6∈ H}

[[&]]M(H)(K) := {g : g ∈ H ∧ g ∈ K}

Applied to well-formed formulae, the function [[·]]M assigns to them sets of assignments,

and is defined on them in the following manner.

1. [[r(v1, . . . , vn)]]M = [[r]]M([[v1]]M) . . . ([[vn]]M)

2. [[¬φ]]M = [[¬]]M([[φ]]M)

3. [[(φ&ψ)]]M = [[&]]M([[φ]]M)([[ψ]]M)

4. [[∃xi.φ]]M = {g : for some h ∈ G such that g ≈i h, h ∈ [[φ]]M}

5. [[∀xi.φ]]M = {g : for all h ∈ G such that g ≈i h, h ∈ [[φ]]M}

We determine the interpretation of the formula ∃x1.giggle(x1) as follows.

g ∈ [[∃x1.giggle(x1)]]M iff for some h ∈ G, g ≈1 h ∧ h ∈ [[giggle(x1)]]M

iff for some h ∈ G, g ≈1 h ∧ h ∈ [[giggle]]M([[x1]]M)

iff for some h ∈ G, g ≈1 h ∧ [[x1]]M(h) ∈ I(giggle)

iff for some h ∈ G, g ≈1 h ∧ h1 ∈ I(giggle)

As can be seen from the above, the denotation of the formula giggle(x1) with free

variable x1 is the set of all assignments g, such that g1 giggled, {g : g1 ∈ I(giggle)}.
Intuitively, given a set H of assignments (a sentence denotation), the semantic effect

of existential quantification over a variable xi is to enlarge H with all g which are

i-variants of some h ∈ H (g ≈i h). The effect of universal quantification over xi
is to remove from H all g of which an i-variant is missing from H . Thus, given an

arbitrary sentence Φ, we have that for every x, [[∀x.Φ]]M ⊆ [[Φ]]M ⊆ [[∃x.Φ]]M. Note

that formulae without free variables denote either all of G or none of it (∅), depending

on whether they are true or not. Thus, given Φ and x such that x is not free in Φ,

[[∀x.Φ]]M = [[Φ]]M = [[∃x.Φ]]M.

2.3 Defining Lambda Abstraction

Above, the quantifiers were introduced syncategorimatically, and thus received no in-

dependent meaning. Following Church (1940), I dissociate quantification from variable

binding, by revising the syntax and semantics of our language so that quantifiers com-

bine with one-place predicates instead of with sentences. Our language is accordingly

extended with a countably infinite set of symbols ⋋0,⋋1,⋋2, . . . I revise clauses 4 and

5 of our definition of well-formed formulae, and add a clause 6, which allows us to

derive one-place predicates from sentences.
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4. if ρ is a one-place predicate, then ∃ρ is a well-formed formula

5. if ρ is a one-place predicate, then ∀ρ is a well-formed formula

6. if φ is a well-formed formula, then ⋋i(φ) is a one-place predicate

We assign to the symbols ∃ and ∀ the following meanings in D(et)t. For every A ∈ Det,

[[∃]]M(A) := {g : for some a ∈ De, g ∈ A(a)}

[[∀]]M(A) := {g : for all a ∈ De, g ∈ A(a)}

The symbols ⋋i also denote logical constants (which I will in later sections write as

λi), and in the type Dtet.
7 For any H ∈ Dt, and a ∈ De,

[[⋋i]]M(H)(a) = {g : g[i:=a(g)] ∈ H}

To the revised and newly introduced syntactic possibilities are associated the following

semantic interpretation rules.

4. [[∃ρ]]M = [[∃]]M([[ρ]]M)

5. [[∃ρ]]M = [[∀]]M([[ρ]]M)

6. [[⋋i(φ)]]M = [[⋋i]]M([[φ]]M)

With these definitions, it can be proven that, for example,

[[⋋1(giggle(x1))(x2)]]M = [[giggle(x2)]]M

[[⋋1(giggle(x1))(x2)]]M = {g : g ∈ [[⋋1(giggle(x1))]]M([[x2]]M)}

= {g : g ∈ [[⋋1]]M([[giggle(x1)]]M)([[x2]]M)}

= {g : g ∈ {h : h[1:=[[x2]]M(g)] ∈ [[giggle(x1)]]M}}

= {g : g[1:=g2] ∈ [[giggle(x1)]]M}

= {g : g[1:=g2] ∈ [[giggle]]M([[x1]]M)}

= {g : [[x1]]M(g[1:=g2]) ∈ I(giggle)}

= {g : (g[1:=g2])1 ∈ I(giggle)}

= {g : g2 ∈ I(giggle)}

= {g : [[x2]]M(g) ∈ I(giggle)}

[[giggle(x2)]]M = {g : g ∈ [[giggle]]M([[x2]]M)}

7 It is possible to give a definition for general ‘lambda-abstraction’, i.e. a single function λ,
which then combines with a variable denotation [[xi]]M to give us the function λi = [[⋋i]]M
defined here, as shown below

λ(b)(H)(a) := {g : for some h ∈ H, b(h) = a(g), and either h = g or there is exactly

one j ∈ N such that g ≈j h, and gj = b(g) and hj = b(h)}

When b in the above definition is [[xi]]M, we have that h = g[i:=a(g)]. The benefit of such a
move becomes evident once we see that we can eliminate all but one variable name (see Kobele
(2006)), leaving us with a semantic algebra with a finite signature.
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2.4 Dynamic Predicate Logic

Groenendijk and Stokhof (1991) observe that the treatment of anaphora across sen-

tence boundaries in Discourse Representation Theory (Kamp and Reyle, 1993) can be

modeled in standard predicate logic if interpretation is done relative to two assign-

ments, one which serves as a representation of the context prior to the utterance of

a sentence, and one which represents the result that that sentence’s utterance had on

the first context. Thus, the denotation of a sentence is taken to be a set of pairs of

assignment functions (representing the ‘context change potential’ of that sentence),

and so we view G as a set of pairs of assignments EN × EN.8

We accordingly need to modify our definitions of the denotations and interpreta-

tions of the expressions of our language. Variables xi and constants c can be thought

of as simply ignoring the second element of the pair of assignments they are given:

[[xi]]M(〈g, h〉) = gi, and [[c]]M(〈g, h〉) = I(c). Because of this lack of dependence on the

second component of their argument, I will continue to write [[xi]]M(g) and [[c]]M(g).

I-place predicate constants ri continue to distribute their context argument (now a

pair of assignments) to their semantic arguments:

〈g, h〉 ∈ [[ri]]M(a1) . . . (ai) iff g = h and 〈a1(〈g, h〉), . . . , ai(〈g, h〉)〉 ∈ I(ri)

The denotations of the remaining expressions in our language are given as per the

following.

– [[ρ(v1, . . . , vn)]]M = [[ρ]]M([[v1]]M) . . . ([[vn]]M)

– [[¬]]M(H) = {〈g, h〉 : g = h and for all k, 〈g, k〉 /∈ H}
– [[&]]M(H)(K) = {〈g, h〉 : for some k, 〈g, k〉 ∈ H and 〈k, h〉 ∈ K}

– [[∃]]M(A) = {〈g, h〉 : for some a ∈ De, 〈g, h〉 ∈ A(a)}
– [[∀]]M(A) =

{〈g, h〉 : g = h and for all a ∈ De, for some k, 〈g, k〉 ∈ A(a)}

– [[⋋i]]M(H)(a) = {〈g, h〉 : 〈g[i:=a(g)], h〉 ∈ H}

Note that from this perspective, dynamicity is always and only introduced by variable

binding. We can define a set of assignment pairs to be static just in case it contains

only pairs of the form 〈g, g〉. A function f from pairs of assignments is static just in

case for any two assignments h, k, f(〈g, h〉) = f(〈g, k〉). Thus, variables and individual

constants are static. A function f : A → B is static just in case for any static a ∈ A,

f(a) is also static. With this definition, we see that λi is not static, as λi({〈g, g〉})(x1) =

{〈h, g〉 : h ≈i g}, which is not static, although the unit set {〈g, g〉} and x1 are. The

quantifiers and logical connectives are static, but differ amongst themselves regarding

whether they are permeable to dynamic effects (i.e. on whether they map even dynamic

arguments to static values).

With these definitions, and treating sentence juxtaposition as conjunction, we can

compute the meaning (qua context change potential) of the text “John tickled someone.

She giggled.”, rendered into our logical language as the conjunction of the sentences

8 Note that this really is just a perspective shift, as EN ∼= EN × EN.
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∃(⋋1(tickle(x1)(john))) and giggle(x1). The context change potential of the first sen-

tence is calculated to be the following.

[[∃(⋋1(tickle(x1)(john)))]]M = {〈g, h〉 : for some a ∈ De,

〈g, h〉 ∈ [[⋋1(tickle(x1)(john))]]M(a)}

= {〈g, h〉 : for some a ∈ De,

〈g[1:=a(g)], h〉 ∈ [[tickle(x1)(john)]]M}

= {〈g, h〉 : for some a ∈ De,

〈g[1:=a(g)], h〉 ∈ [[tickle]]M([[x1]]M)([[john]]M)

and g[1:=a(g)] = h}

= {〈g, g[1:=a(g)]〉 : for some a ∈ De,

〈a(g), I(john)〉 ∈ I(tickle)}

The context change potential of our second sentence, which is easily seen to be the

below, is interpreted in the context of the first sentence.

[[giggle(x1)]]M = {〈g, h〉 : 〈g, h〉 ∈ [[giggle(x1)]]M}

= {〈g, h〉 : g = h and 〈g, h〉 ∈ [[giggle]]M([[x1]]M)}

= {〈g, g〉 : g1 ∈ I(giggle)}

After processing the first sentence, the context is modified so as to assign a(g) to x1,

for some a ∈ De such that John tickled a(g). The second sentence will be true in this

modified context just in case that same a(g) giggled.

3 Inverse linking via Function composition

Here I will illustrate the complex quantifier approach to inverse linking, as described

in section §1, above. There, we saw that the intuitively desired meaning of such a

complex quantifier qua lambda term (repeated below) suffered from the problem that

in order for Q to bind variables external to the complex quantifier variable capture

was required, which means that the thing we want isn’t actually the lambda term we

wrote.

λAet.Q(λxe.D(N(x))(A))

The problem is that we want to combine the two generalized quantifiers Q andD(N(x))

in such a way as to feed the next property argument A directly toD(N(x)), and then to

give the property λxe.D(N(x))(A) as argument to Q. In other words, the only reason

we abstract over the A argument to D(N(x)) in the above term is because we need to

abstract over the x argument in the resulting sentence D(N(x))(A) before this can be

given as an argument to the generalized quantifier Q. Because A occurs in the scope

of the lambda binding over x, when an argument is substituted for A into the term

λxe.D(N(x))(A), if that argument contains a free variable x, we α-convert our term so

that x stays free in the result. What we want is a way to delay abstracting over x until

after A has been given as an argument to D(N(x)), something along the lines below:

(Q ◦ λx) ◦ (D(N(x)))
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While this is not a well-formed lambda term, it is a well-formed model-theoretic object

of the kind described in the previous section.

For the time being, I will adopt a Heim and Kratzer (1998)-style perspective on

semantic interpretation, in the sense that the structures which serve as input to the

denotation function [[·]]M will be syntactic structures to which quantifier raising trans-

formations have already applied. Aside from putting assignments into the model as

in the previous section, a major difference in the system here is that indices will be

represented on the moved expression (so NPi is an NP which binds a trace ti). Such

an object will be interpreted as usual, except that its denotation will be composed with

a binder for xi, λi:

[[XPi]]M := [[XP ]]M ◦ λi

Aside from working, this makes the LF-interpretation system in this section the syntac-

tic equivalent of the ‘cooper-storage’ system used in the fragment in the next section.

We will see that the parts Q ◦ λx and D(N(x)) of the above semantic object are the

kind of things we would expect to see as stored quantifiers on the one hand and as

denotations of expressions containing that same quantifier in the store on the other.

As an example, and continuing with the store perspective, consider the denotation

of the expression senators on every committee, which has as its main meaning senator∧
on(x),9 and in the store is contained the meaning every(committee) ◦ λx. After

merger with two, the stored meaning, every(committee) ◦ λx, needs to be combined

with the main meaning, two(senator∧on(x)). However, the main meaning is of type

(et)t, whereas the stored meaning is of type tt, making function application impossible.

In this case, however, function composition provides us with exactly the meaning that

we want:

(every(committee) ◦ λx) ◦ (two(senator ∧ on(x)))

Applying the above function to an argument of type et, we have the following equalities

(by the definition of composition):

((every(committee) ◦ λx) ◦ (two(senator ∧ on(x))))(A)

= (every(committee) ◦ λx)(two(senator ∧ on(x))(A))

= every(committee)(λx(two(senator ∧ on(x))(A)))

Crucially, A might be of the form λy(despise(x)(y)), where x occurs free in A,10

allowing the previously retrieved quantifier to bind into it.

To make this work, I adopt a type-driven approach to semantic combination (Klein

and Sag, 1985), with basic combinatory operators not only forward and backward func-

tion application, but also forward and backward function composition. For α a binary

branching node with daughters β and γ, I write [[α]]M = combine([[β]]M, [[γ]]M), where

combine is a catch-all for whichever of the above named combinatory operators which

fits the bill. As mentioned above, a movement subscript contributes a semantic binder;

so if the mother is αi, and the daughters are β and γ, [[αi]]M = combine(β, γ) ◦ λi.

9 The operator ∧ is boolean ‘and’, extended pointwise over functions; so on predicate deno-
tations (A ∧ B)(a) = A(a) ∩ B(a), where ∩ is normal set-theoretic intersection.
10 This statement is misleading in the extreme. A is a function of type et; a function from

functions from assignments to entities to sets of assignments. It doesn’t have syntactic struc-
ture, and thus nothing ‘occurs’ in it, let alone freely. The correct way to phrase this is as
follows. A might be such that for some a, A(a) is not indifferent to x, where a set of assign-
ments H is indifferent to a variable denotation x iff for all g ∈ H, if g ≡ h mod x then h ∈ H,
where assignments g and h are equivalent modulo a variable denotation x iff for all variable
denotations y, if y(g) 6= y(h) then y = x.
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3.1 Inverse Scope

We can calculate the meaning of the inversely linked reading in 4 below (with syntactic

structure as in figure 4) in the following manner.

(4) Some relative of every lawyer despises him.

7

5

4i

every lawyer

3

some 2

relative 1

of ti

6

despises himi

Fig. 4 The LF-structure for the inverse scope reading of example 4

The lexical items (the leaves of figure 4) denote as described below.

[[some]]M = some ∈ D(et)(et)t

[[every]]M = every ∈ D(et)(et)t

[[of]]M = of ∈ Dee
[[ti]]M = [[himi]]M = xi ∈ De
[[lawyer]]M = lawyer ∈ Det
[[relative]]M = relative ∈ Deet
[[despises]]M = despise ∈ Deet

The denotations of the internal nodes (which are numbered in the figure), are given

below.

1. [[1]]M = combine([[of]]M, [[ti]]M). As the type of [[of]]M is ee, and the type of [[ti]]M
is e, we apply the first argument to the second and obtain a value of type e:

[[of]]M([[ti]]M) = of(xi)

2. [[2]]M = combine([[relative]]M, [[1]]M). As the type of [[relative]]M is eet, and the

type of [[1]]M is e, we again apply the first argument to the second and obtain a

value of type et:

[[relative]]M([[1]]M) = relative(of(xi))

3. [[3]]M = combine([[some]]M, [[2]]M). As [[some]]M is of type (et)(et)t, and the type

of [[2]]M is et, we apply once more the first argument to the second and obtain a

value of type (et)t:

[[some]]M([[2]]M) = some(relative(of(xi)))



13

4. [[4i]]M = combine([[every]]M, [[lawyer]]M) ◦ λi. As the type of [[every]]M is (et)(et)t,

and the type of [[lawyer]]M is et, we apply yet again the first argument to the second

and obtain a value of type (et)t, which composes with λi of type tet to yield a value

of type tt:

[[every]]M([[lawyer]]M) ◦ λi = every(lawyer) ◦ λi

5. [[5]]M = combine([[4i]]M, [[3]]M). As the type of [[4i]]M is tt, and the type of [[3]]M
is (et)t, we compose the first argument with the second and obtain a value of type

(et)t:

(every(lawyer) ◦ λi) ◦ (some(relative(of(xi))))

6. [[6]]M = combine([[despises]]M, [[himi]]M), as the type of [[despises]]M is eet, and

the type of [[himi]]M is e, we apply the first argument to the second and obtain a

value of type et:

[[despises]]M([[himi]]M) = despise(xi)

7. [[7]]M = combine([[5]]M, [[6]]M). As the type of [[5]]M is (et)t, and the type of [[6]]M
is et, we apply one last time the first argument to the second and obtain a value

of type t:

((every(lawyer) ◦ λi) ◦ (some(relative(of(xi)))))(despise(xi))

By the definition of function composition, this set of assignments is identical to the

below:

every(lawyer)(λi(some(relative(of(xi)))(despise(xi))))

Although not much more can be said about the denotations of common nouns

and verbs, the quantifiers and prepositions are intended to be logical constants in our

models, and we can calculate on that basis a more refined description of the denotation

of this reading.

The static denotations of our constants are given in figure 5. By the definition of

some(A)(B) := {g : for some a ∈ De g ∈ A(a) and g ∈ B(a)}

of(a) = a xi(g) = gi

lawyer(a) = {g : a(g) ∈ lawyer}

relative(a)(b) = {g : 〈a(g), b(g)〉 ∈ relative}

despise(a)(b) = {g : 〈a(g), b(g)〉 ∈ despise}

every(A)(B) := {g : for every a ∈ De if g ∈ A(a) then g ∈ B(a)}

Fig. 5 The static denotations of the constants

of, this set of assignments is identical to the below.

every(lawyer)(λi(some(relative(xi))(despise(xi))))

Applying the definition of the function some in the above, we obtain the following.

{g : ∀a. g ∈ lawyer(a) → g ∈ λi(some(relative(xi))(despise(xi)))(a)}
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Unpacking the definition of λi from section §2.3, we arrive at the below.

{g : ∀a. g ∈ lawyer(a) →

g ∈ {h : h[i:=a(g)] ∈ some(relative(xi))(despise(xi))}}

The equivalence g ∈ {h : Φ(h)} ↔ Φ(g) nets us the following.

{g : ∀a. g ∈ lawyer(a) →

g[i:=a(g)] ∈ some(relative(xi))(despise(xi))}

By the definition of some, this set is identical to the one below.

{g : ∀a. g ∈ lawyer(a) →

g[i:=a(g)] ∈ {h : ∃b. h ∈ relative(xi)(b) ∧

h ∈ despise(xi)(b)}}

Again, from g ∈ {h : Φ(h)} we conclude that Φ holds of g.

{g : ∀a. g ∈ lawyer(a) →

∃b. g[i:=a(g)] ∈ relative(xi)(b) ∧ g
[i:=a(g)] ∈ despise(xi)(b)}

Finally, unpacking the definitions of the non-logical constants, we arrive at the descrip-

tion of this set below.

∀a. a(g) ∈ lawyer →

∃b. 〈b(g[i:=a(g)]), a(g)〉 ∈ relative

∧ 〈b(g[i:=a(g)]), a(g)〉 ∈ despise

Although there is no dynamicity involved in the ability of the inversely scoping

quantifier to bind out of its syntactically containing DP, this fact is perhaps obscured

by the assignment functionfullness of these denotations. I repeat the calculation done

above, this time using the dynamic interpretations as given in figure 6.11 As an abbre-

viatory convenience, I will write g2 for 〈g, g〉. We begin with the description of the set

of assignment functions as given below.

every(lawyer)(λi(some(relative(xi))(despise(xi))))

11 These denotations seem perhaps unmotivated. That they are correct is best evidenced by
the fact that they work to, for instance, derive the appropriate meaning for the sentence “every
farmer who owns a donkey beats it”, as modeled by the ‘formula’ below. (and is interpreted
as dynamic predicate conjunction, where 〈g, h〉 ∈ and(A)(B)(a) iff for some k, 〈g, k〉 ∈ A(a)
and 〈k, h〉 ∈ B(a).)

every(and(farmer)(λ1(some(donkey)(λ2(own(x2)(x1))))))(beat(x2)))

According to the denotations of the logical constants here assigned, the above can be shown
identical to the set below.

{g2 :∀a, k. (g2 ∈ farmer(a) & ∃b, h. h = g[1:=a(g2)] & h2 ∈ donkey(b)

& k = h[2:=b(h2)] & k2 ∈ own(x2)(x1) → k2 ∈ beat(x2)(a))}

Note that the embedded existential quantifier (∃b) is able to escape the scope of the antecedent

of the conditional by the identification of k with g[1:=a(g2)][2:=b(g[1:=a(g2)]2)], and thus the

pronoun x2 in the consequent is able to be assigned the value b(g[1:=a(g2)]2).
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some(A)(B) := {〈g, h〉 : for some a ∈ De and k ∈ G
〈g, k〉 ∈ A(a) and 〈k, h〉 ∈ B(a)}

of(a) := a xi(〈g, h〉) := gi

lawyer(a) := {〈g, g〉 : a(〈g, g〉) ∈ lawyer}

relative(a)(b) := {〈g, g〉 : 〈b(〈g, g〉), a(〈g, g〉)〉 ∈ relative}

despise(a)(b) := {〈g, g〉 : 〈b(〈g, g〉), a(〈g, g〉)〉 ∈ despise}

every(A)(B) := {〈g, g〉 : for every a ∈ De and k ∈ G
if 〈g, k〉 ∈ A(a) then for some h ∈ G

〈k, h〉 ∈ B(a)}

Fig. 6 The dynamic denotations of the constants

Note that the pronoun in the VP is actually in the scope of the determiner every.

Thus, it is in a canonical position to be bound in the normal way. (In fact, it is

semantically indistinguishable from the trace of the moved DP every lawyer.) If it were

to be nonetheless bound dynamically, it would have to result from a context change

originating in the restrictor argument. We will soon see that this is not the case. We

next unpack the dynamic definition of every (writing g2 for 〈g, g〉).

{g2 : ∀a, k. (〈g, k〉 ∈ lawyer(a) →
∃h. 〈k, h〉 ∈ λi(some(relative(xi))(despise(xi)))(a)}

By inspecting the definition of lawyer, we see that k must be identical to g, and thus

that the pronoun (and the trace of every lawyer) must be being bound in the ‘standard’

way.

{g2 : ∀a. a(g2) ∈ lawyer →
∃h. 〈g, h〉 ∈ λi(some(relative(xi))(despise(xi)))(a)}

Using the dynamic version of λi from section §2.4, we obtain the description below.

{g2 : ∀a. a(g2) ∈ lawyer →

∃h. 〈g, h〉 ∈ {〈k, k′〉 :

〈k[i:=a(g2)], k′〉 ∈ some(relative(xi))(despise(xi))}}

Again, from 〈g, h〉 ∈ {〈k, k′〉 : Φ(〈k, k′〉)} we conclude that Φ holds of 〈g, h〉.

{g2 : ∀a. a(g2) ∈ lawyer →

∃h. 〈g[i:=a(g
2)], h〉 ∈ some(relative(xi))(despise(xi))}

By the dynamic definition of some, this set is identical to the below.

{g2 : ∀a. a(g2) ∈ lawyer →

∃h. 〈g[i:=a(g
2)], h〉 ∈ {〈k′, k′′〉 : ∃b, k. 〈k′, k〉 ∈ relative(xi)(b) ∧

〈k, k′′〉 ∈ despise(xi)(b)}}

Once more, we apply basic notational conventions of set theory.

{g2 : ∀a. a(g2) ∈ lawyer →

∃b, h, k. 〈g[i:=a(g
2)], k〉 ∈ relative(xi)(b) ∧

〈k, h〉 ∈ despise(xi)(b)}}
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The definition of relative admits only identical pairs of assignment functions, allowing

us to conclude that g[i:=a(g
2)] and k are identical.

{g2 : ∀a. a(g2) ∈ lawyer →

∃b, h. 〈b(g[i:=a(g
2)]2),xi(g

[i:=a(g2)]2)〉 ∈ relative ∧

〈g[i:=a(g
2)], h〉 ∈ despise(xi)(b)}

By the definition of xi, the above can be written as the below.

{g2 : ∀a. a(g2) ∈ lawyer →

∃b, h. 〈b(g[i:=a(g
2)]2), a(g2)〉 ∈ relative ∧

〈g[i:=a(g
2)], h〉 ∈ despise(xi)(b)}

As despise imposes non-dynamic behaviour, we conclude that h and g[i:=a(g
2)] are

identical.

{g2 : ∀a. a(g2) ∈ lawyer →

∃b. 〈b(g[i:=a(g
2)]2), a(g2)〉 ∈ relative ∧

〈b(g[i:=a(g
2)]2),xi(g

[i:=a(g2)]2)〉 ∈ despise}

Finally, we use the definition of xi to simplify the above description.

{g2 : ∀a. a(g2) ∈ lawyer →

∃b. 〈b(g[i:=a(g
2)]2), a(g2)〉 ∈ relative ∧

〈b(g[i:=a(g
2)]2), a(g2)〉 ∈ despise}

As a further confirmation that there is no dynamicity involved in the relation between

every lawyer and its bound pronoun, note that the above meaning representation is

identical (modulo the superscripts) to the representation of the non-dynamic meaning

derived previously.

3.2 Direct Scope

Using function composition, we are also able to render the direct scope reading of

example 4 without modifying the denotations assigned to our lexical items, simply by

locating the landing site of QR beneath the determiner some, as in figure 7.

1. [[1]]M = combine([[of]]M, [[ti]]M), as the type of [[of]]M is ee, and the type of [[ti]]M
is e, we apply the first argument to the second and obtain a value of type e:

[[of]]M([[ti]]M) = [[ti]]M = xi

2. [[2]]M = combine([[relative]]M, [[1]]M). As the type of [[relative]]M is eet, and the

type of [[1]]M is e, we again apply the first argument to the second and obtain a

value of type et:

[[relative]]M([[1]]M) = relative(xi)

3. [[3i]]M = combine([[every]]M, [[lawyer]]M) ◦ λi. As the type of [[every]]M is (et)(et)t,

and the type of [[lawyer]]M is et, we apply yet again the first argument to the second

and obtain a value of type (et)t, which composes with λi of type tet to yield a value

of type tt:

[[every]]M([[lawyer]]M) ◦ λi = every(lawyer) ◦ λi
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7

5

some 4

3i

every lawyer

2

relative 1

of ti

6

despises himi

Fig. 7 The LF-structure for the direct scope reading of example 4

4. [[4]]M = combine([[3i]]M, [[2]]M). As the type of [[3i]]M is tt, and the type of [[2]]M
is et, we compose the first argument with the second and obtain a value of type et:

(every(lawyer) ◦ λi) ◦ (relative(xi))

5. [[5]]M = combine([[some]]M, [[4]]M). As [[some]]M is of type (et)(et)t, and the type

of [[4]]M is et, we apply once more the first argument to the second and obtain a

value of type (et)t:

[[some]]M([[4]]M) = some((every(lawyer) ◦ λi) ◦ (relative(xi)))

6. [[6]]M = combine([[despises]]M, [[himi]]M), as the type of [[despises]]M is eet, and

the type of [[himi]]M is e, we apply the first argument to the second and obtain a

value of type et:

[[despises]]M([[himi]]M) = despise(xi)

7. [[7]]M = combine([[5]]M, [[6]]M). As the type of [[5]]M is (et)t, and the type of [[6]]M
is et, we apply one last time the first argument to the second and obtain a value

of type t:

some((every(lawyer) ◦ λi) ◦ (relative(xi))))(despise(xi))
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Cashing out the function names in terms of their definitions, we arrive at a more

transparent description of this set of assignments.

some((every(lawyer) ◦ λi) ◦ (relative(xi)))(despise(xi))

(def some)

{g : ∃b. g ∈ (every(lawyer) ◦ λi) ◦ (relative(xi))(b)

∧ g ∈ despise(xi)(b)}

(by composition)

{g : ∃b. g ∈ every(lawyer)(λi(relative(xi)(b)))

∧ g ∈ despise(xi)(b)}

(def every)

{g : ∃b. g ∈ {h : ∀a. h ∈ lawyer(a) →

h ∈ λi(relative(xi)(b))(a)}

∧ g ∈ despise(xi)(b)}

(set theory)

{g : ∃b. (∀a. g ∈ lawyer(a) → g ∈ λi(relative(xi)(b))(a))

∧ g ∈ despise(xi)(b)}

(def λi)

{g : ∃b. (∀a. g ∈ lawyer(a) →

g ∈ {h : h[i:=a(g)] ∈ (relative(xi)(b))})

∧ g ∈ despise(xi)(b)}

(set theory)

{g : ∃b. (∀a. g ∈ lawyer(a) →

g[i:=a(g)] ∈ (relative(xi)(b)))

∧g ∈ despise(xi)(b)}

As before, we can express this in more familiar terms: this reading is true with respect

to an assignment g just in case there is an individual b of whom it is true that he

despises gi, and that for every lawyer a, b is a relative of (g[i:=a])i = a. Note that the

QP every lawyer is not able to bind pronouns in the scope argument of the QP some

relative of every lawyer in this reading.

4 The Syntax-Semantics Interface

The ideas outlined above in section §3 show how complex quantifier formation can be

done using the functions λi and function composition. Of independent interest is that

these very same functions and operations allow us to treat syntactic indices on moving

expressions in the way syntacticians are used to, assigning a denotation directly to a

DP with index i ([[DP ]]M ◦ λi), instead of having to re-arrange structures so as to

introduce the indicies in separate syntactic positions (as done by Heim and Kratzer

(1998)). This is nice as it allows us to assign denotations directly to objects as they

are derived, and not merely to the output of the derivational process. In the remainder

of this paper I will show how to do this. I provide a grammar fragment written in the
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minimalist grammar formalism (Stabler, 1997), which is a formalization of some of the

main ideas from Chomsky’s (1995) Minimalist Program.

I begin with an introduction to the minimalist grammar formalism. For those read-

ers already familiar with the syntactic literature in the minimalist rubric, this will

provide a straightforward concretification of these ideas. Certain ‘hot topics’, such as

the best treatment of morpho-syntactic feature bundles, will be glossed over or ignored,

as they are irrelevant for the matter at hand, which is the integration of semantic in-

terpretation with the syntactic derivation. After the formalism has been introduced, I

present a rule-by-rule translation scheme, translating well-formed syntactic expressions

into (sequences of) the model theoretic objects familiar from section §2. Finally, I give

an interpreted (and infinite) fragment of English in terms of a minimalist grammar

lexicon. The fragment prohibits QR out from within a DP, thus deriving Larson’s Gen-

eralization, while at the same time permitting both direct and inverse scope readings,

in the manner indicated in §3.

4.1 Minimalist Grammars

Minimalist grammars make use of two syntactic structure building operations; binary

merge and unary move. Merge acts on its two arguments, viewed for the moment

as having tree structure, by combining them together into a single tree (figure 8),

Continuing for the moment to view expressions as tree-structured, the operation move

merge( Γ , ∆ ) = Γ ∆

Fig. 8 merge, schematically

rearranges the pieces of its single and syntactically complex argument in the manner

shown in figure 9. The generating functions merge and move are not defined on all

move(
Γ

α

) = αi Γ

ti

Fig. 9 move, schematically

objects in their domain. Whether a generating function is defined on a particular object

in its domain (a pair of expressions in the case of merge, or a single expression in the

case of move) is determined solely by the syntactic categories of these objects. In

minimalist grammars, syntactic categories take the form of feature bundles. Consider

the schematic instance of merge given in figure 8. In order for merge to apply to

arguments Γ and ∆, the heads of both expressions must have matching features in

their respective feature bundles. These features are eliminated (‘checked’, ‘deleted’) in

the derived structure which results from their merger. In the case of move, as depicted

in figure 9, the head of its argument Γ must have a feature matching a feature of
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the head of one of its subconstituents’ α. In the result, both features are eliminated.

Each feature type has an attractor and an attractee variant (i.e. each feature is either

positive or negative), and for two features to match, one must be positive and the

other negative. The kinds of features relevant for the merge and move operations are

standardly taken for convenience to be different. For merge, the attractee feature is a

simple categorial feature, written x. There are two kinds of attractor features, =x and

x=, depending on whether the selected expression is to be merged on the right (=x) or

on the left (x=). For the move operation, there is a single attractor feature, written

+y, and two attractee features, -y and ⊖y, depending on whether the movement is

overt (-y) or covert (⊖y). This is summarized in figure 10. Features are structured into

attractor attractee

merge =x, x= x

move +y -y, ⊖y

Fig. 10 Features

feature bundles, which are ordered, so that some features can be available for checking

only after others have been checked. I will represent feature bundles as lists, and the

currently accessible feature is at the beginning (leftmost) position of the list.

A lexical item is an atomic pairing of form and meaning, along with the syntactic

information necessary to specify the distribution of these elements in more complex

expressions. In the present context, I take lexical items to be pairings of abstract

lexemes such as dog, cat, bank1,. . . with feature bundles. I write lexical items using the

notation 〈α, δ〉, where α is a lexeme (such as under), and δ is a feature bundle (such as

‘=d P’). An example lexical item is shown in figure 11. Its feature bundle ‘=d P’ indicates

〈under, =d P〉

Fig. 11 A lexical entry for under

that it first selects a DP argument, and then can be selected for as a PP.

Complex expressions will be written using Stabler’s (1997) notation for the ‘bare

phrase structure’ trees of Chomsky (1995). These trees are essentially X-bar trees

without phrase and category information represented at internal nodes (see figure 12).

Instead, internal nodes are labeled with ‘arrows’ > and <, which point to the head of

X

X

X

>

<

X

Fig. 12 X-bar and Bare Phrase Structure Notation

their phrase. A tree of the form [< α β] indicates that the head is to be found in the

subtree α, and we say that α projects over β, while one of the form [> α β] that its

head is in β, and we say that β projects over α. Leaves are labeled with lexeme/feature
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pairs (and so a lexical item 〈α, δ〉 is a special case of a tree with only a single node).

The head of a tree t is the leaf one arrives at from the root by following the arrows at

the internal nodes. If t is a bare phrase structure tree with head h, then I will write

t[h] to indicate this. (This means we can write lexical items 〈α, δ〉 as 〈α, δ〉[〈α, δ〉].) The

merge operation is defined on a pair of trees t1, t2 if and only if the head of t1 has

a feature bundle which begins with either =x or x=, and the head of t2 has a feature

bundle beginning with the matching x feature. The bare phrase structure tree which

results from the merger of t1 and t2 has t1 projecting over t2, which is attached either

to the right of t1 (if the first feature of the head was =x) or to the left of t1 (if the first

feature of the head was x=). In either case, both selection features are checked in the

result.

merge(t1[〈α, =xδ〉], t2[〈β, xγ〉]) =
<

t1[〈α, δ〉] t2[〈β, γ〉]

merge(t1[〈α, x=δ〉], t2[〈β, xγ〉]) =
>

t2[〈β, γ〉] t1[〈α, δ〉]

If the selecting tree is both a lexical item and an affix (which I notate by means of a

hyphen preceding/following the lexeme in the case of a suffix/prefix), then phonological

head movement is triggered from the head of the selected tree to the head of the

selecting tree.

merge(〈-α, =xδ〉, t2[〈β, xγ〉]) =
<

〈β-α, δ〉 t2[〈ǫ, γ〉]

The operation move applies to a single tree t[〈α, +yδ] only if there is exactly one

leaf ℓ in t with matching first feature -y or ⊖y.12 This is a radical version of the

shortest move constraint (Chomsky, 1995), and will be called the SMC – it requires

that an expression move to the first possible landing site. If there is competition for

that landing site, the derivation crashes (because the losing expression will have to

make a longer movement than absolutely necessary). If it applies, move moves the

maximal projection of ℓ to a newly created specifier position in t (overtly, in the case

of -y, and covertly, in the case of ⊖y), and deletes both licensing features. To make

this precise, let t{t1 7→ t2} denote the result of replacing all subtrees t1 in t with t2,

for any tree t, and let ℓMt denote the maximal projection of ℓ in t, for any leaf ℓ.

move(t[〈α, +yδ]) =
<

t′[〈β, γ〉] t[〈α, δ〉]{t′ 7→ 〈ǫ, ǫ〉}

(where t′ = 〈β, -yγ〉Mt )

move(t[〈α, +yδ]) =
<

〈ǫ, γ〉 t[〈α, δ〉]{t′ 7→ t′[〈β, ǫ〉]}

(where t′ = 〈β,⊖yγ〉Mt )

12 Other constraints have been explored in Gärtner and Michaelis (2007).
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4.2 A Compositional Semantics for Minimalism

Here I present a rule-by-rule semantic interpretation scheme for minimalist grammars.

Instead of an interpretation function, we have an interpretation relation; multiple mean-

ings can be associated with a single syntactic object. The denotation of a syntactic

object t is a pair of a model-theoretic object and a quantifier store. A quantifier store

is a partial function from feature types to model-theoretic objects. The idea is that a

syntactic object t with a moving subexpression t′ = 〈β, -yγ〉Mt has a quantifier store Q
such that Q(y) is the stored meaning of t′. With ∅ I denote the empty quantifier store,

such that for all feature types f, ∅(f) is undefined. Given two quantifier stores Q1,Q2,

we form another using the ∨ operator, such that Q1 ∨Q2 is defined on an argument f

just in case either Q1 or Q2 is. If both Q1 and Q2 are defined on an argument f, then

Q1 takes precedence:

Q1 ∨ Q2(f) :=



Q1(f) if defined

Q2(f) otherwise

Let Q be a quantifier store, and f a feature type. Then Q/f is the quantifier store just

like Q except that it is undefined on f.13

For a lexical item ℓ, the denotation of ℓ is defined such that [[ℓ]]M = {〈I(ℓ), ∅〉},
where I(ℓ) is the interpretation of ℓ as specified in the lexicon.

An expression merge(t1, t2) will have 〈σ,Q〉 as one of its meanings just in case one

of the following is true:

1. σ = combine(σ1, σ2) and Q = Q1 ∨Q2, where 〈σi,Qi〉 ∈ [[ti]]M.

In this case, the meanings of t1 and t2 can combine in one of the ‘standard’ ways,

via function application or function composition.

2. σ = σ1(xk) and Q = Q1 ∨Q2 ∨ {〈f, σ2 ◦ λk〉}, where 〈σi,Qi〉 ∈ [[ti]]M such that

(a) σ1 ∈ Deφ and σ2 ∈ D(et)ψ

(b) t2 = 〈β, xfγ〉Mt2 such that f ∈ {-f,⊖f}
In this case, t2 denotes a quantifier σ2 which will take scope in a later position.

The denoted quantifier is put into the store under the identifier f, which is the

type of the next feature in the feature bundle of the head of t2. Note that this case

overlaps with the previous one if σ1 is of type et. Note also that some mechanism

needs to be invoked to ensure that the variable xk introduced in this step cannot

be bound by any other quantifier on the store. See Kobele (2006) for details.

An expression move(t1[〈α, +yδ〉]) will have 〈σ,Q〉 as one of its meanings just in case

one of the following is true:

1. σ = combine(σ1, (Q1 ∨ {〈y, idt〉})(y)), and Q = Q1/y, where [[t1]]M contains

〈σ1,Q1〉

In this case, the movement of the subexpression t2 corresponds to retrieval of

its meaning Q1(y) from the quantifier store. If Q1 is undefined on y, σ is either

idt ◦ σ1 = σ1 or idt(σ1) = σ1 (so long as σ1 has a type ending in t).

2. Q = (Q1/y) ∨ {〈f,Q1(y)〉}, where 〈σ,Q1〉 ∈ [[t1]]M, such that

(a) t2 = 〈β, yfγ〉Mt1 for y ∈ {-y,⊖y}, such that f ∈ {-f,⊖f}

13 A partial function f : A → B is viewed as a total function f : A → B ∪ {•}, where • is an
object not contained in B. ∅ is the function which maps all objects in its domain to •. Q/f is
the function that maps g to whatever Q maps it to, unless g = f, in which case it is mapped
to •. Thus, ∅/f = ∅ for all feature types f, and ∅ ∨ Q = Q for all quantifier stores Q.
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In this case, the meaning of t2 is not retrieved from the store. However, it needs to

be reassigned to the identifier f, so that it can be accessed again during the next

movement of t2.

Note that the semantic interpretation rules implement a reconstruction theory of

quantifier scope, as proposed by Hornstein (1998), according to which the positions in

which a quantified noun phrase can take scope are exactly those through which it has

moved.

4.3 An Interpreted Fragment

In accord with the main thrust of this paper, I will take the meaning of prepositions

to be invariant, and thus the inverse scope readings to be derived via (feature driven)

movement of the prepositional object. This particular movement step will be assumed

to be covert (another option would be to assume that the string identity of the di-

rect/inverse scope readings is the result of a slew of conspiratorial movements), and,

for purposes of uniformity, all movement driven by the need to check this feature (q)

will be assumed covert. I will furthermore assume that all DPs must receive case (k),

and that this comes about due to movement triggering feature checking, which, as it

can sometimes have visible effects (passive, raising), is assumed always overt. Thus,

DPs will uniformly have the features d (a categorial feature), -k (for overt case-driven

movement), and ⊖q (for covert ‘QR’). These assumptions force us to a ‘shell’ structure

(Larson, 1988) for PPs, as depicted in figure 13 - similar conclusions have been reached

elsewhere (Jackendoff, 1983; van Riemsdijk and Huijbregts, 2007; Koopman, 2000). A

pP

p0

P p

PP

DP P′

P

Fig. 13 The internal structure of PPs

P will then have the features =d (selecting a DP complement), +k (assigning case), P (a

categorial feature), and will be taken to denote a relation between individuals (of type

eet). The ‘little-p’ suffixal head will have the features =P (selecting a PP complement),

p (a categorial feature). I will take the denotation of this higher, functional head to be

conjunction (and) over PP denotations (one-place predicates). Note that under these

assumptions, the PP is of the right type for a stored quantifier to compose with. I as-

sume that QR may target the PP projection, and implement this idea by introducing a

third layer to the P-system between the PP and the pP, which serves to introduce a +q

feature. This suffixal head has the following features: =P (selecting a PP complement),

+q (triggering QR), and P (a categorial feature), and will be taken to be semantically

vacuous. Note that a PP of the form [PP DPi [P ′ Pj [PP DPi [P ′ tj ti]]]] will have
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the meaning (DP ◦ λi) ◦ P(xi). These assumptions are implemented by means of the

lexical items shown in figure 14. For a first example, consider a derivation of the pP

Phon Syn Sem

on =d +k P on ∈ Deet

-ǫ =P +q P idet

-ǫ =P p and ∈ D(et)(et)t

Fig. 14 Lexical Entries for the P System

on every monkey. In addition to the lexical items in figure 14, I will make use of the

expression every monkey, with features d -k ⊖q, which has as denotation the pair of

the generalized quantifier every(monkey) ∈ D(et)t and the empty quantifier store ∅.

For now I treat every monkey as a complex lexical item; we will see how to derive it

later on. We derive the pP on every monkey as follows. First, we merge on with every

monkey. This expression is interpreted as per the second case of the merge operation;

〈on(x1), ∅∨∅∨{〈k, every(monkey) ◦λ1〉}〉 = 〈on(x1), {〈k, every(monkey) ◦λ1〉}〉.

<

〈on, +k P〉 〈every monkey, -k ⊖q〉

In the next step we apply the move operation to the expression above. Semantically, we

apply the second case of the move interpretation rule: 〈on(x1), ({〈k, every(monkey)◦
λ1〉}/k)∨{〈q, {〈k, every(monkey)◦λ1〉}(k)〉}〉 = 〈on(x1), ∅∨{〈q, every(monkey)◦

λ1〉}〉 = 〈on(x1), {〈q, every(monkey) ◦ λ1〉}〉.

>

〈every monkey,⊖q〉 <

〈on, P〉 〈ǫ, ǫ〉

We now have a choice. We can either merge the second or the third expressions in

figure 14, as both have as first feature =P. Both result in useful expressions; the for-

mer allows building a pP in which the prepositional object has checked its ⊖q feature

(and thus cannot scope outside of the pP), the latter allows for QR of the preposi-

tional object out from inside the pP. We begin with the latter lexical item (〈-ǫ, =P p〉),

and then afterwards explore the other option. Because this expression is an affix, it

triggers head movement. We use the first merge interpretation rule, which results

in the following meaning: 〈combine(and, on(x1)), ∅ ∨ {〈q, every(monkey) ◦ λ1〉}〉 =

〈and(on(x1)), {〈q, every(monkey) ◦ λ1〉}〉.

<

〈on-ǫ, p〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉
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The syntactically relevant aspects of this expression are the following: its head has fea-

tures p, and it contains one moving expression, with features ⊖q. Semantically speaking,

it denotes a function of type (et)et, with a single expression (of type tt) in the quantifier

store.

Revisiting our decision above, we this time choose to instead merge the second

expression, 〈-ǫ, =P +q P〉. Because this expression is an affix, it triggers head move-

ment from the head of its complement (on). We again use the first merge interpre-

tation rule; resulting in 〈combine(idet,on(x1)), ∅ ∨ {〈q, every(monkey) ◦ λ1〉}〉 =

〈idet(on(x1)), {〈q, every(monkey) ◦ λ1〉}〉 = 〈on(x1), {〈q, every(monkey) ◦ λ1〉}〉.

<

〈on-ǫ, +q P〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

We apply again move to the above expression. As the movement is covert (every mon-

key has a ⊖q feature), the movement source position retains its phonological features.

Semantically, we apply the first case of the move interpretation rule. Setting Q =

{〈q, every(monkey)◦λ1〉}, this yields 〈combine(on(x1), (Q∨{〈q, idt〉})(q),Q/q〉 =

〈combine(on(x1), every(monkey) ◦ λ1), ∅〉 = 〈(every(monkey) ◦ λ1) ◦ on(x1), ∅〉.

>

〈ǫ, ǫ〉 <

〈on-ǫ, P〉 >

〈every monkey, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

The next step in the derivation is to merge the third expression in figure 14 with

the expression above. Again, as this lexical item is marked as a suffix, it triggers

head movement from its complement. Semantically, we apply the first case of the

merge interpretation rule. The resulting meaning is computed to be the following:

〈combine(and, (every(monkey) ◦ λ1) ◦ on(x1)), ∅ ∨ ∅〉 = 〈and((every(monkey) ◦

λ1) ◦ on(x1)), ∅〉.
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<

〈on-ǫ-ǫ, p〉 >

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 >

〈every monkey, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

The syntactically relevant aspects of this expression are the following: its head has

features p, and it contains no moving expressions. Semantically speaking, it denotes a

function of type (et)et, with an empty quantifier store.

I take PPs to be optional within the noun phrase. A functional projection of N (a

non-pronounced head) selects first for an NP (=n), and then for a pP (=p) also to the

right, to yield an N (n). This head is semantically vacuous.

A determiner selects an NP (=n) and returns a big-DP (D), of semantic type (et)t.

Note that a quantified stored meaning (DP ◦ λi) can be semantically composed with

something of this type. Accordingly, an opportunity for QR to apply at the DP level is

created, and implemented by means of an suffixal head with the following features: =D

(selecting a big-DP complement), +q (triggering QR), and D (a categorial feature), and

will be taken to be semantically vacuous. To represent the lexical generalization that

all DPs have the same feature bundle, I introduce a functional projection of D which

selects for a big-DP (=D), and returns a DP (d) which must move for reasons of case

(-k) and QR (-q). This functional projection is also taken to be semantically vacuous.

These assumptions are implemented via the lexical items in figure 15. These structural

Phon Syn Sem

monkey n monkey ∈ Det

ǫ =n =p n idet

every =n D every ∈ D(et)(et)t

-ǫ =D +q D id(et)t

ǫ =D d -k ⊖q id(et)t

Fig. 15 Lexical Entries for the D System

assumptions are depicted in figure 16. The dotted movement arrows represent covert

movements, of the PP-internal dP to its possible scope positions. As promised, I go

through the derivation of the dP every monkey using these lexical items. We begin by

merging the lexical items 〈monkey, n〉 and 〈every, =n D〉. Semantically, we employ the first

case of the merge interpretation rule. This gives us 〈combine(every,monkey), ∅ ∨
∅〉 = 〈every(monkey), ∅〉.

<

〈every, D〉 〈monkey, ǫ〉
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dP

d DP

D′

D DP

D nP

n′

n nP

pP

p PP

P′

P PP

dP P′

P

Fig. 16 The structure of DP and PP

The next and final step is to merge the last lexical item in figure 15 with the above

expression. We use again the first case of the merge interpretation rule, resulting in

〈combine(id(et)t, every(monkey)), ∅∨∅〉, which evaluates to 〈id(et)t(every(monkey)), ∅〉 =

〈every(monkey), ∅〉.

<

〈ǫ, d -k ⊖q〉 <

〈every, ǫ〉 〈monkey, ǫ〉

The syntactically relevant aspects of this expression are that its head has features d -k

⊖q, and that it has no moving sub-expressions. This allowed me to treat this expression

as a lexical item with the same properties earlier on.

Now, I exhibit derivations of the dP some tick on every monkey. There are three

such. The first two correspond to the direct and the indirect scope readings of this dP.

The direct reading will make use of the second, and the indirect reading will make use

of the first, of the pPs on every monkey derived previously. In addition to the lexical

items in figures 14 and 15, I will need entries for some and tick, which have the same
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features as every and monkey respectively:

〈some, =n D〉 〈tick, n〉

In this fragment, ‘PP adjunction into the noun phrase’ is dealt with by means of

the lexical item 〈ǫ, =n =p n〉, which selects to the right an NP, and then a pP, and

then projects as an NP. The merge operation applies to this lexical item and the NP

tick. Semantically, the first case of the merge interpretation rule applies, resulting in

〈combine(idet, tick), ∅ ∨ ∅〉 = 〈idet(tick), ∅〉 = 〈tick, ∅〉.

<

〈ǫ, =p n〉 〈tick, ǫ〉

The next step in the derivation of the dP some tick on every monkey is to merge the

above expression with a pP on every monkey. I begin with the direct scope reading, for

which I recycle the second pP derived above, and repeated below, which denotes the

singleton set whose only element is the pair 〈and((every(monkey)◦λ1)◦on(x1)), ∅〉.

<

〈on-ǫ-ǫ, p〉 >

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 >

〈every monkey, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

To reduce clutter, I will write this complex expression as though it were a lexical

item: 〈on every monkey, p〉. Syntactically speaking, this is inocuous; this lexical item

has the same relevant syntactic properties as the more complex expression it is being

substituted for: its head has features p, and it contains no moving expressions. The

merge operation applies to the above two expressions. Semantically speaking, the first

case of the merge interpretation rule applies, resulting in the pair (where I write EM

as an abbreviation for every(monkey)) 〈combine(tick, and((EM◦λ1)◦on(x1))), ∅∨
∅〉 = 〈and((EM ◦ λ1) ◦ on(x1))(tick), ∅〉.

<

<

〈ǫ, n〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

We next merge some with this expression. The first case of the merge interpretation

rule applies again, yielding 〈combine(some,and((EM ◦λ1) ◦on(x1))(tick)), ∅∨∅〉 =

〈some(and((EM ◦ λ1) ◦ on(x1))(tick)), ∅〉.
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<

〈some, D〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

We conclude the derivation of the dP by merging the above expression with the lexical

item 〈ǫ, =D d -k ⊖q〉. The denotation of the resulting expression is again determined by

the first case of the merge interpretation rule: 〈combine(id(et)t, some(and((EM ◦

λ1) ◦ on(x1))(tick))), ∅ ∨ ∅〉 = 〈id(et)t(some(and((EM ◦ λ1) ◦ on(x1))(tick))), ∅〉,
which is simply 〈some(and((EM ◦ λ1) ◦ on(x1))(tick)), ∅〉.

<

〈ǫ, d -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

The relevant syntactic properties of the above expression are that its head has features

d -k ⊖q, and that it has no moving subexpressions. Semantically, it is interpreted as

the generalized quantifier some(and((EM ◦ λ1) ◦ on(x1))(tick)) (which, intuitively,

is true of a property just in case there is a tick which is on every monkey and which

that property is true of), and has an empty quantifier store.

The inverse scope reading is obtained by merging the expressions below.

<

〈ǫ, =p n〉 〈tick, ǫ〉

<

〈on-ǫ, p〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

Doing this, we obtain the expression below, whose meaning is given by the first case

of the merge interpretation rule, abbreviating the quantifier store {〈q,EM ◦ λ1〉} as

Q: 〈combine(tick,and(on(x1))), ∅ ∨ Q〉 = 〈and(on(x1))(tick),Q〉.
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<

<

〈ǫ, n〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

We next merge some with the above expression. The meaning of the resulting expres-

sion we calculate by means of the first merge interpretation rule: 〈combine(some,and(on(x1))(tick)), ∅∨

Q〉 = 〈some(and(on(x1))(tick)),Q〉.

<

〈some, D〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

We have thus derived an expression (of type (et)t), with which the stored expression

(of type tt) can be combined. We implement QR in the present system by means of

the lexical item 〈-ǫ, =D +q D〉. The merge operation applies to this lexical item and the

above expression. Semantically, the first case of the merge interpretation rule applies

again, resulting in the following (where I write ST for some(and(on(x1))(tick))):

〈combine(id(et)t,ST), ∅ ∨ Q〉 = 〈id(et)t(ST),Q〉 = 〈ST,Q〉.
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<

〈some-ǫ, +q D〉 <

〈ǫ, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

The move operation applies to the above expression. The movement is covert, as de-

termined by the features of the moving expression every monkey. Semantically, the first

case of the move interpretation rule applies, retrieving the stored quantifier and ap-

plying it to the meaning of the rest of the expression. We calculate 〈combine(ST, (Q∨
{〈q, idt〉})(q)),Q/q〉 = 〈combine(ST,EM ◦ λ1), ∅〉 = 〈(EM ◦ λ1) ◦ ST, ∅〉.

>

〈ǫ, ǫ〉 <

〈some-ǫ, D〉 <

〈ǫ, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

Finally, we merge the lexical item 〈ǫ, =D d -k ⊖q〉 with the above. The first merge inter-

pretation rule applies, yielding 〈combine(id(et)t, (EM◦λ1)◦ST), ∅∨∅〉 = 〈id(et)t((EM◦

λ1) ◦ ST), ∅〉 = 〈(EM ◦ λ1) ◦ ST, ∅〉.
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<

〈ǫ, d -k ⊖q〉 >

〈ǫ, ǫ〉 <

〈some-ǫ, ǫ〉 <

〈ǫ, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

This dP is in all syntactically relevant respects indistinguishable from the previously

derived one; its head has features d -k ⊖q, and it has no moving subexpressions.

Semantically, it is type-theoretically indistinguishable as well, being of type (et)t, with

an empty quantifier store.

Note however, that by implementing DP-internal QR in terms of the lexical item

〈-ǫ, =D +q D〉, I have rendered it optional; no principles of the grammar formalism

presented here make merger of one or another lexical item obligatory. If, instead of

merging this lexical item during the previous derivation, we had skipped directly to

the merger of the lexical item 〈ǫ, =D d -k ⊖q〉, the following expression would have been

obtained, with meaning 〈ST, {〈q,EM〉}〉.

<

〈ǫ, d -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉
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Note that this dP is syntactically relevantly different from the other two: while its

head has the same features, it contains a moving expression with features ⊖q. This

expression is the kind of dP we would want if we wanted to allow for QR out from

inside of a dP. As our grammar fragment derives it (we just saw explicitly how to), we

need to ask whether this is desired, and, if not, how to block it from participating in

derivations of complete sentences.

There are two reasons to want to anathematize this dP. The first is (the weak

reason) that we already derive a dP which yields the inverse scope reading, rendering

this one superfluous. The second reason is that, due to the SMC constraint on the

move operation, the moving subpiece every monkey must move to its final landing

site prior to the point at which this dP checks its -k feature.14 This results in an

unattested meaning whenever the dP some tick on t1 is interpreted in any other than

its base position. Assuming a predicate meaning of die, this meaning is roughly that

there is a tick on some salient individual which has the property that if monkeys exist

then the tick died, and is renderable as the following:

some(and(on(x1))(tick)(λ2(every(monkey)(λ1(die(x2))))))

Furthermore, if one makes the common analytical assumption that the base position

of subjects is above that of objects, then the only object-wide scope reading of the

sentence two fleas met some tick on every monkey is the (unattested) one in which

some tick on t1 outscopes two fleas which outscopes every monkey.

Assuming that this dP should indeed be blocked from participating in successful

derivations of sentences, the question arises as to how this should be achieved. There are

two basic strategies. One is to simply add a statement to the grammar that recognizes

dP as a scope island. This could be done by adding a new variant of the attractee

version of selection features, *x, on which merge is only defined if its second argument

(the expression hosting this *x feature) contains no moving subexpressions. We then

would replace the lexical item 〈ǫ, =D d -k ⊖q〉 with the island-inducing 〈ǫ, =D *d -k ⊖q〉
The other strategy is more conservative. Instead of modifying the underlying formal

framework,15 I will simply adopt an analysis of the VP in which there is no possibility

for the inversely scoping DP to be moved before the case feature of the containing DP

is checked.

I take, following a.o. Koopman and Sportiche (1991), subjects as well as objects to

be base generated within the (extended projection of the) verb phrase. I take objects

to be directly selected by their verbs, which then have features =d V, and subjects

to be introduced in a higher verbal projection (‘little-v’), which selects a verb phrase

(=V), checks case of the object (+k), and selects for the subject (=d), thus implementing

Burzio’s generalization (Burzio, 1986): a verb which lacks an external argument fails to

assign accusative case. I assume an empty lexical item which allows QR at the vP level

for the object (+q). The subject’s -k and ⊖q features are then checked in an IP, headed

here by will (which I will assume to be semantically vacuous). This is shown in figure

17. I show now how to derive the sentence some tick on every monkey will bite him

from the lexical items presented thus far. We lack only a lexical entry for the pronoun,

14 The SMC could of course be given up, but using the SMC as a constraint on movement has
desirable computational effects (such as guaranteeing efficient recognizability – see (Harkema,
2001; Michaelis, 2001))
15 In the context of the SMC, the introduction of the *x feature type turns out to be simulable

by the introduction of (otherwise unmotivated) lexical items.
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Phon Syn Sem

bite =d V bite ∈ Deet

-ǫ =V +k d= v idet

-ǫ =v +q v idt

will =v +k +q i idt

Fig. 17 Lexical entries for the V and I Systems

him. I will simply postulate the existence of a family of pronouns, 〈himi, d -k ⊖q〉,
which are interpreted as variables with the same index: [[himi]]M = 〈xi, ∅〉, ignoring

both the case restrictions on pronouns, as well as the principles of the binding theory,

which constrain the distribution of indices on pronouns.16 The first three steps of the

derivation are common to both inverse and direct scope readings. First bite and himi

are merged. Semantically, we apply the first case of the merge interpretation rule.

This results in the pair 〈combine(bite,x1), ∅ ∨ ∅〉 = 〈bite(x1), ∅〉.

<

〈bite, V〉 〈him1, -k ⊖q〉

Next, we merge the active voice head 〈-ǫ, =V +k d= v〉 with the expression above. The first

case of the merge interpretation rule applies, yielding 〈combine(idet,bite(x1)), ∅ ∨

∅〉 = 〈idet(bite(x1)), ∅〉 = 〈bite(x1), ∅〉.

<

〈bite-ǫ, +k d= v〉 <

〈ǫ, ǫ〉 〈him1, -k ⊖q〉

Now, we apply the move operation to the above tree. We apply the second case of

the move interpretation rule, on which basis we obtain the pair 〈bite(x1), ∅/k ∨

{〈q, ∅(k)〉}〉 = 〈bite(x1), ∅〉.

>

〈him1,⊖q〉 <

〈bite-ǫ, d= v〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

There are now three possible next steps: we can merge either

1. the directly linked version of some tick on every monkey, with meaning DS =

16 While the distribution of indices on pronouns is a topic which seems to require more formal
power than what I have here (Bonato, 2006), the distribution of the forms ‘him’ and ‘he’ seem
straightforwardly modeled in terms of a more articulated feature structure, for example by
means of partially ordered features (so -k can be checked by either +acc or +nom), which seems
to be a formal variant of finite feature unification.
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2. the inversely linked version of some tick on every monkey, with meaning IS =

3. the anathema version of some tick on every monkey

I go through each in turn. The latter ‘anathema’ version will cause the derivation to

crash (as both him1 and every monkey have as first feature in their feature bundles

⊖q).

4.3.1 The Directly Linked Reading

We begin with the direct version of some tick on every monkey, repeated below, with

meaning 〈some(and((EM ◦ λ1) ◦ on(x1))(tick)), ∅〉.

<

〈ǫ, d -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

Merging the above dP with the derived vP bite him above yields the following seman-

tically ambiguous structure.

>

<

〈ǫ, -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

>

〈him1,⊖q〉 <

〈bite-ǫ, v〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

As the second argument to merge (the predicate) is of semantic type et, and the first is

of type (et)t, both cases (storage and function application) of the merge interpretation

rule apply. These give rise to the following two meanings, both of which this derivation
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is associated with.

(case one)

〈combine(some(and((EM ◦ λ1) ◦ on(x1))(tick)),bite(x1)), ∅ ∨ ∅〉

= 〈some(and((EM ◦ λ1) ◦ on(x1))(tick))(bite(x1)), ∅〉

(case two)

〈bite(x1)(x2), ∅ ∨ ∅ ∨ {〈k, some(and((EM ◦ λ1) ◦ on(x1))(tick)) ◦ λ2〉}〉

= 〈bite(x1)(x2), {〈k, some(and((EM ◦ λ1) ◦ on(x1))(tick)) ◦ λ2〉}〉

In the next derivational step, the optional ‘QR at the vP level’ lexical item 〈-ǫ, =v +q v〉
is merged with the above expression. As the meaning of this expression is simply the

identity function over meanings of type t, the denotation of the resulting expression

(via the first case of the merge interpretation rule) is unchanged from the above.

<

〈bite-ǫ-ǫ, +q v〉 >

<

〈ǫ, -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

>

〈him1,⊖q〉 <

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

Now the move operation applies to the above expression, covertly moving him to adjoin

to vP. The first case of the move interpretation rule applies, but, because there is no

expression on the stack indexed by the feature type q, this ends up simply applying

the identity function to the current meanings, and thus the denotation of the result

remains the same.
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>

〈ǫ, ǫ〉 <

〈bite-ǫ-ǫ, v〉 >

<

〈ǫ, -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

>

〈him1, ǫ〉 <

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

We next apply the merge operation to the pair consisting of the lexical item 〈will, =v +k +q i〉

and the expression pictured above. As I am ignoring all but the most basic of semantic

properties, will is taken here to be semantically vacuous, and thus the denotation of

the thus derived expression is identical to that of the expression depicted above.

<

〈will, +k +q i〉 >

〈ǫ, ǫ〉 <

〈bite-ǫ-ǫ, ǫ〉 >

<

〈ǫ, -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

>

〈him1, ǫ〉 <

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

The move operation applies to the above expression, checking both +k and -k features

of the affected heads, and moving the subject dP to the left of will. The second case

of the move interpretation rule applies, resulting (for one of the meanings of the

expression thus derived) in a reindexing of the stored semantic object. Writing Q for



38

{〈k, some(and((EM ◦λ1) ◦on(x1))(tick)) ◦λ2〉}, the two meanings of the expression

below are as follows.

〈some(and((EM ◦ λ1) ◦ on(x1))(tick))(bite(x1)), ∅/k ∨ {〈q, ∅(k)〉}〉

= 〈some(and((EM ◦ λ1) ◦ on(x1))(tick))(bite(x1)), ∅〉

〈bite(x1)(x2),Q/k ∨ {〈q,Q(k)}〉

= 〈bite(x1)(x2), {〈q, some(and((EM ◦ λ1) ◦ on(x1))(tick)) ◦ λ2〉}〉

>

<

〈ǫ,⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

<

〈will, +q i〉 >

〈ǫ, ǫ〉 <

〈bite-ǫ-ǫ, ǫ〉 >

〈ǫ, ǫ〉 >

〈him1, ǫ〉 <

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

The last step in the derivation of the direct scope reading of some tick on every monkey

will bite him is the covert movement of the subject dP triggered by the q feature type.

We can only apply the first case of the move interpretation rule, resulting in the deno-

tations shown below, writing again Q for {〈q, some(and((EM◦λ1)◦on(x1))(tick))◦
λ2〉}:

〈combine(some(and((EM ◦ λ1) ◦ on(x1))(tick))(bite(x1)),

(∅ ∨ {〈q, idt〉})(q)), ∅/q〉

= 〈idt(some(and((EM ◦ λ1) ◦ on(x1))(tick))(bite(x1))), ∅〉

= 〈some(and((EM ◦ λ1) ◦ on(x1))(tick))(bite(x1)), ∅〉

〈combine(bite(x1)(x2), (Q ∨ {〈q, idt〉})(q)),Q/q〉

= 〈combine(bite(x1)(x2),

{〈q, some(and((EM ◦ λ1) ◦ on(x1))(tick)) ◦ λ2〉}), ∅〉

= 〈(some(and((EM ◦ λ1) ◦ on(x1))(tick)) ◦ λ2)(bite(x1)(x2)), ∅〉

= 〈some(and((EM ◦ λ1) ◦ on(x1))(tick))(λ2(bite(x1)(x2))), ∅〉
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As the reader can verify for himself, interpreted statically, both meanings above are

identical.17 The meanings differ when interpreted dynamically, as in the second case,

but not in the first, the scope argument of some is not static (in the depiction of this

meaning above, it is prefixed by a λ2 function, which introduces dynamicity).18

>

〈ǫ, ǫ〉 >

<

〈ǫ, ǫ〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

〈on every monkey, ǫ〉

<

〈will, i〉 >

〈ǫ, ǫ〉 <

〈bite-ǫ-ǫ, ǫ〉 >

〈ǫ, ǫ〉 >

〈him1, ǫ〉 <

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

4.3.2 The Inversely Linked Reading

Modulo the identity of the dP, the inversely linked reading is derived in the same

manner as the direct one. We begin with the vP bite him (repeated below), with

meaning 〈bite(x1), ∅〉.

17 Although I am using turns of phrase such as ‘interpreted statically’, it is worth bearing in
mind that the things written above denote model theoretic objects, and not expressions in a
language which can be interpreted as model theoretic objects. In other words, the decision to
‘interpret statically’ is made before we derive a single expression, i.e. lexically.
18 What this means in empirical terms is that in the present system only quantifiers which are

first stored and then retrieved are able to dynamically bind pronouns. As our current analysis
of inverse scope (following Hornstein (1998)) is that it arises when the subject is interpreted
in its base position (and the object in its highest (q) position), we predict that in discourses
a narrow (with respect to the object) scoping subject in a previous sentence cannot bind
pronouns in other sentences. To evaluate this prediction, we need to find a pair of generalized
quantifiers which are permeable to dynamic effects, but for which the inverse reading does not
entail the direct reading. Thus, the first sentence in 1 gives us a pair of dynamic generalized
quantifiers as desired, but the inverse scope reading entails the direct scope reading. And while
the first sentence in 2 has a pair of generalized quantifiers for which the inverse scope reading
does not entail the direct reading, the object dP is not permeable to dynamicity.

1. Some boy kissed some girl. He was on his bicycle.
2. Some boy kissed every girl. He was on his bicycle.
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>

〈him1,⊖q〉 <

〈bite-ǫ, d= v〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

Merging with the above vP the inversely linked dP some tick on every monkey with

meaning 〈(EM ◦ λ1) ◦ ST, ∅〉 nets the expression below.

>

<

〈ǫ, -k ⊖q〉 >

〈ǫ, ǫ〉 <

〈some-ǫ, ǫ〉 <

〈ǫ, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

>

〈him1,⊖q〉 <

〈bite-ǫ, v〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

In this merge step, as in the corresponding one for the direct sentence, both case

of the merge interpretation rule apply; being of type (et)t, the subject dP can be

semantically combined with the denotation of the predicate resulting in the following

meaning:

〈combine(EM ◦ λ1) ◦ ST,bite(x1)), ∅ ∨ ∅〉

= 〈((EM ◦ λ1) ◦ ST)(bite(x1)), ∅〉

= 〈EM(λ1(ST(bite(x1)))), ∅〉

The subject dP meaning can also be put into storage under the index k.

〈bite(x1)(x2), ∅ ∨ ∅ ∨ {〈k, ((EM ◦ λ1) ◦ ST) ◦ λ2〉}〉

= 〈bite(x1)(x2), {〈k, ((EM ◦ λ1) ◦ ST) ◦ λ2〉}〉
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As before, the expression above denotes both these meanings.

The remainder of the derivation of this reading of this sentence sentence is identical

to that of the direct one. We next merge the ‘QR at the vP level’ lexical item, which

triggers head movement of the verb; the meaning of the resulting expression is identical

to that of the one above.

<

〈bite-ǫ-ǫ, +q v〉 >

<

〈ǫ, -k ⊖q〉 >

〈ǫ, ǫ〉 <

〈some-ǫ, ǫ〉 <

〈ǫ, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

>

〈him1,⊖q〉 <

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

Next, the move function applies to the above. The subtree 〈him1,⊖q〉 is moved covertly

to the specifier of the head of the above expression, leaving its phonetic features in situ.

The first case of the move interpretation rule applies, but, as there was nothing in the

store indexed to the q feature, this results in no semantic contribution of the movement

step; the meaning of the below expression is identical to that of the above.
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>

〈ǫ, ǫ〉 <

〈bite-ǫ-ǫ, v〉 >

<

〈ǫ, -k ⊖q〉 >

〈ǫ, ǫ〉 <

〈some-ǫ, ǫ〉 <

〈ǫ, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

>

〈him1, ǫ〉 <

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

Next, the above expression is merged together with the lexical item will. As the se-

mantic contribution of tense is being ignored in the present discussion, the meaning of

the thus derived expression is identical to that of the previous one.
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<

〈will, +k +q i〉 >

〈ǫ, ǫ〉 <

〈bite-ǫ-ǫ, ǫ〉 >

<

〈ǫ, -k ⊖q〉 >

〈ǫ, ǫ〉 <

〈some-ǫ, ǫ〉 <

〈ǫ, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

>

〈him1, ǫ〉 <

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

The next two derivational steps move the subject dP some tick on every monkey to

successively higher specifier positions of will ; once overtly to check the k feature type,

and once covertly to check the final ⊖q of the subject. The semantic effect of this first,

k-driven movement, is to reassign the index under which the semantic object assigned

to the feature type k is stored to the feature type q. For one of the meanings denoted

by this expression, this results in no change.

〈EM(λ1(ST(bite(x1)))), ∅/k ∨ {〈q, ∅(k)〉}〉

= 〈EM(λ1(ST(bite(x1)))), ∅〉

For the other of this expression’s two meanings, this serves to synchronize the stored

element with the syntactic phrase to which it corresponds.

〈bite(x1)(x2),

{〈k, ((EM ◦ λ1) ◦ ST) ◦ λ2〉}/k ∨ {〈q, {〈k, ((EM ◦ λ1) ◦ ST) ◦ λ2〉}(k)〉}〉

= 〈bite(x1)(x2), {〈q, ((EM ◦ λ1) ◦ ST) ◦ λ2〉}〉

As before, the expression above denotes both these meanings. The semantic impact of

the final move step is to retrieve the meaning stored under the index q, reintegrating
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it into the meaning of the expression as a whole. For the first meaning denoted by this

expression, this results in no change.

〈combine(EM(λ1(ST(bite(x1)))), (∅ ∨ {〈q, idt〉})(q)), ∅/q〉

= 〈combine(EM(λ1(ST(bite(x1)))),idt), ∅〉

= 〈idt(EM(λ1(ST(bite(x1))))), ∅〉

= 〈EM(λ1(ST(bite(x1)))), ∅〉

The second meaning of this expression is however significantly altered by this interpre-

tation rule.

〈combine(bite(x1)(x2), ({〈q, ((EM ◦ λ1) ◦ ST) ◦ λ2〉} ∨ {〈q, idt〉})(q)),

{〈q, ((EM ◦ λ1) ◦ ST) ◦ λ2〉}/q〉

= 〈combine(bite(x1)(x2), ((EM ◦ λ1) ◦ ST) ◦ λ2), ∅〉

= 〈(((EM ◦ λ1) ◦ ST) ◦ λ2)(bite(x1)(x2)), ∅〉

= 〈EM(λ1(ST(λ2(bite(x1)(x2))))), ∅〉

4.3.3 The Anathema Reading

Finally, we come to the question of how to block the grammatical ‘over-generation’ of

dPs, such as the below, in which the dP every monkey has not checked its ⊖q feature

dP-internally.

<

〈ǫ, d -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

I mentioned the two basic strategies previously: either to stop the unwanted structures

from being generated at all (for example, by designating dP as an island for movement),

or to allow them to be generated, but to block them from being part of a successful

derivation. The analysis of the verbal domain in this fragment ends up causing any

attempted derivation of some tick on every monkey will bite him involving this dP to

crash.

As before, we merge this dP with the vP bite him, obtaining the (well-formed)

expression below.



45

>

<

〈ǫ, -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

>

〈him1,⊖q〉 <

〈bite-ǫ, v〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

Next, we merge the vP-level QR lexical item, triggering head-movement of the verb.

<

〈bite-ǫ-ǫ, +q v〉 >

<

〈ǫ, -k ⊖q〉 <

〈some, ǫ〉 <

<

〈ǫ, ǫ〉 〈tick, ǫ〉

<

〈on-ǫ, ǫ〉 >

〈every monkey,⊖q〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

>

〈him1,⊖q〉 <

〈ǫ, ǫ〉 <

〈ǫ, ǫ〉 〈ǫ, ǫ〉

Now, however, we are stuck: the move operation is defined only on trees which have

exactly one element whose first feature matches the +y feature of the root, but here we

have two: every monkey, and him. Thus, although this expression is well-formed, it is

a grammatical ‘dead-end’.
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5 Conclusion

We have seen that making assignment functions first class denizens of our models allows

for straightforward implementation of obvious ideas about the interpretation of inverse

linking constructions. In so doing, we have seen that not even inverse linking poses a

challenge to the direct interpretation of minimalist grammars. It might be claimed that

the incorporation of assignment functions into our models is too high a price to pay,

as it makes the denotations of things ugly. Important to keep in mind when evaluating

this claim is that the assignment functions were there all along, like dirt swept under

the rug. By making explicit the role assignments are playing in our semantics, not only

are we able to see simple solutions to otherwise perplexing problems (cf. the discussion

on pages 230–235 in Heim and Kratzer (1998)), but more importantly, we are able

to eliminate spurious justifications for the very serious claim that the derivation tree

does not provide the right kind of structure on which to base compositional semantic

interpretation (i.e. the claim that we need LF.)
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