PHONETICS: PRAAT III

MELODY: FUNDAMENTAL FREQUENCY (F0)

Dafydd Gibbon

Bielefeld University, Germany

Jinan University, Guangzhou, 2022-03-07

PRAAT: BASIC FUNCTIONALITY

1. Input:

- recording speech from microphone or other sources
- reading from files

2. Methods:

- waveform selection and analysis
- spectral analysis
- transcription and annotation of speech
- frequency and intensity analysis

3. Output:

- saving speech files
- saving files with analysis results:
- spectral information
- annotations (TextGrid files)
- fundamental frequency

PHONETICS: PRAAT III - 'PRACTICAL PRAAT’

The week before last:

- General introduction
- Overview of basic Praat functionality
- Creation of vowel formant charts

Last week, speech timing and rhythm:

- recording speech data
- annotating speech data
- extracting duration information from a recording, using Praat
- transferring Praat data to a spreadsheet (Excel, LibreOffice Calc, etc.)
- analysing speech timing

This week, speech melody:

- extracting fundamental frequency information from a recording
- analysing speech melody

I assume you have Praat (http://www.praat.org) and spreadsheet software.

OLD HOMEWORK ASSIGNMENT

Record Chinese vowels.

Identify F1 and F2 frequencies of the vowels.
Make a spreadsheet chart of F1 X F2 for the monophthongs (simple vowels).

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Method 1: locate the formants in the spectrogram.

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Method 2: show and locate the formants in the spectrogram.

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Method 3: make a spectral slice and locate the formants.

Visible part 4000.00 hertz

Classwork:
In each spectrum,

1. identify the fundamental frequency,
2. identify the frequency of F1,
3. identify the frequency of F2,

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Method 4: use the Praat formant frequency functions.

Classwork:
In each spectrum,

1. identify the fundamental frequency,
2. identify the frequency of F1,
3. identify the frequency of F2,

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Chinese Monophthongs: measurements

	Mid formant values			Mean formant values	
Labels	F1	F2	Labels	F1	F2
\mathbf{a}	696	1236	a	674	1225
\mathbf{o}	467	1023	\mathbf{o}	462	978
\mathbf{e}	451	1236	e	444	1245
\mathbf{i}	255	2428	i	260	2392
\mathbf{u}	321	811	u	311	796
$\mathbf{u}(\mathbf{y})$	239	2199	ü	254	2148

Hint: Look at the Formant menu in the Praat Edit window.

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Chinese Monophthongs: visualisation

Chinese monophthongs (data: Blake, measurements, graphics: DG)
Central formant values (spectrum win 0.05 , formant win 0.025)

Chinese monophthongs (Data: Blake, measurements, graphics DG)
Mean formant values (spectrum win 0.05 , formant win 0.025)

D. Gibbon: MA Linguistics

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Chinese Monophthongs: visualisation

Chinese monophthongs (Data: Blake, measurements, graphics DG)
Mean formant values (spectrum win 0.05 , formant win 0.025)

The F1-F2 formant triangle corresponds approximately to the shape of the IPA vowel chart:

F1: high-low
F2: front-back

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Chinese Monophthongs: visualisation, similarity to IPA vowel chart

VOWELS

Where symbols appear in pairs, the one to the right represents a rounded vowel.

The F1-F2 formant triangle corresponds approximately to the shape of the IPA vowel chart:

F1: high-low
F2: front-back

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Chinese Monophthongs: visualisation, similarity to IPA vowel chart

PHONETICS: PRAAT III - OLD HOMEWORK ASSIGNMENT

Chinese Monophthongs: visualisation, similarity to IPA vowel chart

PHONETICS: PRAAT III - NEW HOMEWORK ASSIGNMENT

Chinese Monophthongs: visualisation, similarity to IPA vowel chart

NEW HOMEWORK ASSIGNMENT

Today the weather is fine. I will go for a run. Then I will chill.

1. English:
2. Record the short English passage shown above.
3. Annotate the syllables.
4. Convert the TextGrid to CSV and find the nPVI using TGA.
5. Translate the passage into Chinese.
6. Record the passage.
7. Annotate the syllables.
8. Convert the TextGrid to CSV and find the nPVI using TGA.
9. What conclusions do you draw from the nPVI values?

NEW HOMEWORK ASSIGNMENT

Today the weather is fine. I will go for a run. Then I will chill.
English

Chinese

0.6143557529147997 intervals [10] x min $=$
0.6143557529147997 xmax =
0.7534295766109449 text = "to"
intervals [3]: $x \min =$
0.7534295766109449 xmax =
1.2489799828845654 text = "day"
intervals [4]: $x \min =$
1.2489799828845654 xmax $=$
1.404039303557279 text = "the"
intervals [5]: $x \min =$
1.404039303557279 xmax =
1.6128433687831145 text = "wea"
intervals [6]: x min $=$
1.6128433687831145 xmax =
1.7239425727702649 text = "ther"
intervals [7]: $x \min =$
1.7239425727702649 xmax =
1.888553391684702 text = "is"
intervals [8]: xmin =
1.888553391684702 $x \max =$
2.545889627984778 text = "fine"
intervals [9]: $x \min =$
2.545889627984778 xmax =
2.904153769613651 text = "_"
$x \min =2.904153769613651$ $x \max =3.0337623013596824$ text = "l"
intervals [11]:
$x \min =3.0337623013596824$ $x \max =3.2535628847874984$ text = "will"
intervals [12]:
$x \min =3.2535628847874984$ $x \max =3.4347289680263495$ text = "go"
intervals [13]:
$x \min =3.4347289680263495$ $x \max =3.6373408184609684$ text = "for"
intervals [14]:
$x \min =3.6373408184609684$ $x \max =3.7460421979016334$ text = "a"
intervals [15]:
$x \min =3.7460421979016334$ $x \max =4.1495326953506115$ text = "run"
intervals [16]:
$x \min =4.1495326953506115$
$x \max =4.515600576114026$
text = "_"
intervals [17]: $x \min =$
4.515600576114026
xmax =
4.846024751756507 text = "then"
intervals [18]: x min $=$
4.846024751756507 xmax =
5.070082369386892
text = "I"
intervals [19]: x min $=$
5.070082369386892 xmax $=$ 5.298674976151819 text = "will"
intervals [20] x min $=$
5.298674976151819 xmax =
5.939352446862325 text = "chill"
intervals [21]: $x \min =$
5.939352446862325 xmax =
6.8310204081632655 text = "_"

to	0.614	0.753
day	0.804	1.248
the	1.248	1.404
wea	1.404	1.612
ther	1.612	1.723
is	1.723	1.888
fine	1.888	2.545
	2.545	2.904
I	2.904	3.033
will	3.033	3.253
	3.253	3.314
go	3.314	3.434
for	3.434	3.637
a	3.637	3.746
run	3.746	4.149
	4.149	4.515
then	4.515	4.846
	4.846	4.927
I	4.927	5.07
will	5.07	5.298
	5.298	5.358
chill	5.358	5.939

Praat TextGrid file format

> CSV (character separated values) spreadsheet and database format

In this case, TSV (tab
separated values)

NEW HOMEWORK ASSIGNMENT

English: Duration properties (without pauses)

Attributes	Values	Attributes	Values
n :	17	intercept:	203.863
min:	109	slope:	6.48
max:	657	std:	164.172
mean:	255.71	coeff var (\%):	64.204
median:	203.0	nPVI:	72
mean rate:	3.91	rPVI:	199
median rate:	4.93	100*rPVI/med:	98
total:	4347	nPVI*med/100:	146
range:	548		

Chinese: Duration properties (without pauses)

Attributes	Values	Attributes	Values
n:	$\mathbf{1 8}$	intercept:	199.345
min:	$\mathbf{9 8}$	slope:	1.397
max:	$\mathbf{2 9 2}$	std:	59.396
mean:	$\mathbf{2 1 1 . 2 2}$	coeff var (\%):	28.12
median:	$\mathbf{2 1 0 . 0}$	nPVI:	41
mean rate:	4.73	rPVI:	82
median rate:	$\mathbf{4 . 7 6}$	$100 * \mathrm{rPVI} / \mathrm{med}:$	39
total:	$\mathbf{3 8 0 2}$	$\mathrm{nPVI*med/100:}$	86
range:	$\mathbf{1 9 4}$		

NEW HOMEWORK ASSIGNMENT

Today the weather is fine. I will go for a run. Then I will chill.

English

Chinese

0.6143557529147997 intervals [10] x min $=$
0.6143557529147997 xmax =
0.7534295766109449 text = "to"
intervals [3]: $x \min =$
0.7534295766109449 xmax =
1.2489799828845654 text = "day"
intervals [4]: $x \min =$
1.2489799828845654 xmax =
1.404039303557279 text = "the"
intervals [5]: $x \min =$
1.404039303557279 xmax =
1.6128433687831145 text = "wea"
intervals [6]: x min $=$
1.6128433687831145 xmax =
1.7239425727702649 text = "ther"
intervals [7]: $x \min =$
1.7239425727702649 xmax =
1.888553391684702 text = "is"
intervals [8]: xmin =
1.888553391684702 $x \max =$
2.545889627984778 text = "fine"
intervals [9]: $x \min =$
2.545889627984778 xmax =
2.904153769613651 text = "_"
$x \min =2.904153769613651$ $x \max =3.0337623013596824$ text = "l"
intervals [11]:
$x \min =3.0337623013596824$ $x \max =3.2535628847874984$ text = "will"
intervals [12]:
$x \min =3.2535628847874984$ $x \max =3.4347289680263495$ text = "go"
intervals [13]:
$x \min =3.4347289680263495$ $x \max =3.6373408184609684$ text = "for"
intervals [14]:
$x \min =3.6373408184609684$ $x \max =3.7460421979016334$ text = "a"
intervals [15]:
$x \min =3.7460421979016334$ $x \max =4.1495326953506115$ text = "run"
intervals [16]:
$x \min =4.1495326953506115$
$x \max =4.515600576114026$
text = "_"
intervals [17]: $x \min =$
4.515600576114026
xmax =
4.846024751756507 text = "then"
intervals [18]: x min $=$
4.846024751756507 xmax =
5.070082369386892
text = "I"
intervals [19]: x min $=$
5.070082369386892 xmax $=$ 5.298674976151819 text = "will"
intervals [20] x min $=$
5.298674976151819 xmax =
5.939352446862325 text = "chill"
intervals [21]: $x \min =$
5.939352446862325 xmax =
6.8310204081632655 text = "_"

to	0.614	0.753
day	0.804	1.248
the	1.248	1.404
wea	1.404	1.612
ther	1.612	1.723
is	1.723	1.888
fine	1.888	2.545
	2.545	2.904
I	2.904	3.033
will	3.033	3.253
	3.253	3.314
go	3.314	3.434
for	3.434	3.637
a	3.637	3.746
run	3.746	4.149
	4.149	4.515
then	4.515	4.846
	4.846	4.927
I	4.927	5.07
will	5.07	5.298
	5.298	5.358
chill	5.358	5.939

Praat TextGrid file format

> CSV (character separated values) spreadsheet and database format

In this case, TSV (tab
separated values)

NEW HOMEWORK ASSIGNMENT

English: Duration properties (without pauses)

Attributes	Values	Attributes	Values
n:	17	intercept:	172.843
\min :	72	slope:	3.24
max:	401	std:	99.572
mean:	198.76	coeff var (\%):	50.095
median:	213.0	nPVI:	71
mean rate:	5.03	rPVI:	138
median rate:	4.69	$100 *$ rPVI/med:	65
total:	3379	$n P V I^{*}$ med/100:	151
range:	32		

Chinese: Duration properties (without pauses)

Attributes	Values	Attributes	Values
n:	$\mathbf{1 9}$	intercept:	153.132
min:	$\mathbf{6 7}$	slope:	$\mathbf{0 . 6 4}$
max:	$\mathbf{3 1 8}$	std:	$\mathbf{6 5 . 9 0 3}$
mean:	$\mathbf{1 5 8 . 8 9}$	coeff var (\%):	41.476
median:	$\mathbf{1 4 8 . 0}$	nPVI:	$\mathbf{4 3}$
mean rate:	$\mathbf{6 . 2 9}$	rPVI:	69
median rate:	$\mathbf{6 . 7 6}$	$100^{*} \mathrm{rPVI/med:}$	47
total:	$\mathbf{3 0 1 9}$	$n P V I^{*} \mathrm{med} / 100:$	64
range:	$\mathbf{2 5 1}$		

NEW HOMEWORK ASSIGNMENT

1. The mean rate of the Chinese version (4.8) is higher than that of the English version (3.91), which indicates that the fluency if higher when I speak Chinese.
2. When speaking English, the syllable duration seems to vary more drastically, while in Chinese, every syllable duration varies within a range without too drastic change.

To some extent this can be explained by the prosodic feature of English and Chinese: Chinese is a syllable-timed language, where each syllable has a roughly same duration, and each character is an independent syllable which enjoys a high degree of individuality. ...

English is a stress-timed language, where syllables between each stress have a roughly same duration. In English each word or syllable is at the disposal of the whole sentence, and it is in this way that various weakening and liaison come into being.

Additional comments:

- English also has a distinction between strong syllables, with complex structure (streets, /stri:ts/, 6 phonemes, and weak syllables (walking, undecided)
- The strong syllables may have lexical stress.
- Any syllable, including lexically unstressed syllables, strong or weak, may be stressed in a contrastive or emphatic context.
- This distinction determines a rhythmic alternation between stressed strong syllables and unstressed weak syllables.

NEW HOMEWORK ASSIGNMENT

$$
n P V I(D)=100 * \sum_{i=2}^{n}\left|\frac{\left(d_{i}-d_{i-1}\right)}{\left(d_{i}+d_{i-1}\right) / 2}\right| / n, \text { for } D=\left(d_{1}, \ldots, d_{n}\right)
$$

Description:

100 multiplied by the average normalised duration difference between two neighbouring durations (for example, of syllables).

The duration difference is the difference between two neighbouring durations.
The duration difference divided by the average of the two durations is the normalised duration difference.

A spreadsheet file with examples of calculations with durations, including the nPVI (normalised Pairwise Variability Interval) is on the class website.

You can find out more in my open access article in JIPA (the Journal of the International Phonetic Association):
https://www.cambridge.org/core/journals/journal-of-the-international-phonetic-association/article/rhythms-of-rhythm/320466201A281543DA7768741DB99B7D

MODULATION

HOW INFORMATION IS CONVEYED BY SPEECH

MODULATION: THE SOURCE-FILTER MODEL OF VOWELS

Oral Cavity:

- formant filter for regions in the harmonic series

Nasal Cavity:

- formant filter for regions in the harmonic series

Larynx:

- source of harmonic sounds:
- Frequency Modulation (FM)

MODULATION

The Source-Filter Model of vowel production

airflow

> Consonants are different kinds of obstruction of the airflow.

MODULATION

The Source-Filter Model of vowel production

FREQUENCY MODULATION: TRY IT OUT ...

1. Carrier signal in the larynx: sing "Aaaaah!", on one note!
2. Frequency modulation: sing a melody with "Aaaaah!"

The frequency of the carrier signal increases and decreases in order to convey information:

- in English, for example:
- pitch accent: marking stressed, contrastive, emphatic syllables
- final rise or fall: final/non-final; asking questions; making statements
- expressing involvement or detachment (inclination, declination; register change)
- in Mandarin, for example:
- phonemic lexical tone: mā, má, mǎ, mà
- morphemic lexical tone: ô!
- intonation: register change; change of final tone; emphasis

3. Amplitude modulation

Consonants generally have a lower amplitude than vowels, and combine with high amplitude vowels to make syllables
In phonology: the sonority curve

MODULATION: HIGH FREQUENCY AM AND FM

Amplitude modulation:

1. phonetics:
amplitude curve, syllable, stress-accent
2. phonology:
sonority curve, syllables, stress

Carrier signal:

1. larynx:
harmonic sounds
2. constriction:
noise sounds

FM envelope modulation signal:

1. phonetics:

F0, pitch track
2. phonology:
tones, pitch accents, intonation

MODULATION: LOW FREQUENCY AM AND FM

Amplitude modulation:

1. phonetics:
amplitude curve, syllable, stress-accent
2. phonology:
sonority curve, syllables, stress

Carrier signal:

1. larynx:
harmonic sounds
2. constriction:
noise sounds

FM envelope modulation signal:

1. phonetics:

F0, pitch track
2. phonology:
tones, pitch accents, intonation

MODULATION THEORY OF SPEECH

OVERVIEW USING PRAAT

THE FREQUENCIES OF SPEECH

Waveform, oscillogram

Spectrogram

THE FREQUENCIES OF SPEECH

FM, frequency modulation

THE FREQUENCIES OF SPEECH

AM: amplitude modulation

THE FREQUENCIES OF SPEECH

Low frequency AM

Low frequency FM

THE FREQUENCIES OF SPEECH

4 Harmonics: multiples of F0
Formants: stronger harmonic regions

High frequency modulation, phone (consonant and vowel) modulation:

1. High frequency amplitude modulation of the harmonics by the formants
2. High frequency frequency modulation of the formants

THE FREQUENCIES OF SPEECH

THE FREQUENCIES OF SPEECH: MODULATION

THE FREQUENCIES OF SPEECH: SUMMARY

THE FREQUENCIES OF SPEECH

Low frequencies: rhythm

Rhythm modulation:
Low Frequency AM and FM (rhythm formants)

Rhythm modulation:
Low Frequency AM and FM
(rhythm formants)

Mid frequencies: speech melody
carrier signal
tone, pitch accent, intonations

High frequencies: consonants and vowels

Phone (C \& V) modulation:

High Frequency AM and FM (phone formants)

slow amplitude and frequency modulation of formant frequencies

FREQUENCY MODULATION (FM)

LEXICAL TONES
PITCH ACCENTS \& PHRASAL TONES

INTONATION

FREQUENCY MODULATION: CHINESE LEXICAL TONES

Phonemic tones Tones 1 ... 4
high female voice

Phonemic tones Tones 1 ... 4
low female voice: creaky Tone 3

Morphemic tone "Tone 6" ©
low female voice: 4 allotones

Pitch: FO estimation

What is the meaning of this tone?
D. Gibbon: MA Linguistics

FREQUENCY MODULATION: ENGLISH PITCH ACCENTS

Chinese lexical tones:
function -
phonemic lexical contrast

SUMMARY

Week One:

- General introduction
- Overview of basic Praat functionality
- Creation of vowel formant charts

Week Two:

- recording speech data
- annotating speech data
- extracting duration information from a recording, using Praat
- transferring Praat data to a spreadsheet (Excel, LibreOffice Calc, etc.)
- analysing speech timing

Week Three

- Homework
- Modulation Theory
- extracting fundamental frequency information from a recording
- analysing speech melody

THANKS - NOW PLEASE PRACTICE!

And if anyone decides to write a class paper or MA thesis about a phonetic or phonological topic, do not hesitate to get in touch with me.

