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ABSTRACT
Linguistic  rules,  constraints,  processes,  and  other  instruments  for  expressing 
generalisations tend to be formulated as isolated statements whose relationship to 
each  other  remains  unclear  and  is  rarely  formulated  explicitly  (with  notable 
exceptions like the stress cycle, or layers of morphological rule organisation). The 
present  contribution  demonstrates  a  default  logic  technique  using  the  DATR 
knowledge representation language, with implementation in ZDATR, for ensuring 
the  connectedness  of  the  theory,  in  application  to  several  non-trivial  prosodic 
problems in English, German and Niger-Congo languages including 
/Yacouba, Kikuyu, Tem and Baule.

1 Default inference in prosody

1.1 Objectives

In contemporary discussions on prosody, as in phonology and phonetics in 
general, the instruments for expressing generalisations are referred to as rules, 
processes,  constraints,  and  principles as  components  of  theories,  grammars, 
automata and  related  constructs,  and  they  vary  in  different  approaches. 
However,  it  is  in  general  very  difficult  or  even  impossible  to  tell  how the 
different rules and constraints relate to each other. The rules, constraints etc. are 
formulated in relative isolation from each other, and related by means of highly 
specific  ordering  rules.  Notable  exceptions  to  this  ad  hoc state  of  affairs 
(leaving aside the numerous empirical problems) are the morphophonological 
cycles in the Generative Phonology, Lexical Phonology and Metrical Phonology 
of the 1960s, 1970s and 1980s. Rules which are formulated in isolation and 
without well-motivated interconnections infringe a well-tried heuristic principle 
in formal linguistics,  that ‘une langue est un système où tout se tient’,  i.e.  a  
language is a fully connected system.

A remedy for this situation is to conceive of rules as axioms, from which 
theorems  may  be  derived  (inferred,  predicted)  by  highly  general  logical 
principles of inference which are not motivated ad hoc by particular descriptive 
problems, and to demonstrate how theorems may be derived from these axioms 



by means of an automatic theorem-prover; connectivity of the inference steps 
may be demonstrated by the use of inheritance graphs.

The theorems are tested against  models of reality which can in turn be 
constructed  from  induction  over  intuitive  observations,  production  and 
perception  experiments,  and  measurements  of  corpus  data.  The  present 
contribution  is  concerned  with  a  direct  application  of  default  logic  for 
reconstructing linguistic generalisations, concentrating more on formal issues 
rather than on detailed empirical grounding.1

1.2 ZDATR: a theorem-prover as a default inference engine

For  present  purposes,  the  default  logic  formalism  DATR2 is  used,  for 
which a number of theorem provers have been implemented3. For conformity 
with  the  standard  RFC  specification  (Evans  &  Gazdar  1998)  the  ZDATR 4 
inference engine is used here. DATR is a dedicated formalism which is used to 
define theories as sets of axioms from which theorems are derived by means of 
defeasible (overridable) and non-defeasible (standard) inference. The theorem 
strings are constructed compositionally by concatenation.  DATR theories are 
often  modelled  either  as  inheritance  hierarchies  or  as  formal  automata, 
depending on whether the focus is on deduction or on string composition. A 
typical linguistic application of DATR is to describe an ‘inheritance lexicon’ in 
which inflected and derived forms of words are constructed from a stem and an 

1 I  have  profited  greatly  from  discussions  about  many  technical,  phonetic  and 
prosodic issues with Stefan Grocholowski over the years in the context of ongoing 
research cooperation with Grażyna Demenko. These discussions have encourage me 
to contribute an account of a specific formal technique of handling formal issues in 
inference with prosodic generalisations of a wide variety of types. I am particularly 
grateful to Gerald Gazdar, Doris Bleiching, Katja Jasinskaja and Sabine Reinhard 
for extensive discussions on these issues.

2 The name “DATR”, pronounced [ˈdætə] is not an acronym. It was coined by Roger 
Evans and Gerals Gazdar by analogy with “PATR II”, a parser for attribute-value 
systems.

3 There  have  been  many  implementations  of  DATR  inference  engines,  of  which 
Sussex DATR (Evans & Gazdar 1996), QDATR (James Kilbury), KATR (Finkel & 
Stump n.d.),  ZDATR (Gibbon  & Strokin  1998)  are  currently  available  as  open 
source  software.  KATR  contains  an  additional  abbreviatory  notation  which 
expresses DATR paths as sets, thus capturing arbitrary orderings of the subset of 
DATR paths which contain no atom doublets.

4 Unlike previous implementations in Prolog, Scheme and Java, which have various 
non-standard idiosyncrasies, ZDATR is an efficient implementation in C which is 
fully conformant with the DATR version specified in RFC 2.0 (Evans & Gazdar 
1998).  ZDATR  has  the  reputation  of  being  the  industry  strength  standard 
implementation  of  DATR,  and  is  intended  for  command  line  use  in  large-scale 
industrial  strength  pipelined  applications  as  well  as  for  small  prototype 
development. The name “ZDATR”, pronounced [ˈzdɑtr], is not an acronym; the “Z” 
(as the last letter in the alphabet) is intended to suggest that ZDATR is the definitive 
RFC  2.0  version  of  DATR.  ZDATR  sources,  binaries  and  documentation  are 
available at the following address: http://coral.spectrum.uni-bielefeld.de/DATR/



implication hierarchy of inflection classes, and where irregularities override the 
defeasible general regular generalisations.

The  present  approach  uses  both  the  inheritance  and  the  composition 
paradigms  to  interpret  inference  of  prosodic  patterns  in  DATR.  Similar 
inheritance techTemniques to those on which DATR is based have been well-
known in the object-oriented programming paradigm since the 1970s and are 
standardly used in modern software development. DATR shares the heuristic 
utility of this paradigm for practical modelling and development purposes.

1.3 Descriptive problems for prosodic inference

The specific prosodic modelling problems dealt with here are taken on the 
one hand from English and German, i.e. stress and intonation languages, and on 
the other hand from the lexico-syntactic tone languages of West  Africa.  The 
problems covered are stress assignment in German word formation, markedness 
relations  between  nuclear  tones  in  English  intonation,  lexical  prosody  in 
Dan/Yacouba, a Mande language of Western Ivory Coast, tonal displacement in 
Kikuyu,  a  Bantu  language  of  East  Africa,  and  the  phonetic  realisation  of 
terraced tone sandhi in two-tone Niger-Congo languages such as Tem (Togo) 
and Baule (Côte d’Ivoire).

2 The default inference formalism DATR

2.1 DATR inference engine definitions

Almost every article ever published on inference with DATR has included 
a more or less useful informal introduction to the formalism (see bibliography, 
also a wide selection on the internet), so the introduction in the present context 
can  be  strictly  technical,  and  limited  to  a  set  of  definitions,  and  a  simple 
intuitively comprehensible example of inference with the ZDATR engine. The 
definitions  are  kept  to  fairly  standard notations,  including a  small  subset  of 
regular expressions.

A DATR query process is a triple <E, T, Q>, where
E is an inference engine implementing

D: a default matching rule
S: a rule of suffix attachment
I: a set of 7 rules of inference (defined below)
R: a register triple consisting of

GC: a global context register, values accessible any time after assignment
LC: a local context register, values accessible only at the current node
RS: a suffix register

T is a theory consisting of
A: a set of atoms (character strings, single-quoted if with special characters)
N: a set of nodes, each paired with

E: a set (ending in “.”) of equations, each consisting of LHS == RHS
for
LHS: a delimited path (sequence) of atoms, i.e. < atom* >
RHS: a recursive sequence (atom|N|RP|NRP|"N"|"RP"|"NRP")*,



for
N: node
RP: recursive path <(atom|N|RP|NRP|"N"|"RP"|"NRP")*>,
NRP: pair of a node and a recursively defined path, and

N, RP, NRP are evaluated in the local context
"N", "RP", "NRP" are evaluated in the global context

Q a query, concatenation of a node, “:”, and an atom path: Node:< atom* >
The following is a typical DATR theory which illustrates most of these 

structures and models a tiny lexicon in a style which has been used in speech 
technology projects:

Cat: % Abstract lexical lemma node
  <> == Noun % Default inference from Noun node
  <phon> == 'kat' % Phonemic representation in SAMPA
  <sem> == feline. % Simple semantic representation
Dog: % Abstract lexical lemma node
  <> == Noun % Default inference from Noun
  <phon> == 'dog' % Phonemic representation in SAMPA
  <sem> == canine. % Simple semantic representation
Noun: % Generalisation node for nouns 
  <> == Word % Default inference from Word node
  <syn> == noun. % Generalised property of nouns
Word: % Generalisation node for words
  <> == % Default value is null
  <entry> == [ "<phon>" "<sem>" "<syn>" ]. % Template

In this axiom set for a lexicon theory, the microstructure of the entries Cat 
and Dog is underspecified and missing information is inferred from information 
at more abstract nodes shared by several more specific nodes. In this theory, this 
applies to parts of speech (here nouns) and a vector template for the lexical 
entry of a word. The following theorems can be inferred from the lexicon theory 
(phonemic representations are in the SAMPA alphabet):

Cat:< entry > = [ kat feline noun ] .
Cat:< phon > = kat .
Cat:< sem > = feline .
Cat:< syn > = noun .
Dog:< entry > = [ dog canine noun ] .
Dog:< phon > = dog .
Dog:< sem > = canine .
Dog:< syn > = noun .

2.2 Recursive default inference

Inference proceeds in the following steps:
Initialisation:
1. The global context GC is initialised to the query Q.
2. The local context LC is initialised to the global context GC.

Matching:
3. The local context LC is matched to

1. a node N in the theory T which matches the node in LC,
2. the longest LHS at the node N which is a prefix of (or equal to) the path in 

LC.



4. The suffix register  RS is initialised to the non-matched suffix of the matched 
query Q.

Evaluation (deduction):
5. Each  element  of  the  RHS is  evaluated  and  the  values  are  concatenated, 

whereby
1. atoms evaluate to themselves (Rule I),
2. GNRP,  GN,  GRP and re-initialise the  GC and  LC registers and evaluate 

recursively (Rules II, III, IV),
3. LNRP, LN, LRP reinitialise the LC register and evaluate recursively (Rules 

V, VI, VII),
4. the value of the suffix register RS is appended to each RP in GC and LP.

Recursion:
6. Matching and Evaluation are recursively applied to GC and LC.
The essential feature for the default logic interpretation of DATR notation 

is the “longest path match” criterion expressed in step 3.2, which explicates the 
principle that a more general value (corresponding to a shorter match) applies 
unless a more specific criterion (corresponding to a longer match) applies.

The  following  theorems  are  deduced  from the  queries  listed  above  by 
means of the inference procedure outlined here:

Cat:< entry > = [ k{t feline noun ] .
Cat:< phon > = k{t .
Cat:< sem > = feline .
Cat:< syn > = noun .
Dog:< entry > = [ dOg canine noun ] .
Dog:< phon > = dOg .
Dog:< sem > = canine .
Dog:< syn > = noun .

To gain an intuitive understanding of the details of this process, a trace of 
the inference steps for a simple theorem (generated with the ZDATR inference 
engine) is shown here:
Query:

Cat:< phon >
Theorem:

Cat:< phon > = k{t .
Inference:

#1=> Cat:<sem> 
=0,0,0> LOCAL Cat:< sem > == feline 
        GLOBAL Cat:< sem > 
RULE I.(ATOM) 
feline 
[Query 1 (1 Inferences)] Cat:< sem > 
 = feline . 

The trace in ZDATR interactive mode shows the following, line by line:
1. First query in the interaction, with query Cat:<sem>
2. The  series  of  zeroes  shows the  inference  number  and the depths  of 

global and local recursion. The content of the LOCAL context register 
matches with the node-path pair  Cat:<sem> in the equation with the 
atomic value feline, with no unmatched suffix part. 



3. The GLOBAL context register contains the query node-path pair.
4. Inference rule I (of seven) applies: an atom on the RHS evaluates to 

itself.
5. The value of this equation thus evaluates to ‘feline’.
6. No recursion is necessary, and the entire theorem is inferred after only 

one inference.
The  definitions  already  given  should  provide  enough  information  to 

understand the derivation of the following more complex theorem:
#1=> Cat:<entry>
=0,0,0> LOCAL Cat:< || entry > == Noun
        GLOBAL Cat:< entry >
=1,0,0> LOCAL Noun:< || entry > == Word
        GLOBAL Cat:< entry >
=2,0,0> LOCAL Word:< entry > == [ "< phon >" "< sem >" 

"< syn >" ]
        GLOBAL Cat:< entry >
=3,0,1> LOCAL Cat:< phon > == k{t
        GLOBAL Cat:< phon >
=3,0,2> LOCAL Cat:< sem > == feline
        GLOBAL Cat:< sem >
=3,0,3> LOCAL Cat:< || syn > == Noun
        GLOBAL Cat:< syn >
=4,0,0> LOCAL Noun:< syn > == noun
        GLOBAL Cat:< syn >
[Query 1 (11 Inferences)] Cat:< entry >
 = [ k{t feline noun ] .

The prosodic inference cases discussed in the following sections of the 
present contribution follow exactly the same inference rules.

3 A selection of inference strategies

3.1 Overview: prosodic relations

Prosody is sometimes naively conceived as English-style intonation and 
stress patterns. But prosody has long been known to be far more complex than 
this, covering not only lexical stress and its realisation by phonetic prominence 
patterns, but also, in a wide range of languages, the complexities of lexical and 
morphosyntactic tone. The scope of prosody will not be discussed here but can 
be inferred from the examples discussed below.

Prosodic inference in one German and one English case will be treated, 
followed by  a  discussion  of  lexical  and  supralexical  prosody in  two Niger-
Congo languages. Following this, tone sandhi inference will be discussed using 
a  generic  approach  which  applies  to  the  majority  of  Niger-Congo  two-tone 
languages and has also been used in speech synthesis tone generation.5

5 Documented versions of the theories discussed in this section are easily locatable via 
internet search or directly on the ZDATR web site:
http://www.spectrum.uni-bielefeld.de/DATR/



3.2 Inference of stress patterns in German word-formation

The problem to be solved concerns the assignment of stress patterns in 
German compound words (Gibbon & Bleiching 1991; Bleiching 1992, 1994). 
The  theory  itself  cannot  be  presented  here  as  it  contains  several  hundred 
morphological, phonological and prosodic equations. Consequently only a small 
selection  of  theorems  and one  simple  derivation  will  be  shown in  order  to 
illustrate the complexity of the problem.

It is not possible to provide a complete derivation here, as it involves over 
100 inference steps. The simplex word “Zug” appears superficially to be simple, 
but when all the details of segments and syllable hierarchy are taken explicitly 
into account, inference for “Zug” alone turns out to be quite lengthy, involving 
31 steps, as the following trace shows:

=0,0,0> LOCAL Zug:< || surf phon qlp > == N 
        GLOBAL Zug:< surf phon qlp >
=1,0,0> LOCAL N:< surf phon qlp > == QLP:<  > 
        GLOBAL Zug:< surf phon qlp >
=2,0,0> LOCAL QLP:< > == < qlp "< morph cat >" > 
        GLOBAL Zug:< surf phon qlp >
=3,1,0> LOCAL Zug:< || morph cat > == N 
        GLOBAL Zug:< morph cat >
=4,1,0> LOCAL N:< morph cat > == root 
        GLOBAL Zug:< morph cat >
=3,0,0> LOCAL QLP:< qlp root > == Root:<  > 
        GLOBAL Zug:< surf phon qlp >
=4,0,0> LOCAL Root:< > == [ Stress MP_Onset MP_Nucleus 

MP_Coda ] 
        GLOBAL Zug:< surf phon qlp >
=5,0,1> LOCAL Stress:< > == " 
        GLOBAL Zug:< surf phon qlp >
=5,0,2> LOCAL MP_Onset:< > == O_sib O_con O_ext 
        GLOBAL Zug:< surf phon qlp >
=6,0,0> LOCAL O_sib:< > == "< surf phon ons sib >" 
        GLOBAL Zug:< surf phon qlp >
=7,0,0> LOCAL Zug:< || surf phon ons sib > == N 
        GLOBAL Zug:< surf phon ons sib >
=8,0,0> LOCAL N:< || surf phon ons sib > ==  
        GLOBAL Zug:< surf phon ons sib >
=6,0,1> LOCAL O_con:< > == "< surf phon ons con >" 
        GLOBAL Zug:< surf phon qlp >
=7,0,0> LOCAL Zug:< surf phon ons con > == ts 
        GLOBAL Zug:< surf phon ons con >
=6,0,2> LOCAL O_ext:< > == "< surf phon ons ext >" 
        GLOBAL Zug:< surf phon qlp >
=7,0,0> LOCAL Zug:< || surf phon ons ext > == N 
        GLOBAL Zug:< surf phon ons ext >
=8,0,0> LOCAL N:< || surf phon ons ext > ==  
        GLOBAL Zug:< surf phon ons ext >
=5,0,3> LOCAL MP_Nucleus:< > == N_vow N_ext 
        GLOBAL Zug:< surf phon qlp >



=6,0,0> LOCAL N_vow:< > == "< surf phon nuc vow >" 
        GLOBAL Zug:< surf phon qlp >
=7,0,0> LOCAL Zug:< surf phon nuc vow > == u 
        GLOBAL Zug:< surf phon nuc vow >
=6,0,1> LOCAL N_ext:< > == "< surf phon nuc ext >" 
        GLOBAL Zug:< surf phon qlp >
=7,0,0> LOCAL Zug:< surf phon nuc ext > == : 
        GLOBAL Zug:< surf phon nuc ext >
=5,0,4> LOCAL MP_Coda:< > == C_sib C_con C_ext 
        GLOBAL Zug:< surf phon qlp >
=6,0,0> LOCAL C_sib:< > == "< surf phon cod sib >" 
        GLOBAL Zug:< surf phon qlp >
=7,0,0> LOCAL Zug:< || surf phon cod sib > == N 
        GLOBAL Zug:< surf phon cod sib >
=8,0,0> LOCAL N:< || surf phon cod sib > ==  
        GLOBAL Zug:< surf phon cod sib >
=6,0,1> LOCAL C_con:< > == "< surf phon cod con >" 
        GLOBAL Zug:< surf phon qlp >
=7,0,0> LOCAL Zug:< surf phon cod con > == k 
        GLOBAL Zug:< surf phon cod con >
=6,0,2> LOCAL C_ext:< > == "< surf phon cod ext >" 
        GLOBAL Zug:< surf phon qlp >
=7,0,0> LOCAL Zug:< || surf phon cod ext > == N 
        GLOBAL Zug:< surf phon cod ext >
=8,0,0> LOCAL N:< || surf phon cod ext > ==  
        GLOBAL Zug:< surf phon cod ext >
[Query 1 (42 Inferences)] Zug:< surf phon qlp > = 

["tsu:k].
The following theorems illustrate (without full traces) the compositional 

assignment  of  structure  and  stress  to  the  simplex  word  “Zug”  (train),   the 
derived  word  “Verbindung”  (connection)  and  the  compound  word 
“Zugverbindung” (train connection):

Zug:< surf phon qlp > = ["tsu:k].
Verbindung:< surf phon qlp > = [f@R]^["bInd]^[Ung].
Zugverbindung:< surf phon qlp > = 

["tsu:k]^[f@R]^[%bInd]^[Ung]. 
Primary and secondary stress are indicated by “"” and “%” respectively. 

The path  <surf phon qlp> is defined in Integrated Lexicon with Exceptions 
(ILEX) theory (Gibbon 1992), and indicates a hierarchical feature structure for 
the  “quasi-linear  precedence”  (qlp,  multi-tier)  relation,  the  “phonological” 
(phon) option of the “surface” (surf) interpretation of an abstract lemma in the 
lexicon.  In  this  theory,  surface  interpretation  is  opposed  to  semantic 
interpretation,  phonological  interpretation  is  opposed  to  graphemic 
interpretation  in  written  text,  and  the  quasi-linear  precedence  prosodic  or 
autosegmental representation is opposed to the linear segmental representation 
of the segmental phonemes.



3.3 Markedness relations between nuclear tones in English intonation

The  ILEX  approach  can  be  generalised  to  the  semantic  and  phonetic 
interpretation of nuclear tone patterns in English. In these examples, the details 
of notation (e.g. levels vs. contours) are unimportant; the important issue is that 
the interpretation of intonation patterns can be treated as compositional. In the 
following theory, the contours  rise-fall,  ‘calling’,  high,  low,  rise and  fall are 
treated (the ‘calling’ tone is used in vocative calls; cf. Gibbon 1976).

Rise_Fall:
  <> == Complex_Prosody
  <sem> == 'appraisive'
  <phon> == broad_bandwidth
  <const specifier> == "Rise:<>”
  <const head> == "Fall:<>".
Call_Contour:
  <> == ( "Chroma" Complex_Prosody )
  <sem> == 'call'
  <phon> == minor_third
  <category> == tonal_idiom
  <const specifier> == "High:<>"
  <const head> == "Mid:<>".
Rise:
  <> == Complex_Prosody
  <sem> == 'suspense'
  <phon> == open
  <const specifier> == "Low:<>"
  <const head> == "High:<>".
Fall:
  <> == Complex_Prosody
  <sem> == 'certainty'
  <phon> == closed 
  <const specifier> == "High:<>"
  <const head> == "Low:<>".
High:
  <> == Prosody
  <category> == tonal_terminal
  <sem> == 'continue'
  <phon> == high.
Mid:
  <> == Prosody
  <sem> == 'hesitate'
  <phon> == mid.
Low:
  <> == Prosody
  <sem> == 'stop'
  <phon> == low.
Chroma:
  <> == Complex_Prosody
  <inter> == <>
  <sem> == phatic '*'



  <phon> == chroma '*' .
Complex_Prosody:
  <> == Prosody
  <category> == complex_tone
  <inter> == ( "<>" * "<const specifier inter>" '&' 

"<const head inter>" ) .
Prosody:
  <> == simple_tone
  <inter> == "<>"
  <category> ==  "<const head category>".

Figure 1 visualises the English nuclear tone system as a fully connected 
‘système où tout se tient’ in a network diagramme interpreted according to the 
inheritance paradigm, in which all nodes are directly or indirectly connected to 
the others. The relations between the terminal nodes (i.e. the nodes which can 
be queried, are represented with continuous circles) and the abstract,  general 
nodes  (i.e.  the  nodes  which  cannot  in  general  be  queried  sensibly,  are 
represented by dotted circles). The global inference relations are represented by 
dotted lines,  and the local  inference relations  are  represented by continuous 
lines.

Figure 1: Compositional treatment of semantic and phonetic interpretation  
of nuclear tones in English.

Some of the inferences which can be drawn with this theory are as follows:
Call_Contour:< inter sem > = ( phatic * ( call * 

continue & hesitate ) ) . 
Call_Contour:< inter phon > = ( chroma * ( minor_third * 

high & mid ) ) . 
Fall:< inter sem > = ( certainty * continue & stop ) . 
Fall:< inter phon > = ( closed * high & low ) . 



High:< inter sem > = continue . 
High:< inter phon > = high . 
Low:< inter sem > = stop . 
Low:< inter phon > = low . 
Mid:< inter sem > = hesitate . 
Mid:< inter phon > = mid . 
Rise:< inter sem > = ( suspense * stop & continue ) . 
Rise:< inter phon > = ( open * low & high ) . 
Rise_Fall:< inter sem > = ( appraisive * ( suspense * 

stop & continue ) & ( certainty * continue & 
stop ) ) . 

Rise_Fall:< inter phon > = ( broad_bandwidth * ( open * 
low & high ) & ( closed * high & low ) ) .

The semantic labels are informal, and will not be discussed further here.

3.4 Lexical prosody in Dan (Yacouba)

The ILEX approach is used to assign lexical tone in a theory (originally 
formulated in French, cf. Gibbon & Ahoua 1991) of the lexical structure of Dan 
(Yacouba,  ISO 639.3:  daf),  a  Mande  language  of  Western  Ivory  Coast  and 
Eastern  Liberia.  The  following  example  of  a  lexical  entry  shows  the 
hierarchical,  immediate  dominance  (ID)  structure  of  the  phonological 
component of the lexical entry, in which the CV phonotactics of the language is 
represented hierarchically:

Lu:   <>            == Substantif 
      <sem>         == Semantique 
      <sem glose>   == arbre 
      <phon t>      == h 
      <phon c>      == "P_l:<>" 
      <phon v 1>    == "P_u:<>" 
      <phon v 2>    == '.'.

The  entire  theory  (not  counting  additional  lexical  items),  which  also 
defines  a  hierarchy  of  marked  and  unmarked  feature  values  for  syllable 
structure constituents, has almost 200 phonological and prosodic equations, and 
is too long to be presented in detail here. Two complex theorems which can be 
derived from the theory are as follows, using the same lexical item “lu” (‘arbre’ 
= tree):

Lu:< phon schema faisceau > = ([ h * . * [ ( [-contin] 
[+sonore] [+reson] [-implos] [-lab] [+cor] [-vel] ) ^ 
( [+sonore] [+haut] [-moyen] [-anterieur] [-labial] ) 
^ . ] ]) . 

Lu:< sem schema > = ( arbre = [+concrete] [-humain] ) .
The schemata represent feature structures, together with lexical tone (in 

this case a High tone,  “h”).  The Dan/Yacouba language also has lateral  and 
nasal prosody, which are defined in the schema. The “.” instances in the value 
section  of  the  theorem  indicate  null  values  for  properties  which  are  not 
represented in this particular lexical item. The first  of these is for either the  
lexical nasal or lateral prosody which is characteristic of this language and the 



second is for a second vowel, neither of which occur in this particular lexical 
item.

3.5 Tone displacement in Kikuyu

An important realisational property of tones and accents is that they may 
be temporally displaced relative to the tone or stress bearing unit with which 
they  are  associated.  Kohler  has  demonstrated  this  for  the  accentuation 
associated with sentence stress  in  German (Kohler  1991)  and Clements  and 
Ford  (1979)  have  shown that  Kikuyu (now usually  known as  Gikuyu;  ISO 
639.3: kik) has tone displacement relative to the tone-bearing unit: other things 
being equal (Kikuyu has a complex tone realisation system), the tone occurs on 
the following syllable. The facts to be described here are:

1. Kikuyu has agglutive verb morphology, leading to long inflected verbs.
2. The first two tones on each verb are the same: there is a word-initial  

tone spreading (displacement, delay) feature which copies the tone on 
the first syllable to the second.

3. The following tones spread across morpheme boundaries.
Two examples are shown in Table 1.

Table 1: Kikuyu tone realisation with tone displacement.

Underlying 
pattern

Surface 
pattern

Underlying tone 
sequence

Surface tone 
sequence

tòmòrÒrírÉ → tòmòròrìrÉ L L L H H → L L L L H

tòmárÒrírÉ → tòmàrÓrìrÉ L H L H H → L L H L H

Without  going  into  further  details  at  this  point,  the  theorems  to  be 
predicted by the Kikuyu theory will be represented using the “°” operator to 
mean temporal overlap between the tone and the segmental syllable with which 
it associated on the lexical or the surface phonetic level. From the queries with 
no initial “d” the underlying lexical tone assignment is inferred, and from the 
queries with an initial “d” the sequences with tone displacement are inferred:

Kikuyu:< we him look_at tense > = [L°to] [L°mo] [L°rOr] 
[H°i] [H°rE] . 

Kikuyu:< d we him look_at tense > = [L°to] [L°mo] 
[L°rOr] [L°i] [H°rE] . 

Kikuyu:< we them look_at tense > = [L°to] [H°ma] [L°rOr] 
[H°i] [H°rE] . 

Kikuyu:< d we them look_at tense > = [L°to] [L°ma] 
[H°rOr] [L°i] [H°rE] . 

The complete Kikuyu tone displacement theory from which these theorems 
are inferred is modelled in DATR as follows:

% Query-matching node for morpheme composition
Kikuyu: <> == "Displacement" .
% Morpheme lexicon
To: <> == Word % Abstract morpheme node
 <gloss> == we % Semantic gloss in English
 <core 1> == to. % Syllable structure



Ma: <> == Word
 <gloss> == they/them
 <core 1> == ma 
 <tone> == 'H'. 
Mo: <> == Word
 <gloss> == him
 <core 1> == mo.
Ror: <> == Word
 <gloss> == 'look at'
 <core 1> == rOr.
Tom: <> == Word
 <gloss> == send
 <core 1> == tom
 <tone> == 'H'.
Ire: <> == Word
 <gloss> == tense
 <core> == rE
 <core 1> == i
 <tone> == 'H'.
% Morpheme, syllable, word templates
Morpheme: <> == Syllable:<1> Syllable:<2>.
Syllable: <> == [ Tone ° Core '] '
 <2> == <"<core>"> 
 <no_core> == . 
Tone: <> == "<tone>" 
 <tone> == 'L' 
 <1 'H'> == 'H' 
 <1 'L'> == 'L'. 
Core: <> == "<core>"
 <core> == no_core. 
Word: <> == Morpheme Composition
 <tone> == Tone 
 <core> == Core.
% Definition of composition with displacement 
Composition: <0> == "Displacement:<>" 
 <> == <0> 
 <d> == "Displacement:<Tone>" 
 <'H'> == <d> 
 <'L'> == <d>.
Displacement: <> == "Select_nodisp:<>"
 <0> == <> 
 <d> == "Select_disp:<>" 
 <'H'> == "Select_H:<>"
 <'L'> == "Select_L:<>".
Select_nodisp: <> == Selection
 <disp> == 0.
Select_disp: <> == Selection
 <disp> == d.
Select_H: <> == Selection
 <disp> == 'H'.
Select_L: <> == Selection



 <disp> == 'L'.
Selection: <> == 
 <we> == "To:<"<disp>">"
 <they> == "Ma:<"<disp>">"
 <them> == <they> 
 <him> == "Mo:<"<disp>">"
 <look_at> == "Ror:<"<disp>">"
 <send> == "Tom:<"<disp>">"
 <tense> == "Ire:<"<disp>">".

4 Symbolic and numerical phonetic inference of tone terracing

4.1 Symbolic modelling of tone sandhi relations

A generic account of tone sandhi relations can be given for Niger-Congo 
languages with two lexico-syntactic tones and tone terracing (more accurately: 
‘pitch terracing’): after a high tone, raise the following tone slightly, and after a 
low  tone  lower  the  following  tone  slightly.  Individual  languages  are  more 
complex than this and have different mappings, as well as constraints on tone-
spreading from syllable to syllable, on tone blocking by certain consonants, on 
numbers of tones and on more specific contexts for tone raising and lowering. 
For  present  purposes,  the  generic  account  will  be  sufficient  to  illustrate  the 
inference procedure.

The following inference cases have to be accounted for:
1. The empty input.
2. A single tone with no other context.
3. A tone which is raised after a preceding high tone.
4. A tone which is lowered after a preceding low tone.
This specification is realised very straightforwardly one-to-one in DATR 

default inference notation, including DATR variables:
Tone: % Single node to be queried

<>   == % Default null output
<$a> == $a % Copy variable value
<h $a>  == h RAISE <$a> % Output and evaluate rest
<l $a>  == l LOWER <$a>. % Output and evaluate rest

The first equation indicates: an empty input receives no value; any input 
consisting of a single item (whether ‘h’ or ‘l’, represented by the variable “$a”) 
is evaluated as itself; any item preceded by a High tone is subject to a raising 
operation; any item (whether ‘h’ or ‘l’, hence the use of the variable) preceded 
by a Low tone is subject to a lowering operation. Note that in the present model, 
raising  and  lowering  are  interpreted  as  dynamic  operations  applied  to  the 
following item, and not as rule-assigned properties of that item, as is the case in 
conventional phonologies (see Section 4.2).

A common linguistic notation is to prefix ‘!’ to a following ‘h’ to mean a 
downstepped  high  tone.  In  the  SAMPROSA alphabet  for  prosody  (Gibbon 
1997) “!” is used with the more general meaning of pitch lowering, and “^” is 
used with the more general meaning of pitch raising. Using the SAMPROSA 



prosody  alphabet,  the  inferred  theorems  can  be  given  a  more  standardised 
appearance (the structure of the theory is not changed):

Tone:
<>   ==
<$a> == $a
<h $a>  == h ^ <$a>
<l $a>  == l ! <$a>.

This  theory  applies  almost  unchanged  to  the  tone  system  of  Tem 
(Tchagbale  1984;  ISO 639.3:  kdh).  A sample  set  of  heorems which  can  be 
inferred from this theory is the following:

Tone:< h h h h > = h ^ h ^ h ^ h . 
Tone:< h l h l > = h ^ l ! h ^ l . 
Tone:< l h l h > = l ! h ^ l ! h . 
Tone:< l l l l > = l ! l ! l ! l .

As  in  the  preceding  version  of  the  theory,  the  variables  express  the 
generalisation that the raising and lowering operations apply to both low and 
high tones. In many languages, this generalisation does not hold as it stands,  
and different raising and lowering operations may apply to the different tones, 
and also in different contexts.  In such cases, it  makes sense to spell  out the 
theory without using variables. A maximally spelled-out (variable-free) version 
of the theory contains seven equations, one for each case of null input, single  
tone, or pair of tones at the beginning of the tone sequence to be evaluated, as 
opposed to the four equations of the generalised theory with variables:

Tone:
<> == 
<h> == h 
<l> == l
<h h> == h ^ <h> 
<h l> == h ^ <l> 
<l h> == l ! <h> 
<l l> == l ! <l>.

If a more traditional modelling convention with the raising and lowering 
diacritic is required, then still less generalisation is possible, since each separate 
symbol with diacritic has to be matched separately:

Tone: 
<> ==
<h> == h
<l> == l
<^h> == ^h
<^l> == ^l
<!h> == !h
<!l> == !l
<h h> == h <^h> 
<h l> == h <^l> 
<l h> == l <!h> 
<l l> == l <!l>
<^h h> == ^h <^h>
<!h l> == !h <^l>
<^l h> == ^l <!h>



<!l l> == !l <!l>. 
This theory derives the following theorems from the same input query:

Tone:< h h h h > = h ^h ^h ^h . 
Tone:< h l h l > = h ^l !h ^l . 
Tone:< l h l h > = l !h ^l !h . 
Tone:< l l l l > = l !l !l !l . 

The principle of Occam’s Razor (in informal terms: the simpler the better) 
indicates that the general operation rather than the property diacritic is the better  
way to go.

However, another way to go is to generalise over the contexts rather than 
over  the  operations,  as  shown  by  the  following  theory,  which  introduces 
separate nodes with separate DATR local contexts for the two tone contexts, and 
states that High tones lead to raising and Low tones lead to lowering:

Tone:
<>   ==
<h>  == h Tone_high:<>
<l>  == l Tone_low:<>.

Tone_high:
<>   == Tone
<h>  == ^h <>
<l>  == ^l Tone_low:<>.

Tone_low:
<>   == Tone
<h>  == !h Tone_high:<>
<l> == !l <>.

This theory generates exactly the same theorems as those generated by the 
previous theory.

Assuming a language such as Baule (ISO 639.3: bci)  in which all  four  
contexts are differentiated (Ahoua 1996), each raising and lowering case can be 
identified with the names used in the literature: upsweep for High following 
High, upstep for Low following High, Downstep for High following Low, and 
Downdrift for Low following Low:

Tone:
<>   ==
<h>  == high Tone_high:<>
<l>  == low Tone_low:<>.

Tone_high:
<>   == Tone
<h>  == upsweep <>
<l>  == upstep Tone_low:<>.

Tone_low:
<>   == Tone
<h>  == downstep Tone_high:<>
<l> == downdrift l <>.

Theorems inferred from this theory include:
Tone:< h h h h > = high upsweep upsweep upsweep .
Tone:< h l h l > = high upstep downstep upstep .
Tone:< l h l h > = low downstep upstep downstep .
Tone:< l l l l > = low downdrift downdrift downdrift.



Figure 2: Visualisation of the generic tone theory as a  
Finite State Transition Network.

An  interesting  feature  of  the  state  generalisation  technique  is  that  the 
structure of the theory now resembles the nodes and transitions of a finite state 
transition network, as shown in Figure 2 (equivalently the states and transitions 
of a finite state transducer, or the nonterminal and terminal symbols of a regular 
grammar, or a regular expression, cf. Gibbon 2001). Figure 2 shows a ‘système 
où tout se tient’ following the compositional interpretation paradigm.

4.2 Tone-to-pitch mapping in tone sandhi automata

Traditional phonological models are not directly concerned with physical 
real-feature  and  real-time  mappings.  From  a  modern  perspective,  in  which 
measurement  techniques  and instruments  are  widely  available  and in  which 
speech technology systems use sophisticated linguistic input, whether by rule or 
harvested from annotated data, this is an increasingly inadequate perspective.

The default inference based tone sequencing automaton described in the 
preceding subsection can easily be modelled within the same theory structure 
using  the  numerical  operations  of  the  ZDATR inference  engine  in  order  to 
generate actual pitch hypotheses. Any other programming language can be used 
to  generate  such  sequences;  the  point  of  using  ZDATR  is  to  provide  a 
homogeneous modelling environment rather than a linguistic notation coupled 
with an ad hoc implementation. The ZDATR model can be converted into a 
‘production system’ at a later stage.

The modelling convention on which the illustration of numerical phonetic 
mapping is based in the present theory is overly simple:

pitchi = pitchi-1 * z, where i is the position of the tone and z varies 
according to automaton context.

A more adequate model additionally has (at least) a baseline component and an 
interpolation function, but the principle is the same, for example:

pitchi = baseline + ( pitchi-1 - baseline) * z, where the baseline may also 
have an independent declination function.



A modified node based  tone sequencing theory is shown here:
Tone:
  <>   ==
  <$a>   == $a
  <$a h>  == Tone_high:<Multiply:<$a '1.1' .>>
  <$a l>  == Tone_low:<$a>.
Tone_high:
  <>   == Tone 
  <$a h>  == $a <Multiply:<$a '1.01' .>> 
  <$a l>  == $a Tone_low:<Multiply:<$a '0.90' .>>.
Tone_low:
  <>   == Tone
  <$a h>  == $a Tone_high:<Multiply:<$a '1.05' .>>
  <$a l>  == $a <Multiply:<$a '0.95' .>>.

The inferred pitch values for the tone sequences HHH, HLHL, LHLH and 
LLLL, given an onset pitch seed value for initial Low tones (in this case 120 
Hz)  which  is  required  in  order  to  calculate  the  absolute  pitch  levels  of  the 
output, are contained in the following theorems:

Tone:< 120 h h h h > = 132 133.32 134.653 136 . 
Tone:< 120 h l h l > = 132 118.8 124.74 112.266 . 
Tone:< 120 l h l h > = 120 126 113.4 119.07 . 
Tone:< 120 l l l l > = 120 114 108.3 102.885 . 

The sequence shows the desired result: the pitch difference between H and L is 
larger  than  the  pitch  difference  between L and H,  leading  to  the  ‘terracing 
effect’ which can be observed for HLHL and LHLH in Figure 3.

Figure 3: Pitch sequence output for pitch onset of 120 Hz and sequences  
HHHH, HLHL, LHLH and LLLL.



5 The ZDATR inference engine: background and performance

The ZDATR inference engine implementation (Gibbon & Strokin 1998) is 
available in both open source and free binary distributions (libraries may have 
to  be  adapted,  depending  on  local  operating  system  distributions).6 A web 
interface, ZDATRweb, is provided for demonstrating and testing DATR theories 
using  the  ZDATR inference  engine.  ZDATR was  developed as  an  efficient, 
industry  standard  command-line  controlled  and  pipeline-capable 
implementation of DATR in C for Unix flavours (Linux, Solaris) and for MS-
Windows,  and has been widely used for applications in phonology, prosody, 
morphology and semantics. ZDATRweb was developed for the rapid testing of 
complex  inferences  and  for  teaching  purposes,  and  contains  two  interfaces 
(stable since 1996): the ZDATR Testbed,7 with pre-installed DATR theories, and 
the ZDATR Scratchpad8 for testing small theories (see Figure 4 for screenshots 
of one of the tone theories with the ZDATR scratchpad).

Figure 4: Screenshots of ZDATR Scratchpad: theory and queries (left),  
inferred theorems and logfile (right).

The performance of the ZDATR inference engine is logged for both the 
compiler and the inference engine. Compiler speed is theoretically linear in the 
length of the theory since the compiler is essentially a deterministic finite state 
tokeniser, and inference engine speed is theoretically quadratic in the length of 
the input since the inference engine is a deterministic recursive tree processor.  
However,  the  theories  discussed in  the  present  contribution  are  too  short  to 
demonstrate their complexity empirically.

6 http://www.spectrum.uni-bielefeld.de/DATR/Zdatr/
7 http://www.spectrum.uni-bielefeld.de/DATR/zdtestbed.html
8 http://www.spectrum.uni-bielefeld.de/DATR/zdscratch.html



Nevertheless,  the log files for the inference engine give indirect  (albeit  
somewhat spurious) information about the efficiency of the engine. The reason 
for this is that the timing information in the log files is heavily influenced by 
unknown properties  of  the  operating  system,  particularly applications  which 
take so little time. The times include file operations, which in turn presumably 
involve unpredictable caching operations. The log files for four of the theories 
discussed above are shown below for comparison.  In each case, the shortest 
time out of 5 runs was taken in order to minimise operating system effects.

 -------------------------------------
 Theory      : tones-generic.dtr 
 Nodes       : 94 
 Atoms       : 137 
 Equations   : 223 
 Date        : Mon Jul  5 09:33:49 2010 
 Queries     : 31 
 Inferences  : 227 
 Queries/sec : 7133.00 
 Inf./sec    : 52231.94 
 Inf./query  : 7.32 
 ------------------------------------- 
 Theory      : tones-numeric.dtr 
 Nodes       : 155 
 Atoms       : 136 
 Equations   : 285 
 Date        : Mon Jul  5 09:33:56 2010 
 Queries     : 31 
 Inferences  : 642 
 Queries/sec : 4836.95 
 Inf./sec    : 100171.63 
 Inf./query  : 20.71 
 ------------------------------------- 
 Theory      : tones-onenode-novars.dtr 
 Nodes       : 94 
 Atoms       : 136 
 Equations   : 240 
 Date        : Mon Jul  5 09:34:11 2010 
 Queries     : 31 
 Inferences  : 235 
 Queries/sec : 7085.71 
 Inf./sec    : 53714.29 
 Inf./query  : 7.58 
 ------------------------------------- 
 Theory      : tones-onenode-vars.dtr 
 Nodes       : 94 
 Atoms       : 136 
 Equations   : 240 
 Date        : Mon Jul  5 09:34:05 2010 
 Queries     : 31 
 Inferences  : 235 
 Queries/sec : 7043.85 



 Inf./sec    : 53396.96 
 Inf./query  : 7.58 
 -------------------------------------

The node, atom and equations counts refer to the numbers of instances in 
the inference process, not to the number of occurrences in the theory:

1. 94 node instances, derived from the 3 nodes of the theory multiplied by 
the 31 shown queries plus 1 query node: 31*3+1=94.

2. 136 atom instances (137 in the numerical theory).
3. 240 equation instances.
As already noted, the timing results on such short theories are not very 

helpful,  since  they  extrapolate  to  far  larger  numbers  per  second  than  are 
justified by the actual fractions of a second required by the inference procedure. 
However, a number of tendencies can be tentatively summarised as follows:

1. Complexity:
1. The three symbolic theories do not differ noticeably in complexity 

in  the  compiled  model,  each  involving  approximately  the  same 
number  of  inferences  (around  230)  and  inferences  per  query 
(around 8, i.e. 230/31) despite differences in structure.

2. The numerical theory is more complex (by a factor of 3) than the 
symbolic theory in the compiled model, with more inferences (642) 
and inferences per query (21).

2. Timing:
1. The symbolic theories have approximately the same timing (around 

7k queries/s and 53k inferences/s).
2. The numerical  theory is  noticeably slower  with queries  than the 

symbolic  theories  (around  5k  queries/s),  but  has  many  more 
inferences to process in this time (around 100k inferences/s).

The main conclusion to be drawn is that for linguistic modelling purposes, 
the ZDATR engine is very suitable. Before query times of more than 1 second 
per  query  can  be  expected,  the  theory  would  have  to  be  many  orders  of  
magnitude larger (or the queries many orders of magnitude longer).

6 Conclusion

The aim of the present contribution was to demonstrate the amenability of 
prosodic problems to explication with a highly general inference strategy taken 
from default  logic as represented by the DATR formalism, and implemented 
with an efficient inference engine, ZDATR, as a theorem prover. A number of 
prosodic problems were discussed: compound stress in German, nuclear tone 
structures in English, lexical tone in Yacouba, tone displacement in Kikuyu, and 
the symbolic and numerical  phonetic interpretation tone sequences in Niger-
Congo terraced tone languages.

In each of these cases, the correct theorems are predicted using the default 
logic inference strategy.  The graphical  visualisations of the theory structures 
further demonstrate the criterion of connectedness for linguistic theories with 
the aim of explaining the structure of language as “un système où tout se tient”, 



a  fully  connected  system.  As  in  other  computationally  modelled  theories  of 
language, strict criteria of consistency, connectedness, completeness, soundness 
and precision are fulfilled by the theories presented here.

The value of  this  approach is  not  purely theoretical  or  metatheoretical. 
Several of these techniques have been used in large-scale speech technology 
applications:  the  German  stress  assignment  strategy  was  used  in  lexicon 
construction in the Verbmobil project of the 1990s (Gibbon & Bleiching 1991; 
Bleiching 1992, 1994), the tone sequence realisation strategy has been used in 
text-to-speech synthesis of West African languages (Gibbon & Urua 2006), and 
related techniques were used by Andry & al.  (1992) in a speech recognition 
lexicon application.
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