An introduction to mildly context sensitive grammar formalisms

Gerhard Jäger & Jens Michaelis
University of Potsdam

{jaeger,michael}@ling.uni-potsdam.de
Rewriting systems

\[G = \langle N, T, S, R \rangle \]

- \(N \) ... nonterminal symbols
- \(T \) ... terminal symbols
- \(S \) ... start symbol (\(S \in N \))
- \(R \) ... rules

Rules take the form

\[\alpha \rightarrow \beta \]

where \(\alpha, \beta \) are strings over \(T \cup N \) and \(\beta \) is non-empty.
The Chomsky Hierarchy

\[L(G) = \{w \in T^* | S \rightarrow^* w \} \]

“\(\rightarrow^*\)” is the reflexive and transitive closure of \(\rightarrow\).

- Every recursively enumerable language can be described by a rewriting system.
- (Unrestricted) Rewriting systems are equivalent to Turing machines in expressive power.
- “(Chomsky) Type-0 grammars” = unrestricted rewriting systems
- membership in a type-0 language is **undecidable**
The Chomsky Hierarchy

Context-sensitive grammars

- subclass of type-0 grammars
- restriction: *all rules take the form*

 \[\alpha \rightarrow \beta \]

 where

 \[\text{length}(\alpha) \leq \text{length}(\beta) \]

- consequence: membership in a context-sensitive language (CSL) is decidable
Context-sensitive grammars

- alternative (original) formulation:

 All rules take the form

 \[\alpha A \beta \rightarrow \alpha \gamma \beta \]

 where \(A \in N, \alpha, \beta, \gamma \in (T \cup N)^*, \gamma \neq \varepsilon \)

- The two formulations define the same class of languages.
- Not all decidable languages are context-sensitive (but most are).
- Membership problem for CSLs is PSPACE-complete.
- CSGs are expressively equivalent to linear bounded automata.
Context-free grammars

- subclass of context-sensitive grammars
- restriction:

 \[A \rightarrow \alpha \]

 where

 \[A \in N, \alpha \in (T \cup N)^+ \]

- Membership in context-free language (CFL) is decidable in \textbf{polynomial time} \((O(n^3))\).
- CFG are expressively equivalent ot \textbf{pushdown automata}.
Regular grammars

- subclass of context-free grammars
- restriction:

 rules take the form

 \[A \rightarrow B \]

 or

 \[A \rightarrow Ba \]

 where \(A, B \in N \) and \(a \in T \)

- Membership is decidable in linear time.
- RGs are expressively equivalent to finite state automata.
The Chomsky Hierarchy

\[
\{a^n : n \text{ is Gödel number of a Peano-Theorem}\}
\]

- **Type-0**
 - **Context-sensitive**
 - **Regular**
 - \(a^nb^n\)
 - \(a^{2^n}\)
 - **Context-free**
 - \(a^nb^m\)
Where are natural languages located?

- hotly contested issue over several decades
- typical argument:
 - find a recursive construction C in a natural language L
 - argue that the competence of speakers admits unlimited recursion (while the performance certainly poses an upper limit)
 - reduce C to a formal language L' of known complexity via homomorphisms
 - make a case that L must be at least as complex as L'
 - extrapolate to all human languages: if there is one language which is at least as complex as ..., then the human language faculty must allow it in general
Are natural languages regular?

Chomsky 1957: Natural languages are not regular. Structure of his argument:

- Consider 3 hypothetical languages:
 1. \(ab, aabb, aaabbb\) \((a^n b^n)\)
 2. \(aa, bb, abba, baab, aaaa, bbbb, aabbaa, abbbba, \ldots\) (palindromic)
 3. \(aa, bb, abab, baba, aaaa, bbbb, aabaab, abbabb, aababaabab\) (copy language)

- can easily be shown that these are not regular languages

- also languages like 1, 2 and 3 except allowing for embeddings of \(a\)s and \(b\)s are not regular

- natural language is infinitely recursive
The following constructions can be arbitrarily embedded into each other:

- If S_1, then S_2.
- Either S_3 or S_4.
- The man that said that S_5 is arriving today.

Therefore—Chomsky says—English cannot be regular.

“It is clear, then that in English we can find a sequence $a + S_1 + b$, where there is a dependency between a and b, and we can select as S_1 another sequence $c + S_2 + d$, where there is a dependency between c and d... etc. A set of sentences that is constructed in this way...will have all of the mirror image properties of [2] which exclude [2] from the set of finite languages.”

(Chomsky 1957)
Closure properties of regular languages

Theorem 1: If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is also a regular language.

Theorem 2: The class of regular languages is closed under homomorphism.

Theorem 3: The class of regular languages is closed under inversion.
homomorphism:

neither $\mapsto a$

nor $\mapsto b$

everything else $\mapsto \varepsilon$

If it neither rains nor snows, then if it rains then it snows.

$\mapsto ab$
maps English not to the mirror language, but to the language L_1:

\[
\begin{align*}
S & \rightarrow aST \\
T & \rightarrow bST \\
T & \rightarrow bS \\
S & \rightarrow \varepsilon
\end{align*}
\]
The pumping lemma for regular languages

Let \(L \) be a regular language. Then there is a constant \(n \) such that if \(z \) is any string in \(L \), and \(\text{length}(z) \geq n \), we may write \(z = uvw \) in such a way that \(\text{length}(uv) \leq n \), \(v \neq \varepsilon \), and for all \(i \geq 0 \), \(uv^i w \in L \).
Suppose English is regular.

Due to closure under homomorphism, \(L_1 \) is regular.

- \(a^*b^* \) is a regular language. (exercise: why?)

- Thus \(a^*b^* \cap L_1 \) is a regular language

\[
L_2 = L_1 \cap a^*b^* = \{a^n b^m | n \leq m \}
\]

due to Theorem 1
Due to closure under inversion and homomorphism,

\[L_3 = \{ a^n b^m | n \geq m \} \]

is also regular.

Hence \(L_4 \) is regular:

\[L_4 = L_2 \cap L_3 = a^n b^n \]

\(L_4 \) cannot be regular due to the pumping lemma.

Therefore English cannot be a regular language.
Dissenting view:

- all arguments to this effect use center-embedding
- humans are extremely bad at processing center-embedding
- notion of competence that ignores this is dubious
- natural languages are regular after all
Exercises:

Show that Chomsky correctly classified $a^n b^n$, the mirror language, and the copy language as non-regular!
Are natural languages context-free?

- history of the problem:
 - Chomsky 1957: conjecture that natural languages are not cf
 - sixties, seventies: many attempts to prove this conjecture
 - Pullum and Gazdar 1982:
 - all these attempts have failed
 - for all we know, natural languages (conceived as string sets) might be context-free
 - Huybregts 1984, Shieber 1985: proof that Swiss German is not context-free
 - Culy 1985: proof that Bambara is not context-free
Nested and crossing dependencies

- CFLs—unlike regular languages—can have unbounded dependencies
- however, these dependencies can only be **nested**, not **crossing**
- example:
 - $a^n b^n$ has unlimited nested dependencies \rightarrow context-free
 - the copy language has unlimited crossing dependencies \rightarrow not context-free
Important properties of CFLs

Theorem 4: CFLs are closed under intersection with regular languages: If L_1 is a regular language and L_2 is context-free, then $L_1 \cap L_2$ is also context-free.
Important properties of CFLs

Theorem 5: The class of context-free languages is closed under homomorphism.
The pumping lemma for context-free languages

Let L be any CFL. Then there is a constant n, depending only on L, such that if z is in L and $\text{length}(z) \geq n$, then we may write $z = uvwxy$ such that

1. $\text{length}(vx) \geq 1$
2. $\text{length}(vwx) \leq n$
3. for all $i \geq 0 : uv^iwx^iy$ is in L.
The *respectively* argument

- Bar-Hillel and Shamir (1960):
 - English contains copy-language
 - cannot be context-free
- Consider the sentence

 John, Mary, David, ... are a widower, a widow, a widower, ..., respectively.
- Claim: the sentence is only grammatical under the condition that if the nth name is male (female) then the nth phrase after the copula is a *widower* (a *widow*)
suppose the claim is true

intersect English with regular language

\[L_1 = (Paul|Paula)^+ \text{ are}(a \text{ widower}|a \text{ widow})^+ \text{ respectively} \]

\[\text{English} \cap L_1 = L_2 \]

homomorphism \(L_2 \sim L_3 \):

\[
\begin{align*}
\text{John, David, Paul, ...} & \mapsto a \\
\text{Mary, Paula, Betty, ...} & \mapsto b \\
\text{a widower} & \mapsto a \\
\text{a widow} & \mapsto b \\
\text{are, respectively} & \mapsto \varepsilon
\end{align*}
\]
result: copy language L_3

$$\{ww|w \in (a|b)^+\}$$

copy language is not cf due to pumping lemma (exercise: why is this so?)

hence L_2 is not cf

hence English is not cf
Counterargument

- crossing dependencies triggered by *respectively* are semantic rather than syntactic
- compare above example to

(Here are John, Mary and David.) They are a widower, a widow and a widower, respectively.
Cross-serial dependencies in Dutch

- Huybregt (1976):
 - Dutch has copy-language like structures
 - thus Dutch is not context-free

(1) dat Jan Marie Pieter Arabisch laat zien schrijven
 THAT JAN MARIE PIETER ARABIC LET SEE WRITE
 ‘that Jan let Marie see Pieter write Arabic’
Counterargument

- crossing dependencies only concern argument linking, i.e. semantics
- Dutch has no case distinctions
- as far as plain string are concerned, the relevant fragment of Dutch has the structure

\[NP^n V^n \]

which is context-free