PHONETICS: PRAAT III

MELODY: FUNDAMENTAL FREQUENCY (F0)

Dafydd Gibbon

Bielefeld University, Germany

Jinan University, Guangzhou, 2022-03-07

PRAAT: BASIC FUNCTIONALITY

- 1. Input:
 - recording speech from microphone or other sources
 - reading from files

2. Methods:

- waveform selection and analysis
- spectral analysis
- transcription and annotation of speech
- frequency and intensity analysis

3. Output:

- saving speech files
- saving files with analysis results:
 - spectral information
 - annotations (TextGrid files)
 - fundamental frequency

2022-02-28, JNU, Guangzhou

PHONETICS: PRAAT III – 'PRACTICAL PRAAT'

The week before last:

- General introduction
- Overview of basic Praat functionality
- Creation of vowel formant charts

Last week, speech timing and rhythm:

- recording speech data
- annotating speech data
- extracting duration information from a recording, using Praat
- transferring Praat data to a spreadsheet (Excel, LibreOffice Calc, etc.)
- analysing speech timing

This week, speech melody:

- extracting fundamental frequency information from a recording
- analysing speech melody

I assume you have Praat (http://www.praat.org) and spreadsheet software.

OLD HOMEWORK ASSIGNMENT

Record Chinese vowels.

Identify F1 and F2 frequencies of the vowels.

Make a spreadsheet chart of F1 X F2 for the monophthongs (simple vowels).

Method 1: locate the formants in the spectrogram.

Method 2: show and locate the formants in the spectrogram.

Method 3: make a spectral slice and locate the formants.

Method 4: use the Praat formant frequency functions.

Classwork:

In each spectrum,

- 1. identify the fundamental frequency,
- 2. identify the frequency of F1,

3. identify the frequency of F2,

Chinese Monophthongs: measurements

	Mid formar	nt values		Mean formant values		
Labels	F1	F2	Labels	F1	F2	
a	696	1236	a	674	1225	
0	467	1023	0	462	978	
е	451	1236	е	444	1245	
i	255	2428	i	260	2392	
u	321	811	u	311	796	
ü (y)	239	2199	ü	254	2148	

Hint: Look at the Formant menu in the Praat Edit window.

Chinese Monophthongs: visualisation

Chinese monophthongs (data: Blake, measurements, graphics: DG) Central formant values (spectrum win 0.05, formant win 0.025) 3000 2500 ü 📃 2000 1500 ស e 🔳 a 0 1000 u 🔳 500 0 200 300 400 500 600 700 800 F1 Chinese monophthongs (Data: Blake, measurements, graphics DG)

Mean formant values (spectrum win 0.05, formant win 0.025)

Chinese Monophthongs: visualisation

Chinese monophthongs (data: Blake, measurements, graphics: DG)

Central formant values (spectrum win 0.05, formant win 0.025)

The F1-F2 formant triangle corresponds approximately to the shape of the IPA vowel chart: F1: high-low F2: front-back

Chinese Monophthongs: visualisation, similarity to IPA vowel chart

to the right represents a rounded vowel.

The F1-F2 formant triangle corresponds approximately to the shape of the IPA vowel chart: F1: high-low F2: front-back

Chinese Monophthongs: visualisation, similarity to IPA vowel chart

Mean formant values (spectrum win 0.05, formant win 0.025)

The F1-F2 formant triangle corresponds approximately to the shape of the IPA vowel chart: F1: high-low F2: front-back

Chinese Monophthongs: visualisation, similarity to IPA vowel chart

Chinese Monophthongs: visualisation, similarity to IPA vowel chart

2022-02-28, JNU, Guangzhou

Today the weather is fine. I will go for a run. Then I will chill.

- 1. English:
 - 1. Record the short English passage shown above.
 - 2. Annotate the syllables.
 - 3. Convert the TextGrid to CSV and find the nPVI using TGA.
- 2. Translate the passage into Chinese.
 - 1. Record the passage.
 - 2. Annotate the syllables.
 - 3. Convert the TextGrid to CSV and find the nPVI using TGA.
- 3. What conclusions do you draw from the nPVI values?

Today the weather is fine. I will go for a run. Then I will chill.

English

xmax =					
0.6143557529147997	intervals [10]:	intervals [17]:	to	0.614	0.753
text = "_"	xmin = 2.904153769613651	xmin =			
intervals [2]:	xmax = 3.0337623013596824	4.515600576114026	day	0.804	1.248
xmin =	text = "I"	xmax =	the	1.248	1.404
0.6143557529147997	intervals [11]:	4.846024751756507	wea	1.404	1.612
xmax =	xmin = 3.0337623013596824	text = "then"	ther	1.612	1.723
0.7534295766109449	xmax = 3.2535628847874984	intervals [18]:			
text = "to"	text = "will"	xmin =	is	1.723	1.888
intervals [3]:	intervals [12]:	4.846024751756507	fine	1.888	2.545
xmin =	xmin = 3.2535628847874984	xmax =		2.545	2.904
0.7534295766109449	xmax = 3.4347289680263495	5.070082369386892	Ī		
xmax =	text = "go"	text = "l"	—	2.904	3.033
1.2489799828845654	intervals [13]:	intervals [19]:	will	3.033	3.253
text = "day" intervals [4]:	xmin = 3.4347289680263495	xmin =		3.253	3.314
xmin =	xmax = 3.6373408184609684 text = "for"	5.070082369386892 xmax =	_	3.314	3.434
1.2489799828845654	intervals [14]:	5.298674976151819	go		
xmax =	xmin = 3.6373408184609684	text = "will"	for	3.434	3.637
1.404039303557279	xmax = 3.7460421979016334	intervals [20]:	а	3.637	3.746
text = "the"	text = "a"	xmin =	run	3.746	4.149
intervals [5]:	intervals [15]:	5.298674976151819	run		
xmin =	xmin = 3.7460421979016334	xmax =	_	4.149	4.515
1.404039303557279	xmax = 4.1495326953506115	5.939352446862325	then	4.515	4.846
xmax =	text = "run"	text = "chill"		4.846	4.927
1.6128433687831145	intervals [16]:	intervals [21]:	Ī	4.927	5.07
text = "wea"	xmin = 4.1495326953506115	xmin =	—		
intervals [6]:	xmax = 4.515600576114026	5.939352446862325	will	5.07	5.298
xmin =	text = "_"	xmax =		5.298	5.358
1.6128433687831145		6.8310204081632655		5.358	5.939
xmax =		text = "_"	UNITE	5.550	5.555
1.7239425727702649					
text = "ther"					
intervals [7]:				γ / (ab	araat

Praat TextGrid file format

CSV (character separated values) spreadsheet and database format

In this case, TSV (tab separated values)

2022-02-28, JNU, Guangzhou

intervals [1]:

xmin = 0

xmin = 1.7239425727702649

xmax = 1.888553391684702 text = "is"

> intervals [8]: xmin =

1.888553391684702 xmax = 2.545889627984778 text = "fine" intervals [9]:

xmin = 2.545889627984778

xmax = 2.904153769613651 text = " "

English: Duration properties (without pauses)

Chinese: Duration properties (without pauses)

Attributes	Values	Attributes	Values	Attributes	Values	Attributes	Values
<i>n</i> :	17	intercept:	203.863	<i>n</i> :	18	intercept:	199.345
min:	109	slope:	6.48	min:	98	slope:	1.397
max:	657	std:	164.172	max:	292	std:	59.396
mean:	255.71	coeff var (%):	64.204	mean:	211.22	coeff var (%):	28.12
median:	203.0	nPVI:	72	median:	210.0	nPVI:	41
mean rate:	3.91	rPVI:	199	mean rate:	4.73	rPVI:	82
median rate:	4.93	100*rPVI/med:	98	median rate:	4.76	100*rPVI/med:	39
total:	4347	nPVI*med/100:	146	total:	3802	nPVI*med/100:	86
range:	548			range:	194		

Today the weather is fine. I will go for a run. Then I will chill.

xmax =	interrupts [10]	interrela [47].			
0.6143557529147997	intervals [10]:	intervals [17]:	to	0.614	0.753
text = "_"	xmin = 2.904153769613651	xmin =	day	0.804	1.248
intervals [2]:	xmax = 3.0337623013596824	4.515600576114026	•	1.248	
xmin = 0.6143557529147997	text = "I"	xmax =	the		1.404
	intervals [11]:	4.846024751756507	wea	1.404	1.612
xmax = 0.7534295766109449	xmin = 3.0337623013596824	text = "then"	ther	1.612	1.723
0.7534295766109449 text = "to"	xmax = 3.2535628847874984	intervals [18]:		1.723	1.888
	text = "will"	xmin =	is		
intervals [3]: xmin =	intervals [12]:	4.846024751756507	fine	1.888	2.545
0.7534295766109449	xmin = 3.2535628847874984	xmax =		2.545	2.904
0.7534295700109449 xmax =	xmax = 3.4347289680263495 text = "go"	5.070082369386892 text = "I"	Ī	2.904	3.033
1.2489799828845654	0				
text = "day"	intervals [13]: xmin = 3.4347289680263495	intervals [19]: xmin =	will	3.033	3.253
intervals [4]:	xmax = 3.6373408184609684	5.070082369386892	_	3.253	3.314
xmin =	text = "for"	xmax =	go	3.314	3.434
1.2489799828845654	intervals [14]:	5.298674976151819	-		
xmax =	xmin = 3.6373408184609684	text = "will"	for	3.434	3.637
1.404039303557279	xmax = 3.7460421979016334	intervals [20]:	а	3.637	3.746
text = "the"	text = "a"	xmin =	run	3.746	4.149
intervals [5]:	intervals [15]:	5.298674976151819	i an		
xmin =	xmin = 3.7460421979016334	xmax =	<u> </u>	4.149	4.515
1.404039303557279	xmax = 4.1495326953506115	5.939352446862325	then	4.515	4.846
xmax =	text = "run"	text = "chill"		4.846	4.927
1.6128433687831145	intervals [16]:	intervals [21]:	Ī	4.927	5.07
text = "wea"	xmin = 4.1495326953506115	xmin =	_		
intervals [6]:	xmax = 4.515600576114026	5.939352446862325	will	5.07	5.298
xmin =	text = "_"	xmax =		5.298	5.358
1.6128433687831145		6.8310204081632655		5.358	5.939
xmax =		text = "_"	UNITE	5.550	5.555
1.7239425727702649					
text = "ther"					
intervals [7]:				γ / (ab	oroot

Praat TextGrid file format

CSV (character separated values) spreadsheet and database format

In this case, TSV (tab separated values)

2022-02-28, JNU, Guangzhou

intervals [1]:

xmin = 0

xmin = 1.7239425727702649

xmax = 1.888553391684702 text = "is"

> intervals [8]: xmin =

1.888553391684702 xmax = 2.545889627984778 text = "fine" intervals [9]:

xmin = 2.545889627984778

xmax = 2.904153769613651 text = " "

English: Duration properties (without pauses)

Chinese: Duration properties (without pauses)

Attributes	Values	Attributes	Values	Attributes	Values	Attributes	Values
<i>n</i> :	17	intercept:	172.843	<i>n</i> :	19	intercept:	153.132
min:	72	slope:	3.24	min:	67	slope:	0.64
max:	401	std:	99.572	max:	318	std:	65.903
mean:	198.76	coeff var (%):	50.095	mean:	158.89	coeff var (%):	41.476
median:	213.0	nPVI:	71	median:	148.0	nPVI:	43
mean rate:	5.03	rPVI:	138	mean rate:	6.29	rPVI:	69
median rate:	4.69	100*rPVI/med:	65	median rate:	6.76	100*rPVI/med:	47
total:	3379	nPVI*med/100:	151	total:	3019	nPVI*med/100:	64
range:	32			range:	251		

- 1. The mean rate of the Chinese version (4.8) is higher than that of the English version (3.91), which indicates that the fluency if higher when I speak Chinese.
- 2. When speaking English, the syllable duration seems to vary more drastically, while in Chinese, every syllable duration varies within a range without too drastic change.

To some extent this can be explained by the prosodic feature of English and Chinese: Chinese is a syllable-timed language, where each syllable has a roughly same duration, and each character is an independent syllable which enjoys a high degree of individuality. ...

English is a stress-timed language, where syllables between each stress have a roughly same duration. In English each word or syllable is at the disposal of the whole sentence, and it is in this way that various weakening and liaison come into being.

Additional comments:

- English also has a distinction between <u>strong syllables</u>, with complex structure (*streets*, /stri:ts/, 6 phonemes, and <u>weak syllables</u> (*walking*, *undecided*)
- The strong syllables may have lexical stress.
- Any syllable, including lexically unstressed syllables, strong or weak, may be stressed in a contrastive or emphatic context.
- This distinction determines a rhythmic alternation between stressed strong syllables and unstressed weak syllables.

$$nPVI(D) = 100 * \sum_{i=2}^{n} \left| \frac{(d_i - d_{i-1})}{(d_i + d_{i-1})/2} \right| / n, \text{ for } D = (d_1, \dots, d_n)$$

Description:

100 multiplied by the average normalised duration difference between two neighbouring durations (for example, of syllables).

The duration difference is the difference between two neighbouring durations.

The duration difference divided by the average of the two durations is the normalised duration difference.

A spreadsheet file with examples of calculations with durations, including the nPVI (normalised Pairwise Variability Interval) is on the class website.

You can find out more in my open access article in JIPA (the Journal of the International Phonetic Association):

https://www.cambridge.org/core/journals/journal-of-the-international-phonetic-association/article/rhythms-of-rhythm/320466201A281543DA7768741DB99B7D

MODULATION

HOW INFORMATION IS CONVEYED BY SPEECH

2022-02-28, JNU, Guangzhou

D. Gibbon: MA Linguistics

25/47

MODULATION: THE SOURCE-FILTER MODEL OF VOWELS

MODULATION

airflow

Consonants are different kinds of obstruction of the airflow.

2022-02-28, JNU, Guangzhou

MODULATION

airflow

Consonants are different kinds of obstruction of the airflow.

2022-02-28, JNU, Guangzhou

FREQUENCY MODULATION: TRY IT OUT ...

- 1. Carrier signal in the larynx: sing "Aaaaah!", on one note!
- Frequency modulation: sing a melody with "Aaaaah!" The frequency of the carrier signal increases and decreases in order to convey information:
 - in **English**, for example:
 - pitch accent: marking stressed, contrastive, emphatic syllables
 - final rise or fall: final/non-final; asking questions; making statements
 - expressing involvement or detachment (inclination, declination; register change)
 - in Mandarin, for example:
 - phonemic lexical tone: mā, má, mǎ, mà
 - morphemic lexical tone: ô!
 - intonation: register change; change of final tone; emphasis
- 3. Amplitude modulation

Consonants generally have a lower amplitude than vowels, and combine with high amplitude vowels to make syllables In phonology: the *sonority curve*

MODULATION: HIGH FREQUENCY AM AND FM

Amplitude modulation:

1. phonetics:

amplitude curve, syllable, stress-accent

2. phonology: sonority curve, syllables, stress

Carrier signal:

- 1. larynx: harmonic sounds
- 2. constriction: noise sounds

FM envelope modulation signal:

1. phonetics:

F0, pitch track

2. phonology: tones, pitch accents, intonation

MODULATION: LOW FREQUENCY AM AND FM

Amplitude modulation:

- 1. phonetics: amplitude curve, syllable, stress-accent
- 2. phonology: sonority curve, syllables, stress

Carrier signal:

- 1. larynx: harmonic sounds
- 2. constriction: noise sounds

FM envelope modulation signal:

- 1. phonetics:
 - F0, pitch track
- 2. phonology: tones, pitch accents, intonation

MODULATION THEORY OF SPEECH

OVERVIEW USING PRAAT

2022-02-28, JNU, Guangzhou

Waveform, oscillogram

Spectrogram

FM, frequency modulation

AM: amplitude modulation

High frequency modulation, phone (consonant and vowel) modulation:

- 1. High frequency amplitude modulation of the harmonics by the formants
- 2. High frequency frequency modulation of the formants

2022-02-28, JNU, Guangzhou

2022-02-28, JNU, Guangzhou

THE FREQUENCIES OF SPEECH: MODULATION

THE FREQUENCIES OF SPEECH: SUMMARY

FREQUENCY MODULATION (FM)

LEXICAL TONES

PITCH ACCENTS & PHRASAL TONES

INTONATION

2022-02-28, JNU, Guangzhou

FREQUENCY MODULATION: CHINESE LEXICAL TONES

D. Gibbon: MA Linguistics

FREQUENCY MODULATION: ENGLISH PITCH ACCENTS

Chinese lexical tones:

function – phonemic lexical contrast

English pitch accents:

function – metalocutionary morphemic pointing to positions in utterances

SUMMARY

Week One:

- General introduction
- Overview of basic Praat functionality
- Creation of vowel formant charts

Week Two:

- recording speech data
- annotating speech data
- extracting duration information from a recording, using Praat
- transferring Praat data to a spreadsheet (Excel, LibreOffice Calc, etc.)
- analysing speech timing

Week Three

- Homework
- Modulation Theory
- extracting fundamental frequency information from a recording
- analysing speech melody

THANKS – NOW PLEASE PRACTICE !

And if anyone decides to write a class paper or MA thesis about a phonetic or phonological topic, do not hesitate to get in touch with me.