Quantifying and Correlating Rhythm Formants in Speech

Dafydd Gibbon
Bielefeld University, Germany
Jinan University, Guangzhou, China

Andrea Lee
Guangdong University of Finance, Guangzhou, China
Overview

Part One: Problem and Proposal

Part Two: Frameworks for describing Speech Rhythm

Part Three: A Generalised Theory of Formants

Part Four: Rhythm Formants in Public Discourse

Summary, Conclusion and Outlook
Part One: Problem and Proposal
The Rhythm Challenge

1) Rhythms are directly observable events

2) Definition:
 1) Alternating pattern
 2) specific duration
 3) repeated (typically > 3 times)

3) Corollaries – can be described as:
 1) Iteration model (cf. finite state models)
 2) Alternating hierarchy (cf. generative and metrical models)
 3) Equal durations (cf. isochrony metrics)
 4) Oscillation (cf. coupled oscillator and entrainment approaches)

4) Issues with current approaches:
 1) Phonetics: isochrony, no oscillation, no general theory, annotation needed
 2) Linguistics: general theory, but controversy about physical correlates
 3) Acoustics: mainly clinical diagnosis and language identification
 4) All approaches: no account of slower discourse rhythms
The Rhythm Challenge

1) Rhythms are directly observable events

2) Definition:
 1) Alternating pattern
 2) specific duration
 3) repeated (typically > 3 times)

3) Corollaries – can be described as:
 1) Iteration model (cf. finite state models)
 2) Alternating hierarchy (cf. generative and metrical models)
 3) Equal durations (cf. isochrony metrics)
 4) Oscillation (cf. coupled oscillator and entrainment approaches)

4) Issues with current approaches:
 1) Phonetics: isochrony, no oscillation, no general theory, annotation needed
 2) Linguistics: general theory, but controversy about physical correlates
 3) Acoustics: mainly clinical diagnosis and language identification
 4) All approaches: no account of slower discourse rhythms

So here is the challenge:

• account for rhythm as oscillation
• account for slower discourse rhythms
• account for rhythm variation
• embed in a general theory
• implement automatic rhythm analysis
A Proposal: Rhythm Formant Theory, Rhythm Formant Analysis

A theory of rhythm which

- is language-independent
- takes rhythm as oscillation into account
 • and therefore *a fortiori* isochrony
- relates to a range of low frequency rhythms:
 • syllable rhythms, 3...12 Hz
 • slower word/foot rhythms, 1...3 Hz
 • slower phrase rhythms, 0.5...1 Hz
 • slower discourse rhythms, < 0.2 Hz
- has a straightforward implementation
Part Two: Frameworks for describing speech rhythm

1) Typology of frameworks

2) A specific case: selected isochrony metrics
Typology of Rhythm Description Frameworks

- **linguistics inside (intuition-based)**
 - linguistic structure (intuition-based)
 - recursive trees
 - metrical grids
 - finite state cycles
 - Chomsky
 - Halle
 - Liberman
 - Prince
 - ...
 - Pierrehumbert (intonation)
 - Gibbon
 - Jansche (tone)
 - ...
 - Jassem
 - Roach
 - Scott & al.
 - Low & Grabe
 - Nolan & Asu
 - ...
- **linguistic-phonetic scale (annotation-based isochrony metrics)**
 - production models (coupled oscillators)
 - perception models (envelope spectrum)
 - diagnostic models
 - formant models
 - Cummins
 - Port
 - Barbosa
 - ...
 - Cummins
 - Todd
 - Tilsen
 - Arvaniti
 - Lotto
 - ...
 - Gibbon
 - ...

- **physics inside (oscillation-based)**
 - perception models
 - Chomsky
 - Halle
 - Liberman
 - Prince
 - ...
 - Pierrehumbert (intonation)
 - Gibbon
 - Jansche (tone)
 - ...
 - Jassem
 - Roach
 - Scott & al.
 - Low & Grabe
 - Nolan & Asu
 - ...
 - Cummins
 - Port
 - Barbosa
 - ...
 - Cummins
 - Todd
 - Tilsen
 - Arvaniti
 - Lotto
 - ...
 - Gibbon
 - ...

A popular Isochrony Metric: Pairwise Variability Index

For a vector $D = (d_1, \ldots, d_n)$ of annotated durations:

$$rPVI(D) = \left(\sum_{k=1}^{n-1} |d_k - d_{k+1}| \right) / (n - 1)$$

$$nPVI(D) = 100 \times \left(\sum_{k=1}^{n-1} \left| \frac{d_k - d_{k+1}}{(d_k + d_{k+1})/2} \right| \right) / (n - 1)$$
A popular Isochrony Metric: Pairwise Variability Index

Strangely, the formal and empirical foundations of the PVI are not questioned by its practitioners. So let’s take a quick look...

For a vector $D = (d_1, \ldots, d_n)$ of annotated durations:

$$r_{PVI}(D) = \sum_{k=1}^{n-1} \frac{|d_k - d_{k+1}|}{(n-1)}$$

$$n_{PVI}(D) = 100 \times \left(\sum_{k=1}^{n-1} \left| \frac{d_k - d_{k+1}}{(d_k + d_{k+1})/2} \right| \right) / (n-1)$$

Modifications of standard distance measures:
- Manhattan Distance (r_{PVI})
- Canberra Distance (n_{PVI})
A popular Isochrony Metric: Pairwise Variability Index

$rPVI$: linear scale, syllables

Isochrony metric $rPVI$

$nPVI$: non-linear scale, syllables

Isochrony metric $nPVI$
A popular Isochrony Metric: Pairwise Variability Index

absolute value: ambiguous index, same for alternating and non-alternating sequences
Therefore:

\[rPVI(D) = \sum_{k=1}^{n-1} |d_k - d_{k+1}| / (n-1) \]

\[nPVI(D) = 100 \times \left(\sum_{k=1}^{n-1} \left| \frac{d_k - d_{k+1}}{(d_k + d_{k+1})/2} \right| \right) / (n-1) \]

Language-dependent Filtered by the annotation procedure.

The distance measures are binary:
- Manhattan Distance (\(rPVI\))
- Canberra Distance (\(nPVI\))
2-dimensional isochrony models

Asu & Nolan:

comparison of PVI for foot X syllable in Estonian X English
foot results are similar
syllable results are different

Wagner:

from the sequence of durations \(D = (d_1, \ldots, d_n) \)
plot z-scored scatter plot quadrants subsequences
\((d_1, \ldots, d_{n-1}) \times (d_2, \ldots, d_n)\)
2-dimensional isochrony models: Wagner

Mandarin

Note the even distribution around the mean.

English

Note the skewed distribution with many shorter than average syllables.

Pyrrhic (short-short) and Spondaic (long-long) counts:

- **Mandarin:** ratio approximately 1:1
- **English:** ratio approaches 2:1
2-dimensional isochrony models: Wagner

Farsi

Note the relatively even distribution around the mean.

English

Note the skewed distribution with many shorter than average syllables.

Pyrrhic (short-short) and Spondaic (long-long) counts:

Farsi: ratio approaches 1:1

English: ratio approaches 2:1
Summary of issues with isochrony metrics

Isochrony metrics are popular, but ...

• no adequate explanation for
 – rhythm
 – rhythm variation for the same speaker / dialect / language

• too little:
 – isochrony but not oscillation
 – only binary patterns
 but rhythms can be ternary, quaternary, etc., or even unary

• too much:
 – indices can be ambiguous for alternating and non-alternating values (because absolute not actual differences)

• dependent on human annotation decisions
• one-dimensional metrics with single value
• neither a descriptive model nor a predictive theory
Part Three: From Formants to Rhythm Formants

language-independent
automatic identification of speech rhythms
in syllables, words, discourse
embedded in a general formant theory
Rhythms as Oscillations – Oscillations as Rhythms
Frequency Zones and Rhythm Formants

Cf. the classic of Musical Relativity Theory / Overtone Theory in musicology:
Rhythms as Oscillations – Oscillations as Rhythms

Frequency Zones and Rhythm Formants

phrase, discourse ‘formants’
word, foot ‘formants’
syllable ‘formants’
tone, accent ‘formant’
harmonic / overtone formants

RHYTHM

PITCH

TIMBRE
VOICE QUALITY
Rhythms as Oscillations – Oscillations as Rhythms
Frequency Zones and Rhythm Formants

TEMPORAL DOMAIN

whole utterance

phrase, discourse
word, foot
syllable

‘formants’
‘formants’
‘formants’

200ms
400ms

20ms
2ms

0 1Hz 10Hz 100Hz 1kHz 10kHz

RHYTHM PITCH TIMBRE

VOICE QUALITY

LPSS Taipei 2019
D. Gibbon: Quantifying and Correlating Rhythm Formants in Speech
High Frequency Formants (HF Formants)

1. Formants are the resonant frequencies of the vocal tract.
2. Formants are distinctive frequency components of speech.

HF formant structures, f>600Hz signify vocal tract configurations.

[a] in “five”: 1st, 2nd, 3rd formants

[i] in “five”: 1st, 2nd, 3rd formants
Low Frequency Formants (LF Formants)

1. Formants are the resonant frequencies of the vocal tract. **X**
2. Formants are distinctive frequency components of speech. **✓**

LF formant structures, f<20Hz, signify rhythms, e.g. a 4.3Hz LF formant may signify a syllable sequence of mean duration 235ms.

A clear case to illustrate the method:
- fast regular rhythmical counting to 30
Low Frequency Formants (LF Formants)

1. Formants are the resonant frequencies of the vocal tract. **X**
2. Formants are distinctive frequency components of speech. ✔

LF formant structures, $f<20\text{Hz}$, signify rhythms
e.g. a 4.3Hz LF formant may be a syllable sequence of mean
duration 235ms.
Low Frequency Formants (LF Formants)

Non-normalised LF spectrum

Low Frequency Amplitude Envelope Spectrum [file: one-to-thirty-11s_16k]

Normalised LF spectrum with ‘rhythm bars’

Speech Modulations and Models V04 2019-04-18 DG [file: one-to-thirty-11s_16k]
Overview of Rhythm Formant Analysis Dataflow

Input: WAV

Output:
- Spectrum + rhythm bars
- Formant diagram diagram

1. Envelope extraction
2. Low frequency spectral analysis
3. High magnitude frequency selection
4. Spectrum normalisation
5. Magnitude-weighted binned spectral distribution as histogram
Part Four: Discourse Rhythms in Public Speaking

Campaign Speeches of Donald Trump (2016) for a study of impoliteness (Li 2017)

An exploratory pilot study
Case Study on Impoliteness

• Problem:
 – Which method of analysis to use?
 – Experimental elicitation of impoliteness is problematic
 – Individual judgments of politeness are problematic

• Solution:
 – Phonetic corpus analysis
 – Opinion survey, classification of results

• Problem:
 – Where to find real impoliteness ‘in the wild’?

• Solution:
Case Study on Impoliteness

• Problem:
 – Which method of analysis to use?
 – Experimental elicitation of impoliteness is problematic
 – Individual judgments of politeness are problematic

• Solution:
 – Phonetic corpus analysis
 – Opinion survey, classification of results

• Problem:
 – Where to find real impoliteness ‘in the wild’?

• Solution:
 – Election campaign speeches by Donald Trump
Rhythm Formant Analysis (RFA)

1. Categorise each of 10 utterances linguistically
 e.g. genre categories *narrative* or *non-narrative*
2. Apply Rhythm Formant Analysis to each utterance.
3. Calculate pairwise distances (Cosine, Manhattan, ...)
 • of low frequency spectrum
 • based on the distance measures
 • display as a dendrogram
4. Generate a hierarchical classification
 • based on the distance measures
 • display as a dendrogram
5. Assign linguistic categories to dendrogram end nodes
6. Agreement → reasonable agreement
Narrative style: regular rhythmical syllabic timing
Narrative style: regular rhythmical syllabic timing

SYLLABIC RHYTHM
Face-threatening style: short syllables, regular pauses

Hybrid outlier: very short utterance
Non-narrative style: phrase rhythms with pauses

Hybrid outlier: very short utterance

PHRASE
SYLLABLE
Exploratory results for pilot case study

<table>
<thead>
<tr>
<th>Approximate language unit correspondence</th>
<th>Narrative (1, 3, 5, 7, 8, 10)</th>
<th>Non-narrative (2, 4, 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak syllables</td>
<td>approx. 11 Hz</td>
<td>approx. 11 Hz</td>
</tr>
<tr>
<td>strong syllables</td>
<td>approx. 4.5 Hz</td>
<td></td>
</tr>
<tr>
<td>words/feet</td>
<td>approx. 2 Hz</td>
<td></td>
</tr>
<tr>
<td>pause units</td>
<td></td>
<td>< 2Hz</td>
</tr>
</tbody>
</table>

Approximate language unit correspondence determined by comparison with annotations and automatic TGA (Time Group Analyser) analysis.
Does automatic classification correspond to intuitive categories?
Classification based on Cosine Distance, Rhythm Formants and genre categories superimposed.

Narrative
Narrative
Non-narrative
Non-narrative
Narrative
Narrative
Narrative
Narrative
Classification based on Manhattan Distance, Rhythm Formants and genre categories superimposed.

Narrative
Narrative
Non-narrative
Narrative
Narrative
Non-narrative
Non-narrative
Narrative
Summary, Conclusion and Outlook
Summary

- Isochrony metric approaches
 - issues with isochrony metrics
 - \(rPVI \) and \(nPVI \) as modified distance metrics
 - Wagner’s 2-dimensional z-scored scatter plot quadrants
- Generalisation of formants to Rhythm Formant Theory
 - high frequency formants (voiced segments)
 - low frequency formants (rhythms)
- Rhythm Formant Analysis, case study: public speaking

- More specific issues are discussed in more detail in the paper, including:
 - the role of F0 / ‘pitch’ in rhythm patterning
 - other interpretations of the functionality of rhythms
Conclusion

Rhythm Formant Theory is ...
- language independent but linguistically interpretable
- oscillation-based
- perception-oriented
- explanatory and predictive RHYTHM theory, accounts for
 - relations between acoustic frequency ranges and language units
 - rhythmic variation in speech styles, genres, dialects, languages

Rhythm Formant Analysis ...
- has a straightforward implementation
- permits fast analyses of case studies or large databases

Claim:
- potentially a versatile and future-oriented new paradigm
Outlook

• Research programme
 – Moving window for rhythm variation
 – Association with linguistic annotations
 – Validation with larger ‘clear case’ data sets
 – Application to data from different varieties:
 • genre: reading, public speaking, conversation, …
 • gender
 • age
 • dialects
 – Application to language typology data
Many thanks for your time and attention!