Timing analysis with the help of SPPAS and TGA tools Jue Yu

School of Foreign Languages, Tongji University, Shanghai, China

The problem

***Speech timing:**

- Domains speech production, speech synthesis
- Studies show that an approach based on large corpora is necessary
- Production and analysis of large numbers of annotations
- Manual annotation and analysis of speech data is timeconsuming: many hours required

***Objective:**

Illustration of comprehensive analysis with TGA:

Summary table of global and accumulated TG duration functions (some do make sense...) Time Group criterion: <u>pausegroup</u>, local threshold: <u>10</u>, Min valid TG length: <u>2</u> Only inter-pause intervals measured; pauses not included

Overall duration:	31104	Overall raw longer, ms	: 5831	Overall raw shorter,	ns: 5764
Overall min:	47.00	Overall max:	315.00	Overall range:	268.00
Valid Time Groups:	19	Overall rate/sec:	5.85		
Components: global	tendenci	25			
Overall mean:	170.90	Overall median:	173.00	Overall SD:	52.03
Overall npvi:	40.00	Overall intercept:	171.07	Overall slope:	0.00
ean of means:	176.27	∎edian of means:	168.57	SD of means:	18.71
ean of medians:	174.24	Median of medians:	172.00	SD of medians:	19.51
∎ean of SDs:	48.89	∎edian of SDs:	47.75	SD of SDs:	15.88
ean of nPVIs:	40.00	Median of mnPVIs:	33.00	SD of nPVIs:	14.59
lean of intercepts:	167.28	∎edian of intercepts:	162.68	SD of intercepts:	27.21
ean of slopes:	6.82	Median of slopes:	0.66	SD of slopes:	20.65
Components: correla	tions				
nean::TGdur:	-0.478	median::TGdur:	-0.235	SD::TGdur:	-0.048
nPVI::TGdur:	0.031	slope::TGdur:	-0. 405	intercept::TGdur:	-0.051
nPVI::mean:	-0.506	slope::mean:	0.223	intercept::mean:	0.510
nPVI::median:	-0.733	slope::median:	-0.246	intercept::median:	0.721
nPVI::SD:	0.900	slope::SD:	0.577	intercept::SD:	-0.683

 Efficient annotation and analysis of Hangzhou and Beijing Mandarin with web-based computational tools

Methods

***Efficient syllable annotation: SPPAS**

- 'SPeech Phonetization Alignment and Syllabification', designed at Laboratorire Parole et Langage, Aix-en-Provence (Brigitte Bigi)
- a) to automatically produce annotations which include utterance, word, syllable and phoneme segmentations and their transcriptions from recorded speech
- b) phonetician-friendly interface, high rate of correct alignment, generation of files in the TextGrid format
- Illustration of SPPAS output for the Mandarin Chinese utterance "lu4 shang5 lai2 le5 ge4 zou3 daor4 de5" ("on the street came a traveller") in Pinyin orthography:

Case study of Hangzhou & Beijing Mandarin

***Objective:**

 Comparison of timing patterns in Hangzhou-accented and standard Beijing Mandarin

* Method:

- use of SPPAS and TGA
- comparison of manual and automatic procedures

***Results:**

Local iambic (decelerating) patterns in inter-pausal groups

***Timing analysis and visualisation: TGA**

- 'Time Group Analyser' (TGA, Dafydd Gibbon), designed at Bielefeld University
- automatic parsing of syllable sequences into Time Groups (TG), e.g. inter-pausal groups, with extensive statistical analyses and visualisations of speech timing in the annotation data
- Illustration of local timing analysis:

Number of Time Groups: 20 ; Total duration (without pauses): 31104 ms

Agreement of time-tree constituents with words
 Comparison of Hangzhou and Beijing speakers:

- correlations of the Time Tree units with multisyllable words in speakers: similar until 50ms threshold
- speakers HZ-2 & HZ-3 seem to have better Mandarin-like timing (this also matches proficiency evaluation results)
 above 50ms, correlation of Time Tree units with

Image: Second second

multisyllable words increases rapidly to a speakerdependent threshold

not significant: speech rate difference (F(1,5)=0.04, p>0.05), proficiency (R2=0.028, p>0.05), syllable nPVIs (F(1,5)=0.444, p>0.05)

Conclusion

 Use of web-based syllable processing tools enables rapid, comprehensive comparison of speech varieties

erinyu@126.com

TRASP 2013

Aix-en-Provence