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Abstract： The present study has two goals relating to the grammar of prosody, understood as the 
rhythms and melodies of speech: to provide an overview and a proposal. First, an overview is 
provided of the computable grammatical and phonetic approaches to prosody analysis which use 
hypothetico-deductive methods and are based learned hermeneutic intuitions about language.  
Second, a proposal is presented for an inductive approach to fill a major methodological gap in the 
hypothetico-deductive methods: an inductive grounding in the physical signal, in which prosodic 
structure is inferred using a language-independent method from the low-frequency spectrum of the 
speech signal. The grammar of prosody is understood here as the autonomous structure of prosodic 
patterns, the rhythms and melodies of speech, rather than as the relations between prosody and the 
grammar of words and their combinations. The study is deliberately exploratory and not a 
confirmatory reproduction of established approaches. 

The overview includes a discussion of computational aspects of standard generative and post-
generative models, and suggestions for reformulating these to form inductive approaches. Also 
included is a discussion of linguistic phonetic approaches to analysis of annotations (pairs of speech 
unit labels with time-stamps) of recorded spoken utterances. The proposal introduces the inductive 
approach of Rhythm Formant Theory (RFT) and the associated Rhythm Formant Analysis (RFA), 
with the aim of completing a gap in the linguistic hypothetico-deductive cycle by grounding in a 
language-independent inductive procedure of speech signal analysis. 

RFA uses spectral analysis of the envelope of speech signals to identify linguistically 
interpretable rhythm formants (R-formants) in the low-frequency spectrum (LFS) as high 
magnitude frequency clusters in the very low frequency band below 20 Hz, named by analogy with 
formants in the high-frequency spectrum (HFS) of vowels. The validity of the R-formant analysis 
method is demonstrated using the clear case of rhythmical counting, showing clear similarities and 
differences between the two main R-formants of Mandarin (Standard Chinese), tonal syllable and 
phrase, and the three main R-formants of British English, stressed and unstressed syllables and 
phrase,relating to the traditional distinction between syllable and stress timing. The different roles 
of amplitude and frequency modulation of speech in Mandarin and English story-telling data are 
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analysed for the first time, showing a difference in correlation between the LF AM and FM spectra 
in the two languages which is related to their phrasal and lexical grammatical differences. 

The overall conclusions are (1) that normative language-to-language phonological or phonetic 
comparisons of rhythm, for example of Mandarin and English, are too simplistic, in view of diverse 
language-internal factors due to genre and style differences as well as utterance dynamics, and 
(2) that language-independent empirical grounding of rhythm in the physical signal is called for. A 
code appendix is included to facilitate further study. 

 

Keywords: Rhythm Formant Theory, RFT, Rhythm Formant Analysis, RFA, rhythm, rhythm 
formant, R-formant, spectral analysis, low-frequency spectrum, tone, intonation, prosodic structure, 
induction 

1. Prosody: data, domains, methods 

1.1 Prosody and grammar: patterns and functions 
Prosody, informally defined in the present context as the rhythms and melodies of speech, is in 

the meantime one of the most extensively researched areas of spoken language in many disciplines, 
from phonetics through the sociology and psychology of language to speech technology. It is the 
domain which most conspicuously distinguishes the grammars of spoken and written language. 

The term ‘prosodic grammar’ is ambiguous, referring (1) to the relation between prosody and the 
locutionary grammar of lexical items and their combinations at phrase, sentence, text and discourse 
ranks, or (2) to the autonomous metalocutionary grammar of prosodic patterns alone, independently 
of the locutionary grammar, as in the finite state intonation grammar of Pierrehumbert (1980) and 
the finite state tone sandhi grammar of Gibbon (1987, 2001) and Jansche (1998). 

The second meaning is adopted in the present study, where ‘prosodic structure’ refers to 
systematic low-frequency temporal patterns (rhythms) of the amplitude modulations of speech, and 
their relation to syllable, foot and phrase domains. The low-frequency temporal patterns (rhythms) 
of speech melodies, the frequency modulation of speech, are addressed but not the actual forms 
(melodies) of tone and intonation. The phonetics of tone and intonation have been very thoroughly 
investigated, but speech timing in the domains of tone and intonation has been less intensively 
researched than pitch contours in these domains. 

The patterns of autonomous prosodic grammar, both in melody and in rhythm, differ not only 
from language to language (Hirst and di Cristo, 1998), and from dialect to dialect, but also in the 
speech styles and registers of each language and dialect, in everyday conversation and in formal 
styles of reading aloud and public oratory (Couper-Kuhlen, 1993), and also in rhythm variation 
within any given utterance (Gibbon and Li, 2019). 

Although the patterns of prosody tend to differ in different languages and language varieties, the 
functions of prosody are relatively similar from language to language. In the grammar and 
semantics of locutions, lexical tones, as in Mandarin Chinese, lexical pitch accents, as in Japanese, 
and and lexical stress positions with pitch accent correlates, as in English, all function to distinguish 
morphemes. In the case of morphological tone and the final tones of intonation patterns, prosodic 
patterns also have meaningful morphemic status. In the grammar and semantics of prosody as 
metalocution, pitch accents are deictic morphemes, in that they ‘point’ to the positions of key words 
in utterances as metadeictic gestural indices (Gibbon, 1983): morphemes and words in temporal 
utterance locations are the semantic domain of these metalocutions. In writing, highlighting with 
italics, bold face or underlining have a similar, but spatial metalocutionary deictic function. 
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Phrasal rhythms and melodies are constructions which consist of metalocutionary morphemes, 
which ‘point’ to and disambiguate larger domains of phrase and sentence structure: She didn’t come 
because she was busy (she did come – but not for that reason), with pitch and timing patterns 
contrasting with She didn’t come, because she was busy (she did not come – and for that reason). At 
the text and discourse ranks, prosody ‘points’, among other things, to utterance completeness in 
incompleteness and parenthesis in narrative and argument patterns, and to patterns of turn-taking in 
dialogue grammar, such as question (incomplete) and answer (complete) in adjacency pairs. 

Methods used in the study of the prosodic structure of these metalocutions have been partly 
phonological and symbol-phonetic, arguing deductively from linguistic structure to phonetic 
representations in terms of symbols such as those of the International Phonetic Alphabet. Some 
methods have been partly signal-phonetic, searching deductively for quantitative physical and 
physiological correlates of symbols in the speech signal. Typical research questions pertain to 
isochrony (regular timing) in syllable or foot durations; the alternation or oscillation property of 
rhythm has generally been ignored. Inductive studies, which use language-independent methods to 
induce patterns from the speech signal, and only a posteriori associate the resulting patterns with 
linguistically relevant units, are much rarer. Each of these approaches is discussed in this study. 

The present contribution focuses on an inductive signal-phonetic methodology for discovering 
prosodic structure, using methods which are more typical of speech technology than of linguistic 
phonetics. A detailed overview of formal deductive and inductive methodology in computational 
phonology and symbol-phonetics is included in order to provide linguistic context. With this 
background, the inductively oriented Rhythm Formant Theory (RFT) and its associated 
methodology of Rhythm Formant Analysis (RFA) are introduced as a very different approach from 
previous deductive and isochrony-oriented signal-phonetic studies, and a new concept of rhythm 
formant (R-formant) is introduced. 

 
1.2 Open questions: deduction and induction, writing and speech 

There are still many open questions in the study of prosody. The present study calls four basic 
epistemologically significant principles and widely accepted rationalist practices into question, and 
suggests alternative empiricist principles and practices: 

1. Data types 
Option 1: The writing bias: a common practice in linguistics is to write down 
systematically designed sentences and think intuitively about how they would be 
pronounced. The term ‘grammar’ has an honourable history as the study of writing, 
of course (cf. Greek ‘γράμμα’, ‘grámma’, letter) and  its modern interpretation in the 
theory of language structure owes much to this history, with the bias which 
schooling and its cultural normalisation of written text as the canonical form of 
language expression brings with it. 
Option 2: An alternative is to start with a corpus of actual speech recorded in the 
wild, or in well-defined, non-elicited scenarios, ranging from specific circumscribed 
events to random collation: corpus linguistics and corpus phonetics. 

2. Domain: 
Option 1: A common, though not universal, linguistic practice in analysing the 
relation between prosody and grammar is to restrict attention to words and their 
constituents, and to sentences and their constituents. 
Option 2: An alternative is to include the structures and functions of spoken 
discourse, including the grammar of interactive dialogue and the text grammar of 
descriptive, narrative and argumentative monologues within the scope of prosody 
and grammar. 
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3. Argumentation: 
Option 1: A common practice in linguistic prosody analysis proceeds with deductive 
logic: abstract premises, in practice written sentences whose component morphemes 
are attached to a tree structure or an autosegmental lattice as terminal nodes, are 
mapped to symbol-phonetic theorems by means of phonological rules of inference, 
for further testing. 
Option 2: An alternative is to start with the induction of signal-phonetic 
representations from speech signals using a combination of quantitative and 
categorial methods, by analogy with the procedures of automatic speech recognition 
(ASR). These are then be related to more abstract, linguistically relevant 
representations. The starting point would be well-established ‘universal’ principles 
of acoustic physics and the associated mathematics. 

4. Implementation: 
Option 1: Commonly, small sets of specific rules and their interaction are examined 
and phonetic theorems are deduced for further testing against native speakers’ 
intuitions. In some cases, well-defined algorithms are used to interpret the 
phonological rules consistently. 
Option 2: An alternative is to compute patterns from recorded data in an inductive 
procedure, and create comprehensive models which are both theoretically and 
empirically sound and complete with respect to both formalism and data. This is a 
procedure which is more typical of speech technology and natural language 
processing, and uses pattern matching, classification and prediction algorithms. 

The present study follows Option 2 in each of these methodological categories of Data, Domain, 
Argumentation and Implementation, within the constraints of RFT and the relevant data. 

 
1.3 Overview 
After the methodological overview in Section 1, Section 2 provides a brief overview of 

deductive and inductive phonological and symbol-phonetic theories. Section 3 is concerned with 
specific deductive signal-phonetic approaches and Section 4 introduces the inductive approach to 
signal-phonetic prosodic analysis and its extension in Rhythm Formant Theory (RFT) and Rhythm 
Formant Analysis (RFA). Section 5 applies RFA to the analysis of Rhythm formants (R-formants) in 
Mandarin story reading, and Section 6 summarises, concludes and suggests further developments. 
After the references an appendix is provided with the code which was used to calculate selected 
computational examples in the text, in the interest of encouraging further study. 

 

2. Deduction and induction in computational phonology 
 
2.1 Stress reduction, metrical tree, autosegmental tiers and finite state transduction 
In view of the internal variability of languages in terms of dialects, styles, genres, rhetorical 

strategies, and the dynamic variability of individual utterances, comparisons of entire languages as 
homogeneous constructs are far from being empirically grounded, as relevant situational variables 
are not controlled for. In studies of grammar, this variability issue is generally side-stepped by 
relying on normative hermeneutic judgments about hypotheses which are derived deductively, top-
down, from a theory and grounded in the intuitions of the linguist as an ‘idealised native speaker’. 
Similarly, in phonological and phonetic studies of prosody, both of rhythm and of melody, 
language-internal variability has also been largely ignored, for example in establishing singular 
timing regularity indices of around 40 and 65 for Mandarin or for English, respectively. Such results 
are empirically meaningless without careful control of the variability factors. Normative stipulation 
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of this kind is common practice but it is not an empirical procedure. In an empirical procedure, the 
incomplete hypothetico-deductive cycle of rhythm modelling needs to be grounded in articulated, 
transmitted and perceived physical signals from which structures to match top-down hypotheses are 
inferred inductively, bottom-up. Inducing linguistically relevant structure from the speech signal is 
the characteristic task of automatic speech recognition. However, the Hidden Markov Model and 
Neural Network algorithms which are typically used are opaque black boxes from a linguistic point 
of view, and the linguist cannot find linguistically interesting units or structures in them. As a step 
towards ensuring transparency, before proceeding to a inductive quantitative signal-phonetic 
methodology two classic symbol-phonetic deductive algorithms are discussed as background 
context: the stress subordination algorithm of Chomsky and Halle (1968) and the metrical algorithm 
of Liberman (1975) and Liberman and Prince (1977). These algorithms map syntactic tree 
structures (whether as tree graphs or as bracketings is immaterial) to sequences of numbers which 
are interpreted as patterns of degrees of stress. Arguably the most well-known examples of the 
deductive approach to prosody and grammar are: 

1. stress subordination theory (Chomsky et al., 1956; Chomsky and Halle, 1968) and the 
metrical theory (Liberman, 1975; Liberman and Prince, 1977) theory of stress 
patterning; 

2. autosegmental (Goldsmith 1990) and finite state (Pierrehumbert, 1980; Gibbon, 1987, 
2001; Kay, 1987) theories of independent parallel prosodic patterns; 

3. optimality theories, which re-interpret the deterministic inference approaches of the 
stress subordination, metrical, autosegmental and finite state theories as a heuristic 
search problem with potentially more than one solution within the search space of 
phonological patterns, therefore in principle non-deterministic. 

In the present context, the main question is whether these deductive systems are suitable for 
approaches to speech data analysis in which models are derived inductively and related post hoc to 
linguistic categories of syllable, foot, word, phrase, sentence, or higher ranks such as text and 
dialogue: the Rule Reversibility Question (RRQ).The RRQ has been posed from time to time in the 
context of generative phonology during investigations of the relation of phonological rules to the 
production and perception of language in performance. The simple answer to the RRQ is positive, 
and is shown below for linear phonological rules as well as for hierarchical stress subordination, 
metrical, autosegmental and finite state approaches. 

For optimality-theoretic approaches, which are orientated towards finding specific cases by 
narrowing a search space rather than generating specific cases, the RRQ is not quite so clear. Since 
it has been shown that the essential features of optimality theory can be formalised with finite state 
transducers (Karttunen, 1998), and these are reversible (see the following subsections), it is not 
necessary to discuss optimality theory in the present context. 

 
 
2.2 RRQ: reversibility of phonological rules 
Basic phonological rules are of the type γ α δ → γ β δ, abbreviated as α → β / γ _ δ, where α, β 

γ and δ are either feature structures or phonemes, morphophonemes, archiphonemes or other 
phoneme-like segments. Basic phonological rules have been shown in Finite State Phonology to be 
equivalently formalisable as finite state transducers (finite state automata with an input and an 
output), which can in turn be composed into a comprehensive finite state system (Johnson, 1972; 
Koskenniemi, 1984; Kaplan and Kay, 1994; Carson-Berndsen, 1997). Phonological rules are in 
general deductive and top-down, unidirectional from phonology to phonetics, and deterministic. 
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But is also known that finite state transducers are reversible. This means, fortunately, that 
phonological rules are also reversible, that is,  α → β / γ _ δ if and only if  β → α / γ _ δ (if rule 
ordering is also reversed). So in principle an inductive phonology proceeding from phonetic data to 
phonological generalisations is formally possible. Autosegmental rules can be formalised as multi-
tape finite state transducers (Kay, 1987); consequently an inductive autosegmental phonology is 
also possible, as shown by Berndsen (1998). 

However, a transducer which is deterministic in the top-down direction may be non-
deterministic, i.e. ambiguous, in the bottom-up phonetics-to-phonology direction, and therefore 
requires additional context for disambiguation. For example, the Mandarin tonal sandhi rule 

Tone3 → Tone2 / __ Tone3 
transduces a lexical sequence Tone3^Tone3 into the phonetic sequence Tone2^Tone3. Reversing the 
rule yields two lexical results, Tone2^Tone3 or Tone3^Tone3, because a lexical sequence 
Tone2^Tone3 may also occur: 

Tone2^Tone3 → {Tone3, Tone 2} / _ Tone3 
 For example (disregarding the controversy about the extent to which Tone 3 sandhi is due to 

phonological or phonetic factors, the minor differences in rhythm, and the difference in 
morphological structure) the phonetic representation mei2jiu3 in a reverse analysis is ambiguous: 

美酒 mei3jiu3: (tasty wine) ~ 梅酒 mei2jiu3: plum wine 

Consequently, a reversal of the rule results in ambiguity and disambiguation depends on the 
syntactic, semantic or pragmatic context. 

 
 
2.3 RRQ: reversibility of Niger-Congo tone sandhi rules 
Gibbon (1987, 2001) showed that tone sandhi can be represented as a finite state transducer 

with two levels (traditionally: ‘tapes’) which unites the separate contexts of standard phonological 
rules such as H → !h / L __ (‘a high tone is realised as downstepped high after a low tone’) into a 
coherent connected system. Gibbon (2018) showed that the phonetic interpretation can be extended 
by a third stage with numerical functions (making the second stage redundant), which can then in 
turn be operationally tested in a speech synthesiser (Figure 1). 

 
Figure 1 represents the core finite state grammar of tonal sandhi in a Niger-Congo two-tone 

language type such as Tem (ISO 639-3 kdh; Tchagbalé, 1984), abstracting away from some 

 
Figure 1: Three-stage interpretation of phonetic tone sandhi in a subsystem of a two-tone Niger-Congo language with a 
three-tape finite state transducer. 
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contextual details. Node labels represent the dual transduction function: H → !h→downstep(pi-1), 
for example, represents a transduction of a lexical high tone, H, into a downstepped symbol-
phonetic tone, !h, followed by a second transduction into numerical signal-phonetic F0 
(fundamental frequency, F0, ‘pitch’) functions which derive a pitch value downstep(pi) from the 
previous signal-phonetic F0 pitch value downstep(pi-1). The intermediate stage of the transducer 
shown in Figure 1 can omitted: the abstract lexical tone can be mapped directly to a physically 
interpretable numerical value. Each transition between two nodes in the transducer is, in a full 
model, associated with a variable for syllables bearing the tone concerned, thus implementing the 
autosegmental relation of tone-text association. 

Tem, and many other Niger-Congo tone languages, have considerably more complex tone 
sandhi, but this grammar captures the basic principle. The first stage of the phonetic interpretation is 
represented by the mapping of a high or low lexical (phonological) tone τlexical ∈ {H,L} to a 
phonetic tone τphonetic ∈ {h,l,!h,^l}, i.e. high, low, downstepped high, upstepped low. Language-
specific constraints such as tone-blocking consonants can also be specified. As with other 
phonological finite state transducers, the transducer is reversible, thus opening the possibility of 
using it as a model for components of automatic speech recognisers. 

Jansche (1998) has adapted this approach to the modelling of the Tianjin tone sandhi. 
Applications of this computational approach to standard Pŭtōnghuà (Mandarin), which would be 
rather straightforward, and to other Chinese dialects or Sino-Tibetan languages, are not available. 

 
 
2.4 RRQ: reversibility of the stress cycle 
First, the well-known stress cycle algorithms of Chomsky and Halle (1968) and of Liberman 

(1975) and Liberman and Prince (1977) are outlined. These algorithms deduce numerical terminal 
node sequences from tree structures, and the numerical sequences are in turn interpreted as the 
prominence patterns associated with different stress positions. Then a previously unpublished 
inverse algorithm for mapping number vectors to tree structures, rather than tree structures to 
numbers, is formulated. 

The example of a stress cycle discussed here is the core of the Nuclear Stress Rule of Chomsky 
and Halle (1968), which stipulates that the right hand constituent of a binary tree or subtree is more 
strongly stressed (indexed with a lower number) than the left-hand constituent. The same principle 
applies to the core of the Compound Stress Rule, where it is the left-hand constituent which is more 
strongly stressed. Then, a symbol-phonetic inductive algorithm which performs the inverse 
operation of mapping a sequence of numbers on to a tree structure is introduced as the inverse of the 
stress subordination and metrical procedures. Inverse algorithms of this type have not previously 
been published in this context (but cf. Gibbon, 2003 for an outline in a different context). 

The stress cycle is problematic in a number of ways. First, when the computed stress value 
exceeds about 4, native speaker judgments fail; to counter this, readjustment rules were proposed. 
Second, in discourse contexts, other factors such as contrast, emphasis, and rhetorical effect co-
determine stress levels. 

In the literature, the terminology used to describe stress and its correlates is unfortunately very 
inconsistent. To clarify, the usage in the present study is as follows: 

1. Crucially, stress is a position in a linear or hierarchical structure. In this role, stress has 
no intrinsic phonetic content, unlike lexical tone or lexical pitch accent in other language 
types, but may be expressed with a variety of pitch and timing patterns. The stress 
subordination, metrical and parenthesis counting algorithms make the positional 
character of stress in English very clear. 
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2. positions in words are determined lexically, but can be modified in phrasal contexts, and 
these can in turn be modified in rhetorical discourse contexts. 

3.  Perceptually, abstract positional stress is heard as prominence of constituents at a given 
stress position. The prominence percept is quite simply a metalocutionary pointer to a 
temporal location in the locutionary word sequence. 

4. The prominence percept is a function of perceived pitch height, pitch change and timing, 
caused in speech production by complex interaction of articulatory effort, phonation rate 
and clarity of speech sounds. In acoustic transmission the prominence percept is due to a 
complex function of fundamental frequency (F0, often misnamed ‘pitch’), duration and 
amplitude constraints. 

The core of the bottom-up stress subordination algorithm of Chomsky and Halle (1968) for the 
nuclear stress rule applies to tree structures in the form of parenthesis notations: 

1. Assign all terminal (lexical) items the stress index 1. 
2. Repeat until all brackets have been removed: 

1. Reduce stress values in the innermost brackets by 1, except the right-hand value. 
2. Remove the innermost brackets. 

Table 1 shows the stress value assignments for the simple case big John saw Tom’s dog. 

Table 1: Deductive cyclical stress assignment by stress subordination (Chomsky and 
Halle, 1968). 

Cycle inputs and outputs Rule application Cycle 

((big John) (saw (Tom’s dog))) Input  

((1big 1John) (1saw (1Tom’s 1dog))) by Rule 1  

((2big 1John) (1saw (2Tom’s 1dog))) by Rule 2.1 1st cycle 

(2big 1John (1saw 2Tom’s 1dog)) by Rule 2.2  

(2big 1John (2saw 3Tom’s 1dog)) by Rule 2.1 2nd cycle 

(2big 1John 2saw 3Tom’s 1dog) by Rule 2.2  

(3big 2John 3saw 4Tom’s 1dog) by Rule 2.1 3rd cycle 

3big 2John 3saw 4Tom’s 1dog by Rule 2.2  

Rather than using discrete stress values, Liberman (1975) and Liberman and Prince (1977) 
define a relational concept of stress, with the same kind of input as the stress subordination 
algorithm. The top-down metrically based algorithm can easily be checked by inspecting Figure 2. 

1. Assign w to each left branch and s to each right branch. 
2. For each terminal node: 

1. Move up the branch; starting with the first w, count each higher node on the 
branch, including the r node. 

2. Assign the resulting number to the terminal node as stress index. 
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Here is a simple deductive top-down left-right deterministic linear parenthesis counting 

algorithm which achieves the same result as the stress subordination procedure. This algorithm 
treats the input bracketing as a string in a parenthesis language, in terms of formal grammar (Knuth, 
1967), in which the brackets do not simply mark structure but are part of the vocabulary. The 
algorithm initialises a counter and then iterates through the string (cf. Code Appendix, Section 2): 

1. Remove the outer brackets and initialise the counter to 1. 
2. From left to right: 

1. if a left bracket is encountered, add 1 to the counter; if a terminal element is 
encountered after the left bracket, annotate the terminal element with the current 
counter value 

2. if a right bracket is encountered, subtract 1 from the counter; if a left bracket or 
the end of the string is encountered after a right bracket, annotate the previous 
terminal element with the current counter value. 

The algorithm can be implemented as a finite state transducer enhanced with a parenthesis 
counter indicating stack positions without actually using a stack. The automatically generated 
output of a well-formed bracketed sequence ( ( tiny Moll ) ( met ( tall Jill ) ) ) is shown in Figure 3; 
cf. also Section 2, Code Appendix). 

 
Each of these three algorithms, stress subordination, metrical and parenthesis counting, defines 

just one subset of a range of a possible stress patterns which can be intuitively confirmed by native 
speakers. 

 
Figure 3: Derivation of stress number production from a bracketed string by means of a finite state transducer 
enhanced with a stack-like parenthesis counter. Implementation: Python, cf. Section 9.2, Code Appendix. 

 
Figure 2: Metrical tree (Liberman 1975).
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Gibbon (2018) noted that stress cycle rules are reversible, permitting the induction of a 
metrically labelled syntax tree from a sequence of numbers. The associated words are omitted in the 
interest of brevity in the illustration of a bottom-up inductive procedure, which uses a standard 
shift-reduce parser to implement the inverse of the stress reduction and metrical algorithms (cf. 
Table 2). 

Table 2: Automatic bottom-up (shift-reduce) parse of input number vector (top row) to a 
number-labelled tree structure (bottom row). Implementation: Python. 

INPUT STACK 

Start: [[3], [2], [3], [4], [1]] →0 : [] 

Shift: [[2], [3], [4], [1]] →1 : [[3]] 

Shift: [[3], [4], [1]] →2 : [[2], [3]] 

  Reduce: ⇐ 1 : [[[3, 2], 2]] 

Shift: [[4], [1]] →2 : [[3], [[3, 2], 2]] 

Shift: [[1]] →3 : [[4], [3], [[3, 2], 2]] 

Shift: [] →4 : [[1], [4], [3], [[3, 2], 2]] 

  Reduce: ⇐ 3 : [[[4, 1], 1], [3], [[3, 2], 2]] 

  Reduce: ⇐ 2 : [[[3, [4, 1], 1], 1], [[3, 2], 2]] 

  Reduce: ⇐ 1 : [[[[3, 2], 2, [3, [4, 1], 1], 1], 1]] 

 
The shift-reduce parsing algorithm (Aho et al., 2006) uses a stack to store intermediate results, 

shifting elements from the input on to the stack and at each stage attempting to reduce the stack by 
combining adjacent elements into a tree structure until, for well-formed sequences, the stack only 
contains a single tree. The reduce criterion is that the number at the top of the stack is greater than 
the number of the next item on the stack. In order to make this possible, the lower input number is 
attached to the tree created by the reduce operation. For example, an input sequence [[3], [2]] 
appears on the stack in reverse order as [[2], [3]] ([3] is at the top of the stack), and is reduced to a 
tree structure [[[3, 2], 2]] with the lowest number, 2, attached to the tree structure. 

There is also a simple equivalent inverse algorithm for parsing a sequence of numbers into a 
string in a parenthesis language. Starting with an initial seed value of 1, if the previous number is 
smaller, subtract it from the current number and output that number of left brackets, otherwise 
subtract the current number from the previous number and output that number of right brackets. A 
derivation is shown in Table 3 (cf. Section 3, Code Appendix). 

Table 3: Parsing of a string in a parenthesis language from a sequence of numbers - 
inverse 'Nuclear Stress Rule'. Implementation in Python. See Section 3 Code Appendix. 

Input: [3, 4, 2, 3, 4, 1] 

Intermediate outputs: (( 3 

 (( 3 ( 4 

 (( 3 ( 4  2 )) 

 (( 3 ( 4  2 ))( 3 

 (( 3 ( 4  2 ))( 3 ( 4 

Final output: (( 3 ( 4  2 ))( 3 ( 4  1 ))) 
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3. Signal-phonetic deduction 

 
3.1 Annotation-based isochrony metrics 
Discussions of speech rhythm in phonetics and linguistics during the past fifty years have been 

mainly deductive in the sense outlined in Section 1, like the phonological approaches outlined in 
Section 2. The deductive approaches to rhythm description in phonetics have been diverse and 
controversial, and have not always addressed core features of standard characterisations of rhythm 
as alternation or oscillation, or of rhythm variation both in language varieties and during individual 
utterances. The present subsection addresses the formal foundations of such analyses and the 
following subsection discusses selected examples of their application. 

In phonetics, the deductive approaches started with simple categorial distinctions between 
mora, syllable and foot timing, then progressed to quantitative scales. The most popular quantitative 
approaches for over half a century have measured relative isochrony of speech segments, that is, the 
degree to which sequences of phonological units such as consonantal and vocalic speech intervals, 
syllables or feet have similar durations (Roach, 1982; Jassem et al., 1984; Scott et al., 1985 and 
many later studies using variance of consonantal durations and percentages of vocalic durations, cf. 
Dellwo and Wagner, 2003). The simplest of these isochrony measures is variance (or standard 
deviation), and, like variance, the others are also variants of measures of dispersion around the 
mean duration. It is evident that such global dispersion measures are not models of oscillating 
rhythms but heuristic indices of relative evenness of duration: evenness of timing is a consequence 
of regular alternation or oscillation, but may also occur without alternation: the same standard 
deviation value, for example, is achieved by all possible orderings of a given sequence. 

The most widely used and the most successful of these measures is the Pairwise Variability 
Index, (PVI), introduced by Low et al. (2000) as a local dispersion measure which reduces the 
influence of variation in speech rate. The PVI may be better understood by interpreting it as a 
distance measure between adjacent items. A non-normalised ‘raw’ version, rPVI, is typically used 
for consonantal utterance chunk sequences, whose duration is relatively invariant, and normalised 
version, the nPVI, is typically used for vocalic chunk sequences, syllables and feet, which tend to 
vary as a function of changes in speech rate. The two PVI variants average the differences between 
adjacent values in a vector of durations D = (d1, … dn) and can be formalised with vectors of 
consonantal, vocalic, syllabic, etc., durations in annotations of the speech signal: 

 
The rPVI and nPVI can be analysed as versions of the basic Manhattan Distance metric and its 

normalised form, the Canberra Distance metric, respectively: 

 
In the reformulation of the metrics as distance measures, the distance between the subvectors P = 

(d1, … dn-1) and Q = (d2, … dn), i.e. time-shifted subvectors of the vector D, is calculated. In the 
rPVI the sum is averaged, unlike the Manhattan Distance, and in the nPVI, in contrast to the 
Canberra distance, the sum is not only averaged rather than summed but multiplied by 100. 
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3.2 The limits of isochrony measures 
The PVI measures have several drawbacks as measures of rhythm (Gibbon, 2003).  Nolan and 

Jeon (2014) addressed some of these points but did not refute them. 
A formal issue is that, in contrast to the open-ended linear scale of the rPVI, the nPVI is a non-

linear asymptotic scale with an asymptote of 200 (due to normalising with the average rather than 
the sum; not a percentage scale, which is claimed in the literature), of which only a quasi-linear 
section below about 100 is empirically useful. The linear and asymptotic variants are clearly 
numerically incommensurable, though they define the same ranking and the nPVI is quite close to 
linear in the relevant sub-scale (Figure 4). Another formal issue is that the PVI variants assign the 
same indices to variants with alternations (i.e. rhythmical sequences) as to utterances in which 
adjacent duration differences are arbitrarily positive or negative (i.e. non-rhythmical). 

 
A trivial error of interpretation found in the literature is the claim that (n-1) is used to reduce 

the effect of final lengthening in utterances, where in fact it simply accounts for the number of 
differences between adjacent items in a sequence of length n , which is n-1. 

A more important empirical issue is that, although they are often termed ‘rhythm metrics’, in 
fact in each PVI variant removes all rhythmic alternations by taking the absolute value of the 
subtraction operation. The PVI variants are thus measures of relative equality of durations in D, not 
of rhythm, whether alternating or not: they are not rhythm metrics but isochrony metrics. To 
illustrate: it is easily verified that for an alternating ‘rhythmic’ sequence such as (2,4,2,4,2,4) and a 
non-alternating, ‘non-rhythmic’ geometrical sequence (2,4,8,16,32,64), nPVI = 66.67 in each case, 
and that for alternating (2,4,2,4,2,4) and non-alternating linear (2,4,6,8,10,12), rPVI=200 in each 
case. 

Another empirical problem with the PVI variants is that the measures are binary, whereas 
rhythms may be unary, ternary or more complex patterns which are beyond the capability of the 
isochrony metric (cf. also Kohler, 2009; Tilsen and Arvaniti, 2013). The binarity of the variants is 
evident not only from use of the binary subtraction relation but also from the property of the PVI 
variants interpreted as distance measures between two subvectors of the vector D, with the second 
vector shifted one position in relation to the first. 

 
Figure 4: Illustration of rPVI and nPVI functions with three language samples. Note that the nPVI scale is not a linear 
percentage scale, contrary to claims in the literature. 
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Wagner (2007) also demonstrated the binarity of the approach by representing the relation 
between the shifted vectors (as defined above) in a two-dimensional scatter plot, which shows the 
distribution of this binary relation, rather than a one-dimensional metric value. The plot is 
constructed by obtaining the z-scores of the data, so that the mean appears as zero and different data 
sets can be compared, and then plotting every adjacent syllable pair with the first syllable on the x-
axis and the second on the y-axis, so that pairs of longer syllables appear top right, pairs of shorter 
syllables appear bottom left, shorter-longer pairs appear top left and longer-shorter pairs appear 
bottom right. The scatter plot in Figure 5, for example, clearly visualises differing syllable duration 
distributions in Farsi (right) as more syllable timed (evenly distributed around the mean), and in 
English (left) as less syllable timed (skewed towards the bottom left quadrant). 

 
The PVI measures therefore turn out to be neither empirically ‘complete’, since they define a 

binary relation though rhythms may be more complex, nor empirically ‘sound’, since they also 
measure certain non-rhythms. Like other isochrony measures, the PVI variants are formally not 
models of rhythm. Nevertheless the PVI measures have been rather successful as heuristics for 
distinguishing different language types (albeit mainly because the data samples which are typically 
selected tend to be ‘well-behaved’ as predominantly alternating and binary, not because the 
measures inherently distinguish rhythmic from non-rhythmic utterances). 

 
 

4. Signal-phonetic induction 
 

4.1 The low-frequency spectrum in production and perception models of rhythm 
Parallel to the development of the deductive isochrony models, inductive methods were 

developed which, in contrast to the annotation-based deductive approaches, take the speech signal 
directly as input and start by modelling rhythms as oscillating modulations of the amplitude of the 
speech signal, without reference to linguistic categories. In a posterior step, the results are relatable 
to annotations of speech sounds, syllables, words and larger units. The oscillating modulation 
approaches are, formally, theories with interpretations as neurobiological models (Ding et al., 2017). 

 
Figure 5: Wagner scatter plot quadrants, illustrating clear duration differences between shorter-shorter syllable pairs, 
bottom left quadrant) and other pairs for English (left, news-reading from the Aix-Marsec database, Auran et al. 2004), 
and more even duration distributions, i.e. more isochronous durations, for Farsi (story reading, from Marzban 2015); 
reading aloud speech styles. 
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Two directions in the inductive, signal-oriented approach developed in parallel: speech 
production theories and speech perception theories. The production theories postulate a carrier 
signal, (the fundamental frequency, produced by the larynx) with regular oscillating amplitude 
modulations (AM) with superimposed consonantal noise and the filter functions of vowel vocal 
tract shapes (Cummins et al., 1999; O’Dell and Nieminen, 1999; Barbosa, 2002; Inden et al., 2012). 
An appropriate procedure for modelling speech rhythm production in the low-frequency spectrum 
(LFS) is Fourier Synthesis. 

Related models of speech perception were independently developed using demodulation of 
AM oscillations with a variety of procedures to extract the amplitude envelope modulation (AEM) 
from relatively long segments of the signal, usually >3 s: 

1. application of the Hilbert transform, the standard formal method; 
2.  rectifying and low-pass filtering the signal, the standard practical procedure; 
3. peak-picking in a moving window over the rectified (absolute) signal, and low-pass 

filtering (Gibbon, 2018); 
4. extraction of the intensity trace from the squared signal  (Dogil and Braun, 1988); 
5. binary re-scaling of the energy in short-term spectra as a model of sonority in speech  

(Galves et al., 2002; Fuchs and Wunder, 2015). 
After demodulation of the AEM, a Fourier transform is applied to determine the LFS of the 

selected segment of speech. A very low frequency subspectrum <20 Hz, often <16 Hz or <10 Hz is 
used in order to determine spectral peaks which are identified as the frequencies of speech rhythms. 
In some studies, the signal is first separated into separate lower, mid and higher frequency bands 
and spectral analysis is applied separately to these bands, with results averaged and binned for 
identifying spectral peaks. In the present study, the signal is low-filtered, ignoring high-frequency 
bands, and the envelope is extracted by peak-picking in a moving window; after spectral analysis 
the spectral peaks, or clusters of high magnitude spectral frequencies, are interpreted linguistically 
and referred to as rhythm formants (R-Formants) rather than simply as spectral peaks. 

Many studies have been made using low frequency amplitude demodulation of speech, in 
neurobiology and musicology (cf. Ding et al., 2017), as well as in phonetics (Todd and Brown, 1994; 
Cummins et al., 1999; Ludusan et al., 2011; Varnet et al., 2017; Tilsen and Johnson, 2008; Tilsen 
and Arvaniti, 2013; He and Dellwo, 2016; Gibbon, 2018; Gibbon and Li, 2019; Suni et al., 2019; 
Wayland et al., 2020). A common result in many studies is that the major frequency peak in the 
speech LFS is around 5 Hz. Some studies have found a secondary peak around 2 Hz, which is also 
found in music (Ding et al., 2017). From a linguistic point of view, the 5 Hz peak (R-formant) 
relates to the articulation rate of syllables as approximately 200 ms units, and the 2 Hz cluster (R-
formant) relates not only to musical bars but also to the articulation rate of approximately 500 ms 
length foot or word units. 

Studies of AM demodulation with spectral analysis have tended to use elicited ‘laboratory’ 
data (with the exception of Ding et al., 2017, who used large corpora of speech and music), and 
have also tended to focus on combining spectral vectors from several frequency bands as indicators 
of voice quality for clinical phonetic diagnosis or, in phonetic rhythm typology, on lower 
frequencies as indicators of differences between languages. 

The aims of the present study, in contrast, are to apply Rhythm Formant Theory (RFT) to 
include spectral analysis of frequency modulation (FM) in order to investigate the contribution of 
the fundamental frequency (F0, ‘pitch’) to speech rhythms, in particular whether the FM envelope 
LFS (FELFS) correlates with the AM envelope LFS (AELFS), and whether correlation values 
depend on variations in language, genre and gender. 
 



 

15 

 
4.2 Rhythm Formant Theory (RFT) 
Rhythm Formant Theory (RFT) is a development of the inductive LFS analysis approach. RFT 

makes the following explicit and linguistically informed assertions: 
1. Modulation. Speech rhythms are observable as low frequency oscillations in the 

amplitude and frequency modulations of speech, with measurable frequencies, and are 
tendentially a fortiori isochronous. 

2. Rhythm formants. Rhythm formants (R-formants) are higher magnitude clusters of 
frequencies in the low-frequency spectrum of speech, and are related to linguistic units 
and to neurobiological events, with direct application in clinical and speaker or language 
recognition contexts. 

3. Amplitude and frequency domains. R-formants are found both in the amplitude envelope 
modulation spectrum (AEMS) and in the modulation of the frequency envelope, 
fundamental frequency, F0, ‘pitch’ (FEMS). 

4. Simultaneous rhythm formants. The R-formants occur simultaneously in different but 
overlapping frequency zones, related to the articulation rate of speech units of different 
size from discourse to phone, and are variable within the zones. 

5. Serial rhythm formant changes. Rhythm zones vary with time during discourse, with 
shifting frequency ranges due to the shifting speech rates of sub-syllabic, syllabic or 
larger units. 

6. Asymmetrical rhythm. In linguistic analyses, rhythms are considered to differ between 
‘trochaic’ and ‘iambic’ patterns, and RFT employs a dedicated spectrum analysis method 
to identify physical strong-weak and weak-strong rhythm patterns which are interpretable 
as linguistic patterns. 

The present RFT approach shares point 1 above, and to some extent point 2, with previous 
LFS-based approaches. Points 3, 4, 5 and 6 are innovations. Points 1, 2 and 3 are dealt with in the 
present study, and points 4, 5 and 6 are works in progress. 

It may be suggested that the AEMS and FEMS generally correlate strongly in formal speech, 
while correlations may be lower in less formal speech. It may also be suggested that in tone 
languages such as Mandarin, the correlation is lower, because of the tonally determined, relatively 
arbitrary changes in F0 from one syllable to another, while in a stress language like English the 
pitch patterns at adjacent stress positions tend to remain fairly similar until the final stress of the 
sequence. These differences are investigated in the following sections. 

 
 

5. Induction of rhythm structure in amplitude and frequency modulation 
 

5.1 Rhythmical counting: calibration of the method with clear cases 
The RFT analysis method is illustrated with the rhythmically clear case of regular fast counting 

from one to thirty in English (Figure 6), in which a cluster of the most prominent frequencies occurs 
between 4Hz and 4.5Hz, constituting an R-formant, corresponding to rhythmical beats of average 
duration 235ms, a duration known to be associated with syllables. 
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Lexically, the numerals in the utterance represented in Figure 6 consist of monosyllables, 

disyllables, trisyllables and one quadrisyllable (‘27’), but phonetically the very fast speech 
rendering results in several weak syllable deletions. Durations of all units (words, strong syllables, 
all syllables) tend to increase during the utterance (which can be confirmed by an analysis of an 
annotation of the utterance). To iron out the speech rate differences, the nPVI relative isochrony 
measure was used to measure relative syllable regularity, yielding 11 for words and 25 for strong 
syllables, indicating very regular timing. The nPVI for all syllables is 44, confirming the very 
regular timing compared with typical values around 60 for read-aloud English. The word count is 
30, with a total duration of 9.667 s and mean duration of 322 ms, corresponding to a fast mean word 
rate of 3.1 per second (3.1 Hz). The mean syllable duration, based on manual annotation, is 161 ms, 
corresponding to a fast mean syllable rate of 6.21 per second (6.21 Hz). 

The prediction based on the annotated values is that dominant frequencies in the AEMS range 
from about 3.1 Hz to 6.21 Hz, with a centre frequency around 4.7 Hz. Figure 6 shows the region 
1 Hz to 10 Hz of the AEMS, with a cluster of 6 dominant frequencies between about 4.1 Hz and 
4.6Hz. The median frequency of about 4.35 Hz differs from the predicted approximation of 4.7 Hz 
by only 0.35 Hz, an informal corroboration of the prediction. 

The relevance of the corpus-based inductive method for language comparison and typology 
may be shown by the prediction that Mandarin tends, in traditional terms, to be more ‘syllable-
timed’, while British English tends to be more ‘foot-timed’ or ‘stress-timed’, and that this prediction 
should be fulfilled using the inductive method. For this purpose, R-formant analyses of moderately 
fast fluent counting from one to thirty by a native speaker of Mandarin and a native speaker of 
British English are shown in Figure 7 and Figure 8, respectively, in which the 15 highest magnitude 
frequencies in the spectrum segment 1 Hz to 10 Hz are highlighted. 

 

 
 Figure 7 (Mandarin) shows two strong rhythm formants, at 1.9 Hz, corresponding to a word or 

foot rhythm, and at 3.5 Hz, corresponding to a syllable rhythm with syllable duration averaging  

Figure 8: Calibration of rhythm formant induction: moderately fast fluent counting 1...30 in British English. 

Figure 7: Calibration of rhythm formant induction: moderately fast fluent counting 1...30 in Mandarin. 

 
Figure 6: Acoustic analysis of prosody parameters for a rhythmical test utterance of very rapid counting from 1 to 30. 
Left: time scale 0...11s for waveform and envelope. Right: frequency scale for low frequency spectrum 1...10Hz, with 
frequency cluster of most prominent items indicated by vertical ‘rhythm bars’. 
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approximately 280 ms. Other frequencies are isolated effects of non-systematic syllable shortening 
(above 5 Hz) or slight hesitation (the lower frequency of about 1.5 Hz). 

In contrast, Figure 8 (British English) shows three strong rhythm formants, two of them with 
the same values as in Mandarin and a third at 5.5 Hz, corresponding to the systematically occuring 
weak syllables which are characteristic of British English foot or stress timing. The figures show 
that both Mandarin and English have foot timing, but that the essential difference is that English has 
a very clear distinction between systematically strong and weak syllables, while Mandarin has 
strong syllables and weaker patterns of non-systematic syllable weakening which do not amount to 
clear rhythm formants. 

The analyses are implemented in Python with the libraries NumPy, MatPlotLib, and SciPy 
(Gibbon 2019). Display and analysis parameters are set in a configuration file. The code is available 
in the GitHub online portal* (cf. also Section 4, Code Appendix). An online version is also available 
for practical teaching purposes.† 
 
 
 

5.2 Correlation of amplitude and frequency modulation of speech 
Rhythm is a complex function of many production and perception factors, and the 

measurement of rhythm in the acoustic domain is subject to many decisions, some ad hoc, 
concerning parameters of signal processing. One of the basic problems to resolve in the acoustic 
domain is the relation between the amplitude modulation factor and the frequency modulation 
factor: how much does AM and how much does FM contribute to speech rhythm? 

A full examination would involve, first, an examination of the perceived rhythmicity of the 
utterances concerned, second, measurement of the correlation of AEM spectra and FEM spectra 
with these judgements and, third, correlation of the AM and FM spectra with each other. Resources 
for testing perceived rhythmicity were not available for the present study, so, as a first step the 
correlations of AEM and FEM spectra were examined. 

An exploratory pilot experiment was carried out for this purpose. The primary data are 
productions by 10 female and 10 male native speakers of standard Mandarin, reading a Mandarin 
translation of the IPA benchmark text, the Aesop fable The North Wind and the Sun. The utterances 
are between 40 and 60 seconds long. Initial and final silences were cropped. Secondary data for the 
purpose of initial informal comparison consist of a reading of the English version of The North 
Wind and the Sun by the late David Abercrombie, from the Edinburgh speech archive, and of two 
renderings of rhythmical counting in English: a fast speech rending of the sequence one to thirty (cf. 
The illustration in Figure 6) and a slow speech rendering of the sequence from one to ten (cf.  
Figure 9). 

The analysis steps for rhythmical slow counting from one to ten are visualised in Figure 9: 
row 1, the waveform and the raw amplitude modulation spectrum; row 2, the amplitude envelope of 
the waveform and the associated spectrum; row 3, the frequency modulation (F0, ‘pitch’) pattern 
and the associated spectrum. Row 4 shows the standard high frequency (HF) spectrogram and a 
generalised representation of the R-formants in binned histogram format weighted by frequency 
magnitudes. 

 
* Freely available under the GNU General Public License v3.0 licence at https://github.com/dafyddg 
† Signal analysis: http://wwwhomes.uni-bielefeld.de/gibbon/CRAFT 
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The RFA method was applied, and the spectra were collected for each utterance. The F0 

parameters were adjusted to typical female and male fundamental frequency settings. The lengths of 
the spectra were dynamically time-aligned, since the amplitude envelope spectrum and the 
frequency spectrum have different lengths. Pearson’s r was calculated for the aligned AEMS and 
the FEMS spectra in order to gain a rough measure of similarity of the shapes of the spectra. 

The bar chart in histogram format in Figure 9 shows a dominant R-formant between 
approximately 1 Hz and 2 Hz, indicating a rhythmical sequence of units of approximately 1 s 
duration, which can be immediately verified as the numeral words by examination of the envelope 
pattern of the waveform. In this slow counting style, the individual numbers have the status not only 
of syllables but also of words and phrases, showing list information which is extremely regular 
from syllable-word-phrase to syllable-word-phrase. The AEMS (and the AMS) also show a small 
R-formant at about 5 Hz, reflecting syllable internal structure as well as the syllable structure of the 
word seven, which is plainly visible in the waveform. The FEMS also has a strong R-formant at 
about 1 Hz, aligning closely with the R-formants of the amplitude spectra. In addition, there are 
small FEMS R-formants at about 8.5 Hz and 11.5 Hz, reflecting rapid intra-syllabic F0 changes at 
the stress positions. 

An initial prediction is that AEMS:FEMS correlations differ in different genres: lower in read-
aloud speech than in rhythmical counting, and varying with utterance length. Another prediction is 
that correlations differ between a tone language like Mandarin and a stress language like English on 
grammatical grounds, on the assumption that lexical tones, and therefore F0, vary relatively 
arbitrarily from syllable to syllable and therefore amplitude and frequency modulations do not 
correlate strongly, whereas lexical stresses tend to be expressed with a fairly constant F0 pattern 
over stress groups in any given utterance and will therefore correlate relatively well. 

Figure 9: Rhythm Formant Theory Analysis of an utterance with counting from one to ten. First row: waveform and 
rectified waveform LFS. Second row: AEM and AEMS. Third row: FEM (F0, ‘pitch’) and FEMS. Fourth row: 
spectrogram and R-formant histogram (abstraction over AEMS). (Figure as generated on screen; text and numerals are 
less important than shapes. 
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 Table 4: Pearson’s r between AM spectrum and FM spectrum 

ID Language Gender AEMS:FEMS Median Mean 

A Mandarin, NWaS F 0.64   

B Mandarin, NWaS F 0.58   

C Mandarin, NWaS F 0.28   

D Mandarin, NWaS F -0.04   

E Mandarin, NWaS F 0.12 0.28 0.32 

F Mandarin, NWaS M 0.81   

G Mandarin, NWaS M 0.43   

H Mandarin, NWaS M 0.10   

I Mandarin, NWaS M -0.34   

J Mandarin, NWaS M 0.07 0.10 0.21 

 Overall median/mean A-J: 0.20 0.27 

DG English 1-10 M 0.94   

DG English 1-30 M 0.27   

DA English NWaS M 0.69   
   

The results of the experiment are shown in Table 4 and show a clear difference between 
Mandarin and English. The correlations for the Mandarin speakers vary very strongly, but the trend 
is for Mandarin amplitude modulation and frequency modulation correlation to be much lower than 
is the case for English in readings of the story The North Wind and the Sun. This low AM:FM 
correlation for Mandarin was expected on functional grounds: the fundamental frequency patterns 
are lexically, not phrasally determined, while the opposite is true for English: the shape and 
frequency of pitch accents are phrasally and not lexically determined. 

The Mandarin results are very different on average from the English result, though the highest 
outlier for a Mandarin speaker is close to the correlation for an English speaker: evidence for 
language internal and speaker-specific variability. Table 4 therefore also suggests that not only 
language but also genre and gender may be specific factors in rhythm variation, and that 
homogeneous descriptions claimed for entire languages are overly bold enterprises. 

A clear topic for further analysis is suggested by the result that AEMS:FEMS correlations for 
Mandarin male speakers appear to be tendentially the lowest, followed by correlations for Mandarin 
female speakers. Correlations for the English speakers are much higher overall, but again, these 
individual results provide no more than a hint that the relative homogeneity of pitch realisations of 
stress patterns in an intonation language may support higher AEMS:FEMS correlations. 

It is also intuitively clear that in addition to language differences there are genre differences: 
the highest correlation, for the short utterance with counting from one to ten, results from a higher 
level of homogeneity than could be expected for longer utterances. The next highest correlation is 
found in the longer duration of counting from one to thirty, while the lowest AEMS:FEMS 
correlation for English is found in the considerably longer analysis of the reading of The North 
Wind and the Sun. 
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5.3 Variation in R-formant patterns 
The large variation in correlation values indicates considerable differences between AM and 

FM spectra. The weighted binned histograms of the highest magnitude spectral frequencies shown 
in Figure 10 (here defined on the rectified, i.e. absolute, signal rather than as AEMS formants) 
demonstrate that the R-formants of the Mandarin speakers pattern show some regularities, but also 
variation in individual speaking styles, accounting for the broad dispersion of the correlation results 
in Table 4. 

 
 On further inspection there are some tentative generalisations which can be made. Most of the 

readers have conspicuous R-formants at between 4 Hz and 8 Hz, as expected, corresponding to 
sequences of the common syllable duration between 250 ms and 125 ms, respectively. A shift of the 
R-formants in this range to a lower frequency indicates a slower speaker, and a shift to a higher 
frequency indicates a faster speaker, in terms of syllable rate. R-formants in the range between 
10 Hz and 12 Hz indicate shorter units, such as weaker and shorter syllables (for example 
grammatical items with the Mandarin neutral tone). Particularly interesting is the presence of R-
formants below 1.5 Hz, corresponding to the slow rhythmic patterns of phrases and larger discourse 
units, a topic addressed in conversation analysis (cf. Couper-Kuhlen, 1993) but not in grammatical 
studies of prosodic phonology. Whether these units are indicated by pauses, by changes in the 
durations of smaller units, or in the tempo of the utterance, is a matter for further investigation. 

 
6. Summary and conclusion 

 
The present study completes the defective hypothetico-deductive cycle of mainstream 

linguistic studies of prosodic grammar by grounding the study of prosodic timing in a language-
independent and universally applicable analysis of the speech signal. The main aim of the present 
methodologically focussed exploratory contribution is to introduce a new inductive signal-phonetic 
approach to the empirical grounding of prosody-grammar relations. The approach, Rhythm Formant 
Theory (RFT) utilises an analytic methodology which specifies rhythm formants (R-formants) 
quantitatively as higher magnitude frequency clusters in the long term spectra (LFS) of the 
amplitude envelope modulation and the frequency envelope modulation of the speech signal. 
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The relation between deductive and inductive approaches to rhythm analysis is discussed with 
reference to deductive and inductive stress modelling in generative, metrical and finite state 
phonology. It is further discussed in relation to the deductive measurement of timing patterns in 
annotation-based isochrony metrics. 

The inductive RFT approach is first illustrated and calibrated by demonstrating the presence of 
R-formants in clearly rhythmical speech, and then the correlation between R-formants in the 
amplitude envelope modulation spectra (AEMS) and frequency envelope modulation spectra 
(FEMS) of speech is discussed in detail using read-aloud data from male and female Mandarin 
speakers, with individual examples from English speakers for informal comparison. The results 
show that an informed grammatical interpretation of trends is possible, with AEMS:FEMS 
correlation tendentially lower in Mandarin than in English, due to the more heterogeneous FM 
patterns of a tone language and the more homogeneous FM patterns of a stress language.  
Tendential differences between male and female Mandarin speakers and genre differences in 
English between rhythmical counting and reading aloud were also observed. 

The Mandarin data set is very small (10 speakers) and variation is considerable, and for English 
only individual examples are given. Therefore, clearly, statistical significance is not on the cards. 
The study is deliberately exploratory, not a full confirmatory investigation, and statistical 
significance in this stage of development is less important than linguistically informed interpretation 
of trends which point to possible fruitful topics for future research. Applications of the RFT 
methodology are anticipated in language testing, clinical speech diagnosis, language typology, 
naturalness evaluation in speech synthesis, and in speaker recognition. . A code appendix is 
included to facilitate further study. 
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韵律结构的归纳式计算方法 
 

达菲德·吉本 
 

德国比勒费尔德大学 
 

摘要：韵律一般理解为话语的节律、节奏。本研究尝试从两个方面揭示韵律的语法规则。一

方面，本文将综述既有研究中使用语法和语音运算进行韵律分析的成果。这些研究以假设-
演绎作为方法来阐释学者对于语言的直感。另一方面，本文提出一种归纳式方法，以填补假

设-演绎在方法论上的主要不足。具体而言，该方法将韵律作为物理信号来分析，采用一种

独立于语言之外的研究方法，从话语中声学信号的低频谱段推导出语言的韵律结构。本文将

韵律的语法规则看作韵律模式（话语的节律、节奏）自身的独立结构，而非韵律与词汇规则、

词组结构规则之间的关系。 
综述部分将讨论标准生成理论和后生成理论的模型如何计算韵律结构，并以此为基础进

行调整，建立归纳式研究法。此外，还将探讨语音学如何分析口语录音材料的标注（话语单

位标记与时间戳的配对）。本文所介绍的归纳式研究法包括节奏共振峰理论（Rhythm 
Formant Theory，RFT）以及与之相关的节奏共振峰分析法（Rhythm Formant Analysis ，
RFA），通过引入一种独立于特定语言的话语信号分析程序，弥补语言学界假设-演绎法的不

足之处。 
由于高幅频聚集在20赫兹以下的低频谱带（“低频谱带”是参照元音“高频谱段”共振峰而

命名的），RFA 通过对话语信号包络进行频谱分析，识别低频谱段（low-frequency spectrum，

LFS）之中可从语言学角度解读的共振峰。韵律计数清晰明白地展示了节奏共振峰分析法的

有效性。研究表明，汉语普通话呈现出两个主节奏共振峰，英式英语则有三个。这两种语言

的异同，大致对应于传统上区分的音节计时和重音计时两个类型。本文首次以汉英故事讲述

语料为研究材料，分析了振幅调节和频率调节在两种语言里所起的不同作用。在低频谱段振

幅调节和频率调节之间的关联性方面，汉英两种语言体现了不同特征，这与它们在词汇、短

语方面的语法差异有关。 
研究的总体结论如下：（1）鉴于体裁、风格、话语变化等复杂多样的语言内部因素，通

常从音系学或者语音学角度所作的跨语言韵律比较不免过于简单化；（2）有必要采取独立于

语言的视角，将韵律作为物理信号从经验层面进行研究。 
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Code Appendix 
 

1. First steps in computational phonology 
This appendix is addressed to readers who are potentially interested in computational phonology 
and would like to have a starting point for experimenting with computational syntax-prosody 
mappings in phonology and with the RFT methodology. The first maps a list containing a string of 
parentheses and words, representing an expression in a parenthesis language to a string with the 
words index with ‘stress numbers’. The second is very simple and, ignoring the words, maps the 
sequence of numbers to a string in the parenthesis language. The third is complex, for the 
intermediate level Python user, and enables visualisation of R-formants in WAV files. 

In order to reduce space in the present context, the code requires well-formed input in order to 
produce well-formed output, none of the usual software precautions against semantic error are 
included, and no documentation comments are included. These steps are recommended as an 
exercise for the interested reader. 

 
2. Nuclear stress rule: generator from parenthesis language to integer sequence 

#!/usr/bin/python3 
# nsrbrackets.py 
# D. Gibbon, 2019-09-13 
 
# Initialise input bracketing 
bracketing = "( ( tiny Moll ) ( met ( tall Jill ) ) )" 
bracketing = bracketing.split(" ") 
 
# Initialise vocabulary, counter and output variables 
leftbracket = "(" 
rightbracket = ")" 
brackets = [ leftbracket, rightbracket ] 
counter = 1 
output = [] 
lastitem = "init" 
 
# Iterate through input bracketing 
for item in bracketing: 
 if item == leftbracket: 
  if lastitem == rightbracket: 
   output = output[:-1] + [str(counter) + output[-1]] 
  counter += 1 
 if not item in brackets: 
  if  lastitem == leftbracket: 
   output += [ str(counter) + item ] 
  else: 
   output += [ item ] 
 if item == rightbracket: 
  counter -= 1 
 lastitem = item 
 
# Termination 
output = output[:-1] + [str(counter) + output[-1]] 
print("Output:", output) 
 

3. Inverse nuclear stress rule: simple parser from integers to parenthesis language 



 

26 

#!/usr/bin/python3 
# nsrbracketsinverse.py 
# D. Gibbon, 2019-09-13 
 
leftbracket = "(" 
rightbracket = ")" 
brackets = [ leftbracket, rightbracket ] 
numberstring = "3 4 2 3 4 1" 
numbers = list(map(int, numberstring.split(" "))) 
counter = 1 
output = [] 
lastitem = "init" 
output = "" 
lastitem = 1 
 
for item in numbers: 
 if lastitem < item:   
  output += "("*(item-lastitem) + " " + str(item) + " " 
 if lastitem > item:   
  output += " " + str(item) + " " + ")"*(lastitem-item) 
 lastitem = item   
 
print("Inverse nuclear stress rule:") 
print("Input:", numberstring) 
print("Output:", output) 

 
4. R-formant visualisation 

#!/usr/bin/python3 
# aems.py 
# D. Gibbon, 2019-09-15 
# Visualise waveform, amplitude envelope modulation AEM 
# and low-frequency spectrum AEMS (requires WAVE filename) 
 
import sys, re 
import numpy as np 
import matplotlib.pyplot as plt 
import scipy.io.wavfile as wave 
from scipy.signal import medfilt 
 
wavfilename = sys.argv[1] 
 
fontsize = 9 
graphwidth = 12 
graphheight = 3 
wavecolor = "blue" 
abswavecolor = "lightblue" 
envcolor = "r" 
graphformat = "png" 
showgraph = True 
envwin = 20 
envmedianfilt = 501 
envheight = 1.1 
rhythmzones = "aems" 
rhythmcount = 6 
spectrumpower = 2 
spectrumpoly = 1 
aemsmin = 1 
aemsmax = 10 
aemsmedfilt = 3 
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fs, signal = wave.read(wavfilename) 
if len(signal.shape) > 1: signal = (signal[:,0]/2.0 + signal[:,1]/2.0) 
signal = signal/float(max(abs(signal))) 
signallen = len(signal) 
signalsecs = float(signallen)/fs 
signalstart = 0 
signalend = signalsecs 
 
def makeenvelope(signal, envwin, envmedianfilt): 
 signalabs = abs(signal) 
 peaksrange = range(len(signalabs)-envwin) 
 envelope = [ max(signalabs[i:i+envwin]) for i in peaksrange ] 
 padleft = [envelope[0]] * int(round(envwin/2.0)) 
 padright = [envelope[-1]] * int(round(envwin/2.0)) 
 envelope = padleft + envelope + padright 
 envelope = np.asarray(envelope) 
 envelope = medfilt(envelope,envmedianfilt) 
 envelope = envelope / float(max(envelope)) 
 return np.asarray(envelope) 
 
def fft(signal,fs): # signal is a NumPy array; fs is sampling rate 
integer. 
 period = 1.0/fs 
 mags = np.abs(np.fft.rfft(signal))**2 
 freqs = np.abs(np.fft.rfftfreq(signal.size,period)) 
 mags = np.asarray([0.000001 if m==0 else m for m in mags]) 
 mags = np.log10(mags) # CHECK IF THIS IS NECESSARY 
 mags[0] = mags[1] 
 mags = mags / np.max(mags) 
 return freqs, mags 
 
def polyregline(x,y,d): 
 x = range(len(y)) 
 fit, res, _, _, _ = np.polyfit(x, y, d, full=True) 
 yfit = np.polyval(fit,x) 
 return yfit 
 
envelope = makeenvelope(signal, envwin, envmedianfilt) 
aemsf0,aemsmags = fft(abs(envelope),fs) 
aemsmags[0] = aemsmags[1] 
aemsmags = medfilt(aemsmags,aemsmedfilt) 
 
# Initialise graph 
_,( pltenv, pltaems 
 ) = plt.subplots(nrows=1, ncols=2, figsize=(graphwidth, graphheight)) 
 
# Amplitude envelope 
title = "AEM (absolute peak-picking algorithm)" 
pltenv.set_title(title) 
width = 2.0; ymin = -1.0; ymax = 1.0 
x = np.linspace(signalstart,signalend,signallen) 
pltenv.plot(x,signal, color=wavecolor, linewidth=width) 
pltenv.plot(x,abs(signal), color=abswavecolor, linewidth=width) 
pltenv.plot(x,envheight * abs(envelope), color=envcolor, linewidth=width) 
xx = np.linspace(signalstart,signalend,signalsecs + 1) 
pltenv.set_xticks(xx) 
xtix = pltenv.get_xticks() 
xtixlabels = [ "%.1f"%(i) if i>0 else str(signalstart) for i in xtix ] 
pltenv.set_xticklabels(xtixlabels,fontsize=fontsize) 
pltenv.set_ylim(ymin, ymax) 
pltenv.set_xlim(signalstart, signalend) 
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# Long term amplitude envelope spectrum 
 
title = "Rhythms and Rhythm Zones: AEMS with rhythm bars" 
pltaems.set_title(title) 
ymin = 0 
ymax = 1.0 
width = 2.0 
xminsamples = int(aemsmin * fs/2.0) 
xmaxsamples = int(aemsmax * fs/2.0) 
numin = int(round(aemsmin * len(aemsf0) / aemsf0[-1])) 
numax = int(aemsmax * len(aemsf0) / aemsf0[-1]) 
aemsf0 = aemsf0[numin:numax] 
data = aemsmags[numin:numax] 
data = data**spectrumpower 
data = np.log10(data) 
data = (data - np.min(data)) / (np.max(data)-np.min(data)) 
x = np.arange(len(data)) 
polymodel = polyregline(x,data,spectrumpoly) 
polyresid = data - polymodel 
polyresidnorm = polyresid+abs(np.min(polyresid)) 
pltaems.plot(aemsf0,polyresidnorm, color='b', label='norm') 
if rhythmcount > 0: 
 speclist = polyresidnorm.tolist() 
 speclist = speclist 
 speclistsort = sorted(speclist) 
 speclistsortrev = reversed(speclistsort[-rhythmcount:]) 
 for i, item in enumerate(speclistsortrev): 
  b = speclist.index(item) # actual vector position 
  f = float(b)/signalsecs # vector position in Hz 
  print(i,item,b,f) 
  f = f + aemsmin   # if signal does not start at zero 
  pltaems.axvline(f,ymin=0, ymax=item, linewidth=2, color='r') 
pltaems.set_xlim(aemsmin, aemsmax) 
pltaems.set_ylim(ymin-0.1, ymax+0.1) 
xtix = pltaems.get_xticks() 
xtixlabels = [ "%.1f Hz\n%.3f s"%(i,1.0/i) if i>0 else "0 Hz" for i in xtix ] 
pltaems.set_xticklabels(xtixlabels,fontsize=fontsize) 
pltaems.set_ylabel("Magnitude", fontsize=fontsize) 
 
plt.tight_layout(pad=3, w_pad=1, h_pad=1) 
plt.savefig("AEMS.png") 
if showgraph: 
 plt.show() 
 


