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Abstract

This study addresses the role of continuous speech rhythms in
characterising  speech  styles.  The  assumption  is  that  speech
rhythms  are  wave-like  oscillations  with  frequencies  below
10 Hz and that the oscillations can be detected in a holistic
approach  to  analysing  low  frequency  spectral  peaks  in  the
amplitude  and  frequency  modulations  of  speech.
Superimposed  rhythms at  different  frequencies  are  taken  to
vary  within  formant-like  low  spectral  frequency  zones,
depending on speech style. Further, it is assumed that speech
rhythms  are  not  simply  cognitive  epiphenomena  but  are
physically sufficiently distinct to characterise speech styles in
the signal. The study combines signal processing by rhythm
formant  analysis  (RFA)  and  basic  unsupervised  machine
learning (ML)  with  detailed  interpretation and explanation of
the  phonetic  ML  results  by  comparison  with linguistically
annotated data. The data comprise two styles from the Aix-
MARSEC English speech style database. Results confirm the
relation of continuous rhythms to speech styles.

1.  Introduction

Rhythm  is  an  emergent  holistic  property  of  the  temporal
patterning  of  speech  signals.  In  phonology  and  linguistic
phonetics, speech rhythms are seen as correlates of sequences
of  morae,  syllables,  words  and  phrases,  which  vary  from
language to language  [8]. This qualitative concept of speech
rhythm is atomistic, however, and fails to capture the ‘beats’
of continuous rhythms and rhythm variation. Further, it would
be  a  category mistake  to  atomise  description  of  continuous
rhythms into the usual ‘features’ of duration,  frequency and
intensity,  for  three  reasons:  first,  frequency  and  intensity
patterns  are  related  time  functions,  while  durations  are
components of the time axis and thus conceptually different;
second, these components are projected into the signal from
phonological abstractions rather than inductively generalised.

The fundamental claim is that in local domains rhythm is a
function of morphology, and thus of linguistic typology (cf.
[1],  [13],  [21])  but  in  global  domains a  function of  speech
style  [14].  The  study  combines  methodological  exploration
with  confirmatory  testing  in  investigating  continuous  long-
term rhythms in different speech styles in a single language,
using  samples  from the  Aix-MARSEC database  of  English
speech  styles  [3].  Complete  discourse  events,  typically  60s
long,  are  analysed  holistically  by  spectral  analysis  of  the
whole event providing LF spectra of the amplitude modulation
(AM) and the frequency modulation (FM) of the signal as well
as LF spectrograms with sequences of spectra over 2s frames.

The present study combines signal processing, in the form
of spectral analysis,  and basic unsupervised machine learning
(ML),  in  the  form  of  clustering  algorithms,  with  detailed

‘phonological  interpretation’  (as  opposed  to  the  ‘phonetic
interpretation’  of  traditional  phonology) based on  annotated
data. A key concept is rhythm formant: by this is meant an LF
formants  (<5Hz),  i.e.  a  frequency zone in  the LF spectrum
which related to linguistic units such as syllables,  words or
phrases,  and  whose  spectral  distribution  and  variation
characterises  different  speech  styles.  LF  rhythm  formants
(<5Hz) differ  acoustically  from high frequency (HF) phone
formants (>300Hz) only in frequency; their status in speech
production and perception is different.

The  variation  of  continuous  rhythms  in  this  sense  is
studied in  many disciplines,  from oceanography,  cardiology
and musicology to clinical phonetics  and language typology
(cf.  [6],  [18],  [23],  [24],  [26]).  This  modulation-theoretic
approach has been applied to speech with different  spectral
analysis techniques (absolute Hilbert transform or rectification
and low-pass  filtering,  with rhythmogram,  empirical  mode
decomposition, Fourier transform) in many studies (e.g.  [1],
[4], [7], [9], [10], [12], [13], [17], [18], [22], [23], [24], [25],
[27], [28], [29], [30], [31], [32]). The present method adds the
concepts of  rhythm formant and low frequency spectrogram.

2.  Data and Method

2.1.  Data

Data are taken from the Aix-MARSEC database of English
speech styles [3], selecting the first ten of each of the database
categories  News Broadcasts (category B, 1 female, 3 male),
and  Poetry (H, 1 female, non-rhyming; 1 male, rhyming) as
being  clear  cases  of  prosodically  distinct  styles.  The
categories  were intuitively determined, not based on explicit
discourse analytic  models.  Two of  the reading-aloud styles
were preferred, partly  as  clear  cases  with  more  restricted
variables than spontaneous dialogue, but partly because of the
intrinsic value of reading styles as social and cultural skills.

2.2.  Method: modulation theoretic analysis

The  speech  signal  is  analysed as  a  carrier  wave  [32] with
superimposed LF information-carrying FM (relating to tones,
pitch accents  and intonation),  and  AM (relating to sonority
cycles).  The AM and FM information signals  are  extracted
and analysed in three steps:  AM and FM demodulation,  LF
spectrum and spectrogram transforms, and comparison of AM
and FM spectral properties of different data items  using basic
unsupervised machine learning (clustering, cf. [13]).

2.2.1.  Demodulation and spectral analysis

The following systematic RFA (rhythm formant analysis [13])
procedure  is  followed (implementation in  Python3 with  the
standard libraries NumPy, SciPy and MatPlotLib):
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1. Demodulation of the modulated signal in the time domain:
1. AM:  amplitude  demodulation  (envelope  extraction  by

full-wave rectification and low-pass filtering);
2. FM:  frequency  demodulation  (normalised  fundamental

frequency, F0 estimation with an AMDF algorithm);
2. Rhythm detection by spectral analysis of the demodulated

AM and FM signal envelopes in the frequency domain:
1. LF spectrum (0Hz...10Hz by FFT):

1. AM: long-term FFT of the whole AM envelope;
2. FM: long-term FFT of the whole FM envelope;

2. LF  spectrogram  (0Hz...10Hz,  in  2s  frames  with
extraction of a trajectory through the highest magnitude
frequency in each frame, ‘rhythm formant track’):
1. AM: LF formant track of the AM envelope;
2. FM: LF formant track of the FM envelope.

The examples illustrated in Figure 1 (news) and Figure 2
(poetry) show demodulation of both AM and FM envelopes in
the time domain (left panels). The AM envelope is extracted
by  full-wave  rectification  (absolute  signal  values)  and  LF
smoothing  of  the  60s  long  signal.  The  FM  envelope  is
extracted by AMDF  (Average  Magnitude  Difference
Function). LF spectra (here <3Hz) are obtained by FFT from
the demodulated AM and FM signals (utterance duration and
thus also FFT frame duration in this example is 58.34s).

Figure 1: Waveform with AM and FM envelopes (left), and LF
spectra (0...3 Hz) for the envelopes (news).

Figure  2:  Waveform with AM and FM envelopes (left),
and LF spectra (0...3 Hz) for the envelopes (poetry).

Several relevant prosodic properties can already be seen
by subjective inspection of the visualisations in  Figure 1 and
Figure  2:  the  time  domain  panels  show temporal  grouping
patterns  in  the  readings;  these  are  particularly  clear  in  the
downtrending F0 patterns. The AM and FM LF spectra in the
right-hand panels are similar in the spectrum segment below
1Hz, less so above 1Hz. High magnitude frequency peaks tend
to  group  into  the  formant-like  frequency  zones  which  are
interpreted as rhythm formants.

The main rhythm formants of the two readings are similar
in shape, but at different frequencies. The formant vectors are
analysed with two unsupervised machine learning algorithms.

3.  Results

3.1.  From waveform to LF trajectory

Figure  3 shows  the  waveform  with  superimposed  AM
envelope  (panel  1),  the  AM  LF  spectrogram  in  traditional
heatmap  format  (panel  2)  and  the  rhythm  formant  track
through the spectrogram (panel 3), in each case overlaid with
the rectified waveform. The FM envelope (F0 track, panel 4),
the LF spectrogram (panel 5) and FM rhythm formant track
(panel 6) are shown in the lower three panels.

The  rhythm  formant  tracks  visualise  the  constantly
changing AM and FM rhythm frequencies. To clarify: the LF
FM rhythm formant track in panel 6 should not be confused
with the F0 itself, which is shown in panel 4.

Figure  3:  (top  to  bottom)  AM envelope extraction;  AM LF
spectrogram; AM LF highest magnitude frequency track; FM
envelope;  FM  LF  spectrogram;  FM  highest  magnitude
frequency track (poetry reading).

3.2.  ML: k-means, hierarchical clustering

The  twenty  data  items were  compared  using  two  basic
unsupervised  machine  learning  (ML)  methods: k-means
clustering and hierarchical clustering. The reasons for using
unsupervised rather than supervised ML are  simple: the data
are  too  sparse  for  supervised  training  on  ‘big  data’;  also,
unsupervised  learning is  essentially  posterior  and inductive,
avoiding top-down prior training except for parameter choice.

Two-dimensional  k-means clustering  was  used  with
pairwise combinations of the variances of the five available
vectors:  F0  estimation,  AM  spectrum,  FM  spectrum,  AM
spectrogram formant  track,  FM spectrogram formant  track.
Variance  is  used  partly  as  a  dimension  reduction  measure,
partly  to  normalise  the  parameters.  The  best  separation  of
styles was given by  AM spectrogram formant track variance
in  combination  with  the  FM  spectrogram  formant  track
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variance or the  F0 estimation variance (Figure 4 and  Figure
5):  only  reading  15  (H,  poetry,  male)  was  an  outlier  in  B
(newsreading) territory.  The AM spectrogram formant track
variance was clearly the dominant discriminating factor.

Figure 4: AM spectrogram formant variance ✕
FM spectrogram  formant variance. B news, H
poetry; gender F, M.

Figure  5:  AM  spectrogram  formant track
variance  ✕ F0 estimation variance.

Figure  6:  Example  of  dendrogram  for two
registers, (B, newsreading, H, poetry reading) with
Cosine Distance and average linkage.

Induction  of  the  intuitively  perceived  style  differences
using  well-defined  acoustic  prosodic  parameters  is  thus
achieved  in  this  small  trial.  Newsreading  clustered  more
closely  than  poetry  reading,  with  higher  AM  spectrogram
track variance and less FM (F0) formant track variance. The

FM  variance  in  poetry  reading  and  its  greater  overall
variability  relates  to  a  livelier  impression  than  for
newsreading. Gender has only a small effect.

The same five vectors were used in hierarchical clustering
analyses using combinations of 5 distance metrics (Canberra,
Chebyshev,  Cosine,  Euclidean,  Manhattan)  and  4  linkage
criteria (average, Vorhees, single, weighted) applied to the 5
prosodic vectors (100 combinations). Objective assessment of
of results was by cluster overlap count. The best result was
achieved  for  the  AM  spectrogram  formant  track  variance,
which had already been shown to be effective in the  k-means
variance  analysis.  The  best  distance  metric  was  Cosine
Distance  with  average based linkage  (Figure  6),  expressing
orientations of the two styles in the formant track vector space.

4.  Discussion: interpreting ML

Which empirical facts underlie the inductive result? As a first
step in the task of understanding ML, the spectra, which in
effect compress the three-dimensional spectrogram into a two-
dimensional summary, are interpreted in detail.

Figure 1, Figure 2 and Figure 3 illustrate spectral analyses
of the two styles. Very low frequencies below 1Hz in the AM
and FM demodulation spectra are present in each style, though
at different frequencies in the different styles: newsreading has
two neighbouring main rhythm formants at 0.2Hz and 0.4Hz,
relating to interpausal unit (IPU) frequency, while the poetry
reading rate  in  this  frequency zone is  higher,  at  0.3Hz and
0.6Hz. The poetry reading also has clear formants at 1.0Hz,
1.6Hz and 2.1Hz, while the newsreading has a more diffuse
distribution of spectral frequencies in this region.

The  relatively  clear  rhythm  formants,  i.e.  zones  of
neighbouring  peak  frequencies  in  Figures  1 and  2 and  the
spectrogram patterns in Figure 3, suggest an acoustic prosodic
hierarchy of rhythms.

This is a first step in understanding inductive ML applied
to  timing  in  phonetics.  The  next  step  is  phonological
interpretation of the phonetic results (in contrast to phonetic
interpretation in top-down approaches),  in  order to  enquire
how  the  prosodic  AM  LF  spectrum  relates  to  a prosodic
default hierarchy of syllable, word and phrase (or rather IPU,
interpausal unit). For this purpose, the top-down analysis and
annotation techniques of linguistic phonetics are suitable ([2],
[11], [16], [19], [20], [21], [33]).

Table 1: Annotation measurements of newsreading and of
poetry reading styles (bold: shorter units, faster rates).

News Poetry

Syll Word IPU Syll Word IPU

n 242 161 16 189 129 22

median
(ms)

162 256 2305 240 363 1731

median
rate (Hz)

6.17 3.91 0.43 4.17 2.75 0.58

RI (nPVI) 51 67 77 53 69 31

Table  1 shows  the  results  of  measuring  annotation
durations (using Praat,  [5]) in examples from the two speech
styles of newsreading and poetry reading,  not as proof of a
phonetics-phonology  relation,  but  as  illustrations  of  one

304



method  for determining  these  relations.  The  measurements
show that  newsreading syllable and word rates are faster but
the IPU rate is slower. The auditory impression of the speech
styles is that the poet reads slowly to convey melancholy  at
leaving home, however dilapidated it may be. The faster IPU
rate in  poetry  reading  is  easily  explained:  metrical  line
structure constrains shorter IPU durations and thus faster rates
than  in  newsreading,  while  IPU  rates  in  newsreading
correspond to default phrasal and sentential structure, which
is, unlike poetry reading, not overridden by metrical structure.

The  regularity  indices (RI)  of  the  two  examples,  here
represented  by  the  normalised  pairwise  variability  index
(nPVI), show that in both  reading styles syllable indices (51
and 53) and word indices (67 and 69) are close in each case.
The word indexes  show higher irregularity, which  relates to
English morphosyntactic structure (short grammatical words,
long  variable-duration  lexical  words).  The  syllable  index
shows  marginally  greater  regularity  and  does  not  take
morphological  word  structure into  account.  The  IP  index
shows greater regularity in poetry reading, which is relatable
to poetic metre constraints which are absent in newsreading.

Figure 7: First 5 s of newsreading.

Figure 8: First 5s of poetry reading.

The assumption is that the LF formants in the spectra of
these  examples  relate  to  the  syllable,  word  and  IP  rates.
Inspection shows that this is very clearly the case for the IPU
indices:  the  IPU  rates  indicate  frequencies  of  0.43 Hz  and
0.58 Hz  for  newsreading  and  poetry  reading,  respectively.
There are also slower frequencies in each style, corresponding
to longer episodes than the IPU durations such as verses in
poetry or paragraphs in newsreading. The AM spectrum of the
poetry  reading  shows  clear  LF  formants  at  1.1Hz,  1.3Hz
1.6Hz, with frequencies which relate  partly to half-lines, but
also  partly  to  IPU-internal  phrase-final  lengthening.  At  the
predicted  word  frequencies  of  3.91Hz  and  2.75Hz,  and
syllable  frequencies  of  6.17Hz  and  4.17Hz  the  long-term
spectrum is too diffuse to identify higher frequency formants.

In  shorter  contexts  below  10s  these  spectral  zones  are
identifiable (selected in Figure 7 and Figure 8). Figures 7 and
8 visualise properties of LF AM spectra in the expected range
of  word  and  syllable  rhythms.  These  patterns  cannot  be
identical to the spectral patterns in Figures 1 and 2 because the
latter  compress  long-term  ranges  (56.18s  and  58.34s,
respectively)  into  a  single  dimension.,  in  contrast  to  the  5s
ranges in Figures 7 and 8. Nevertheless, the spectral range of
2Hz to 7Hz shows the essential properties of the two speech
styles  in  this  spectral  region:  the  tendency  to  faster  word

rhythms in  the  newsreading,  with  a  zone  of  spectral  peaks
around 4Hz, and slower word rhythms in the poetry reading,
with  a  zone  of  spectral  peaks  around  3.5Hz.  Long-term
syllable timing is too diverse to show clear patterning.

The spectra in Figures  1,  2,  3,  7 and  8 also illustrate the
variability of rhythm: spectral peaks occur in groups relating
to ranks in a prosodic default hierarchy: syllables, words and
IP frequencies, (cf. the annotation discussion). An explanation
for this variability is overriding by higher ranks of expected
lower rank default  durations: lexically stressed syllables are
longer than lexically unstressed syllables unless the unstressed
syllable  is  phrase-final  (phrase-final  lengthening),  other
phonotactic conditions being approximately equal (Figure 9).

Figure 9: Annotated segment of H101B (times in ms).

Figure  9 (Praat  [5] screenshot,  data  item  H101B)
illustrates  this  overriding  effect  in  the  prosodic  default
hierarchy: in the phrasal pattern ((poTAtoes)(in the GARden)),
the  lexically  unstressed  syllables  toes and  den would  be
expected  on  default  lexical grounds  to  be  shorter  than  the
preceding lexically stressed syllables ta and gar, respectively.
However,  they are  phrase-final,  and both post-lexically  and
acoustically longer than the preceding syllables, having been
overridden by phrase-final lengthening.

5.  Summary, conclusion and outlook

It was shown that a novel  pilot application of basic machine
learning  techniques  (k-means and  hierarchical  clustering)  to
low  frequency  (<5 Hz)  spectrograms  of  F0  and  of  the
amplitude envelope over long passages (typically 60s) from
the  Aix-MARSEC  broadcasting  database  can  distinguish
plausibly  between  newsreading and  poetry  reading  styles.
Only  the  reading-aloud  register  with different  speakers  and
genders  was involved,  indicating  that  style  timing  features
were detected independently of  speaker  or gender.  Phonetic
explanations of the ML clusterings were argued in terms of
differences  in  variance,  for  example  relating  to  greater
liveliness in the poetry readings.

The sparseness of the available data means that the results
have pilot  study  status,  as  with  the  previous  studies  with
related methods which were mentioned in the introduction.  It
remains to be seen whether long-term rhythmic differences in
languages as well as in culture-specific speaking styles  [15]
can also be detected with this method. Applications to emotion
detection, to naturalness assessment in speech synthesis and to
the diagnostics and testing of the public speaking proficiency
of advanced L2 learners are anticipated.1

1 Many thanks to the anonymous reviewers for constructive
suggestions,  and  to  Dr.  Xuewei  Lin,  Jinan  University,
Guangzhou, for insights on language-dependent typology of
poetic rhythm and metre.
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