Prosody: Speech Rhythms and Melodies

6. Generalising Pitch: Stylisation

Dafydd Gibbon

Summer School Contemporary Phonology and Phonetics Tongji University 9-15 July 2016

Revision: What exactly does this graph show?

amplitude; intensity = $f(amplitude^2) \rightarrow factor in stress, focus, contrast, emphasis$

Representations of phonetic time functions

amplitude; intensity = $f(amplitude^2) \rightarrow factor in stress, focus, contrast, emphasis$

Phonetic interpretation: parameters and trajectories

- Phonetic domain parameters and trajectories
 - melody:
 - variation of fundamental frequency properties in time
 - volume:
 - variation of intensity properties in time
 - duration:
 - variation of unit duration properties in time
 - Note that *duration* has two temporal dimensions

- Phonological domains
 - structural and functional units and patterns

Phonetic interpretation: phases

- speaker, production, articulatory phonetics:
 - articulation rate effort
- channel, acoustic phonetics:
 - fundamental frequency intensity
- hearer, reception, auditory phonetics:
 - pitch loudness

Forms of prosody: phases and subphases

- each of the phases has subphases:
 - \rightarrow brain motor activity \rightarrow nerves \rightarrow vocal tract muscles
 - \rightarrow air pressure \rightarrow (electronic channel \rightarrow) air pressure
 - \rightarrow ear sensors nerves brain sensory activity

Phonetic interpretation: phases

- phonetic domains: information theoretic phases:
 - sender \rightarrow channel \rightarrow receiver
 - sender: articulatory domain
 - → brain
 - → nerves
 - \rightarrow articulatory tract muscles & shapes
 - channel: acoustic domain
 - \rightarrow air pressure
 - (\rightarrow electrical voltages)
 - \rightarrow air pressure
 - receiver: auditory domain
 - \rightarrow ear canal, ear drum, ossicles
 - \rightarrow cochlea
 - \rightarrow brain

Phonetic interpretation: methods

observations – measurements – models

Observations and measurements

- analysis methods:
 - observational methods
 - perceptual
 - quantitative measurements
 - interpretative judgments
 - instrumental
 - quantitative measurements + interpretative judgments
 - experimental methods
 - production
 - quantitative analysis of elicited corpus
 - quantitative analysis of authentic corpus
 - perception
 - quantitative analysis of same-different judgments, reaction times, ...

Observations and measurements

- analysis methods:
 - observational
 - perceptual
 - quantitative measurements
 - interpretative judgments
 - instrumental
 - quantitative measurements + interpretative judgments
 - experimental
 - production
 - quantitative analysis of elicited corpus
 - quantitative analysis of authentic corpus
 - perception
 - quantitative analysis of same-different judgments, reaction times, ...

- First steps: collect data, extract F0
- Induce a prosodic model
- Evaluate prosodic model:
 - Method 1, machine learning:
 - use new data, predict goodness of fit of new data
 - Method 2, perception:
 - re-synthesise prosodic model
 - test results with perception experiments
 - same-different comparison
 - naturalness judgments
 - comprehensibility judgments

First steps: from waveform to F0

From waveform to F0

- Time domain methods
 - frequency = 1 / period
 - peak picking: intervals between peaks
 - intervals between zero crossing measurement
 - autocorrelation
- Frequency domain methods
 - overtone differences
 - spectral comb
 - cepstrum

- Phonetic models:
 - smoothing models:
 - median smoothing
 - global regression
 - local regression (IPO)
 - segment models
 - voiced signal segments
 - quadratic interpolation between reference points
 - structured models
 - Fujisaki model
 - Liberman and Pierrehumbert model
 - Hirst model

- Phonetic models:
 - smoothing models:
 - median smoothing
 - global regression
 - local regression (IPO)
 - segment models
 - voiced signal segments
 - quadratic interpolation between reference points
 - structured models
 - Fujisaki model
 - Liberman and Pierrehumbert model
 - Hirst model

- Phonetic stylisation models:
 - smoothing models:
 - median; global (Huber) and local (IPO) regression
 - segment models
 - voiced segment smoothing
 - quadratic spline segment interpolation (Hirst)
- F0 stylisation is the simplification of the F0 trajectory to remove
 - irrelevant properties
 - noise

First steps to stylisation: smoothing filters

Regression smoothing

F0 smoothing: general procedures

- 1. Identify voiced and unvoiced intervals, extract F0
- 2. Smoothing and 'stylisation' modelling procedures

Local sequencing procedures:

- level F0 sequences, e.g. based on median of a sequence: <u>robotic</u>!
- median smoothing:

for each F0 (t_i) measurement :

 FO_{smooth} (t_i) mean <F0 (t_i), ..., F0 (t_n)>

• quadratic spline sequences

- (Hirst)

Global reference plus accent/tone excursion procedures

- Regression: log, linear, quadratic, ... ,
 - (Fujisaki, Pierrehumbert & Lieberman, Tilt model)

F0 smoothing: different approaches

- Smoothing by median filter:
 - the median of sequences of 3 measurements
- Smoothing by linear regression

 $y = a_0 + a_1 x + \varepsilon$

• Smoothing by polynomial regression:

 $y = a_0 + a_1 \cdot t + a_2 \cdot t^2 + a_3 t^3 + \dots + a_0 t^n + \varepsilon$

• Smoothing by asymptotic descent, effectively log(x): $F0(t_{t+1}) = m \cdot F0(t_i) + \epsilon, \text{ for } m < 0$

 $a + FO(t_{i+1}) = a + m \cdot FO(t_i) + \epsilon$, m < 0 non-zero asymptote

Smoothing: different approaches

- Smoothing by median filter:
 - the median of sequences of 3 measurements
- Smoothing by linear regression

 $y = a_0 + a_1 x + \varepsilon$

Smoothing by polynomial regression:

$$y = a_0 + a_1 \cdot x + a_2 \cdot x^2 + a_3 x^3 + \dots + a_0 x^n + \varepsilon$$

• Smoothing by asymptotic descent:

$$y \in \langle x_1, \dots, x_1 \rangle : x_i = m \cdot x_{i-1} + \varepsilon$$

$$y \in \langle x_1, ..., x_1 \rangle : a + x_i = a + m \cdot x_{i-1} + \varepsilon$$

Regression smoothing examples

- 1. Identify voiced intervals
- 2. Extract F0
- 3. Interpolate silent intervals

Simplified in the following examples:

3rd quartile (75th percentile)

4. Calculate smoothing (declination / accent model)

Linear, quadratic etc. (polynomial) regression over interpolated F0 sequence

5. Calculate residuals (microprosody model): Subtract regression values from F0 values

F0 smoothing: general procedures

- 1. Identify voiced and unvoiced intervals, extract F0
- 2. Smoothing and 'stylisation' modelling procedures

Local sequencing procedures:

- level F0 sequences, e.g. based on median of a sequence: <u>robotic</u>!
- median smoothing:

for each F0 (t_i) measurement :

 FO_{smooth} (t_i) mean <F0 (t_i), ..., F0 (t_n)>

• quadratic spline sequences

- (Hirst)

Global reference plus accent/tone excursion procedures

- Regression: log, linear, quadratic, ... ,
 - (Fujisaki, Pierrehumbert & Lieberman, Tilt model)

F0 smoothing: global procedures

F0 smoothing: procedure

- 1. Identify voiced and unvoiced intervals, extract F0
- 2. Smoothing and 'stylisation' modelling:
 - Local smoothing:
 - linear, median; quadratic spline (Hirst)
 - Global reference plus discrete deviant values for different accents or tones
 - Fujisaki model, Liberman & Pierrehumbert's invariance model, Taylor's 'Tilt' model
 - Global smoothing with regression:
 - log, linear, quadratic, polynomial of degree *n* (used for illustration in the following examples)

Smoothing: different approaches, different goals

- Smoothing by polynomial regression (degree *n*): $y = a_0 + a_1 \cdot x + a_2 \cdot x^2 + a_3 x^3 + ... + a_0 x^n + \varepsilon$
- Smoothing by linear regression (degree 1) $y = a_0 + a_1 x + \varepsilon$

Smoothing: different approaches, different goals

- Smoothing by polynomial regression (degree *n*): $y = a_0 + a_1 \cdot x + a_2 \cdot x^2 + a_3 x^3 + ... + a_0 x^n + \varepsilon$
- Smoothing by linear regression (degree 1) $y = a_0 + a_1 x + \varepsilon$

Global linear regression contour

Global quadratic regression contour

Global regression contour, degree 7

Global regression contour, degree 11

Global regression contour, degree 15

Global regression contours, up to degree 20

F0 smoothing: local procedures

Simple median filter (scope: 3), often used

Each F0 value is normalised to the median F0 value of its immediate neighbours

Simple local median levelling filter – robotic!

Each F0 value in a sequence is normalised to the median F0 value for the sequence

Local voicing regression contours, degree 1

Endlich gab der Nordwind den Kampf auf.

Local voicing regression contours, degree 2

Endlich gab der Nordwind den Kampf auf.

Local voicing regression contours, degree 3

Endlich gab der Nordwind den Kampf auf.

Local voicing regression contours (1...5)

Endlich gab der Nordwind den Kampf auf.

Higher degrees of polynomial regression can be difficult to interpret.

Note the progression:

- from <u>underfitting</u> with linear regression
- to <u>overfitting</u> with higher degrees polynomial regression

Models of f0 patterning: Hirst

- Intsint
- Momel
- ProZed

Hirst: quadratic spline - 'piecewise quadratic function'

Fig. 6.7 Macromelodic profile (red) for a two-second extract from recording A01, defined as quadratic transitions between anchor points (green).

Hirst: quadratic spline - 'piecewise quadratic function'

Fig. 6.7 Macromelodic profile (red) for a two-second extract from recording A01, defined as quadratic transitions between anchor points (green).

Hirst: micromelody = F0 / quadratic spline function

Macromelody (red), micromelody (blue): micromelody = F0 / spline model

Smoothing by local spline interpolation (Hirst)

Momel:

Quadratic splines:

- changing an anchor point only affects neighbouring transitions
- anchor points correspond to zeros on the first derivative of the spline
- the transition between two anchor points:
 - symmetrical
 - maximum slope at the spline "knot" half way between two anchor points.

Hirst's f0 formulas:

$$t_i \in [t_1 \dots t_k] : h_i = h_1 + \frac{(h_2 - h_1) \cdot (t_i - t_1)^2}{(t_k - t_1)(t_2 - t_1)}$$

$$t_i \in [t_k \dots t_2] : h_i = h_2 + \frac{(h_1 - h_2) \cdot (t_i - t_2)^2}{(t_k - t_2)(t_1 - t_2)}$$

Cubic spline problem, so not used in Momel:

Changing one anchor point can affect the whole curve.

Many other methods ...

- Straight lines (IPO)
- Baseline + pulse modulation
- Gårding
- Grønnum (Thorsen)
- Asymptotic descent (Liberman & Pierrehumbert)
 Tilt
- Spline sequence interpolation (Hirst)

Subtract the reference line from the F0 trajectory

Define the asymptotic declination line

Define the relation between focus and non-focus accent types

Define the relation between first pitch accent and reference line

Define final lowering

Model 1

- a. General F0 transform
 - T(P) = P rP and r in Hz

Modified transform for model 1 $T(P) = (1/l) \cdot (P - r)$ where l < 1 in final position, l = 1 otherwise

b. Downstep

 $\mathbf{T}(\mathbf{P}_i) = s \cdot \mathbf{T}(\mathbf{P}_{i+1})$

where P_i is the F0 target in Hz of a step accent in position *i*, downstepped with respect to the previous accent target P_{i-1}

c. Answer-background relation

 $\mathbf{T}(\mathbf{P}_{A}) = k \cdot \mathbf{T}(\mathbf{P}_{B})$

where P_A is the F0 target in Hz of the A accent, and P_B Model 1A the B accent Substitute

d. Relation of r to initial accent target $r = f \cdot (\mathbf{P}_0 - b)^e + d + b$ $r = f \cdot (\mathbf{P}_0)^e + d$

for equation (5d) in model 1.

where P_0 is the target in Hz of the first pitch accent, and *d. e. f.* and *b* are constants Model 1C Model 1B

e. Final LoweringSubstituteSubstitute $P \rightarrow r + l \cdot (P - r) / ___$<math>P \rightarrow l \cdot P / ___$<math>r = f \cdot P_0 + d$ where l < 1for rule (5e) in model 1.for equation (5d) in model 1.

Figure 9

An F0 contour for *Anna came with Manny*, produced as a response to *What about Manny? Who came with him?*

Figure 10

An F0 contour for *Anna came with Manny*, produced as a response to *What about Anna? Who did she come with?*

Model 1

a. General F0 transform Subtract the point of transform for model 1 T(P) = P = rreference line $P = (1/l) \cdot (P - r)$

Define the asymptotic

declination line

T(P) = P - rP and r in Hz

where l < 1 in final position, l = 1 otherwise

b. Downstep

 $\mathbf{T}(\mathbf{P}_i) = s \cdot \mathbf{T}(\mathbf{P}_{i+1})$

where P_i is the F0 target in Hz of a step accent in position *i*, down-stepped with respect to the previous accent target P_{i-1}

```
c. Answer-background relation
                                               Define the relation
    \mathbf{T}(\mathbf{P}_{A}) = k \cdot \mathbf{T}(\mathbf{P}_{B})
                                           between focus and non-
                                                                              Iodel IA
      where P_A is the F0 target in
                                              focus accent types
      the B accent
                                                                            Substitute
                                                                             = f \cdot (\mathbf{P}_0)^e + d
d. Relation of r to initial accent
                                               Define the relation
    r = f \cdot (\mathbf{P}_0 - b)^e + d + b
                                          between first pitch accent or equation (5d) in model 1.
                                               and reference line
      where P<sub>o</sub> is the target in Hz
                                                                             l. e. f. and b
                                                                           Model IB
                                      Madal 1C
      are constants
                                                                             ibstitute
                                      Sι
e. Final Lowering
                                             Define final lowering
                                                                              = f \cdot \mathbf{P}_0 + d
   \mathbf{P} \rightarrow r + l \cdot (\mathbf{P} - r) / \_\_\$
                                      Ρ
      where l < 1
                                                                           for equation (5d) in model 1.
                                      for rule (5e) in model 1.
```

Model 1A Substitute $r = f \cdot (\mathbf{P}_0)^e + d$ for equation (5d) in model 1.

Model 1B Substitute $r = f \cdot P_0 + d$ for equation (5d) in model 1. Model 1C Substitute $P \rightarrow l \cdot P / _$ \$ for rule (5e) in model 1.

Modified transform for model 1 $T(P) = (1/l) \cdot (P - r)$ where l < 1 in final position, l = 1 otherwise Model 2 Substitute T(P) = log((P - b) / (r - b))for equation (5a) in model 1.

- Zero asymptote:
- X_i+1 = s x X_i
- •
- X_i+1 r = s x (X_i -r)
- •
- F0 transform: converts measured F0 values into a new set of values that are assumed to behave in a simpler way coser to underlying phonetic control parameters for intonation.
- •
- Answer-background relation: taken to be constant ratio in transformed F0 values: k
- •
- Downstep relation: taken to be constant ratio in transformed F0 values: s
- •
- Lowering of F0 targets in utterance-final position; final lowering constant: I, utterance-final is bottom of entire system: b
- •
- Transformed value of F0 target P depends on pitch range; reference level for each phrase: r

•

- Transformed value of P is its distance above r
- ٠
- r constrained to remain is above final F0 value: b + d

Evaluation of stylised contours – 2 methods:

Difference between F0 and stylised contour

Difference between contours in perception test

From:

Demenko Grażyna, Wagner Agnieszka (2006). The Stylization of Intonation Contours. *Proceedings of Speech Prosody 3,* May 2-5, 2006, Dresden, Germany.

Figure 1: Sentence: In my opinion, the face of the lilac gentleman lacks something. From top to bottom of the picture: waveform, .lab, .syl and .break tiers, and the stylization window. The original F0 contour is marked by dotted black line and the stylized F0 contour in red line.

D&W 2006 stylisation model (SP3):					
IP → IE ⁺	$IE \in \{R, F, C\}$ IE parameters:				
$IE_i + SL_{i+1} + IE_{i+1}$	 Slope Fp (F0 at start of event) range of F0 change 				
IP: Intonation Phrase IE: Intonation Event SL: Straight Line	- shape coefficient of curve: $y = y^{\gamma}$ for 0 <x<1 $y = 2-(2-x)y^{\gamma}$ for 1<x<2< td=""></x<2<></x<1 				

Evaluation of stylised contours: Demenko & Wagner F, R, C curves PA PA 1.48 0.05 0,02 0,02 0.1 0.36 0,67 0.04 0.63 300H 200H 100H 2,6

Figure 1: Sentence: In my opinion, the face of the lilac gentleman lacks something. From top to bottom of the picture: waveform, .lab, .syl and .break tiers, and the stylization window. The original F0 contour is marked by dotted black line and the stylized F0 contour in red line.

$IP \rightarrow IE^+$ $IE \in \{R, F, C\}$ IE parameters: $=$ slope $=$ Fp (F0 at start of event) $=$ range of F0 change $=$ shape coefficient of curve: $y = y^{\gamma}$ for 0 <x<1< th="">Ines</x<1<>
SL: Straight Line $y = 2-(2-x)y^{\gamma}$ for $1 < x < 2$

Evaluation of stylised contours: Demenko & Wagner

Evaluation 1: goodness of fit

Compare F0 with stylised function with Normalised Mean Square Error:

$$NMSE(t) = \frac{\overline{(F_0(t_i) - Sty(t_i))^2}}{\overline{F_0(t)} \cdot \overline{Sty(t)}}$$

Accented syllable								
	Slope (Hz/s)	Fp (Hz)	Range (Hz)	bend	error			
median	58,51	112	14,2	1,51	0,01			
min	-357,5	70,1	<i>-96,8</i>	1	0			
max	401,7	176,7	93,7	9,549	0,64			
Post-accented syllable								
	Slope (Hz/s)	Fp (Hz)	Range (Hz)	bend	error			
median	-64,5	129	-13,1	1,05	0,001			
min	-529,4	65	-135,6	1	0			
max	364,7	208,5	86,6	9,549	0,25			

Table1. The range of variability of parameters describing accented and post-accented syllables.

Evaluation of stylised contours: Demenko & Wagner

Evaluation 2: perception test

1 (identical: F0 & Sty perceived as same)
2 (a bit different: small differences in pitch height (<10Hz) perceived between F0 & Sty (e.g. pitch too high at stylized phrase end), from microprosody, errors in F0 extraction or phone or syllable segmentation.
3 (very different: F0 & Sty differ significantly – different melody, from unrecognized accents (i.e. syllable accented but not labelled "A"; cf. also #2). Subjects could listen as often as necessary.

Result:

<i>n</i> =400	Test
Score 1:	256
Score 2:	68
Score 3:	76

After revision of stylisation criteria, items with score 3 re-tested: 30% still with score 3. From phonetic models to phonological models

Phonology: representation systems

- Reminder:
 - Tonetic
 - Conversation analysis
 - Levels
 - 4 levels + junctures: Pike
 - 2 levels + break indices: ToBI (Pierrehumbert)
 - Relations

http://mi.eng.cam.ac.uk/~pat40/examples.html

Phonology: representation systems

- Reminder:
 - Tonetic
 - Conversation analysis
 - Levels

I will leave the details of relating phonetics and phonology to your own research!

- 4 levels + junctures: Pike
- 2 levels + break indices: ToBI (Pierrehumbert)
- Relations

http://mi.eng.cam.ac.uk/~pat40/examples.html

Rank-Interpretation Architecture of Language

	Syntagmatic structures	Conceptual-intentional interpretation	Multimodal interpretation Auditory Visual		
classificatory relations: lemmata, incl. idioms from compositional rules CTANSE DIATOD A DIATOGNE CHANSE DHLASE DHLASE		dialogue act turns	dialogue and text prosody	greeting and turn gestures	
		narrative, inference			
		modality, predication, quantification, description iteration, nesting	intonation: phrasing, continuation, focus marking	structure indicating beat, iconic and deictic gestures	
ures as lexical choices	INFLECTED WORD	linear morphosyntax	phrase tone and accent	deictic gestures	
matic struct es between ally regular (iterative word-formation	word formation tone and accent	lexical iconic, metaphoric,	
Paradig choic and partis	MORPHEME PHONEME	form-meaning atoms coding atoms	tone and accent distinctive features	nonce gestures	