Phonology and Phonetics of Rhythm:

States and Times or Cycles and Frequencies?

Dafydd Gibbon

Bielefeld University Jinan University

13th Chinese Phonetics Conference Guangzhou, November 2018

In speech (and in music):

- 1) Rhythms are oscillations, not sequences of isochronous states
- 2) Rhythmic oscillations are essentially linear ('finite state')
- 3) Rhythms occur in time domains of different sizes, each of them linear
- 4) The time domains are associated with ranks of units of speech/language from discourse to phoneme

So rhythms appear to be hierarchical, but the hierarchy

- is layered
- has limited depth
- has linear layers with iterative cycles
- is not a general recursive hierarchy

Linear Layered Discourse Rhythms

57 seconds of a BBC news broadcast, from Aix-MARSEC corpus (A0101B)

Two Frequency zones:

- 1) Approximately 120 220 Hz
- 2) Approximately 300 400 Hz (on 'paratone' onsets)

Finite depth linear 2-cycle iterative layered structure

(FS, cf. Pierrhumbert, not a recursive hierarchy)

- Two independently motivated but structurally dependent linear layers (like hours & minutes on a clock)
- Each gradually declining and periodically resetting

13th Chinese Phonetics Conference, 2018 D. Gibbon, States and Times or Cycles and Frequencies

The Multilinear Rank Interpretation Model

The Multilinear Rank Interpretation Model

The Multilinear Rank Interpretation Model

The discourse dimension: people communicating with their multimodal rank interpretation architectures

13th Chinese Phonetics Conference, 2018

D. Gibbon, States and Times or Cycles and Frequencies

- 1. Rhythm Communities
- 2. Phonological cycles: abstract, iterative rhythm
- 3. Phonetic states: sequences of isochronous states as rhythm
- 4. Phonetic cycles: rhythm as oscillation:
 - Production as amplitude and frequency modulation
 - Perception as amplitude and frequency demodulation
- 5. Pitch cycles: the role of F0 in rhythm
 - AM and FM similarities
 - Some problems with F0 estimators (aka 'pitch trackers')
- 6. More roles of F0 in discourse rhythms

Rhythm Communities – a Selection

Conversation Analysis	Phonetic Annotation Analysis
Linguistic Analysis	Phonetic Signal Analysis

Rhythm Communities – a Selection

Conversation Analysis	Phonetic Annotation Analysis
 'Authentic' everyday dialogue data Ethnomethodology: task scenario Systematic but subjective judgments Focus on interpretation: discourse grammar: framing semantics: topic development pragmatics: speaker, addressee 	 Standardised reading data sentences stories (<i>The North Wind…</i>) Annotation: manual, semi-automatic syllables, feet, C or V chunks Focus on isochrony
Linguistic Analysis	Phonetic Signal Analysis
Constructed data paradigms Rules for verbal categories Abstract stress position patterns: • linear structures, grids • hierarchical structures, trees • words • sentences	 Smoothing models splines, polynomials Oscillation models production oriented perception oriented Amplitude Modulation Spectrum Frequency Modulation Spectrum

Rhythm Communities – a Selection

Phonetic Annotation Analysis Tree Structures Standardised reading data Linguistics: <u>deductive</u>, <u>top-down</u> sentences paradigmatic (classificatory) • stories (*The North Wind...*) syntagmatic (compositional) Annotation: manual, semi-automatic Phonetics: inductive, bottom-up syllables, feet, C or V chunks classificatory (CART etc.) Focus on isochrony compositional **Linguistic Analysis Phonetic Signal Analysis** Smoothing models Constructed data paradigms **Rules for verbal categories** • splines polynomials Abstract stress position patterns: Oscillation models linear structures, grids production oriented perception oriented • hierarchical structures, trees • words Amplitude Modulation Spectrum Frequency Modulation Spectrum sentences

Phonological Iteration as Abstract Oscillation:

Iterative intonation

Iterative tonal sandhi (Niger Congo)

Iterative tonal sandhi (Tianjin dialect)

Note: by 'cycle' I do not mean tone cycles in the paradigmatic , classificatory sense, but <u>syntagmatic</u>, compositional iterations

Pierrehumbert's regular grammar / finite state transition network

Niger-Congo Iterative Tonal Sandhi (the most general case)

At the most abstract level, just one node with H and L cycling around it.

From an allotonic point of view:

- 3 cycles
- 1-tape (1-level) transition network

Niger-Congo Iterative Tonal Sandhi (the most general case)

From an allotonic point of view:

- 3 cycles
- 2-tape (= 2-level) transition network

Niger-Congo Iterative Tonal Sandhi (the most general case)

From phonetic signal processing point of view:

- 3 cycles
- 3-tape (= 3-level) transition network

Tianjin Dialect Iterative Tonal Sandhi

Phonetics, the Search for Rhythm I

States and Times: the Isochrony Approach

1-dimensional2-dimensional3-dimensional

One-dimensional annotation mining of time-stamp durations

One-dimensional because the result of the analysis is a single scale. The results are all comparable to variance or standard deviation, but differ in detail.

For example, with the *nPVI*, subtraction is between neighbouring data in a moving window (so a kind of AMDF, Average Magnitude Difference Function), not between mean and data, thus factoring out tempo variations to some extent.

$Variance(x_{1n}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}$	(or Standard Deviation)
$PIM(x_{1n}) = \sum_{i \neq j} \left \log \frac{I_i}{I_j} \right $	where $I_{i,j}$ are intervals in a given sequence
$PFD(d_{1n}) = \frac{\sum_{i=1}^{n} \bar{d} - d_{i} }{\sum_{j=1}^{n} d_{j}} \times 100$	where <i>d</i> is typically the duration of a <i>foot</i>
$nPVI(d_{1n}) = \frac{\sum_{k=1}^{k-1} \frac{ d_k - d_{k+1} }{(d_k + d_{k+1})/2}}{n-1} \times 100$	<i>d</i> refers to duration of vocalic segment, syllable or foot, typically

Two-dimensional annotation mining of time-stamp durations

Two-dimensional because duration relations are represented in a z-scored scatter plot, not as a single scale.

Result, visualising the scale in two dimensions:

Mandarin: means are scattered relatively evenly around the centre English: e.g. *count(short-short) > count(long-long)*, not binary!

Wagner, Petra (2007). "Visualizing levels of rhythmic organisation." *Proc. International Congress of Phonetic Sciences, Saarbrücken 2007*, pp. 1113-1116, 2007

13th Chinese Phonetics Conference, 2018

D. Gibbon, States and Times or Cycles and Frequencies

Two-dimensional annotation mining of time-stamp durations

Three-dimensional because alternative trees are possible, depending on the algorithm settings:

- binary/nonbinary, lower/higher percolated
- related to phrasal and discourse patterns

Gibbon, Dafydd. 2006. "Time types and time trees: Prosodic mining and alignment of temporally annotated data". In: Stefan Sudhoff, et al., eds. *Methods in Empirical Prosody Research*. Berlin: Walter de Gruyter, pp. 281–209, 2006.

All these approaches

- are based on annotated time-stamps, not the signal
- model static durations
- use pairwise relations
- focus on isochrony, equal timing of durations
- completely ignore the essential property of *rhythm*, which is *alternation of units with approximately equal duration*
- in other words: oscillation

Phonetics, The Search for Rhythm II

Cycles and Frequencies: Oscillation Approaches

Rhythm Production as <u>Amplitude Modulation</u> (AM) Rhythmic Amplitude Envelope + Carrier Frequency

There are many studies of oscillation in production

I will concentrate on ...

Rhythm Perception as <u>Amplitude Demodulation</u> Rhythmic Amplitude Envelope – Carrier Frequency

Selected Work on Amplitude Envelope Demodulation Spectra

- [1] Cummins, Fred, Felix Gers and Jürgen Schmidhuber. "Language identification from prosody without explicit features." Proc. Eurospeech. 1999.
 - [2] He, Lei and Volker Dellwo. "A Praat-Based Algorithm to Extract the Amplitude Envelope and Temporal Fine Structure Using the Hilbert Transform." In: *Proc. Interspeech* 2016, San Francisco, pp. 530-534, 2016.
 - [3] Hermansky, Hynek. "History of modulation spectrum in ASR." Proc. ICASSP 2010.
 - [4] Leong, Victoria and Usha Goswami. "Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech." *PLoS One* 10(12), 2015.
 - [5] Leong, Victoria, Michael A. Stone, Richard E. Turner, and Usha Goswami. "A role for amplitude modulation phase relationships in speech rhythm perception." *JAcSocAm*, 2014.
 - [6] Liss, Julie M., Sue LeGendre, and Andrew J. Lotto. "Discriminating Dysarthria Type From Envelope Modulation Spectra." *Journal of Speech, Language and Hearing Research* 53(5):1246– 1255, 2010.
 - [7] Ludusan, Bogdan Antonio Origlia, Francesco Cutugno. "On the use of the rhythmogram for automatic syllabic prominence detection." *Proc. Interspeech*, pp. 2413-2416, 2011.
 - [8] Ojeda, Ariana, Ratree Wayland, and Andrew Lotto. "Speech rhythm classification using modulation spectra (EMS)." Poster presentation at the 3rd Annual Florida Psycholinguistics Meeting, 21.10.2017, U Florida. 2017.
- [9] Tilsen Samuel and Keith Johnson. "Low-frequency Fourier analysis of speech rhythm." Journal of the Acoustical Society of America. 2008; 124(2):EL34–EL39. [PubMed: 18681499]
- [10] Tilsen, Samuel and Amalia Arvaniti. "Speech rhythm analysis with decomposition of the amplitude envelope: Characterizing rhythmic patterns within and across languages." The Journal of the Acoustical Society of America 134, p. 628.2013.
- [11] Todd, Neil P. McAngus and Guy J. Brown. "A computational model of prosody perception." Proc. ICSLP 94, pp. 127-130, 1994.
 - [12] Varnet, Léo, Maria Clemencia Ortiz-Barajas, Ramón Guevara Erra, Judit Gervain, and Christian Lorenzi. "A cross-linguistic study of speech modulation spectra." JAcSocAm 142 (4), 1976–1989, 2017.

13th Chinese Phonetics Conference, 2018 D. Gibbon, States and Times or Cycles and Frequencies

Modulation Regularities – Maybe F0?

The Reality of Rhythm!

Amplitude Modulation, Demodulation and Envelope Spectrum

Amplitude Envelope Modulation Spectrum (AEMS, AMS, EMS) Frequency Zones13th Chinese Phonetics Conference, 2018D. Gibbon, States and Times or Cycles and Frequencies

Amplitude Demodulation and the Amplitude Envelope Spectrum

AM Spectrum and the AM Difference Spectrum

The Role of F0

If a spectrum can be derived from the **AM envelope**, why not derive a spectrum from the **FM track** and see whether they correlate?

Preliminary answer:

Yes, they do correlate to some extent, but not overwhelmingly strongly!

This is not very surprising, of course, since they are partly co-extensive locally and globally, though locally not too similar.

I will look at both AM and FM spectra.

AM and FM Demodulation

AM and FM Demodulation

36
AM and FM Demodulation and Spectrum Analysis: Calibration

Correlation AMS:FMS=0.26

AM & FM signals and spectra: sine-200x5x12

13th Chinese Phonetics Conference, 2018

Envelope Demodulation: Extending to Discourse Spectra

13th Chinese Phonetics Conference, 2018

Envelope Demodulation: Extending to Discourse Spectra

Extending to Discourse Spectra: English Genres

Extending to discourse spectra: English-Mandarin

13th Chinese Phonetics Conference, 2018

Rhythms in Syntagmatic, Compositional Spectral Trees

AM and FM Demodulation and Spectral Tree Induction

AM and FM Demodulation and Spectral Tree Induction

13th Chinese Phonetics Conference, 2018

13th Chinese Phonetics Conference, 2018

AM and FM Demodulation and Spectral Tree Induction

46

Rhythms in Paradigmatic, Classificatory Spectral Trees

Consistency of AM Spectra: Rhythm Classification

Data:

Chunks from "The North Wind and the Sun"

Male, English: 40s

Female, Mandarin: 40s

Method:

Comparison of non-overlapping adjacent 5s audio chunks

- offsets into recording: 0, 5, 10, 15, 20, 25, 30, 35
- AEMS for each chunk
- Inter-speaker comparison (AEMS pointwise means, r=0.82)
- Classification by hierarchical similarity / distance:
 - Pearson Distance: 1 r, range $0 \dots 2$
 - comparison of 7 classifiers
 - similar classification methods used in dialectometry, stylometry, language typology

Consistency of Spectra: Rhythm Classification

Consistency of Spectra: Rhythm Classification

Discourse Rhythms: Long FM contours

Thesis: in evolution,

- frequency modulation and rhythm came first
 - emotional cries
 - turn-taking came before grammar, Levinson, "Turn-taking in Human Communication – Origins and Implications for Language Processing", 2015

Note: in infant speech,

- frequency modulation and rhythm also come first
 - emotional cries
 - Wermke, Sebastian-Galles
 - turn-taking

cf. the 'bootstrapping' literature

the infant 'twin-talk' videos on YouTube $\ \odot$

Discourse Rhythms: Long FM contours

13th Chinese Phonetics Conference, 2018

Discourse Rhythms: Long FM contours

13th Chinese Phonetics Conference, 2018

But there are Methodological Problems in F0 / Pitch estimation

1. Terminology:

- articulation rate (production)
- F0 (acoustic transmission)
- pitch (perception)
- 2. Measurement:
 - F0 estimation implementations yield slightly different results
 - Autocorrelation
 - Normalised Cross-correlation
 - Average Magnitude Difference Function (AMDF)
 - FFT peak detection
 - Cepstrum
 - Environment differences
 - Preprocessing: low-pass filter; centre-clipping
 - Postprocessing: moving median

RAPT (Robust Algorithm for Pitch Tracking)

David Talkin

13th Chinese Phonetics Conference, 2018

RAPT (Python emulation)

Daniel Gaspari

13th Chinese Phonetics Conference, 2018

Reaper (Robust Epoch And Pitch EstimatoR)

David Talkin

13th Chinese Phonetics Conference, 2018

Praat

Paul Boersma

13th Chinese Phonetics Conference, 2018

YIN (as opposed to YANG, Python emulation) Patrice Guyot

13th Chinese Phonetics Conference, 2018

YAAPT (Yet Another Algorithm for Pitch Tracking, Python emulation)

Bernardo J. B. Schmitt

13th Chinese Phonetics Conference, 2018

SWIPE (Square Wave Inspired Pitch Estimator, Python emulation)

Disha Garg

13th Chinese Phonetics Conference, 2018

F0 – Pitch: Methodological Problems

1. Terminology:

2. M

- articulation rate (production)
- F0 (acoustic transmission)

nitah (naraantian)

So let's do somthing about it

- do-it-yourself F0 estimation
- with full control over all parameters.
- Average Magnitude Difference Function (AMDF)
- FFT peak detection
- Cepstrum
- Environment differences
 - Preprocessing: low-pass filter; centre-clipping
 - Postprocessing: moving median

D. Gibbon, States and Times or Cycles and Frequencies

results

13th Chinese Phonetics Conference, 2018

F0 – Pitch: A Constructive Do-It-Yourself Strategy

Time domain:

AMDF

A kind of auto-correlation, but with subtraction minima not correlation maxima

Preprocessing:

- centre-clipper
- low-pass filter
 Postprocessing:
- moving median

Simple: no

- voice detection
- candidate weighting

(code on GitHub)

Frequency domain:

FFT+spectrum peak-picking

Finding the lowest frequency spectral peak in the Fourier transform

Preprocessing:

- centre-clipper
- low-pass filter Postprocessing:
- moving median

Simple - no

- voice detection
- candidate weighting

(code on GitHub)

13th Chinese Phonetics Conference, 2018

How about AMDF (Average Magnitude Difference Function, Python)

Dafydd Gibbon

13th Chinese Phonetics Conference, 2018

FFTpeak (Simple F0 Tracker, Python)

Dafydd Gibbon*

* inspired by a snippet from 'Jonathan', gist.github.com/endolith/255291

13th Chinese Phonetics Conference, 2018

Comparing F0 estimators with RAPT as 'gold standard'

Correlation
0,8902
0,8657
0,9096
0,8605
0,9096
0,8409
0,8352
0 8016

Benchmark against standard F0 estimators

Encouraging for FFTpeak (problems remain, of course):

- correlation ignores some relevant properties such as overall difference in pitch height
- (slightly positively biased) idea of the relationship
- not enough test data
- not as robust as RAPT
- but suggests that RAPT is fit for purpose

RAPT (Robust Algorithm for Pitch Tracking)

David Talkin

13th Chinese Phonetics Conference, 2018

Continuing with FM anyway: Emotive Rhythms

Thesis 1:

In the evolutionary time domain: emotive 'animal' modulations came before structural modulations

Thesis 2:

In the beginning was "Wow!" (Or "Aaah!")

Thesis 3:

Or the wolf whistle (it's not simply 'cat-calling')

Thesis 4:

Other primates wowed, aahed and whistled first – we humans continued the custom

Is this why in some societies there is a taboo on whistling?

Many Uses of Frequency Modulation in Discourse Rhythms

13th Chinese Phonetics Conference, 2018 D. Gibbon, States and Times or Cycles and Frequencies

Alibaba FM

13th Chinese Phonetics Conference, 2018

Emotive Exclamations

Emotive Exclamations

FM Rhythms in Teleglossia

Thank you! 谢谢!