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Abstract
Prosodic computational literacy is an important goal for stu-
dents of acoustic phonetics, especially those from endangered
language communities in less affluent countries. There are sev-
eral excellent ‘off-the-shelf’ packages for prosody computation,
including Praat, ProsodyPro, Prosogram, ProZed, Winpitch,
and many convenient Praat scripts. However, experiments typ-
ically require small hybrid intersections of functionalities of
these packages together with spreadsheets, R, Praat scripting
or Python. Python was chosen in order to enable non-hybrid,
seamless embedding of small tools into larger systems for ex-
ploratory research, because of scalability, and because of the
availability of extensive Python libraries to support in-depth in-
sight into filters and transformations rather than using ready-
made complex functionalities. A design criterion for the toolkit
is overall coherence and clarity of structure. The tools cover
the analysis of speech signal annotations, and a modulation-
theoretic approach to the demodulation of speech signal am-
plitude modulation and frequency modulation. Comparison of
results is enabled by provision of distance measurement, hier-
archical clustering techniques and SVM classification. The ap-
proach has been evaluated in practice in a range of publications
and in teaching.
Index Terms: computational prosody, prosody course, rhythm
tools, melody tools, pitch models, rhythm models, prosody vec-
tor clustering, Python

1. Introduction
1.1. Prosody analysis tools: objectives

The tools in the Rhythm and Melody Toolkit (RMT) are edu-
cational, not product-oriented, and provide support for compu-
tational literacy training in the analysis of speech rhythm and
melody. The tools are not an ad hoc collection, but have a coher-
ent theoretically motivated architecture in the form of SPEECH
MODULATION AND DEMODULATION THEORY (SMDT) for
relating rhythm analysis and melody analysis (Figure 1), and
thus the terminology is slightly different from the familiar text-
book terms in SOURCE-FILTER or EXEMPLAR or ANALYSIS
BY SYNTHESIS theories. SMDT models prosody production as
frequency modulation (FM, i.e. the melodies of tones, pitch
accents and intonation) and amplitude modulation (AM, i.e.
sonority and rhythms of syllable, word and phrase components)
of a carrier signal, and perception as demodulation of the FM
and AM speech signal components (for an overview cf. [1]).
The goal is not primarily engineering efficiency but phonetic
understanding of speech with a theoretical foundation for phys-
iological interpretation in speech production and perception.

Many excellent ‘off-the-shelf’ custom tools for prosody
computation are currently available, mainly for F0 analysis, and
with broad functionalities, including PRAAT [2], PROSODYPRO
[3], PROSOGRAM [4], MOMEL [5], PROZED [6], WINPITCH
[7], TEXTGRID TOOLS [8]. These tools are oriented towards

the ‘phonetic consumer’: it is generally the functionality which
interests the user rather than the mechanism. RMT is an open
source educational practice kit rather than a mature and robust
product: where there is a choice of algorithms, for example, the
simplest is chosen, such as the absolute signal and smoothing
for AM demodulation, and the Average Magnitude Difference
Function for FM demodulation (see Section 3).
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Figure 1: Functional architecture of the toolkit. Dotted lines
show paths to visual output, bold-lined boxes mark core tools.

Scripts for Praat, MatLab and R are used in phonetics
mainly for specific tasks (but cf. the general tool in [3]).
Python is chosen for implementing RMT in order to facilitate
use in larger computational linguistic and local language con-
texts within the SMDT framework. In addition to understanding
the algorithmic mechanisms, RMT tool output is evaluated by
comparison with annotation-based linguistic phonetic results as
sources of independent evidence (cf. [1, 9]).

1.2. Specification

Modulation theory is 100 years old, as old as radio broadcast-
ing, and the terminology (including the familiar terms ‘AM’ and
‘FM’) comes from radio engineering. One way of describing
the AM and FM operations on unmodulated and modulated car-
rier signals is as follows:

Unmod. carrier: C = Acos(2πft+ ϕ)



Mod. carrier: CMOD = AAMAcos(2π(f +AFM )t+ ϕ)
The FM and AM information signals are represented by AFM

and AAM , respectively. For FM the amplitude of AFM is
added to the carrier and for AM the amplitude of the frequency-
modulated carrier is multiplied by the scaled and raised am-
plitude of modulating signal AAM . The task of FM and AM
demodulation is to extract both AFM and AAM from CMOD .
The phase component ϕ is not considered here.

Modulation theoretic analysis was introduced to phonetics
by Traunmüller [10] as a model of perception, and has been
applied directly or indirectly since then in various contexts, in-
cluding clinical applications; cf. for example [11, 12, 13, 14, 15,
16, 17, 1, 18]. Most of these studies have been concerned with
the demodulation of AM and the use of forms of spectral anal-
ysis to analyse and compare different speech rhythms effected
by AM, but the same procedure has been applied to FM in or-
der to characterise rhythmic patterns of the slow modulations of
fundamental frequency which characterise tones, pitch accents
and intonation. Modulation of high frequency (HF) harmonics,
such as vowel formants, is not dealt with. The low frequency
(LF) switching AM of on-off voicing is also not dealt with ex-
plicitly, though voicing has to be dealt with at least implicitly
for FM demodulation. The tools have been used extensively for
teaching and research and their output has figured in a range of
publications, which provide functional validation of the tools in
operation [19, 20, 1, 21, 9, 22, 23].

The following areas are covered by the tools:

1. user-definable parameter settings in a configuration file;

2. speech signal input: mono WAV (previously normalised,
e.g. with SOX, to mono 16kHz and amplitude range -
1...0...1), input as an array with sampling frequency;

3. annotation analysis and visualisation: Praat TextGrid in-
put with TextGrid annotation of interval durations, and
descriptive statistics and visualisation;

4. bandpass filtering for AM demodulation (amplitude en-
velope extraction);

5. bandpass filtering for FM demodulation and smoothing
(frequency envelope extraction, F0 estimation, ’pitch’
extraction);

6. LF spectral analysis of rhythm frequencies (LF spectrum
and LF spectrogram);

7. data comparison with distance networks, hierarchical
cluster analysis and Support Vector Machines.

2. Annotation mining and visualisation
The annotation analysis tools generate statistical tables and vi-
sualisations from Praat TextGrid annotations, which have at
least one tier and at least one labelled time-stamp on each tier,
which consists of start and end time-stamps and a text label
(variants also exist):

⟨⟨TIER = ⟨start = ts1, end = ts2, text = label⟩+⟩+⟩
Each annotation is a pair ⟨label, interval⟩, where the interval
is a pair ⟨start, end⟩, and in a (complete) sequence of anno-
tations the end of one annotation is identical to the start of
the next. An annotation tuple can be uniquely identified as a
quintuple ⟨filename, tiername, label, start, end⟩.

The annotation can be created manually, or
(semi)automatically [24], and an RMT tool extracts the
annotation as a two-dimensional Python array (effectively
a tier list of time-stamped label lists) and exports the array

to a CSV file for further processing in Python (or R, other
statistics packages, spreadsheets). Vectors of statistical values
and their visualisations are generated, containing descriptive
statistics, duration regularity indices and metrics such as the
rPV I and nPV I [25]. The metrics measure one component
of rhythm, (ir)regularity, under the counterfactual assumptions
that rhythms are binary alternations and that other properties
such as frequency are irrelevant. They are nevertheless useful,
e.g. as heuristic benchmarks for evaluating results of other
methods.
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Figure 2: Upper: Mandarin tone × duration in story read-
ing, automatically generated from a Praat TextGrid file. Lower:
Durogram of a long-term 5 min (300 s) interactive story-telling
session in Ega (ISO 693-3 ega) automatically derived from
a Praat TextGrid file. Colours represent participants, y-axis
height and x-axis length represent turn durations.

Tiers with limited vocabulary can be visualised for the pur-
pose of initial ‘eyeballing’ and hypothesis development (cf.
Figure 2, upper panel) using enhanced box-and-whisker plots.
The plot shows tone properties from a reading of a Mandarin
translation of The North Wind and the Sun, enabling a visual
heuristic: if the boxes do not overlap, the elements are distinct.
In this case the neutral tone (labelled as ‘5’) is clearly dissimilar
to Tone 1 and Tone 3 and is considerably different from Tone 2
and Tone 4.

More complex syntagmatic duration patterns, for example
of turn distribution in dialogues, can be visualised as shown in
the novel discourse patterning durogram in Figure 2, a timeline
scatter plot which is not statistically derived but reflects parallel
participant turn annotations directly. With time × duration
axes, the label interval durations of different elements (in this
case, turn-takers in a dialogue) are aligned along the time axis
in different colours. Turn durations are shown by the height
and length of the interval mark. The durogram provides initial
exploratory information for hypothesis formation in later con-
firmatory studies.

The annotation-based tools are used for ‘blackbox validati-
ion’ [26] of the SMDT tools (cf. Figure 1) by providing heuris-
tic estimates of average rhythm unit duration, and thus also of



average frequency, for comparison with the rhythm formant fre-
quencies found by spectral analysis [1].

3. Demodulation
3.1. Amplitude demodulation

FM and AM time functions demodulated by an RMT tool are
shown in Figure 3. The upper panel shows four time func-
tions: demodulated AM, a phonetic correlate of the phonologi-
cal sonority curve (varying line); demodulated FM, i.e. F0 esti-
mation, a phonetic correlate of intonation, pitch accent and tone
(irregular dotted line); linear model of F0 contour direction,
here declination (diagonal line); 2nd order polynomial model
of contour shape (curved dotted line) [27]; cf. also [28] on re-
gression modelling of tone. The lower panel is discussed in the
next subsection, on FM demodulation.
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Figure 3: Upper panel: AM and FM speech demodulation for a
reading of ‘Do you grow limes or lemons’ (IVIE corpus).
Lower panel: 2-level regression model hierarchy (2nd order,
domains: IPU, dyad, see text; Aix-MARSEC corpus J0104G).

In RMT, speech AM demodulation is analogous to a simple
‘crystal set’ demodulation procedure for AM radio:

1. tuning (as a bandpass Butterworth filter, 300–2000 Hz),

2. full-wave rectification of the signal (by a diode bridge in
radio, in RMT as the absolute value of the signal),

3. LF smoothing of the resulting AM envelope.

Some related studies use the absolute Hilbert transform [17, 18];
there is little practical difference between the two procedures,
however. For an application, see Section 4.

3.2. Frequency demodulation

Demodulation of FM in speech is the functional term for F0
estimation and is not exactly analogous to radio FM demodu-
lation, where the carrier frequency is constant. There are many
F0 estimation methods, all of which measure either the peri-
ods of F0 cycles in the time domain or harmonic patterns in
the frequency domain. Some use straightforward comparison
of neighbouring signal intervals, such as autocorrelation (AC)
or Average Magnitude Difference Function (AMDF), some use
phonatory, auditory or neural models.

In line with the educational aim, simpler models such as
AC or AMDF are preferred for initial study. AMDF, a 50 year

old [29] but not obsolete variant of AC, is still widely used,
especially in musical tone identification and realtime applica-
tions, and forms the core of many other improved frequency
estimation algorithms such as EAMDF (Extended AMDF)
[30, 31, 32]. Other models can be added to RMT as required.
Informal comparisons with other methods have shown only mi-
nor differences [19].

The basic assumption of AC and AMDF is that the sig-
nal shape is repeated after one F0 cycle, and measurements of
such repetitions step through the signal, yielding the F0 contour.
Starting at a reference interval (e.g. 10...20 ms), similarities
with following intervals can be measured until the most simi-
lar signal shape is found; the distance from the starting point is
the lag or delay T and the frequency estimate is 1/T . The core
of the AMDF implementation can be expressed rather straight-
forwardly in ‘pure Python’:

frame=signal[framestart:framestop]
movwindows=zip(movwindowrange,

movwindowrange+framelength)
diffsums=[np.sum(np.abs(

frame-signal[winstart:winstop]))
for winstart,winstop in movwindows]

f0=1/((np.argmin(diffsums)+f0diffoffset)/fs)

All speech F0 estimation procedures are error-prone in
varying degrees. AMDF errors include (1) effects of noise,
(2) weak fundamental and stronger 2nd harmonic, (3) creaky
voice, (4) imprecision by tapering (size reduction of the com-
parison interval towards the end of the reference interval). The
RMT F0 tool includes a number of standard measures to ame-
liorate issues #1, #2 and #4:

1. signal centre-clipping to reduce high frequency noise;

2. tuning to ensure that the relevant frequency range is em-
phasized (Butterworth band-pass filtering depending on
the F0 range, e.g. 70–200 Hz for a deep male voice),

3. taper reduction by continuing comparisons to one frame
beyond the reference window;

4. AMDF (actually a subset of EAMDF);

5. non-linear F0 smoothing with a moving median window;

6. regression modelling of the contour.

More complex and more accurate algorithms such as RAPT,
REAPER or YIN [33, 34, 35] use different and/or additional
operations, can be included as RMT modules, and are rec-
ommended for product level deployment (cf. also GitHub for
implementations of other algorithms of varying quality). Hy-
brid neural machine learning models [36] have also been de-
veloped for engineering applications but are phonetically non-
transparent and require extensive training data, and are thus not
directly suitable for the present educational purpose.

The lower panel of Figure 3 in fact uses a RAPT-based
RMT tool and shows two levels of FM demodulation as a cor-
relate of hierarchical intonation: a Question-Answer adjacency
pair and its constituents, with two levels of 2nd order regression
modelling yielding a falling-rising model for the Question and
a falling model for the Answer, and an overall holistic rising-
falling model for the Question-Answer pair, signifying a form
of prosodic cohesion and alignment between questioner and an-
swerer. The temporal contour spans are extracted in this case
from a Praat annotation of interpausal units (IPUs), but auto-
matic pause detection also can be used.



4. Rhythm bars: time and frequency
The term ‘rhythm’ is notoriously ambiguous in linguistics and
phonetics. In some phonologies, rhythm is a numerical en-
coding of structure, based on exocentric headed relations be-
tween a ‘strong’ and a ‘weak’ child node of a parent node in
a tree graph, with linearisation filters (‘grids’). In linguistic
phonetics, rhythm is generally seen as a longer-shorter relation
between neighbouring label intervals in annotations, using ir-
regularity indices based on descriptive statistics or neighbour-
distance metrics such as nPVI, omitting frequency, tempo and
other properties of rhythms.

In the present variant of the modulation-theoretic approach,
the demodulated AM or FM signal is analysed by Fast Fourier
Transform (FFT) and – if the utterance is indeed rhythmical,
which is style-dependent – then peaks can be identified in the
LF spectrum below 10 Hz and interpreted as RHYTHM FOR-
MANTS. A broad-band input to spectral analysis is chosen, from
which the LF spectra are extracted. The FM contribution to
speech rhythm can be analysed in the same way.

Figure 4: Rhythm formants in Ega chanting: waveform (upper
panel) and LF spectrogram with rhythm bars (lower panel).

Many studies restrict analysis to the LF spectrum, but this is
not adequate: the spectrum is atemporal and even a single beat
can show in the LF spectrum. But rhythms have duration – one
beat is not a rhythm, neither are two, but three beats provide two
intervals for isochrony checking [37].

Consequently, a spectrogram is generated to show the time
dimension of rhythm formants, shown by the parallel RHYTHM
BARS in Figure 4 [1, 38]. In the figure, pairs of rhythm bars an
octave apart show a rhythm hierarchy of interactive chants and
their constituent turns. The AM (or FM) analysis comprises:

1. demodulation of the AM or FM envelope;
2. application of the FFT to a sequence of frames in the

envelope, to generate spectral slices;
3. extraction of LF speech rhythm frequencies (e.g. 0-5 Hz)

in each spectral slice to create the LF spectrogram;
4. visualisation of the LF spectrogram;
5. identification of bars in the LF spectrogram (Figure 4).

These rhythms may be much lower than 5 Hz in rhetori-
cal or poetic rhythms. Figure 4 shows the LF spectrogram of
a choral chant (7 s to 17 s), with two formants about an octave
apart, at 0.256 Hz corresponding to a period of 3.91 s, and an-
other at 0.469 Hz, corresponding to a period of 2.132 s. The
reason for the near-octave relation is that the parallel rhythm
bars relate to turns and turn dyads in the call-response structure
of the choral chant.

5. Typology: AM and FM LF spectra
Hierarchical clustering is used to show rhythm differences be-
tween speech varieties, in this case between story-telling vari-
eties in related West-African languages using the LF AM and
FM spectra. The varieties are, in the order shown in Figure 5:
Ibibio (Nigeria, ISO 639-3 ibb), reading of ‘North Wind and
Sun’; Ivory Coast French, newspaper reading; stories by village
narrators in Anyi (ISO 639-3 any) and Ega (ISO 639-3 ega),
both Niger-Congo languages in Ivory Coast.

Figure 5: AM (left) and FM (right) LF spectrum dendrograms.

The AM (left) and FM (right) LF spectra are hierarchi-
cally clustered using the Manhattan Distance metric and far-
thest neighbour (complete) linkage. The main AM LF spec-
trum split is between formal styles (readings and a formal story)
and informal interactive stories. On the same criteria, the FM
dendrogram splits differently: items 2 and 3, both by Anyi na-
tive speakers, still cluster together, though with different neigh-
bours. Item 8, Ibibio, clearly has different intonational variabil-
ity; consequently further study is needed.

6. Discussion and Conclusion
Assessment of the value of the toolkit has a number of dimen-
sions. A design criterion for evaluation is provided by the
connected architecture of the toolkit, which provides concep-
tual coherence within an explicit and flexible theoretical frame-
work. In addition to software assessment, blackbox valida-
tion by means of visualisations and comparison with annotation
mining is used. Validity of the tools in application has been
demonstrated in several studies, as already noted.

As a further method for functional and structural evaluation,
the RMT code is available as open source software. The main
point of open source code in this context is to provide a starting
point for development of computational literacy among students
of phonetics in the form of modifiable modules. The interface
between the tools is CSV format so the results can be evaluated
further with different software if preferred (R, MatLab, Stata,
Praat scripts, spreadsheets).

Future work involves integration of other existing tools into
the RMT concept. As indicated in the introduction, applications
are anticipated in teaching computational phonetics, and also in
research relating to modulation theory and to prosodic interface
issues in linguistics. The algorithms are agnostic with regard to
the data used and can be used in other acoustic scenarios such
as music or with other sensor inputs. 1

1Thanks to Bojia Wang, XISU, Xi’an, China, for collaboration on
use cases for F0 models in L2 evaluation (cf. Figure 3, upper panel).
Many thanks to Reviewers 1 and 2, respectively, for suggestions to re-
late RMT more clearly to the prosody tool ecosystem and to include
worked examples in the code repository. Special thanks to Reviewer 3
for arguing that use of the AMDF algorithm was not sufficiently moti-
vated; this section has been revised accordingly.
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