Prosody: Thinking Outside the Box

Lecture 2 The Phonetics of Prosody 1: Rhythm

Dafydd Gibbon

Bielefeld University

Fudan University Summer School: Contemporary Phonetics and Phonology Shanghai, 7–13 July 2018

Fudan Summer School 7-13 Jul

Photo credit: Belinda

One way to look at time: epochal time domains

ALL AND ADDRESS OF TAXABLE PARTY OF TAXA

Typological Language Change

Social Language Change

Language Acquisition minutes, ..., years

> Utterance milliseconds. minutes

Elidan Summer School 7-13 Jun

D. Gibbon, Pressure Thinking Canade the Bas

24

Overview

- 1. What is rhythm?
- 2. Aspects of timing:
 - the TGA (Time Group Analysis) online software
 - TGA application: timing and tone in Tem (ISO 639-3 kfg, Togo)
- 3. Isochrony models of rhythm:
 - a one-dimensional approach
 - a two-dimensional approach
 - a three-dimensional approach
 - BUT MAYBE THERE IS MORE THAN ONE RHYTHM!
- 4. The phonological basis of rhythm: 'abstract oscillation'
 - finite transition networks with iteration
 - the concept of recursion
- 5. Towards an understanding of physical rhythm in speech
 - amplitude modulation
 - the envelope spectrum (next lecture!)

What is Rhythm?

Timing and Rhythm

What is rhythm?

- 1. One property of rhythm:
 - 'isochrony' (equal timing)
 - for example of morae, syllables, feet, ...
 - or of larger units, in rhetorical speech or poetry
- 2. Another property of rhythm:
 - structural similarity of isochronous units
- 3. Yet another property of rhythm:
 - alternation (in structurally similar isochronous units)
- 4. A more general definition:

RHYTHM IS OSCILLATION

Some rhythms are easy to identify physically. Speech rhythm is not. It is an *emergent* property of many top-down and bottom-up factors.

Fudan Summer School 7-13 Jul

Aspects of Timing - TGA

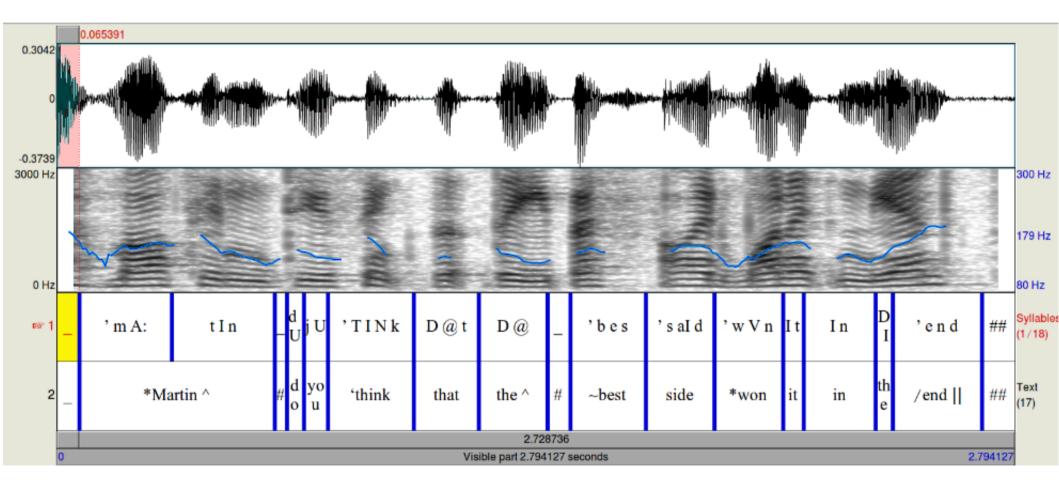
First Things First: Practical Prosody

Question: What can I do with my Praat annotations?

Answer: An annotation is a relation between labels and timestamps. So:

- Extract and display labels.
- Extract and display time-stamps.
- Subtract neighbouring time-stamps to find durations.
- Calculate descriptive statistics over durations:
 - Average duration, average speech rate (for a particular tier)
 - Standard deviation, normalised Pairwise Variability
- Create visualisations:
 - Rhythm graphs
 - Scatter plots
 - Time trees

And use the Time Group Analyzer (TGA)



Time Group Analyzer (TGA)

First Things First: Practical Prosody

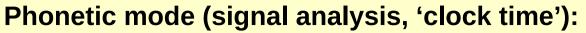
So here is a Praat visual model with

- waveform
- F0 trace
- 8 annotation tiers

First Things First: Practical Prosody

The Praat annotation file is just text.

It represents a small database of annotations for one recording.


This is what the Praat annotation file looks like:

- 1. <u>each interval tier</u> is a sequence of intervals
- 2.<u>each interval</u> represents an <u>event</u> consisting of
 - a <u>label</u>
 - a pair of <u>time-</u> <u>stamps</u>

Fudan Summer School 7-13 Jul

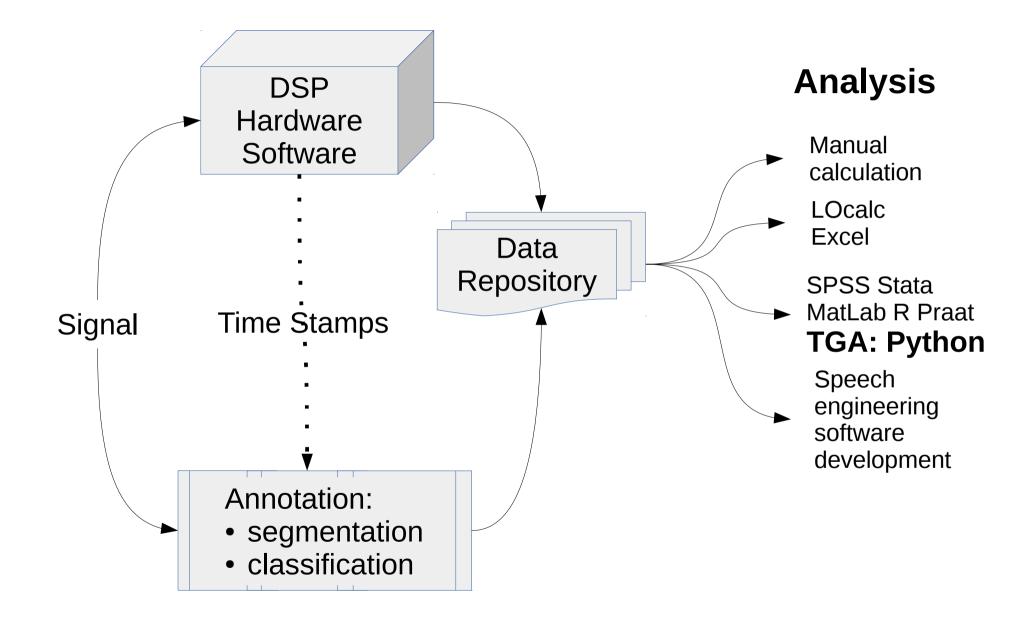
File type = "ooTextFile"	intervals [4]:
Object class = "TextGrid"	xmin = 0.6353912275449667
	xmax = 0.6703912275449664
xmin = 0	text = "_"
xmax = 2.7941273844617305	intervals [5]:
tiers? <exists></exists>	xmin = 0.6703912275449664
size = 2	xmax = 0.7203912275449667
item []:	text = "d U"
item [1]:	intervals [6]:
class = "IntervalTier"	xmin = 0.7203912275449667
name = "Syllables"	xmax = 0.7903912275449665
xmin = 0	text = "j U"
xmax = 2.7941273844617305	intervals [7]:
intervals: size = 18	xmin = 0.7903912275449665
intervals [1]:	xmax = 1.0403912275449665
xmin = 0	text = "" T I N k"
xmax = 0.0653912275449664	intervals [8]:
text = " "	xmin = 1.0403912275449665
intervals [2]:	xmax = 1.2303912275449664
xmin = 0.0653912275449664	text = "D @ t"
xmax = 0.3353912275449664	intervals [9]:
text = "" m A:"	xmin = 1.2303912275449664
intervals [3]:	xmax = 1.4303912275449662
xmin = 0.3353912275449664	text = "D @"
xmax = 0.6353912275449667	
text = "t n"	(etc.)
· · · · · · · · · · · · · · · · · · ·	

Inductive analysis: from pitch patterns to categories

- Domains:
 - time functions (articulatory, acoustic, auditory)
- Analysis:
 - time domain
 - frequency domain (spectrum)

Tonal tokenisation (e.g. Tobi, 'categorial time', 'rubber time'):BoundaryTonePitchAccentTonePitchAccentTone*BoundaryToneBoundary tone:{ H%, %L% }PitchAccentTone:{ H*, L*, L*H, LH*, H*L, HL*, H*H }

Categorial interpretation (prosodic phonologies):


- Configurative: Initial/final boundary; ip, IP boundary
- Contrastive: accents
- Culminative: accent placement

Contour parsing (Tonetics):

prehead head body nucleus tail

thinking

1D, 2D and 3D Annotation Mining (Labels + Time-stamps)

Online Application: TGA (Time Group Analyser)

Time Group Analyzer (TGA) Online TextGrid Processor: Overview

1. TGA specifications

- Requirements, design, implementation
- 2. Design and Implementation
- 3. TGA Input, screenshot
- 4. TGA Output (CGI response)
 - text extraction
 - syllable duration statistics reports
 - Duration Bars & Duration Difference Tokens
 - DDTs, DBs and Time Tree bracketing, DDT n-gram count
 - induced Time Tree
 - Wagner Quadrant Plot
- 5. Published applications: example
- 6. Planned: NLP applications, box plots

Time Group Analyzer (TGA)

Time Group Analyzer (TGA) specifications

- 1. Requirements specification
- 2. Design and implementation
- 3. Input parameters
- 4. Outputs
- 5. Applications

Requirements specification (1)

- 1. Annotation mining: the extraction of information from annotations, e.g. Praat TextGrids.
- 2. In speech technology, annotated data are generally mined (semi-)automatically and efficiently.
- 3. In phonetics, manual or semi-manual mining is common but inefficient:
 - copying Praat information into a spreadsheet
 - defining functions sich as nPVI in the spreadsheet
 - calculating and generating graphics
- 4. In phonetics and linguistics there is a need for faster and more consistent mining of larger numbers of annotated (e.g. TextGrid) files, without necessarily working with programming experts

Requirements specification (1)

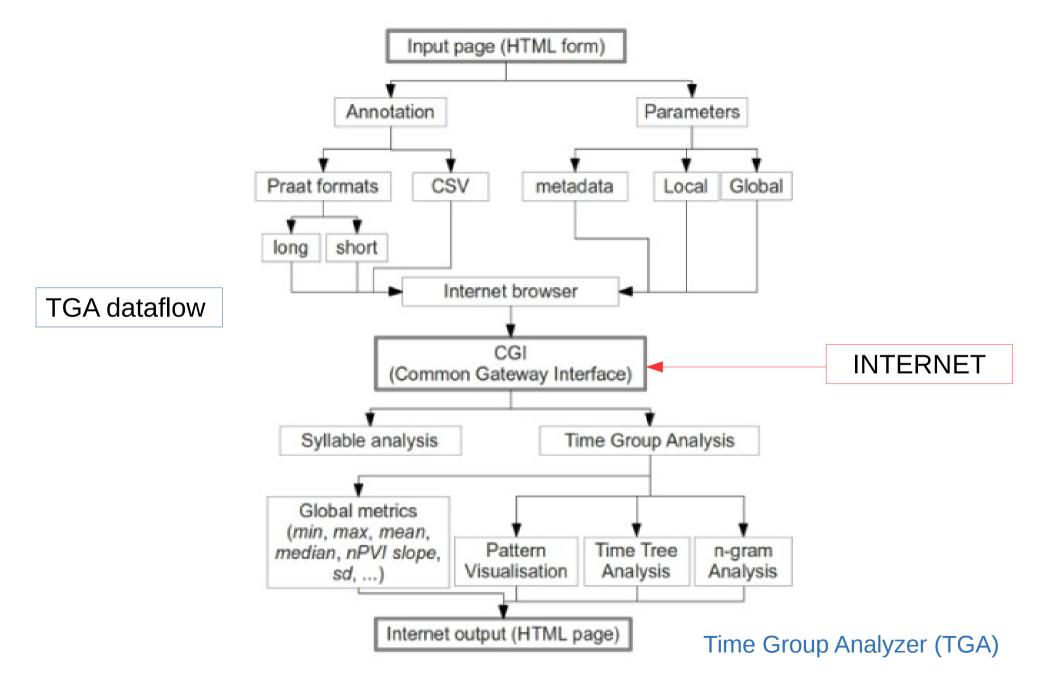
The Time Group Analyzer (TGA) is designed to support phoneticians by automatizing a wide range of relevant computational tasks:

- duration extraction from TextGrids to table format,
- basic descriptive statistics, slope, nPVI ...,
- novel visualisations of timing structure:
 - global acceleration/deceleration patterns
 - local acceleration/deceleration (trochaic/iambic, shorter/longer) Duration Difference Tokens (DDTs) and DDT sequences, for study of rhythm
 - Time Trees, for comparison of timing with grammatical structure
 - Wagner Quadrant plots
 - Box plots of unit durations

Time Group Analyzer (TGA)

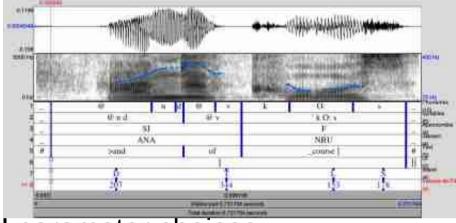
Design and Implementation (1)

- 1. Software Development Environment:
 - HTML, CGI, Python 2.7


2. Input:

- Praat TextGrid (long or short),
- CSV (Character Separated Values, with various separator chars).

3. Output:


- HTML with text, syllable propertues, interpausal group statistics, Difference Tokens, Time Trees
- CSV for further processing.

Design and Implementation (2)

Fudan Summer School 7-13 Jul

TGA Input Parameters

1. Input form

- Input control parameter choices
- Time Group duration difference parameters
- TextGrid (long or short) or CSV file
- Output parameter choices
 - Statistics
 - Global (for entire file)
 - Local (for each time group)
 - Visualisations
 - Local (Duration Bars, Duration Difference Tokens)
 - Global (Wagner Quadrant Plots; sequence plots)

Time Group Analyzer (TGA)

TGA Input Form: screenshot

TextGrid input	control parameters (long or short T	extGrid format a	eccepted; only li	nterval Tiers, obviously)
Tier name:	Syllables	(max len	gth 20; not needed	l for CSV forma	ts)
Pause symbol:		(max len	gth 20; also neede	d for CSV form	ats)
	More than one pause symbol permitted; separate with spaces. Delete any of the examples which might occur as an annotation label. If your pause symbol is not in the examples given, enter it				
lime Group du	ration difference par	ameters:			
IG criterion:	pausegroup d d d	eceleration (incr	easing) accele	ration (decreasin	g)
Local hreshold:	10 ms (try v Used for local pattern		common syllable l TimeTree parsing		300 ms)
Local pattern symbols:	Longer: (1 c	char) Shorter:	(1 char) Sa	me: = (1 o	char)
Fime Tree	(quasi-)iambic T	Tgt 🔍 (quasi-)trochaic TTlt	show all TT	
riterion:	(quasi-)iambic T	Tgte 🔍 (quasi-,)trochaic TTlte	do not show TT	
Global TG	90 120	ms (mini	mal duration diffe	rence)	
threshold	Ranges > 30 are not				
range:	Global threshold is ig Experiment with value				
					essary values are switched to ensure
Min TG length		lly >2, as 'minir	nal rhythm')		
Fime Group ou	tput control paramet	ters:			
	Print text?	🖲 no 🔘 yes	n-grams?	⊛ no © yes	All outputs: O no ® yes
	TG element info?	⊛ no © yes	Time Trees?	® no ⊙ yes	
	TG detail?	🖲 no 🔘 yes	CSV output?	® no ⊙ yes	Time Group Anal

Fudan Summer School 7-13 Jul

TGA Input Form: parameter choices

1. Input control parameter choices

- Textgrid tier name selection (e.g. 'Syllables', 'syllable', 'syll' the tier can also be other items than syllables)
- Pause symbol selection (e.g. '_', 'p', 'sil') for segmenting into interpausal groups
- 2. Time Group duration difference parameters:
 - Local TG threshold: sets the minimal difference (in ms) which counts as a difference; any difference below this threshold counts as equal duration
 - Local TG pattern symbols: select the symbols used for longer, shorter and equal duration difference relations ('duration difference n-grams')
 - Global threshold range: for time group induction
 - Minimum TG length in syllables (e.g. 2, 3)

Time Group Analyzer (TGA)

TGA Input Form: parameter choices

- 1. Output control parameter choices
 - Text extracted from labels
 - General information about TG elements
 - descriptive statistics, nPVI, regression slope and intercept
 - Details about individual interpausal groups:
 - descriptive statistics
 - visualisation:
 - Duration Difference Token (DDT) sequences
 - Time Trees (TT) types
 - DDT n-grams
 - TT types
 - Conversion of input TextGrid to Character Separated Value (CSV) format

TGA Output (CGI response)

1. Text extraction

2. Descriptive statistics

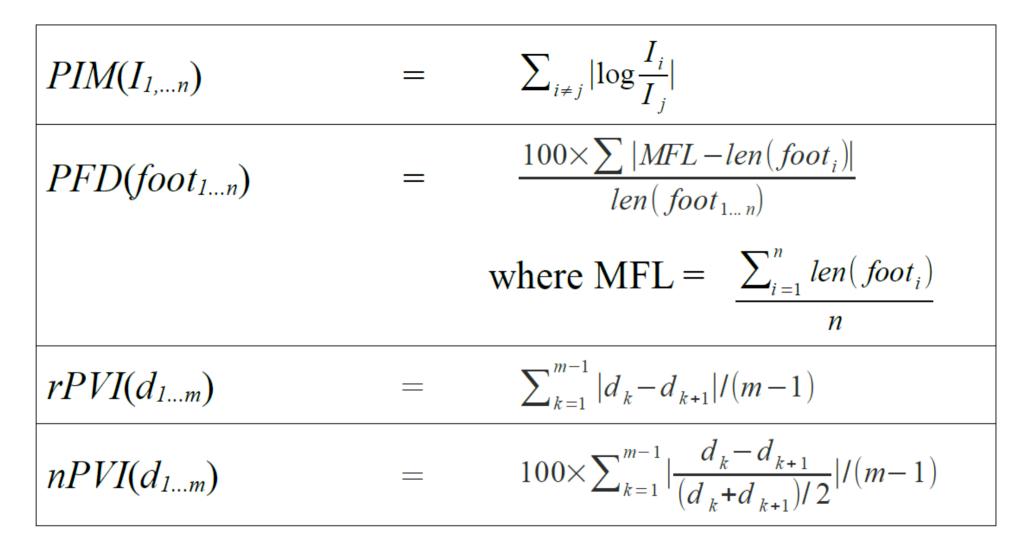
- tables
- graphs
 - box plots
 - time plots of durations and duration differences
- 3. Time Group visualisations
 - DDT n-grams (local threshold dependent)
 - Time Trees (four types; local threshold dependent)
- 4. TextGrid input format reformatted as tables in Character Separated Value (CSV) format

Time Group Analyzer (TGA)

TGA Output: text extraction (English)

_ 'mO: 'nju:z @ 'baUt D@ 're vr@n 'sVn 'mjVN 'mu:n _ 'faUn d@ r@v D@ ,ju: nI fI 'keI Sn 'tS3:tS _ 'hu:z 'kV r@nt II In 'dZeII _ f@ 't{ks I 'veI Zn _

TGA extract from first annotation file in Aix-MARSEC corpus of BBC radio English (SAMPA keyboard friendly encoding of the IPA)


Time Group Analyzer (TGA)

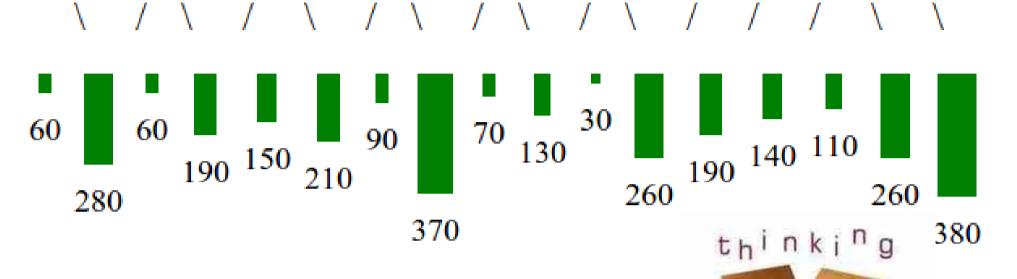
Fudan Summer School 7-13 Jul

Duration properties (syllables)					
Attributes	Values	Attributes	Values		
<i>n</i> :	31	intercept:	192.177		
min:	50	slope:	0.242		
max:	500	std:	102.258		
mean:	195.81	nPVI:	54		
median:	160.0	rPVI:	97		
total:	6070	100*rPVI/med:	61		
range:	450	nPVI*med/100:	86		

Time Group Analyzer (TGA)

TGA Output: four dispersion measures

Time Group Analyzer (TGA)


Fudan Summer School 7-13 Jul

TGA Output: overall statistics summary (English)

Summary table of global and accumulated TG duration functions (some do make sense) Time Group criterion: <u>pausegroup</u> , local threshold: <u>10</u> , Min valid TG length: <u>2</u> Only inter-pause intervals measured; pauses not included									
Overall duration:	6070	Overall raw longer, ms:	1510	Overall raw shorter, ms:	1410				
Overall min:	50.00	Overall max:	500.00	Overall range:	450.00				
Valid Time Groups:	4	Overall rate/sec:	5.11						
Components: global	tendencie	5							
Overall mean:	195.81	Overall median:	160.00	Overall SD:	102.20				
Overall npvi:	54.00	Overall intercept:	192.18	Overall slope:	0.24				
Mean of means:	196.00	Median of means:	194.50	SD of means:	23.89				
Mean of medians:	187.50	Median of medians:	170.00	SD of medians:	43.95				
Mean of SDs:	93.25	Median of SDs:	89.12	SD of SDs:	18.9				
Mean of nPVIs:	58.00	Median of mnPVIs:	52.00	SD of nPVIs:	5.59				
Mean of intercepts:	154.94	Median of intercepts:	137.78	SD of intercepts:	56.84				
Mean of slopes:	7.52	Median of slopes:	9.90	SD of slopes:	14.97				
Components: correl	ations								
mean::TGdur:	0.384	median::TGdur:	-0.296	SD::TGdur:	0.935				
nPVI::TGdur:	-0.623	slope::TGdur:	0.875	intercept::TGdur:	-0.762				
nPVI::mean:	0.408	slope::mean:	-0.020	intercept::mean:	0.288				
nPVI::median:	0.931	slope::median:	-0.710	intercept::median:	0.832				
nPVI::SD:	-0.317	slope::SD:	0.666	intercept::SD:	-0.483				

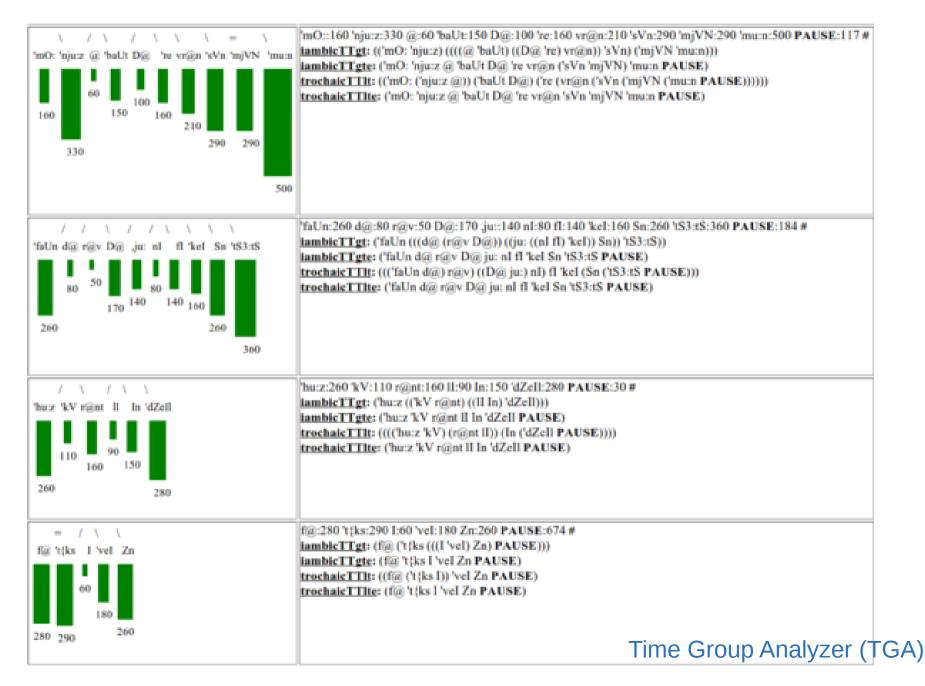
Fudan Summer School 7-13 Jul

TGA Output: Duration Difference Tokens and Duration Bars (English)

Duration Difference Tokens:

- / long-short
- \ short-long
- = equal

Identification depends on local duration difference threshold.


Duration Bars:

Linear relations to durations for both width and length. Eyeball impression of rhythm, rate change, final lengthening...

Inspect the relation between DDTs and DBs directly.Time Group Analyzer (TGA)

Fudan Summer School 7-13 Jul

TGA Output: DDTs, DBs, Time Tree bracketing (English)

Fudan Summer School 7-13 Jul

TGA Output: DDT n-gram count (English)

Difference digram ranks and counts (n=270): 1.[22%(60):/] 2.[20%(55):/] 3.[11%(31):/] 4.[9% (24):/}] 5.[6%(17):{/] 6.[6%(15)://] 7.[5%(14):{/] 8.[4% (11):=/] 9.[4%(11):/=] 10.[3%(9):/=] 11.[3%(8):=/] 12. [2%(6):/}] 13.[1%(4):=}] 14.[1%(3):{=] 15.[1%(2):==]}

Summary:

42% alternations in the top 2 places

Next step:

Check DDT trigrams etc. for /V, V\, /\\, V/ etc.

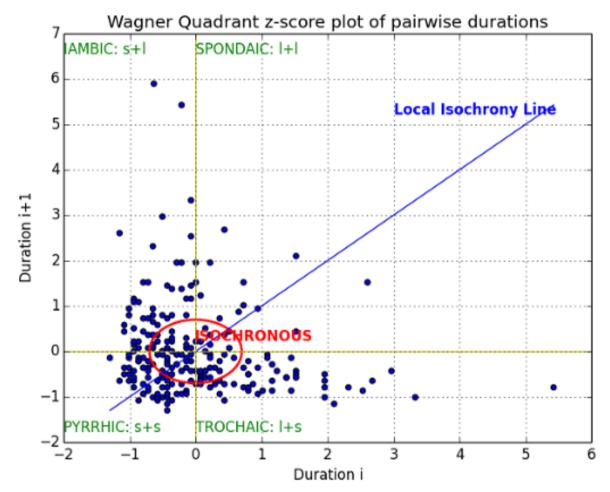
Note:

DDT *n*-gram identification is determined by the *local threshold*

Time Group Analyzer (TGA)

Fudan Summer School 7-13 Jul

TGA Output: induced Time Tree (English)

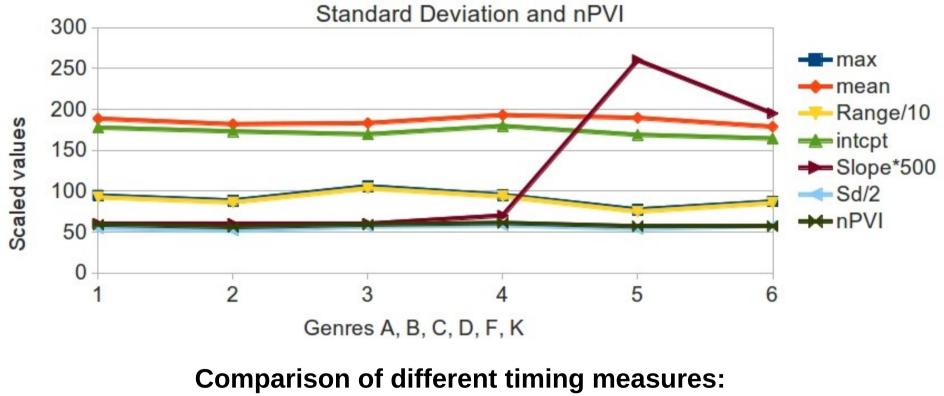

Time tree:

Induced from digram duration relations Larger groupings inherit longest duration from constituent Parenthesis notation Python automatic prettyprint

Time Group Analyzer (TGA)

Fudan Summer School 7-13 Jul

TGA Output: Wagner Quadrant Plot (English)



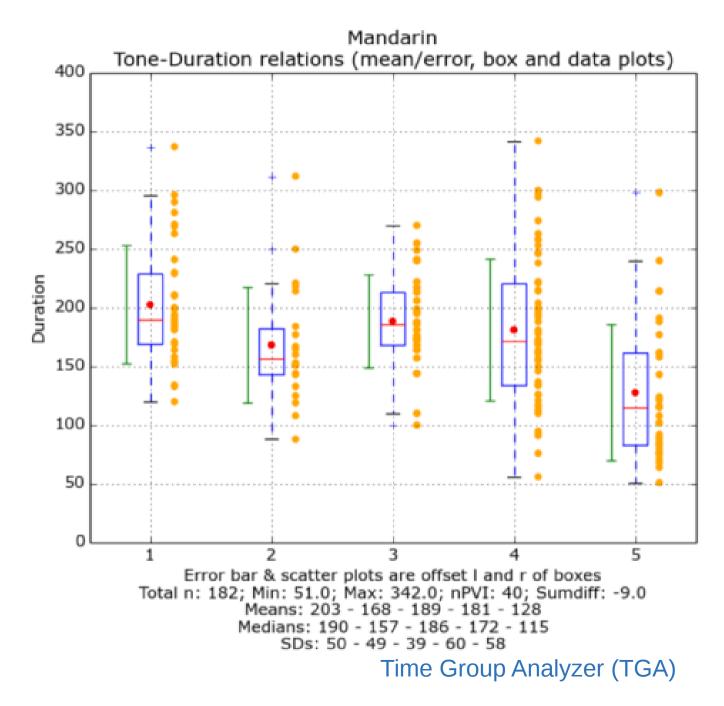
Scatter plot:

z-scores of durations duration relations d_i and d_{i-1} on X and Y axes syllable timing: typically random distribution toot/stress timing: typically 'L-shaped', as in this example (Aix-MARSEC genre G)

Fudan Summer School 7-13 Jul

Published further analyses: example

nPVI, SD, etc.


NLP applications, box plots

Corpus linguistic applications

Word frequency lists Concordance

For example, automatic generation of syllabic timetone relations in Mandarin:

Time Group Analyzer: Summary

- 1. TGA specifications
 - Requirements, design, implementation
- 2. Design and Implementation
- 3. TGA Input, screenshot
- 4. TGA Output (CGI response)
 - text extraction
 - syllable duration statistics reports
 - Duration Bars & Duration Difference Tokens
 - DDTs, DBs and Time Tree bracketing, DDT n-gram count
 - induced Time Tree
 - Wagner Quadrant Plot
- 5. Pubished applications: example
- 6. Planned: NLP applications, box plots

Fudan Summer School 7-13 Jul

Time Group Analyzer: Bibliography

- Yu, Jue and Gibbon, Dafydd, Criteria for database and tool design for speech timing analysis with special reference to Mandarin, Oriental COCOSDA 2012 (cf. IEEEexplore Conf ID 21048)
- Gibbon, Dafydd, TGA: a web tool for Time Group Analysis, TRASP 2013 (poster)
- Yu, Jue, Timing analysis with the help of SPPAS and TGA tools, TRASP 2013 (poster)
- Klessa, Katarzyna and Dafydd Gibbon, Annotation Pro+TGA: automation of speech timing analysis, LREC 2013.
- Yu, Jue, Dafydd Gibbon and Katarzyna Klessa, Computational annotationmining of syllable durations in speech varieties, Speech Prosody 7, 2014.
- Yu, Jue and Dafydd Gibbon, How natural is Chinese L2 English? ICPhS, Glasgow, 2015.
- Yu, Jue and Dafydd Gibbon, Time Group Types in Mandarin Syllable Annotations, O-COCOSDA, Shanghai, 2015.
- Gibbon, Dafydd and Jue Yu. Time Group Analyzer: Methodology And Implementation. The Phonetician 111/112:9-34, 2015.

Isochrony Models of Rhythm: 1D, 2D and 3D

Annotation Mining:

Exploiting Labels and their Time-stamps

1D, 2D and 3D Annotation Mining (Labels + Time-stamps)

Annotation with labels and time stamps: overview

1. Heuristic annotation based approaches

- rhythm: the truth but not the whole truth
- 2. Annotation: event property + time stamps
- 3. Annotation mining: information extraction from annotations

4. Rhythm definition:

similarity + isochrony + alternation

- **5.1D dispersion measures: duration variability**
- 6. 2D area measures: duration quadrant
- 7.3D hierarchical analysis:
 - Time Tree Analysis induction of duration graphs

One-dimensional Annotation Mining

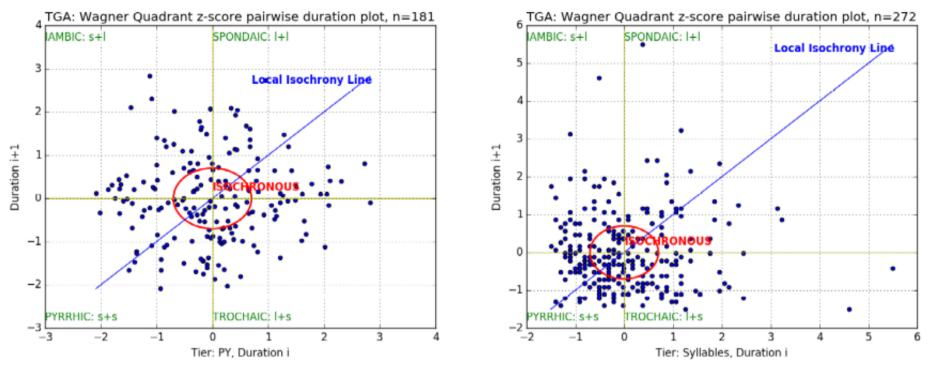
One-dimensional Annotation Mining (Labels + Time-stamps)

$Variance(x_{1n}) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}$	
$PIM(x_{1n}) = \sum_{i \neq j} \left \log \frac{I_i}{I_j} \right $	where $I_{i,j}$ are intervals in a given sequence
$\frac{\sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n} d_{i}}$	where <i>d</i> is typically the duration of a <i>foot</i>
$nPVI(d_{1n}) = \frac{\sum_{k=1}^{k-1} \frac{ d_k - d_{k+1} }{(d_k + d_{k+1})/2}}{n-1} \times 100$	<i>d</i> refers to duration of vocalic segment, syllable or foot, typically

1-dimensional time-stamp duration analysis:

- scales of averages of

sequences (Var, PIM, PFD) – no compensation from tempo change pairs (PVI) – abstracts away from tempo change


- no account of rhythm as an alternation relation
- only binary relations

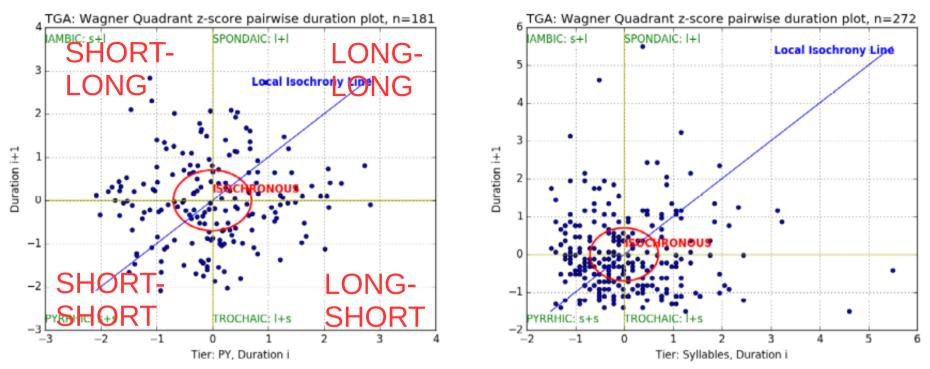
SP9, Poznań, 13 June 2018

D. Gibbon, The Future of Prosody - It's about Time

Two-dimensional Annotation Mining

Two-dimensional Annotation Mining (Labels + Time-stamps)

Wagner, Petra (2007). "Visualizing levels of rhythmic organisation." *Proc. International Congress of Phonetic Sciences, Saarbrücken 2007*, pp. 1113-1116, 2007


2-dimensional time-stamp duration analysis:

- classification of alternation relations in z-scored scatter plot
 - means: zero
 - x-axis: durations; y-axis: duration of next neighbour
 - long: positive, longer than average; short: negative, shorter than average

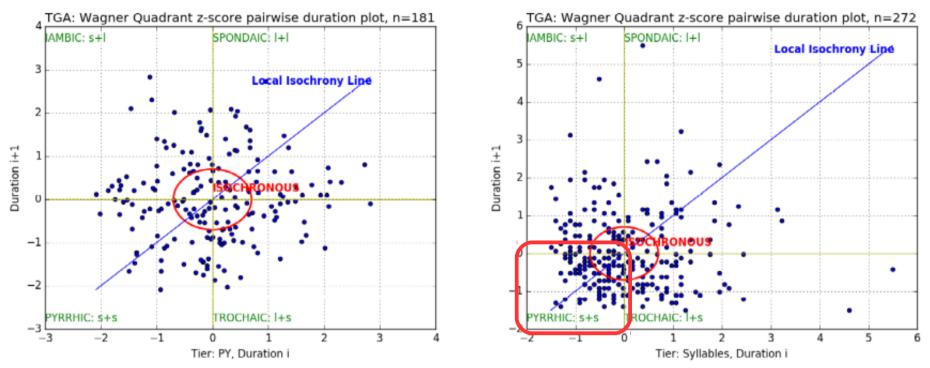
Mandarin: means scattered relatively evenly around the centre

English: highly skewed: |short+short| >> |long+long| majority or relations: <u>non-binary</u>

Two-dimensional Annotation Mining (Labels + Time-stamps)

Wagner, Petra (2007). "Visualizing levels of rhythmic organisation." Proc. International Congress of Phonetic Sciences, Saarbrücken 2007, pp. 1113-1116, 2007

2-dimensional time-stamp duration analysis:


- classification of alternation relations in z-scored scatter plot
 - means: zero
 - x-axis: durations; y-axis: duration of next neighbour
 - long: positive, longer than average; short: negative, shorter than average

Mandarin: means scattered relatively evenly around the centre

English: highly skewed: |short+short| >> |long+long|

majority or relations: non-binary

One-dimensional Annotation Mining (Labels + Time-stamps)

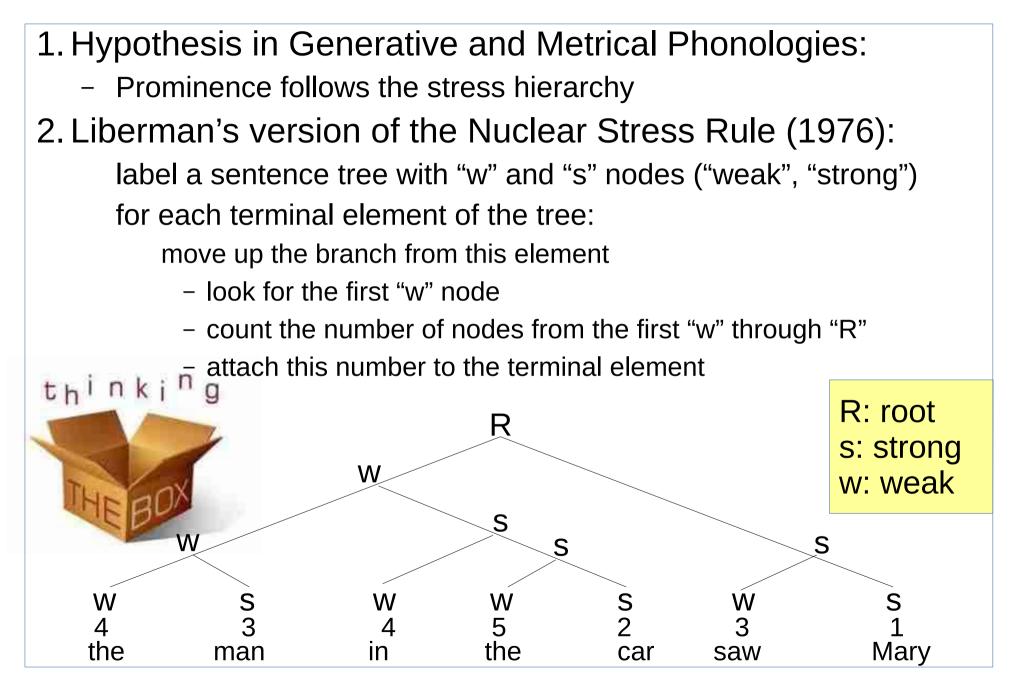
Wagner, Petra (2007). "Visualizing levels of rhythmic organisation." Proc. International Congress of Phonetic Sciences, Saarbrücken 2007, pp. 1113-1116, 2007

2-dimensional time-stamp duration analysis:

- classification of alternation relations in z-scored scatter plot

- means: zero
- x-axis: durations; y-axis: duration of next neighbour
- long: positive, longer than average; short: negative, shorter than average

Mandarin: means scattered relatively evenly around the centre

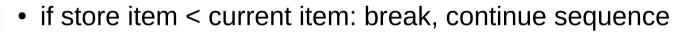

English: highly skewed: |short+short| >> |long+long| majority or relations: <u>non-binary</u>

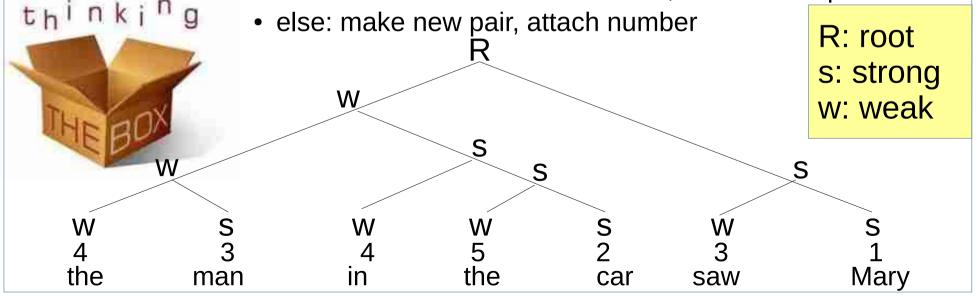
SP9, Poznań, 13 June 2018

Three-dimensional Annotation Mining

(more like 2.5 dimensional)

3-Dimensional Models of Timing Relations: Gibbon Time Trees




Fudan Summer School 7-13 Jul

3-Dimensional Models of Timing Relations: Gibbon Time Trees

Inverse hypothesis: Stress hierarchy follows prominence
 Gibbon (2003), Time Trees:

- label a sequence of items with numbers (e.g. durations)
- create an empty store (stack)
- for number-word pair in sequence:
 - if left pair < right pair: store left pair and continue with sequence
 - else: join into new larger pair, attach right number
 - if store is not empty, for item in store:

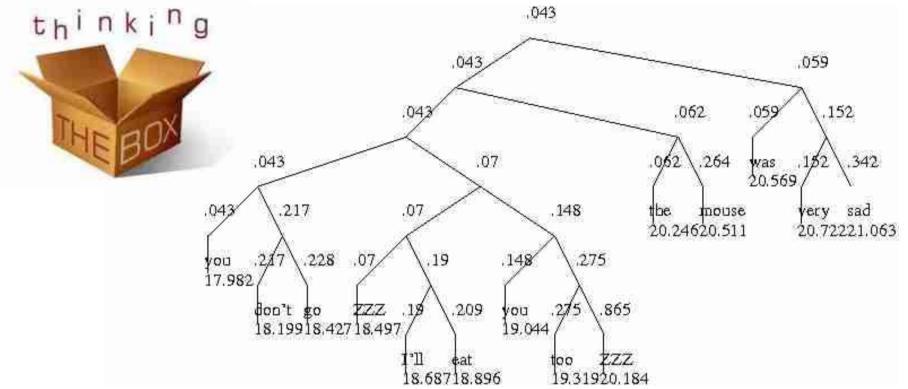
Fudan Summer School 7-13 Jul

Phonological Tree Induction

Inverses of Chomsky & Halle's or Liberman's metrical generation algorithms (Compound and Nuclear Stress Rules)

Inductive input-output relation (example stereotypes), number-word pair sequence to strong-weak node pair hierarchy:

lambic (*weak-strong*) *directionality, iNSR*: ((miss . **3**) (jones . **2**) (came . **3**) (home . **1**)) \rightarrow (r (w (w miss) (s jones)) (s (w came) (s home)))


Trochaic (strong-weak) directionality, iCSR: ((light . 1) (house . 3) (keep . 2) (er . 3)) \rightarrow ((r (s (s light) (w house)) (w (s keep) (w er))))

light miss w2 s2 house iones s1w1 keep came w3 home s3 er s3 wl w3 sl automatically s2 w2 induced numerical parse trees, r root at bottom r

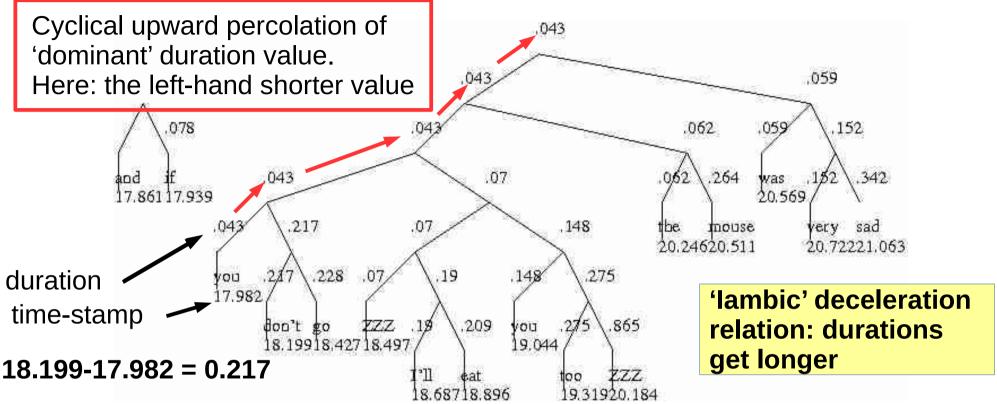
Implemented in Scheme

Gibbon, Dafydd. 2006. "Time types and time trees: Prosodic mining and alignment of temporally annotated data". In: Stefan Sudhoff et al., eds. *Methods in Empirical Prosody Research*. Walter de Gruyter, pp. 281–209, 2006. SP9, Poznań, 13 June 2018 D. Gibbon, The Future of Prosody - It's about Time 49

Two-dimensional Annotation Mining (Labels + Time-stamps)

Gibbon, Dafydd. 2006. "Time types and time trees: Prosodic mining and alignment of temporally annotated data". In: Stefan Sudhoff, et al., eds. *Methods in Empirical Prosody Research*. Berlin: Walter de Gruyter, pp. 281–209, 2006.

3-dimensional time-stamp duration analysis:


Time-Tree induction:

- *length* \times *depth* with 1-place lookahead (so actually 2D+1):
- hierarchical classification of alternation relations
- several processing options: binary/nonbinary, lower/higher percolated
- related to phrasal and discourse patterns

SP9, Poznań, 13 June 2018

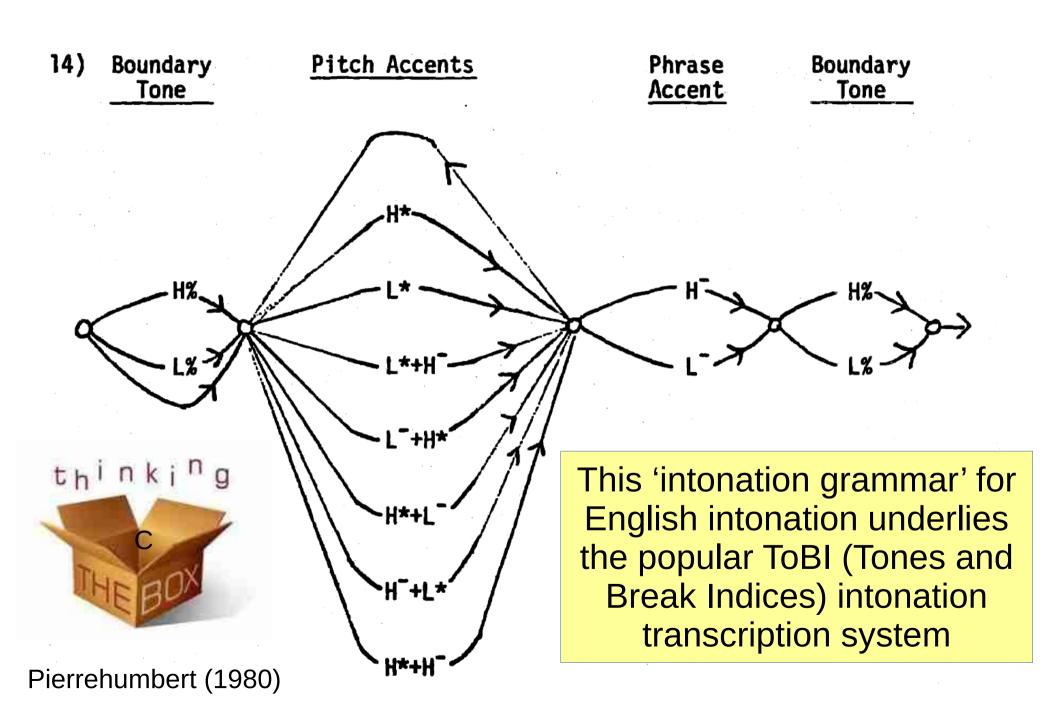
D. Gibbon, The Future of Prosody - It's about Time

Three-dimensional Annotation Mining (Labels + Time-stamps)

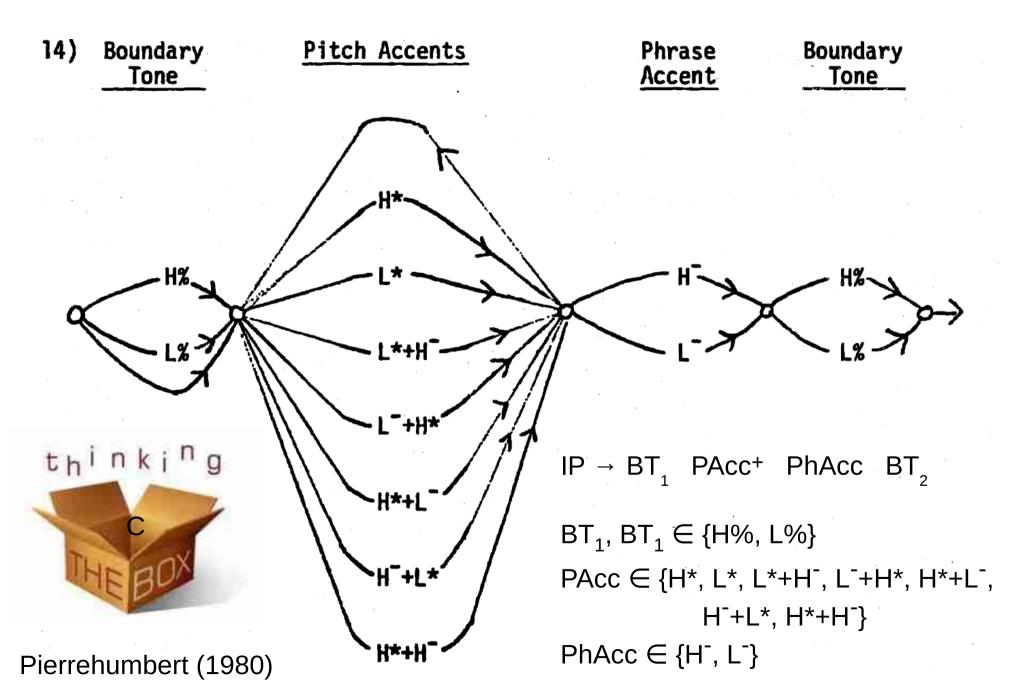
Gibbon, Dafydd. 2006. "Time types and time trees: Prosodic mining and alignment of temporally annotated data". In: Stefan Sudhoff, et al., eds. *Methods in Empirical Prosody Research*. Berlin: Walter de Gruyter, pp. 281–209, 2006.

3-dimensional time-stamp duration analysis:

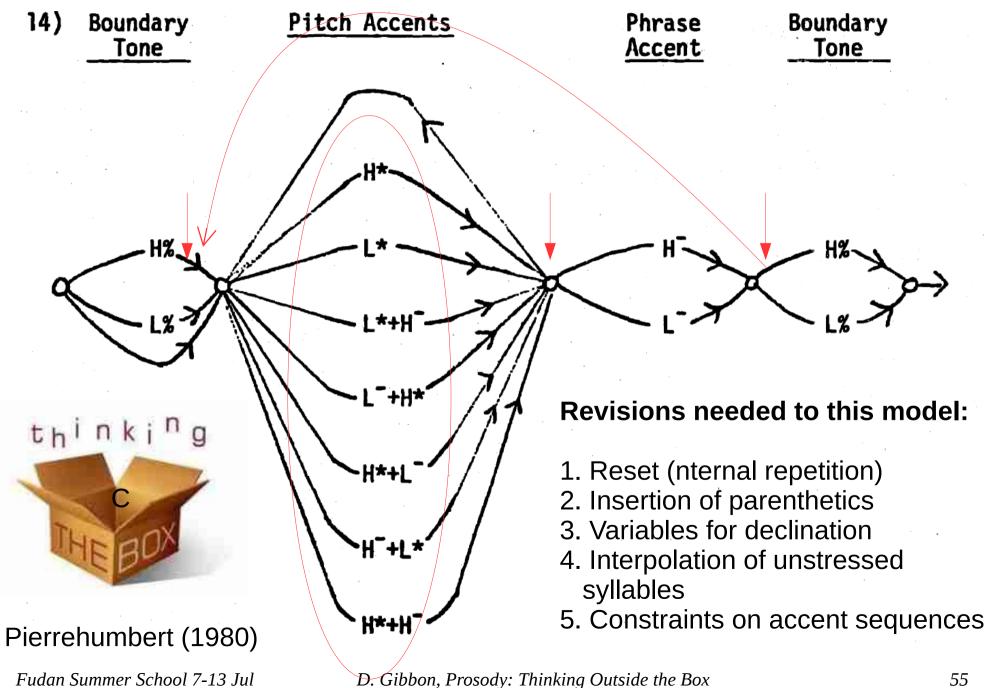
Time-Tree induction:

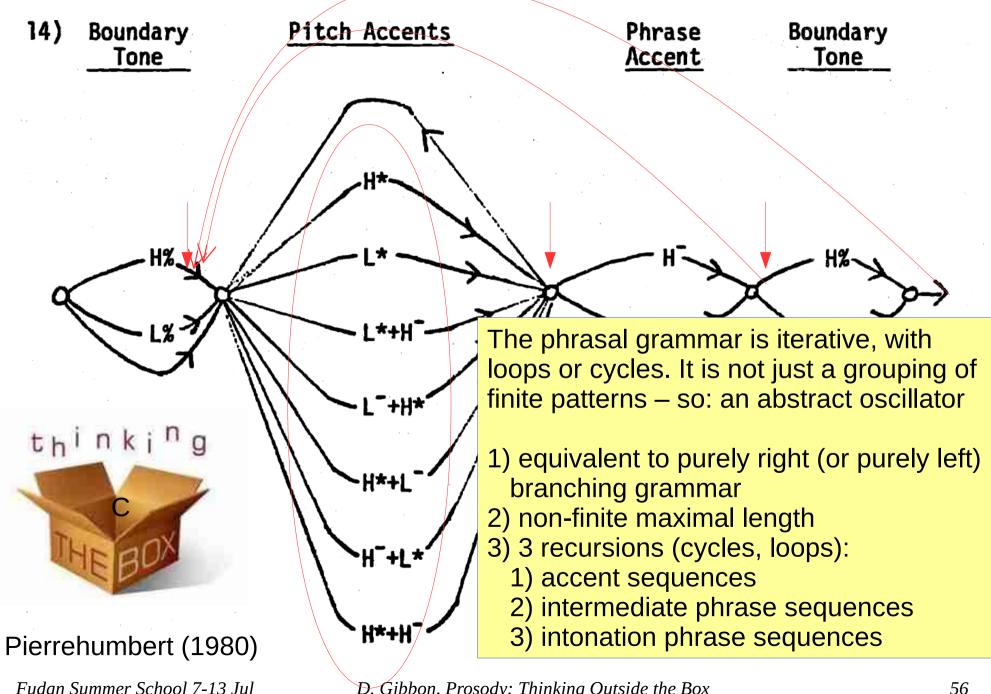

- *length* \times *depth* with 1-place lookahead (so actually 2D+1):
- hierarchical classification of alternation relations
- several processing options: binary/nonbinary, lower/higher percolated
- related to phrasal and discourse patterns

SP9, Poznań, 13 June 2018

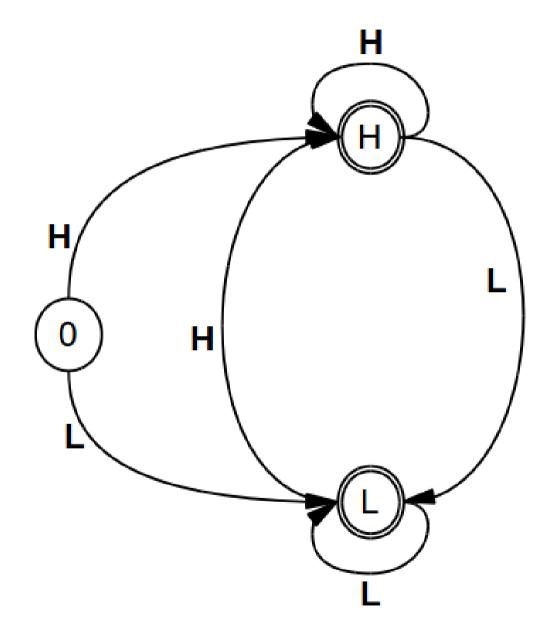

D. Gibbon, The Future of Prosody - It's about Time

The phonological basis of rhythm: 'abstract oscillation'

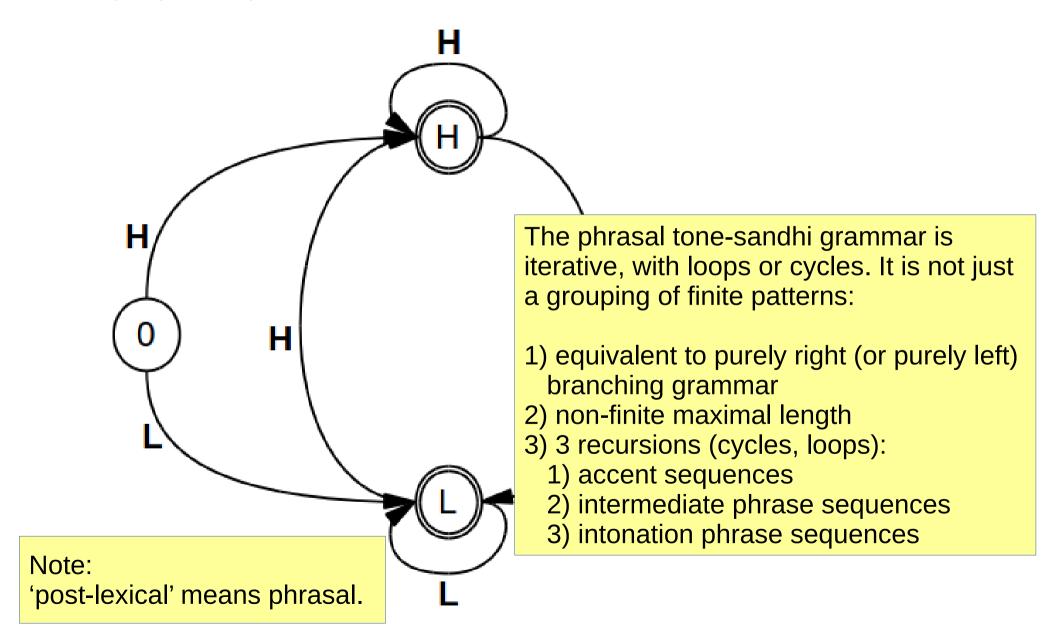




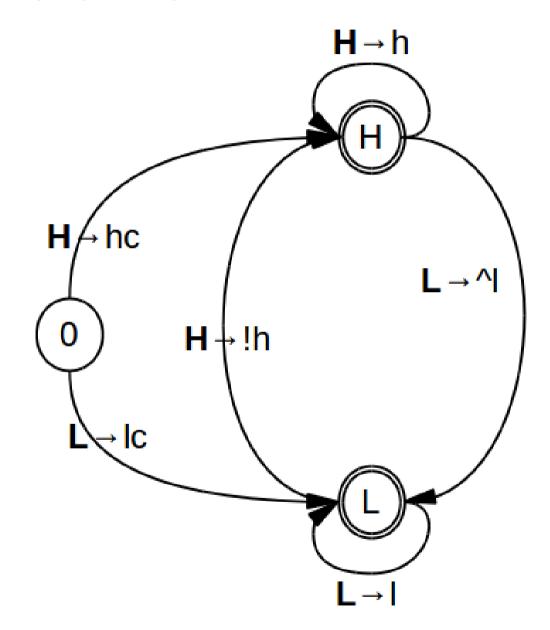
Fudan Summer School 7-13 Jul



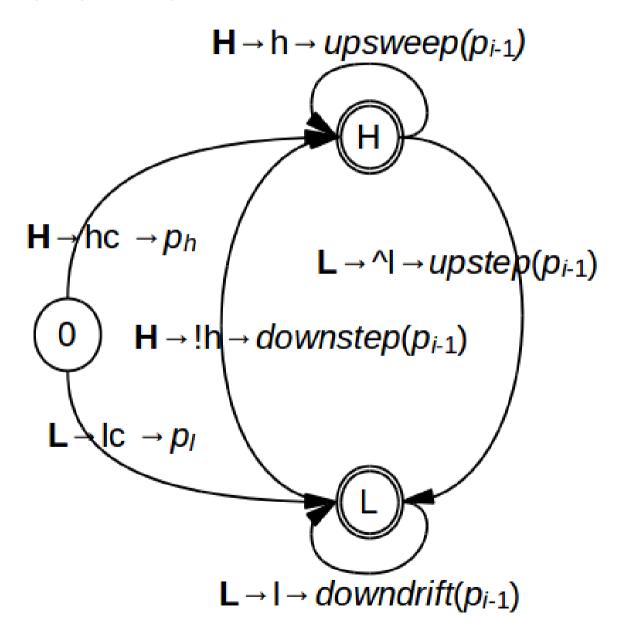
Fudan Summer School 7-13 Jul



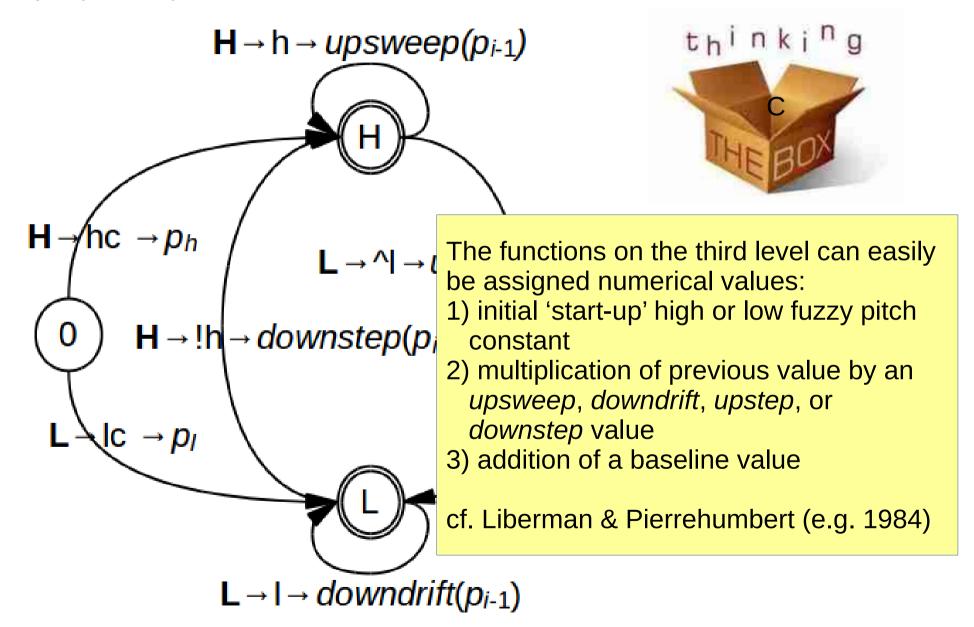
1-tape (1-level) transition network

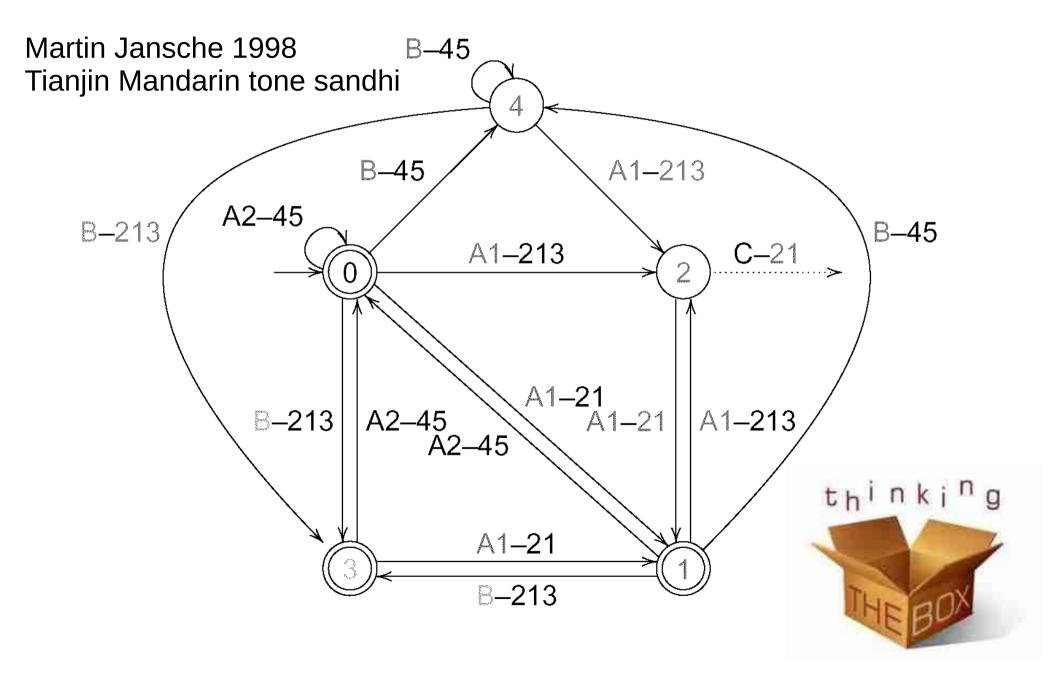


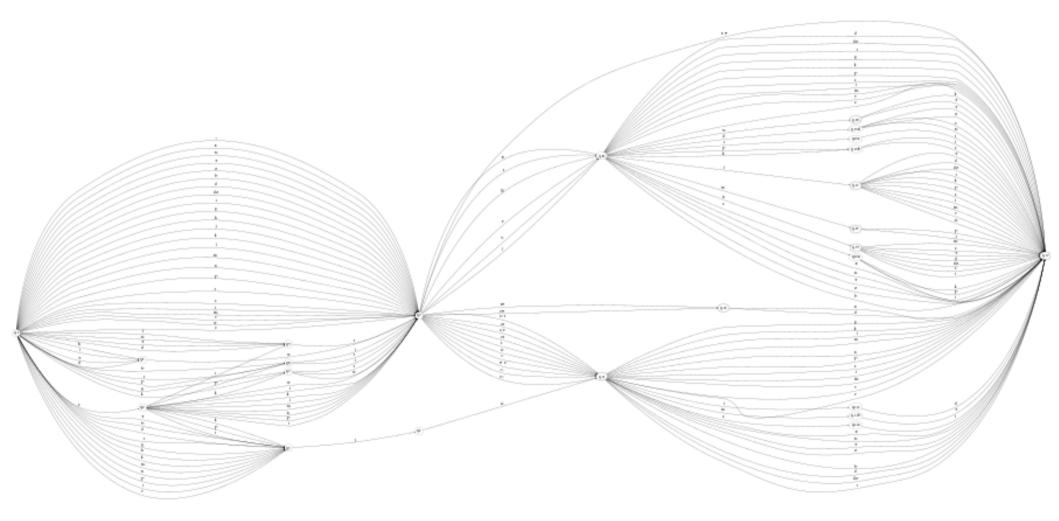
1-tape (1-level) transition network



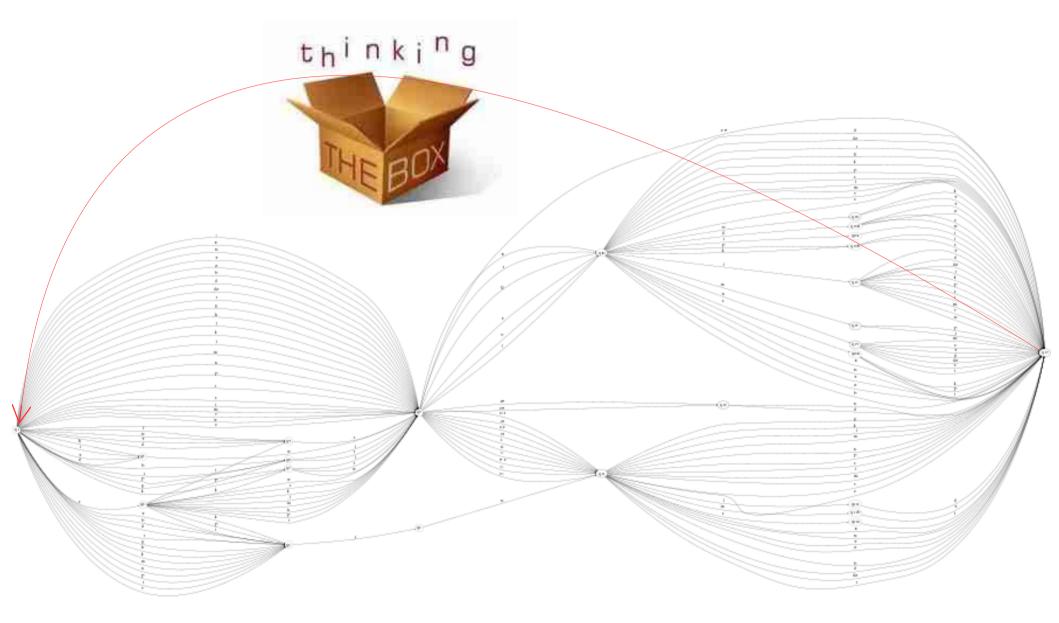
2-tape (2-level) transition network


3-tape (3-level) transition network


thinking HEBOX


Fudan Summer School 7-13 Jul

3-tape (3-level) transition network


Abstract Oscillator: Tianjin Mandarin Tone Sandhi

Linear Syllable Grammar for English

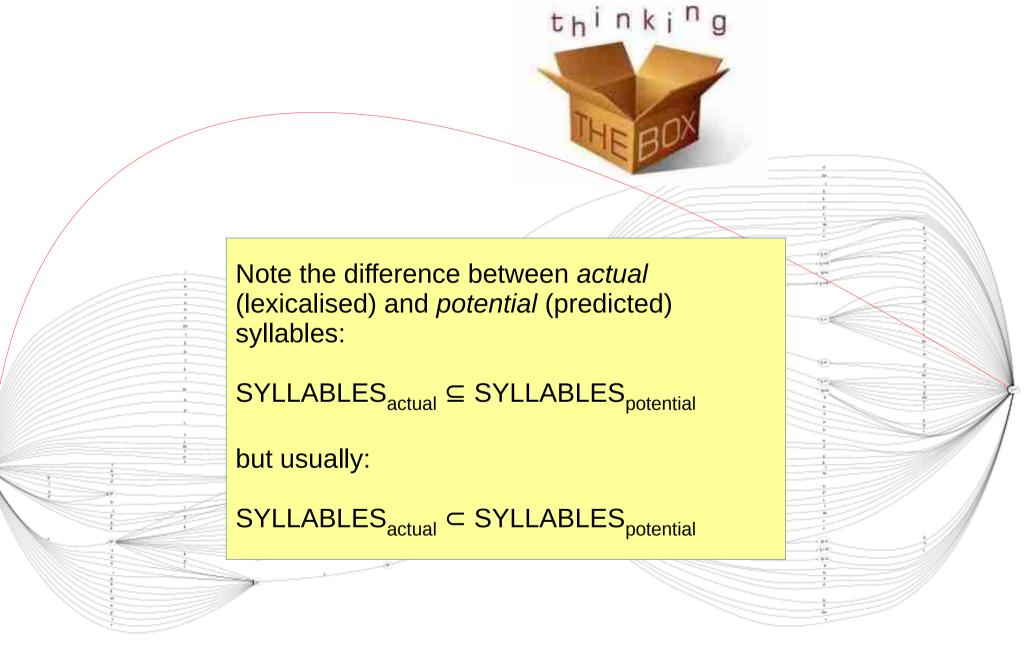
Fudan Summer School 7-13 Jul

Linear Syllable Grammar for English

Fudan Summer School 7-13 Jul

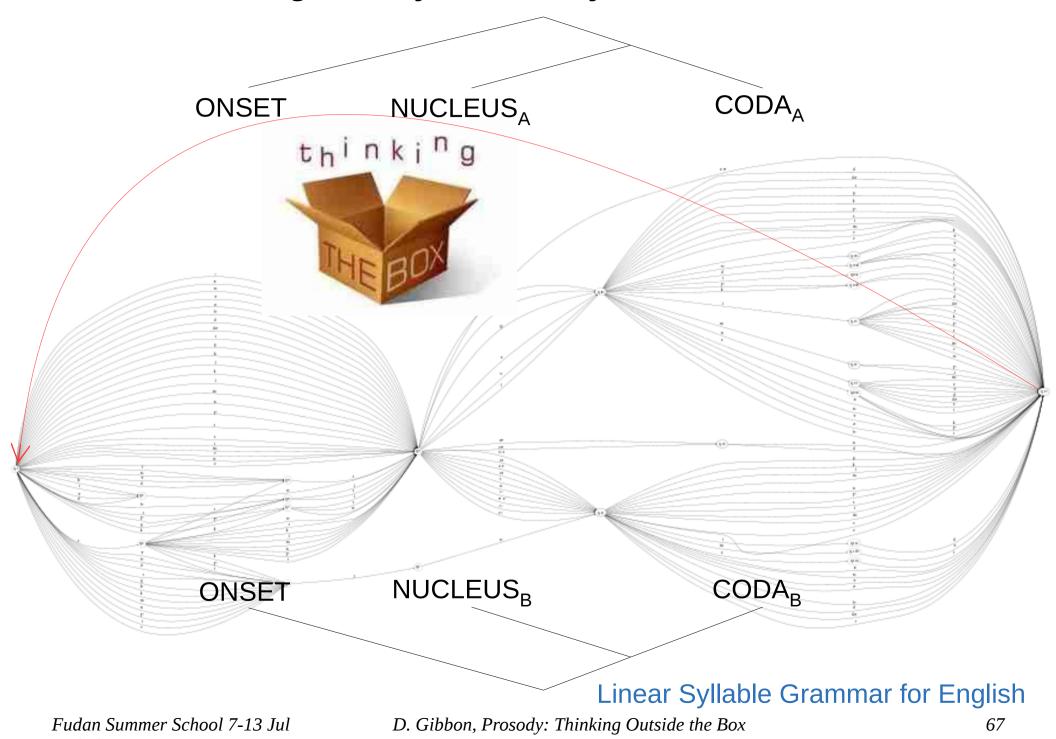
thinking

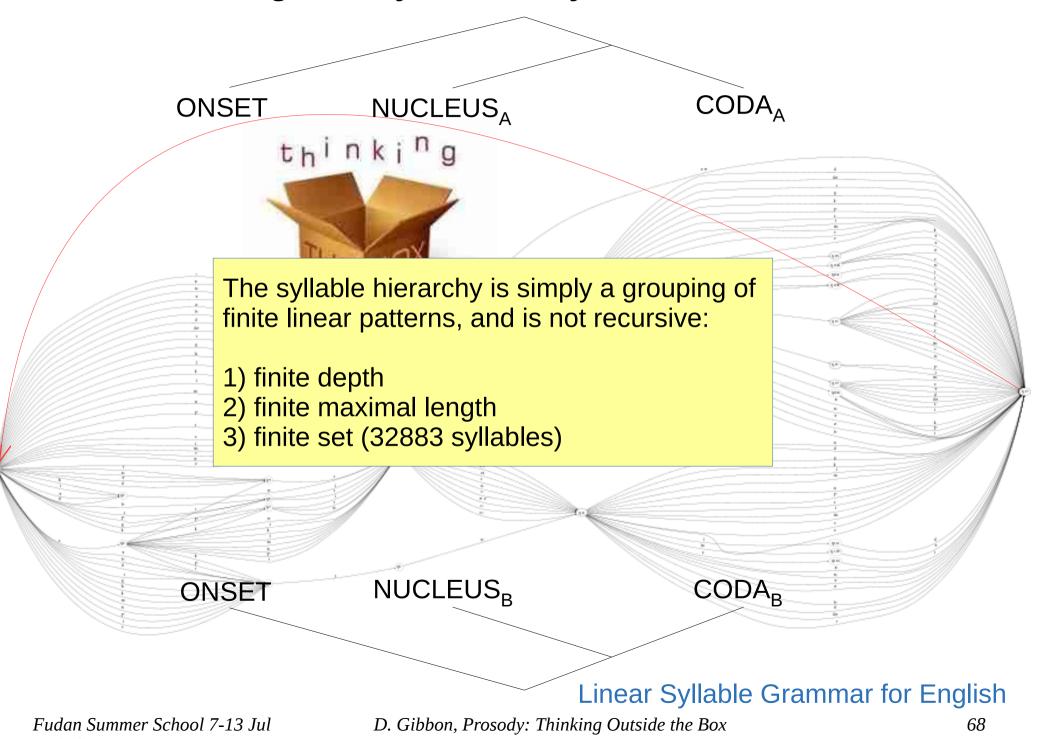
The grammar defines the (extensional) distributions of phonematic items.


Each set of transitions between a pair of nodes defines a specific (intensional) bundle of properties:

- A natural class of phonematic items (which can be used to simplify the grammar)
- 2) An allophone mapping function

Generalisations over transitions from the same node may be formulated (e.g. aspiration and non-aspiration of onset plosives)


Linear Syllable Grammar for English


Fudan Summer School 7-13 Jul

Linear Syllable Grammar for English

Fudan Summer School 7-13 Jul

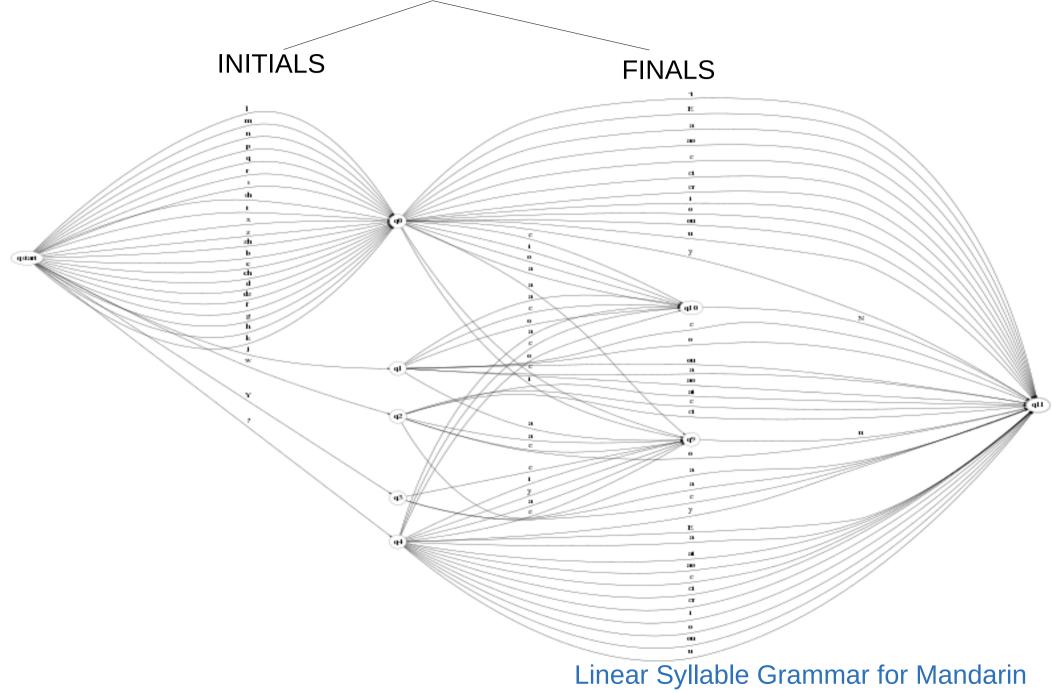
Linear Phrasal Grammar of Mandarin Syllable Phonotactics:

A Computational Perspective

			33	VOV	vels v	vith	addi	tion	of	o ar	id uei	ng(o	ng)	=35						th	e mis	sin	g vo	wel	o is	place	e unc	ler uc	and	uer	ıg u	nder	ong
Pinyin	a	ai	ao	an	ang	ou	ong	e	ei	en	en g	I	ia	iao	ie	iu (iou)	ian	in	iang	ing	iong	u	ua	uo	uai	ui (uei)	uan	un (uen)	uang	ü	üe	üan	ün
ø	а	ai	ao	an	ang	ou	weng	e	ei	en	eng	yi	ya	yao	ye	you	yan	yin	yang	y ing	yong	wu	wa	wo	wai	wei	wan	wen	wang	yu	yue	yuan	yun
ь	ba	bai	bao	ban	bang				bei	ben	beng	bi		biao	bie		bian	bin		bing		bu		ьо									
р	ра	pai	рао	pan	pang	рои			pei	pen	peng	pi		piao	pie		pian	pin		ping		pu		ро									
m	ma	mai	mao	man	mang	mou		me	mei	men	meng	mi		miao	mie	miu	mian	min		ming		mu		mo									
f	fa			fan	fang	fou			fei	fen	feng											fu		fo									
۹	da	dai	dao	dan	dang	dou	dong	de	dei		deng	di		diao	die	diu	dian			ding		du		duo		dui	duan	dun					
U s	ta	tai	tao	tan	tang	tou	tong	te			teng	ti		tiao	tie		tian			ting		tu		tuo		tui	tuan	tun					
Ö n	na	nai	nao	nan	nang	nou	nong	ne	nei	nen	neng	ni		niao	nie	niu	nian	nin	niang	ning		nu		nuo			nuan			nü	nüe		
0	la	lai	lao	lan	lang	lou	long	le	lei		leng	li	lia	liao	lie	liu	lian	lin	liang	ling		lu		Iuo			luan	lun		1ü	lüe		
upn 9	ga	gai	gao	gan	gang	gou	gong	ge	gei	gen	geng											gu	gua	guo	guai	gui	guan	gun	guang				
	ka	kai	kao	kan	kang	kou	kong	ke	kei	ken	keng											ku	kua	kuo	kuai	kui	kuan	kun	kuang				
	ha	hai	hao	han	hang	hou	hong	he	hei	hen	heng											hu	hua	huo	huai	hui	huan	hun	huang				
consonants												ji	jia	jiao	jie	jiu	jian	jin	jiang	jing	jiong									ju	jue	juan	jun
P ODS												qi	qia	qiao	qie	qiu	qian	qin	qiang	qing	qiong									qu	que	quan	qun
22 ×												xi	xia	xiao	xie	xiu	xian	xin	x iang	xing	xiong									xu	xue	xuan	xun
	zha	zhai	zhao	zhan	zhang	zho u	zhong	zhe	zhei	zhen	zheng	zhi										zhu	zhua	zhuo	zhuai	zhui	zhua n	zhun	zhuang				
ch	cha	chai	chao	chan	chang	cho u	chong	che		chen	cheng	chi										chu	chua	chuo	chuai	chui	chua n	chun	chuang				
sh	sha	shai	shao	shan	shang	sho u		she	shei	shen	sheng	shi										shu	shua	shuo	shuai	shui	shua n	shun	shuang				
r			rao	ran	rang	rou	rong	re		ren	reng	ri										nu		ruo		rui	ruan	run					
z	za	zai	zao	zan	zang	zou	zong	ze	zei	zen	zeng	Zi										zu		zuo		zui	zuan	zun					
c	са	cai	сао	can	cang	cou	cong	ce		cen	ceng	ci										cu		сио		cui	cuan	cun					
s	sa	sai	sao	san		sou	song	se		sen		si										su		SUO		sui	suan	รมก					

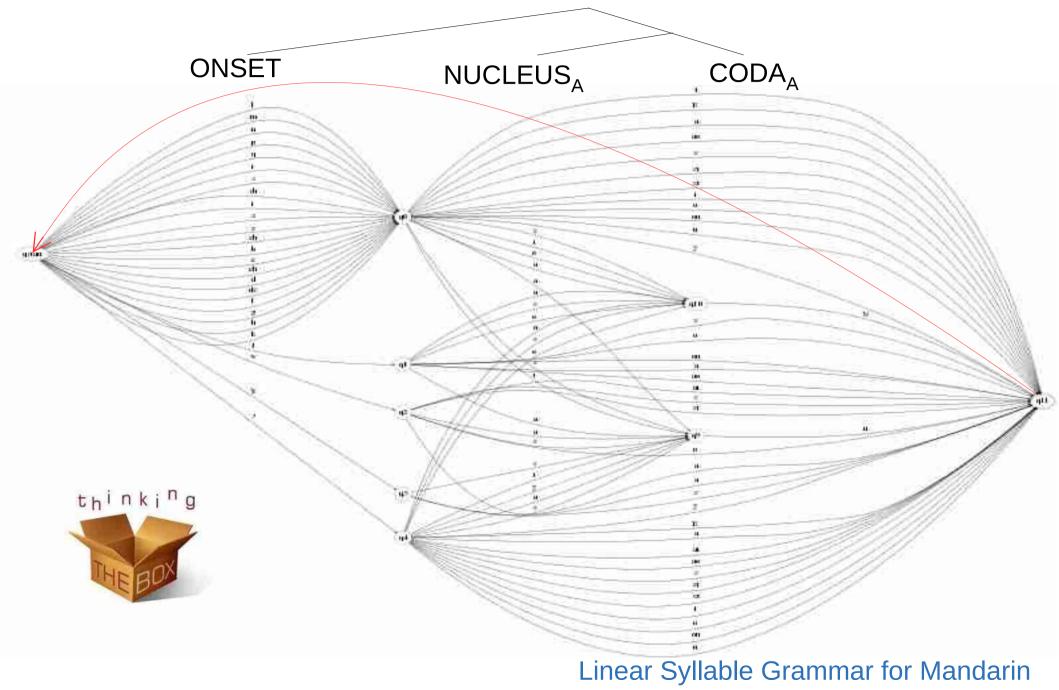
Fudan Summer School 7-13 Jul

D. Gibbon, Prosody: Thinking Outside the Box

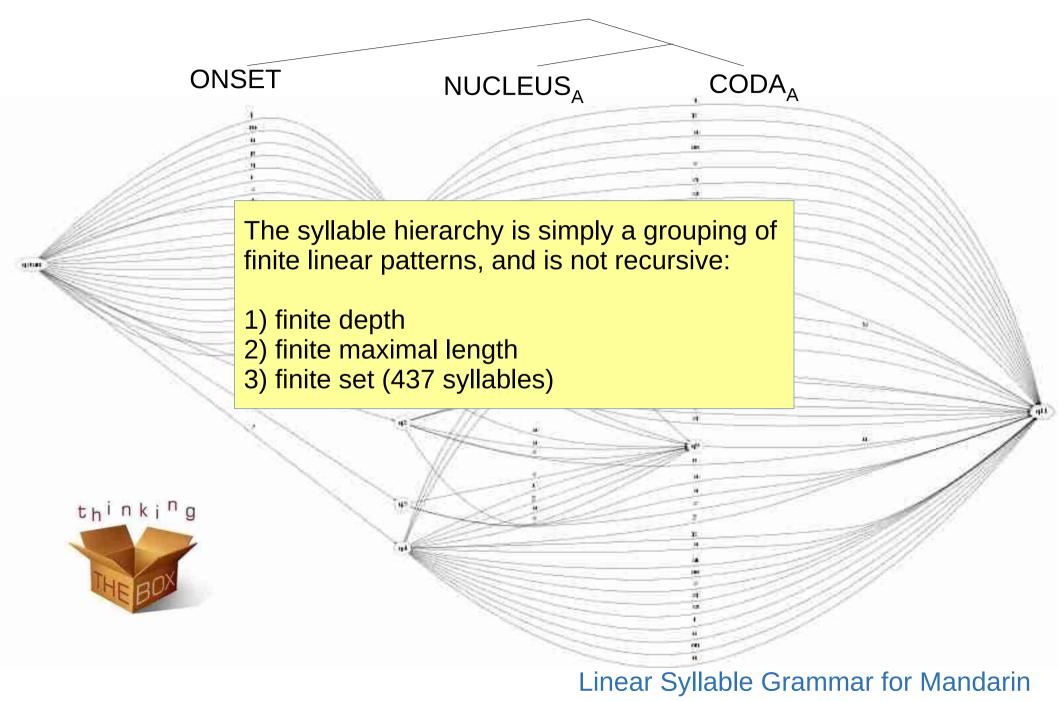

J

1

			33	VOV	vels \	with	addi	ior	ı of	o ar	nd ue	ng(o	ng)	=35						th	e mis	ssin	g vo	wel	o is	place	e unc	ler uc	and	uer	ng ur	nder	on
Pinyin	a	ai	ao	an	ang	ou	on g	e	ei	en	en g	i.	ia	iao	ie	iu (iou)	ian	in	iang	ing	iong	u	ua	uo	uai	ui (uei)	uan	un (uen)	uang	ü	üe	üan	ün
ø	а	ai	ао	an	ang	ou	veng	e	ei	en	eng	vi	va	vao	ve	vou	van	vin	vano	ving	vona	wu	wa	wo	wai	wei	wan	wen	wang	yu	yue	yuan	yur
ь	ba	bai	bao	ban	bang		C		m	ot	hir		ta	th	in		\mathbf{m}			ho													
р	pa	pai	рао	pan	pang	pou	3	U		ει		iy	ω	un					e a	bO	uı.												\vdash
m	ma	mai	mao	man	mang	mou	-																										\vdash
1	fa			fan	fang	fou		0	te	th	le c	diffe	ere	eno	ce	be	etw	/e	en	ac	tua	al	Sy	/ll a	abl	es							\vdash
d	da	dai	dao	dan	dang	dou	(e	xic	al	ise	d.	in	Ma	an	nda	rin	11 (cor	res	SDC	n	dir	na	to		uan	dun		\square			\vdash
t	ta	tai	tao		tang	tou	•					-							sy					3			Jan	tun		\square			\vdash
n		nai	nao		nang	nou								-										. + <i>.</i>	, KO	١.	uan			00	nüe		\vdash
,	la	lai	lao	lan	lang	lou	(J	ec	лС	lea	, If	1 1	/la	nc	lar	m.	V	vithe	JUI		la	ra	Cle	ers):	Jan	lun		lü	lüe		\vdash
9 9	ga	gai	gao	gan																							uan	gun	guang	~	100		╞
y k	-	kai	-	-	gang kang	gou kou	S	Y	Ľ	_A	BL	ES		tual	\subseteq	I S	YL	L	AB	LE	S _n	oto	nti	ы			uan	kun	kuang				╞
							-						au	luai							þ	UIC	11110	גו			uan	hun		\square			\vdash
n	na	hai	nao	nan	hang	nou																					uan	nun	huang				
h j q							b	u	Ľ	SL	all	y:																		Ju	jue	juan	ju
																														qu	que	quan	qu
×							S	Y	Ľ	_A	BL	ES		4 I	C	: S	YL	L	AB	LE	S_	ti	-1						xu	xue	xuan	XL
					zhang		-						ac	luai		-					-p	ole	nua	וג			uan		zhuang				
ch	cha	chai	chao	chan	chang	chou	-									_	_										uan	chun	chuang				
sh	sha	shai	shao	shan	shang	shou	C	a	n	yo	u i	nve	en	t n	ev	νN	/lai	าต	lari	n s	syll	ab	le	S١	wh	ICh	uan	shun	shuang				
r			rao	ran	rang	rou	a	re	e r	ot	as	SO	cia	ate	d	wi	th	ch	nara	act	ers	;?					Jan	run					
z	za	zai	zao	zan	zang	zou	2																				uan	zun					
c	ca	cai	сао	can	cang	cou	cong	ce		cen	ceng	ci										cu		cuo		cui	cuan	cun					
s	sa	sai	sao	san	sang	sou	song	se		sen	seng	Si										su		SUO		sui	suan	sun					


			- 33	VOV	vels v	vith	addit	ion	of	o an	d ue	ng(o	ng)	=35						th	e mis	sin	g vo	wel	o is	place	e und	ler ud	and	uer	ng ur	nder	on
inyin	а	ai	ao	an	ang	ou	on g	e	ei	en	en g	I	ia	iao	ie	iu (iou)	ian	in	iang	ing	iong	u	ua	uo	uai	ui (uei)	uan	un (uen)	uang	ü	üe	üan	ür
ø	а	ai	ao	an	ang	ou	weng	е	ei	en	eng	yi	ya	yao	ye	you	yan	yin	yang	ying	yong	wu	wa	wo	wai	wei	wan	wen	wang	yu	yue	yuan	yu
~ b		bai	bao	ban	bang						beng	bi		biao			bian	bin		bing		bu		bo									
p	pa	pai	pao	pan	pang	pou			pei		peng	pi	-	piao	pie		pian	pin		ping		pu		ρο									\vdash
					mang			me		-	meng	mi	-	miao		miu	mian	,		ming		mu		mo									╞
•	fa			fan	fang	f.		me	men	in ch	ineng		_	mao			in gri							1110									\vdash
d		dai	dao		dang																									-			\vdash
t	ta	tai	tao		tang		20	h		<i>.</i>	h		tc	• • ••	า	hlo																	\vdash
n	_						So							-					-											00	nüe		\vdash
	_	nai	nao Iao	lan	nang	•	N Y	/h	İC	<mark>h</mark> ۱	we	re	p	roi	nu	Inc	ec		bef	ore	e th	1e	<u>у</u>	We	ere	W	ritt	en	,	lü	lüe		╞
	la	lai			lang		а	n	d f	for	· w	hi	ch		ha	ra	cte	ers	s w	er	e i	nv	/ei	nte	bé	lat	er			JU .	IUe		\vdash
9	ga	gai	gao	gan	gang	9																											I .
	1.0	1.01	1	1	L			~/ F		_			СТ	nri		۱I۱c	/ t	10	0		יאו ב	TH.	h a		ch	ar	act	tor	c)				\vdash
	_	kai	kao	kan	kang	k	()	/V I	110	11	15		St	ori		ally	y tl	ne	Cá	ase	e w	it	ha	all	ch	ar	aci	ter	s)				
		kai hai	kao hao		kang hang	k h	()	/// I	110	511	15	NI	St	ori		ally	y tl	ne	Ca	ase	e w	'itl	h a	all	ch	nar	ac	ter	s)				
k h j						k h	•						St	ori		ally	y tl	ne	Ca	ase	e w	'itl	h a	all . U	ch	nar	act	ter	s)	ju	jue	juan	ŀ
h j q						k	=01	ŕe	X	an	npl	е	St	ori	ICa	ally	y tl	ne 、 言	Ca	ase	e w	itl ノ	h a	៕ 支	ch	nara	act	ter	s)	qu	que	quan	q
h j q x	ha	hai	hao	han	hang	•	=oi b	r e ia	exa n	an gb		е	ST	ori	ICâ	ally \ T	ytl 「上版	ne 、	⊂Cá	ase	€ W	itl ノ こ	h a		ch 1	nara	aci	ter	s)	-	-	-	q
h j q x zh	ha	hai zhai	hao zhao	han zhan	hang	zł	=oi b	r e ia	X	an gb	npl	е	St	ori	ICa	ally J		ne 、 記 引	Ca Y到公	ase	€ W	iti ノ ゴ ト	h a		ch Life	nara	aci	ter	s)	qu	que	quan	q
h j q x zh ch	ha zha cha	hai zhai chai	hao zhao chao	han zhan chan	hang zhang chang	zt ct	=oi b	r e ia	exa n	an gb	npl	е	St	ori	ICa	ally J		ne 、 記 引	Ca Y刘	ase	e w	ゴリノコト	h a 与 立 す		ch Lift	nara	aci	ter	s)	qu	que	quan	q
h j q x zh	ha zha cha	hai zhai chai	hao zhao chao shao	han zhan chan shan	hang zhang chang shang	zł cł	=oi b d	r € ia ua	exa n	an gb g	npl iar	e ng	St	ori		ally J		ne 、 記 引	Ca Y到	ase	e w	ノコト	h わ う 法 ず						s)	qu	que	quan	ju qu xu
h j q x zh ch	ha zha cha	hai zhai chai shai	hao zhao chao shao rao	han zhan chan shan ra n	hang zhang chang shang rang	zł cł sł rou	=OI b d	re	ex in an	an gb g	npl iar	e ng	SI	ori		J		ne 、 記 引	Ca 大利	ase	e w	ノ コ 手 『	h に う 法 す			rui	ruan	run	s)	qu	que	quan	qı
h j q x zh ch sh	ha zha cha	hai zhai chai	hao zhao chao shao	han zhan chan shan	hang zhang chang shang	zł cł	=oi b d	r € ia ua	exa n	an gb g	npl iar	e ng ri zi	St	ori		J		ne 、 語 · 記 ·	Ca	ase	e w		h a		ch				s)	qu	que	quan	q
h j q x zh ch sh r	ha zha cha	hai zhai chai shai	hao zhao chao shao rao	han zhan chan shan ra n	hang zhang chang shang rang	zł cł sł rou	=OI b d	re	ex in an	an gb ig	npl iar	e ng	St	ori		J		ne 、 語 引	Ca	ase	e w	ノ コ 手 『	h a フ 立 ゴ		ch Lift	rui	ruan	run	s)	qu	que	quan	qu

The Basis of Mandarin Rhythm: the Syllable 'Abstract Oscillator'


Fudan Summer School 7-13 Jul

The Basis of Mandarin Rhythm: the Syllable 'Abstract Oscillator'

Fudan Summer School 7-13 Jul

The Basis of Mandarin Rhythm: the Syllable 'Abstract Oscillator'

A note on Oscillation, Iteration and Recursion

Rhythm as Oscillation is based on iteration, cycles, loops (or on a linear variety of recursion)

Computational requirements for real time processing:

(the recursion issue):

- finite memory space
- finite or linear processing time

Fulfilment of real time processing requirements:

- iterative grammars have linear processing requirements
- right-branching, or left-branching grammars have linear processing time
- finite-depth grammars have constant finite processing time

Nonfulfilment of real time processing requirements:

- non-deterministic grammars (e.g. grammars like $A \rightarrow a b \mid a c$
- centre-embedding phrase structure grammars

Food for thought:

- recursion is not just about a node dominating another node with the same name – that name may be ill-defined and ambiguous, or a generalisation, or vague; this criterion is necessary but not sufficient
- recursion is about describing an infinite number of objects (sentences, words, numbers, ...)
- a recursive theory of language and speech must also be realistic:
 - the Linear Processing Time Constraint:
 - The time required for processing speech must be linear in relation to the length of the input.
 - the Finite Processing Space Constraint:

The memory required for processing speech must be finite.

In the many discussions of recursion over the past 20 years or so, this crucial distinction between two types of recursion with different processing time and space properties has been neglected:

- linear recursion:
 - left & right branching (computationally equivalent to iteration)
 - <u>linear recursion is realistic, requiring finite working memory, and</u> processing time which is a linear function of the size of the input
- non-linear recursion:
 - <u>centre-embedding</u>, cross-serial dependencies
 - non-linear recursion is unrealistic, requiring unrestricted memory and at least quadratic processing time, thus implausible for speech

Non-linear recursion is unproblematic: the basic principle of **rhythm** and of **creativity** in language.

But speakers fail at producing and understanding centreembedding in spontaneous speech. How can this then be a feature of language?

In rehearsed speech, writing and read speech, a small amount of centre-embedding is possible, due to the additional time and memory space provided by this kind of register.

Where did centre-embedding come from?

Speakers were trying to be clever: generalising *linearly recursive* sentence-final nominal clauses (e.g. relative clauses, that clauses) to *centre-embedding* non-final positions.

So centre-embedding is

- derived from right or left recursion
- *plus* a generalisation:

"Use right (or left) branching anywhere"

Unfortunately, processing capacity is too limited to permit more than one application of this generalisation, unless rehearsal or writing are involved. And speakers fail. So where did centre-embedding really come from?

Speakers were trying to be clever: generalising *linearly recursive* sentence-final nominal clauses (e.g. relative clauses, that clauses) to *centre-embedding* non-final positions.

But this really only (partly) works with extra time and memory:

- rehearsal
- writing
- 1. Linear (right-branching):
 - Jim saw the man who found the boy
- 2. Centre-embedding experiment tough to process:
 - <u>the man who found the boy</u> saw Jim

3. Linear right-branching solution – use the passive:

- Jim was seen by the man who found the boy

Processing Time and Processing Space: a Note on Recursion

Try pronouncing this:

I met the lady who the girl who the teacher who my friend saw was teaching was visiting had in fact left town.

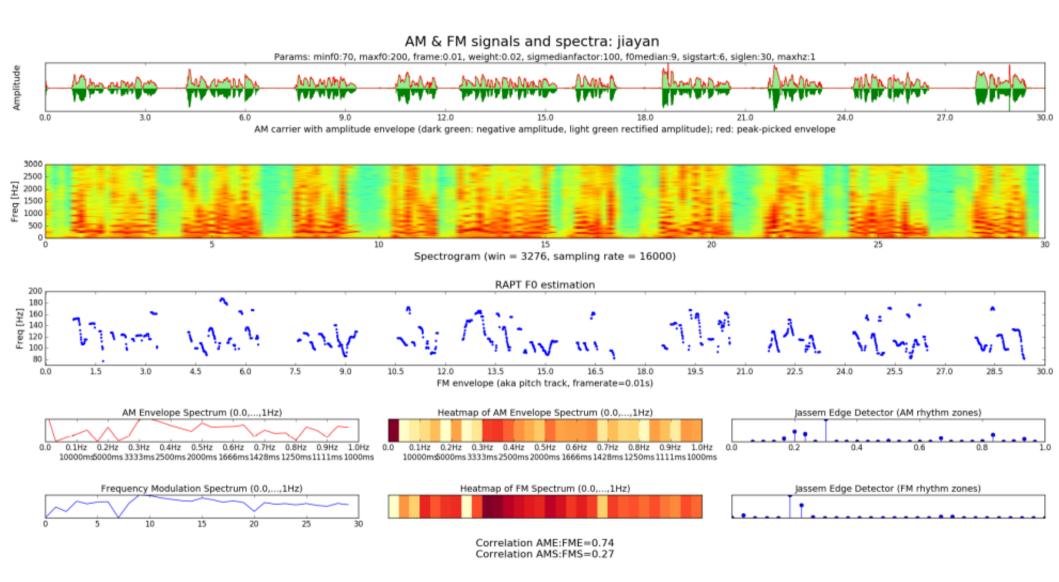
Try pronouncing this:

I met the lady who the girl who the teacher who my friend saw was teaching was visiting had in fact left town.

Now try pronouncing this:

I met the lady who was being visited by the girl who was being taught by the teacher who was seen by my friend.

Looking Ahead: from Deduction to Induction


Automatic generalisation from data Machine Learning Artificial Intelligence

The Physical Basis of Speech Oscillations:

Modulation Theory

Fudan Summer School 7-13 Jul

The Physical Basis of Speech Oscillations: Modulation Theory

Summary:

Aspects of Prosody and Time Time Epochs Time Types

The architecture of language: Ranks and Interpretations

The Phonology of Prosody: A computational perspective of different ranks

Fudan Summer School 7-13 Jul

Summary:

Aspects of Prosody and Time Time Epochs Time Types

The architecture of language: Ranks and Interpretations

Conclusion:

The Phonology of Prosody: A computational perspective of different ranks

... thinking outside the box

Thank you! 谢谢!