
The Phonetic Grounding of Prosody: Analysis and
Visualisation Tools

Dafydd GibbonORCID 0000-0002-9825-5516

Bielefeld University
17, 69121 Heidelberg, Germany
gibbon@uni-bielefeld.de
ORCID 0000-0002-9825-5516

Abstract.  A suite of related online and offline analysis and visualisation tools
for training students of phonetics in the acoustics of prosody is described in de-
tail. Prosody is informally understood as the rhythms and melodies of speech,
whether relating to words, sentences, or longer stretches of discourse, including
dialogue. The aim is to contribute towards bridging the epistemological gap be-
tween  phonological  analysis,  based  on  the  linguist’s  intuition  together  with
structural models, on the one hand, and, on the other hand, phonetic analysis
based on measurements and physical models of the production, transmission
(acoustic) and perception phases of the speech chain. The toolkit described in
the present contribution applies to the acoustic domain, with analysis of the low
frequency (LF) amplitude modulation (AM) and frequency modulation (FM) of
speech, with spectral analyses of the demodulated amplitude and frequency en-
velopes, in each case as LF spectrum and LF spectrogram. Clustering functions
permit comparison of utterances.

Keywords: speech  rhythm,  F0  estimation,  frequency  modulation,  amplitude
modulation, prosody visualisation

1 Introduction

A suite of related online and standalone analysis and visualisation tools for training
students of phonetics in the acoustics of prosody is described. Prosody is informally
understood as the rhythms and melodies of speech, whether relating to words, sen-
tences, or longer stretches of discourse, including dialogue.  The aim is to contribute
towards the epistemological gap between phonological analysis of prosody, based on
the linguist’s qualitative intuition, hermeneutic methods and structural models on the
one hand, and, on the other, the phonetic analysis of prosody based on quantitative
measurements,  statistical  methods  and  causal  physical  models  of  the  production,
transmission (acoustic) and perception phases of the speech chain. The phonetician’s
methodology also starts with intuitions, even if only to distinguish speech from other
sounds, or more specifically to provide categorial explicanda for quantitatively classi-
fying the temporal events of speech. Nevertheless, the two disciplines rapidly diverge
as  the  domains  and  methods  become  more  complex,  and  issues  of  the  empirical
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grounding of phonological categories beyond hermeneutic intuition arise. The present
contribution addresses two of these issues:
1 models of rhythm as structural patterns which correspond to intuitions of stronger

and weaker syllables and words in sequence;
2 intuitive perception of globally rising and falling pitch contours.

The present account focusses exclusively on the acoustic phonetics of speech trans-
mission, not on production or perception, with a tutorial method of data visualisation
in two main prosodic domains:
1 LF (low frequency) amplitude modulation (AM) of speech as phonetic correlates of

sonority curves covering the time-varying prominences of syllables, phrases, words
and larger units of discourse as contributors to speech rhythms;

2 LF frequency modulation (FM) of speech as the main contributor to tones, pitch ac-
cents and stress-pitch accents,  to intonations at phrasal and higher ranks of dis-
course patterning, and also as a contributor to speech rhythms.
In Section 2, components of the online tool are described, centring on the demodu-

lation of LF AM and FM speech properties. In Section 3 an open source extended off-
line toolkit for Rhythm Formant Analysis (RFA) procedure is described, followed by
a demonstration of the RFA tool in a comparison of readings of translations of a nar-
rative into the two languages of a bilingual speaker. Finally, conclusions are discussed
in Section 4.

2 An online tool: CRAFT

2.1 Motivation

The motivation for the CRAFT (Creation and Recovery of Amplitude and Frequency
Tracks) online  speech  analysis  tutorial  tool  and  its  underlying  principles  are  de-
scribed, together with some applications, in  [9] and  [14].  Well-known tools such as
Praat [3], WinPitch [22], AnnotationPro [21], ProsodyPro [33] and WaveSurfer [26]
are essentially dedicated offline research tools. The online CRAFT visualisation ap-
plication is a tutorial supplement to such tools, based on the need to develop a critical
and  informed initial  understanding  of  strengths  and  weaknesses  of  different  algo-
rithms for acoustic prosody analysis. The main functional specifications for this on-
line tool are:  accessibility, version-consistency, ease of maintenance, suitability for
distance tutoring, face-to-face teaching and individual study, and also interoperability
using browsers on laptops, tablets and (with size restrictions) smartphones.

CRAFT is implemented in functional programming style using Python3 and the li-
braries NumPy,  SciPy and MatPlotLib, with input via a script-free HTML page with
frames (sometimes deprecated, but useful in this context), server-side CGI processing
and HTML output. The graphical user interface (GUI) has one output frame and four
frames for different input types1 (Figure 1):

1 http://wwwhomes.uni-bielefeld.de/gibbon/CRAFT/; code accessible on GitHub.

http://wwwhomes.uni-bielefeld.de/gibbon/CRAFT/
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1 study of selected published F0 estimators (Praat,  RAPT,  Reaper,  SWIPE,  YAAPT,
Yin) and F0 estimators custom-designed for CRAFT (AMDF or Average Magnitude
Difference Function, and S0FT, Simple F0 Tracker);

2 visualisation of amplitude and frequency modulation and demodulation operations;
3 display of alternative time and frequency domain based FM demodulation (F0 esti-

mation, ‘pitch’ tracking);
4 visualisation of low-pass, high-pass and band-pass filters, Hann and Hamming win-

dows, Fourier and Hilbert transformations;
5 visualisation of the output generated by the selected input frame.

In the following subsections, LF AM and LF FM visualisations are discussed, fol-
lowed by descriptions of AM and FM demodulation, operations and transforms and
long-term spectral analysis.

2.2 Amplitude modulation (AM) and frequency modulation (FM)

The mindset behind the CRAFT tool is modulation theory (cf. also [32]): in the trans-
mission of speech signals a  carrier signal is modulated by an information-bearing
lower frequency modulation signal, and in perception the modulated signal is demod-
ulated to extract the information-bearing signal; cf. Figure 2. Two main types of mod-
ulation are provided in the speech signal: amplitude modulation and frequency modu-
lation. Both these concepts are familiar from the audio modulation of HF and VHF
broadcast radio with amplitude modulation between about 100 kHz and 30 MHz (AM
radio), and frequency modulation between about 100 MHz and 110 MHz (FM radio).

Figure 1: CRAFT GUI: parameter input frame (top) for 9 F0 extractor algorithms; amplitude
demodulation (left upper mid); F0 estimators (left lower mid); filters, transforms, spectrogram
(left bottom); output frame (lower right).



4

The top frame in  Figure 1 provides inputs and parameters for the two core  CRAFT
tasks, exploring two prosodic subdomains: properties of F0 estimation algorithms and
long term spectral analysis of demodulated amplitude and frequency envelopes. Cor-
pus snippets are provided, including The North Wind and the Sun read aloud in Eng-
lish and in Mandarin.

Alternating sequences of consonant clusters (lower amplitude) and vowels (higher
amplitude) provide a low frequency (LF) AM  sonority  cycle of syllable sequences.
The syllable lengths and corresponding modulation frequencies  are around 100 ms
(10 Hz) and 250 ms (4 Hz),  and there are longer term, lower frequency amplitude
modulations corresponding roughly to phrases, sentences and longer units of speech,
constituting the LF formants of speech rhythms. Consonant-vowel sequences also in-
volve a more complex kind of amplitude modulation: variable filtering of the ampli-

Figure 2: AM and FM panels (top to bottom): modulation signal, carrier signal, amplitude
modulated  carrier,  amplitude  modulation  spectrum,  demodulated  AM  signal  (rectification,
peak-picking or Hilbert);  frequency modulated carrier,  frequency modulation spectrum, de-
modulated FM signal.
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tude of the high frequency (HF) harmonics of the fundamental frequency (and conso-
nant noise filtering), creating the HF formants which distinguish speech sounds.

The CRAFT tool is designed for analysis of the LF rhythm formants which corre-
late with long-term LF AM sequences of syllables and of larger linguistic units,  not
for the analysis of HF formants. Global falling, rising or complex intonation patterns
and local lexical tones, pitch accents or stress-pitch accents underlie the FM patterns
of speech. The CRAFT input form for visualisation of amplitude and frequency modu-
lation and demodulation procedures is shown in Figure 3.

2.3 Amplitude and frequency demodulation

Amplitude demodulation is implemented as the outline of the waveform of the signal,
the positive envelope of the signal, created by means of the smoothed (low-pass fil -
tered) absolute Hilbert transform, peak picking on the smoothed signal, or rectifica-
tion and smoothing of the signal. Frequency demodulation is implemented as F0 esti-
mation (‘pitch’ tracking) of the voiced segments of the speech signal.

Frequency demodulation of speech signals differs from the frequency demodula-
tion of FM radio signals in various ways, though the principle is the same. The FM ra-
dio signal  varies  around a  continuous,  stable  and  well-defined  central  carrier  fre-
quency, with frequency changes depending on the amplitude changes of the modulat-
ing audio signal, and when the modulation is switched off the carrier signal remains
as a reference signal. But in frequency demodulation of a speech signal there is no
well-defined central frequency, the signal is discontinuous (in voiceless consonants
and in pauses), the frequency cycles are uneven, since the vocal cords are soft and
moist  (and  not  mechanically  or  mathematically  precisely  defined  oscillators),  and
when the modulation disappears, so does the fundamental frequency carrier signal –
there is no unmodulated carrier; cf. [32]. For these reasons, in order to demodulate the
speech fundamental frequency, the signal has to undergo a range of transformations.

Several  comparisons and analyses of techniques for frequency demodulation (F0
estimation) of the speech signal are discussed in [1], [18], [23] and [20] are facilitated.
The following ten panels show visualisations of F0 estimates by a selection of algo-
rithms, each selected and generated separately using CRAFT, with the same data. The
algorithms produce  similar  results,  though there  are  small  local  and global  differ-
ences.  The superimposed polynomial  functions illustrate  some non-obvious differ-
ences between the estimates: a local polynomial model for voiced signal segments

Figure 3: Parameter input for AM and FM module.
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and a global model for the entire contour with dotted lines interpolating across voice-
less segments are provided.

1. Average Magnitude Difference Function (AMDF; custom implementation)

2. Praat (autocorrelation) [3]

3. Praat (cross-correlation) [3]

4. RAPT [27]

5. PyRAPT (Python emulation) [8]

6. Reaper [28]

7. S0FT (custom implementation)

8. SWIPE (Python emulation) [4], [7]

9. YAAPT (Python emulation) [34],[24]

10. YIN (Python emulation) [6],[15]

The F0 estimations in Panels 1 to 10 are applications of the different algorithms to
the same data with default settings. Two polynomial models are superimposed in each
case. The colour coding is: F0: blue, local polynomial: orange, global polynomial: red
plus dotted green interpolation. The algorithms achieve quite similar results and cor-
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relate well (cf.  Table 1), and are very useful for informal ‘eyeballing’. Most of the al-
gorithms use  time domain autocorrelation or cross-correlation, while the others use
frequency domain spectrum analysis or  combinations of  these techniques.  CRAFT
provides basic parametrisation for all the algorithms as follows:

 start and length of signal (in seconds),
 F0min and F0max for frequency analysis and display,
 length of frame for F0 analysis,
 length of median F0 smoothing filter,
 orders of global and local F0 polynomial model,
 on/off switch for F0 display,
 spectrum min and max frequencies,
 display min and max for envelope spectrum,
 power value for AM and FM difference spectra,
 display width and height.

Table 1: Selected F0 estimator correlations for S0FT, RAPT, Python RAPT and Praat on a sin-
gle data sample.

Correlation Pearson’s r  p
S0FT:RAPT 0.897 < 0.01
S0FT:PyRAPT 0.807 < 0.01
S0FT:Praat-autocorr 0.843 < 0.01
RAPT:PyRAPT 0.883 < 0.01
RAPT:Praat-autocorr 0.868 < 0.01
PyRAPT:Praat-autocorr 0.791 < 0.01

AMDF and  S0FT are minimalistic implementations which were designed specifi-
cally for the CRAFT tool. Except for a couple of sub-octave errors in the default con-
figuration shown,  AMDF compares favourably with  Praat autocorrelation, which it
resembles,  except  for  the  use  of  subtraction  and not  multiplication,  resulting in  a
faster algorithm. Absolute speed is dependent on the implementation environment, of
course, with C or C++ being in principle faster than Python. Interestingly, the Python
YIN implementation is the fastest of all.

The S0FT F0 estimation algorithm has a different purpose from the others: parame-
ters for ‘tweaking’ of the analysis are provided in order to find an optimal agreement
with aural-visual inspection and accepted standard algorithms. In addition to the gen-
eral parameters for adjustment by the user, which are available to all algorithms, S0FT
also provides specific parameters:

 initial choice:
◦ voice type (higher, middle, lower pitch), or
◦ custom: levels of centre-clipping, high and low pass,

 if initial choice is custom:
◦ filter frequency and order,
◦ algorithm (FFT, zero-crossing, peak-picking),
◦ length of F0 median filter,
◦ min and max y-axis display clipping.
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 An example of  S0FT output is shown in Panel 7 above. With the parameter de-
faults provided, the results can be very close to the output of standard algorithms such
as the autocorrelation algorithm of Praat.

The quantitative measurements which underlie the visualisations are also available
for further use, as in Table 1, which shows correlations between the algorithms under
the same conditions and for a single data item (bearing in mind that the goal here is
not to report an experiment but to outline the potential of this online tool).

2.4 Operations and Transforms

CRAFT also includes a panel for illustrating low-pass, high-pass and band-pass filters,
Hann (cosine; also, correctly: von Hann, and incorrectly: ‘Hanning’), and Hamming
(raised  cosine)  windows,  as  well  as  Fourier  and  Hilbert  Transforms  and  a
parametrised spectrogram display. The following three panels show low-pass, high-
pass and band-pass filters and the von Hann window.

1. High-pass and low-pass filters.

2. Band-pass filter with illustration of application.

3. von Hann window with illustration of application.

Figure  4 shows  Fast  Fourier  Transforms  (FFT)  of  six  frequency  estimations.
Clearly the F0 spectra of these algorithms differ considerably in spite of the rather
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high correlations noted previously, because of differences in frequency vs. time do-
main processing, in window lengths and window skip distances, as well as in internal
filtering.  S0FT,  AMDF and  PyRAPT are rather similar, while  YAAPT,  Praat (cross-
correlation) and SWIPE are very different. The implication is that when demodulated
F0 is further processed quantitatively, these differences between the algorithms may
need to be taken into account,  in spite of the relatively high correlations between
them.

3 The RFA offline extension toolkit

3.1 Functional specification

The main aim of the RFA (Rhythm Formant Analysis) toolkit extension is detailed in-
vestigation of the contributions of  LF AM and LF FM to the  analysis  of  speech
rhythms, based on the concept of rhythm formant, that is, a region of high magnitudes
in the low frequency spectrum and spectrogram of the speech signal, relating to the
rhythms of words and syllables, and, in long utterances, to slower rhythms of phrases
and longer discourse units. Theoretical  foundations of the underlying Rhythm For-
mant Theory (RFT) and applications of the RFA toolkit are described in Error: Refer-
ence  source  not  found.  The  code  is  available  on  GitHub  (accessible  by  internet
search).

Intuitively, rhythm is understood to be a real-time sequence of regular  acoustic
beats, usually between one and four per seconds (1...4 Hz). These beats are often said
to be associated with stressed syllables in foot-based stress-pitch accent  languages
like English, and with each syllable in syllable-based languages like Chinese.

There are many approaches to the analysis of speech rhythms in linguistics and
phonetics.  Phonological  approaches  use  numerical  values,  or  tree  structures  with
nodes labelled ‘strong’ and ‘weak’, or bar-chart like ‘grids’ to visualise a qualitative
abstract notion of intuitively identified rhythm. Descriptive phonetic approaches  an-

Figure 4: Spectral analysis 0...20 Hz of frequency envelopes of selected F0 estimation algo-
rithms for the same signal: S0FT, YAAPT, Praat (cross-correlation), AMDF, PyRAPT, SWIPE
(top to bottom, left column before right).
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notate speech recordings with boundaries of intervals associated with phonological
categories such as vocalic, consonantal, syllable or word segments and use strategies
to form averages of interval duration differences and to apply the averages as indices
for characterising language types.

A major issue with the annotation based duration average approaches is the lack of
phonetic grounding in the reality of speech signals beyond crude segmentation. The
reality of rhythm is that it involves more than just duration averages: it involves oscil-
lations in real time of beats and waves with approximately equal intervals – relative or
‘fuzzy’  isochrony.  The  restrictive  duration  average  methods  have  failed  to  find
isochrony, for a number of simple reasons which have been discussed on many occa-
sions; cf. the summary in Error: Reference source not found. In particular, the dura-
tion average methods do not actually capture the rhythms of speech, because they...
1 ignore the ‘beat’ or oscillation property of speech rhythms;
2 assume constant duration patterning throughout utterances;
3 assume a single duration average for each language.

In fact, rhythms may hold over quite short subsequences of three or more beats and
then change in frequency, also on occasion in a longer term rhythmic pattern, the
‘rhythms of rhythm’  Error:  Reference source not found. Further, rhythms vary not
only from language to language and dialect to dialect, but also with different prag-
matic speech styles.

Parallel  to and in stark contrast  with the annotation based duration average ap-
proaches  are  the signal  processing  approaches  which start  with the assumption of
rhythm as oscillating signal modulations, and work with spectral analysis and related
transformations  to  discover  speech  rhythms  of  different  frequencies  below  about
10 Hz; cf. overviews in  [9],  Error: Reference source not found and Section 2.3, For
example, a syllable speech rate of 5 syll/s corresponds to a low oscillation frequency
of 5 Hz with an average syllable length of 0.2 s; a foot speech rate of 1.5 ft/s corre-
sponds to an oscillation frequency of 1.5 Hz and average foot length of 0.6 s. The pre-
diction is that with an appropriate spectral analysis, these and other rhythm frequen-
cies can be detected inductively from the speech signal. Correspondingly, the intuitive
understanding of ‘rhythm’ is explicated ‘bottom-up’, unlike top-down phonological
approaches,  starting with the intuition of  rhythm as  oscillation and then analysing
physical properties of the speech signal, based on the modulation theoretic perspect-
ive of signal processing (Gibbon 2021:3):

Speech rhythms are fairly regular oscillations below about 10 Hz which
modulate the speech source carrier signal and are detectable in spec-
tral analysis as magnitude peaks in the LF spectrum of both the ampli-
tude modulation (AM) envelope of the speech signal, related to the syl-
lable sonority outline of the waveform, and the frequency modulation
(FM) envelope of the signal, related to perceived pitch contours.

The central requirement for a tool to be used for identifying rhythm frequencies by
demodulation of the low frequency oscillating modulations of the speech signal is
thus the identification of temporally regular oscillations with specific frequencies or,
more  realistically,  frequency  ranges.  The  frequency  zones define  multiple  fuzzy-
edged  rhythm  formants (cf.  [9],  [11],  [13] and  Error: Reference source not found),
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which can be associated with signal modulations by syllables, phrases and other cate-
gories ([2], [5], [19]). In other words: the tool must include a method for demodulat-
ing the rhythmically modulated signal.

For this purpose, long-term spectrogram analysis of the positive signal amplitude
envelope is introduced, both to analyse rhythms quantitatively, and to model the per-
ception of varying rhythms in the LF AM and FM oscillations of speech signals (cf.
[17], [31], [29], [30]).

The full procedure of demodulation and spectral analysis is shown with a stylised
example in Figure 5. In the example, the signal length is 1 s, the sampling frequency
is 44.1 kHz, the modulation frequency is 10 Hz and the modulation index (modulation
depth) is 0.75.

3.2 Standalone offline tools

Online tools are useful for teaching demonstrations in teaching situations where the
user is a software consumer rather than developer, but have the disadvantage that they
are constrained by the designer’s goals and the further disadvantages of software and
data integrity and possibly also unwanted logging of interactive activities.

For more flexibility, though at the cost of ease of use, a companion set of stand-
alone offline tools was developed, also using Python3 and the libraries NumPy, SciPy,
MatPlotLib, plus GraphViz. The toolset provides:
1 analysis and visualisation of AM and FM demodulation;
2 low frequency spectral analysis of AM and FM;

Figure 5:  Panels  showing  simplified  aspects  of  amplitude  modulation,  demodulation  and
rhythm detection: 1. sine modulation wave, 2. sine carrier wave, 3. modulated carrier, 4. de-
modulated amplitude envelope, 5. amplitude envelope spectrum.
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3 both a global spectrum and a 2 s or 3 s long windowed spectrogram for entire utter-
ances;

4 trajectories of highest magnitude frequencies through the spectrogram frame series;
5 comparison of utterances using these criteria.

The goal here is not to produce off-the-shelf point-and-click consumer software,
but to produce a suite of basic ‘alpha standard’ command-line tool prototypes which
can be further developed by the interested user.

Figure 6 (upper left) shows the waveform (grey) and the rectified and low pass fil-
tered amplitude envelope (red). The low pass filtered long-term amplitude envelope is
taken to be the acoustic phonetic correlate  of the ‘sonority curve’  of phonological
analyses. The LF spectrum from 0 Hz to 5 Hz is shown in  Figure 6 (upper right);
groups of high magnitude frequencies are taken to represent rhythm formants at dif-
ferent frequcies, the correlates of superordination and subordination prosodic hierar-
chy patterns in the locutionary component of the utterance.  FM demodulation and
spectral analysis are analogous.

In the mid panels of Figure 6, spectrograms of the utterance are shown, extracted in
2 ms overlapping FFT windows, first visualised as a waterfall spectrum, from top to
bottom, consisting of a vertical  sequence of spectra in the frequency domain (mid
right), and also as a more conventional heatmap spectrogram in the time domain (mid
left), with higher magnitudes shown as darker colours.

The main innovations in the offline toolkit are:
1 the LF spectrogram, which permits the observation and further analysis of changes

in rhythm patterns through the utterance;
2 the extraction of a trajectory through the spectrogram, in which at every FFT analy-

sis window the frequency with the highest magnitude is selected;

Figure 6: Rhythm frequency identification procedure.
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3 the custom design of the AMDF FM demodulation algorithm, in which frame dura-
tion and correlation domain are adjusted automatically in terms of minimum and
maximum limit parameters for the frequency search space;

4 clustering procedures for comparing sets of utterances:
 prosodic k-means clustering;
 prosodic distance mapping of utterances with a selection of distance metrics;
 prosodic hierarchical clustering with selections of distance metric and cluster-

ing condition combinations.
In order to be able to combine these functions in different ways for different pur-

poses,  for example only the waveform, or with the  AM envelope and the FM track
(F0 estimation track), with the low frequency AM and FM spectra, or only the wave-
form, F0 estimation, AM LF spectrogram and FM LF spectrogram, a set of libraries
was developed for specific analysis tasks:
1 waveform and LF amplitude demodulation (in the main application);
2 module_fm_demodulation.py (LF  FM, LF F0 estimation, using a custom

variant of AMDF, the Average Magnitude Difference Function);
3 module_drawdendrogram.py (spectral  frequency  grouping  of  magnitude

peaks interpreted as rhythm formants);
4 module_spectrogram.py (LF spectrogram of utterance, typically with 2s or

3s LF FFT window);
5 module_kmeans.py (classification  of  sets  of  utterances  using  Euclidean  dis-

tance-based k-means clustering);
6 module_distancenetworks.py (distance-based  linking  of  utterances  ac-

cording to time domain and frequency domain spectrum and spectrogram data vec-
tors,  using  a  selection  of  distance  metrics:  Canberra,  Chebyshev,  Cosine,  Eu-
clidean, Manhattan);

7 module_hierarchicalclustering.py (hierarchical clustering based on a
selection of distance metrics and clustering conditions).

3.3 Prosodic comparison of narrative readings

For demonstration purposes an analysis of spoken narrative data was conducted on a
small data set of readings aloud of the IPA benchmark narrative  The North Wind and
the Sun in English and German by a female bilingual speaker. The readings in each
language are numbered in order of production; the German readings were produced
before the English readings. While rhythms of spontaneous speech and dialogue may
appear more interesting at first glance, reading aloud is a cultural technique with inde-
pendent inherent value in report presentation, news-reading or reading to children and
the sight-afflicted. Moreover, spontaneous more complex and it is advisable to intro-
duce a new method with simpler clear cases.

As the first basic step, k-means analysis was chosen. The analysis is  intended to
demonstrate the value of both time and frequency domain parameters in prosodic ty-
pology. The prediction is that  the readings  in  English and German can  be distin-
guished by means of selected prosodic parameters, even though the readings are by
the same speaker.
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There are many prosodic properties which can be addressed. The present analysis
uses variance in two time domain vectors:
1 x: the variance of the trajectory of the highest magnitude frequencies in the LF spec-

trogram;
2 y: the variance of the FM (F0) track.

The two measures ignore the facts that (a) the data set is tiny and (b) the parame-
ters concerned are locally and globally varying time functions, not static populations,
thus not being ideal candidates for variance analysis. However, with durations of ap-
proximately 60s the utterances are much longer than the domains of rhythmic varia-
tion such as syllable, word and phrase, so that ‘the end justifies the means’ in this
case. The readings in English cluster in the upper right quadrant, while the readings in
German cluster in the lower left quadrant; cf. Figure 7. The result shows that the bilin-
gual speaker makes a clear distinction between her readings in English and her read-
ings in German In Figure 7, data positions are marked with filled circles coloured by
cluster; centroid positions are marked with “C” in a square in the cluster colour.

3.4 Distance mapping

Other similarity visualisations such as distance maps show links which are compatible
with the k-means division. In order to make distance relations clearer at a glance, dis-
tances above 0.75 (range 0...1) were excluded from the graph.

The first analysis compares utterances on the basis of the LF AM spectrum vectors
(Figure 8), using the Cosine Distance metric. The readings in English are  nearer to
each other than to the readings in German, and vice-versa, with cluster-internal dis-
tances <0.7 in each case. However the first reading in English is nearer to the first
reading in German than to the last reading in English, perhaps due to the chronology

Figure 7:  k-means positioning of  readings  of  The  North
Wind and the Sun by AM and FM spectral properties.
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of the scenario: the last reading in German was produced immediately before the first
reading in English. Such ordering effects were intended, as systematic context.

The second analysis (Figure 9) compares utterances on the basis of the LF FM
spectrum vectors. The analysis also uses the Cosine Distance metric, and shows the
same cluster formation as the analysis based on LF AM spectrum vectors: the read-
ings in English are  nearer to each other than to the readings in German, here with
cluster-internal distances <0.6 in each case.. In this case, the first reading in English is
nearer to both the first and third readings in German than to the third reading in Eng-
lish.

Further analyses based on spectrogram properties rather than spectrum properties,
also conducted with the Cosine Distance metric, show the same clear partitions and
also similar anomalies. The results are also confirmed by further analysis with hierar-
chical clustering (cf. Gibbon 2021).

Figure 8:  AM  LF  spectrum  distances  (English  and  German
readings by female bilingual).

Figure 9: FM LF spectrogram frequency max peak distances
(English and German readings by female bilingual).
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4 Conclusion

The functionality of the  CRAFT online tutorial tool and  the extended offline RFA
toolkit for acoustic prosody analysis is demonstrated in some detail, with attention to
the rhythmic and melodic modulations of speech. The main uses of the toolkits are in
advanced phonetics teaching and in acoustic prosody research.  Many open research
questions (cf.  the discussion in Error: Reference source not found) can be addressed
using  the  toolkits,  such  as  the  quantitative  analysis  of  the  variability  of  speech
rhythms in different language domains, from varying rhythms of the consonant vowel
succession in syllables (in so-called ‘syllable-timed languages’), to varying rhythms
of syllable sequences  in feet  (in so-called ‘pitch accent  languages’)  and the much
longer domains of rhythms in discourse.

Evidently, the small data set does not permit wide-ranging predictions. For larger
data sets more sophisticated  methods and complementing of  the present strategy of
unsupervised machine learning (ML) by semi-supervised and supervised ML meth-
ods. will be needed. However, the data set fulfils its function of demonstrating the va-
lidity of the RFA method itself and the utility of the extended RFA toolkit, and the
heuristic value of the method in raising further pertinent questions is clear.
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