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Abstract. Just like humans, conversational computer systems should
not listen silently to their input and then respond. Instead, they should
enforce the speaker-listener link by attending actively and giving feed-
back on an utterance while perceiving it. Most existing systems produce
direct feedback responses to decisive (e.g. prosodic) cues. We present a
framework that conceives of feedback as a more complex system, result-
ing from the interplay of conventionalized responses to eliciting speaker
events and the multimodal behavior that signals how internal states of
the listener evolve. A model for producing such incremental feedback,
based on multi-layered processes for perceiving, understanding, and eval-
uating input, is described.

1 Introduction

When humans talk to each other they regularly give feedback to the dialog part-
ner using body movements and short utterances. This phenomenon has long been
overlooked by research as it was considered a negligible by-product of the actual
utterances produced by the speakers. This was changed radically by the work of
Yngve [17], who put the topic of feedback (which he called back-channel) into
the research limelight. Since then, a growing body of knowledge has accumulated
across several disciplines.

Feedback is an important foundation for the construal of common ground
between interlocutors. From this point of view communication is seen as a col-
laboration between interlocutors, who cooperate to establish common mutual
beliefs. This involves explicit contributions that bear an acceptance phase, sig-
naling that the hearer believes she understood the content of some other con-
tribution [5]. More generally, feedback consists of those methods that allow for
providing, in unobtrusive ways and without interrupting or breaking dialog rules,
information about the most basic communicative functions in face-to-face dia-
logue. It consists of unobtrusive (usually short) expressions whereby a recipient
of information informs the contributor about her/his ability and willingness to
communicative (have contact), to perceive the information, and to understand



the information (Allwood et al., 1992). That is, feedback serves as an early warn-
ing system to signal how speech perception or understanding is succeeding. A
feedback utterance can communicate to the speaker that she should, e.g., re-
peat the previous utterance and speak more clearly, or use words that are easier
to understand. Additionally, feedback communicates whether the recipient is ac-
cepting the main evocative intention about the contribution, i.e. can a statement
be believed, a question be answered, or a request be complied with. Furthermore,
feedback can indicate the emotions and attitudes triggered by the information
in the recipient.

The essential role of feedback in natural communication makes it a crucial
issue in the development of artificial conversational agents. Yet, many conversa-
tional systems still fall silent and remain immobile while listening. Only in the
last ten years or so, starting with [15], has feedback been increasingly adopted
in conversational systems and this work is still in its infancy. We follow an ap-
proach that conceives feedback as resulting from an interplay of multimodal,
multi-layered and incremental mechanisms involved in perceiving, understand-
ing, and evaluating input. In this paper we present work on modeling multimodal
feedback that way with our virtual human Max [10]. After discussing related
work in Sect. 2, we will present in Sect. 3 an integrated model that accounts
for two important origins of backchannel feedback, the latter of which has not
gained sufficient attention in existing work so far: the more or less automatic
ways feedback is produced to respond to eliciting cues from a speaker, and its
function to signal to the speaker significant changes in the listener’s mental or
emotional states towards the incoming utterance. Sect. 4 will describe a first
implementation of this model in the virtual human Max.

2 Related Work

A lot of work on conversational systems have, implicitly or explicitly, tackled
the problem of how to generate feedback. With respect to explicit modeling
attempts, most researches have concentrated on one modality at a time, often
resulting from contributions of linguistics that center on verbal feedback (but
see more recent work including head movements or shakes [1]). Moreover, most
existing systems do not deal with feedback holistically so as to search for models
that account for the basis and variety of the behavior, but concentrate on ques-
tions regarding when humans produce feedback or which feedback they perform.
Ward and Tsukahara [16] describe a pause-duration model that can be stated in
a rule-based fashion: After a relatively low pitch for at least 110ms, following at
least 700ms of speech, and given that you have not output back-channel feedback
within the preceding 800ms, wait another 700ms and then produce back-channel
feedback. Takeuchi et al. [14] augment this approach with incrementally obtained
information about word classes. Fujie et al. [6] employ a network of finite state
transducers for mapping recognized words onto possible feedback of the robot
ROBISUKE that can generate verbal backchannels along with short head nods
for feedback. Evaluation studies showed that such models are able to predict



feedback only to a limited extent. Cathcart et al. [4] evaluated three different
approaches: (1) the baseline model simply inserts a feedback utterance every n
words and achieves an accuracy of only 6% (n=7); (2) the pause duration model
gives feedback after silent pauses of a certain length, often combined with part-
of-speech information, and achieves 32% accuracy; (3) integrating both methods
increased accuracy to 35%.

Among explicit modeling attempts, the Gandalf system [15] employs pause
duration models to generate agent feedback and simulated turn-taking behav-
ior by looking away from the listener while speaking, returning his gaze when
finishing the turn. The REA system [3] built on this pause duration model and
included further modalities (head nods, short feedback utterances). The Au-
toTutor system [7] deliberatively utilizes positive (Great!), neutral (Umm), or
negative feedback (Wrong) to enhance learning by the student. Such feedback is
modeled as didactic dialogue moves triggered by fuzzy production rules.

Gratch et al. [8] describe an experiment on multimodal, nonverbal agent feed-
back and its effects on the establishment of rapport. Their Rapport Agent gives
feedback to a human speaker whose head moves and body posture is analyzed
through a camera. Implementing the pitch cue algorithm of Ward and Tsuka-
hara [16], the system determines the right moment for performing head nods,
head shakes, head rolls or gaze. Humans tellers were found to use significantly
more words and to tell longer recaps with the Rapport Agent. Further, subjects
self-report evaluation showed higher ratings of the agents understanding of the
story and a stronger feeling of having made use of the agents feedback. Remark-
ably, about one quarter of subjects in the baseline condition, which was simple
random feedback, felt they were given useful feedback.

3 A model for generating incremental embodied feedback

With the exception of the systems originating from Gandalf [15,3], previous ap-
proaches have relied on rules that state on a mere behavioral level how to map
agent-internal or external events onto feedback reactions or responses. Evalu-
ation studies revealed several shortcomings of this approach (see Sect. 2). We
propose that multimodal feedback must also be conceptualized and structured
in terms of more abstract functional notions as described in Sect. 1, which can
be meaningfully tied to events occurring in a listeners attempts to perceive,
understand, and respond to a speakers contribution.

3.1 Feedback model for Max

The generation of feedback requires a predictive model that formulates signifi-
cances upon which feedback behaviors are triggered and how they are selected. It
must cover both the responsive functions of feedback, when listeners on different
levels of awareness react to cues produced by the speaker, as well as the more
declarative functions of feedback, when listener by themselves inform about the
success of their evaluation of what a speaker is contributing. In previous work



[9] we have developed a theoretical account of feedback behavior based on the
theory by Allwood et al. [2] described above. Here, we follow this approach but
refine it to a model for one particular version of the virtual human Max. In
this system, Max is employed in a public computer museum in Paderborn (Ger-
many) [10], where he engages visitors in face-to-face conversations and provides
them with background information about the museum. Visitors enter natural
language input with a keyboard, whereas Max is to respond with synthetic Ger-
man speech and nonverbal behaviors like gestures, facial expressions, gaze, or
locomotion. For this system, we define potential sources (or causes) of feedback:

• Contact (C): always positive, unless the visitor or Max leave the scene
• Perception (P): positive as long as the words typed in by the user are known.

This evaluation runs in a word-by-word fashion, while the user is typing in.
• Understanding (U): positive if the user input can be successfully interpreted.

This is mapped onto the successful derivation of a conversational function
by a firing interpretation rule, which in the systems current state cannot be
evaluated until the contribution is completed.

• Acceptance (A): the main evocative intention of the input must be evaluated
as to whether it complies with the agents beliefs, desires, or intentions.

• Emotion and attitude (E): the emotional reaction of the agent is caused by
positive/negative impulses that are sent to the emotion system upon detec-
tion of specific events as described above, e.g. when appraising the politeness
or offensiveness of user input. In addition, all positive or negative C, P, U
evaluations can be fused into an assessment of a general (un-)certainty the
agent is experiencing in the current interlocution.

3.2 Architecture

We argue that feedback generation must account for at least two mechanisms,
notably, the automatic, largely conventionalized responses to eliciting cues from
the speakers, as well as the functions to signal significant changes in the lis-
tener’s mental or emotional states towards the incoming utterance. For both
mechanisms it is vital to cut latencies to the minimum and to avoid giving feed-
back at the wrong moments in conversation. To integrate these mechanisms,
and to meet the requirements for incrementality and reactivity, we propose a
model of feedback generation that simulates different mechanisms of appraisal
and evaluation, operating on different time scales and different levels of aware-
ness or automaticity. Importantly, all of these processes may feed into response
dispositions and trigger some of the aforementioned agent feedback behaviors.

Figure 1 shows the devised architecture of the model for feedback generation,
which we have largely implemented and integrated into Maxs general architec-
tural set-up (to the extent needed for the particular system). Overall, the model
comprises two layers, a planning layer at the top and a reactive layer at the bot-
tom of Fig. 1. The planning layer consists of the processes that are concerned
with (1) analyzing user input; (2) keeping track of the contact, perception, and
understanding listener states of the agent; (3) deciding which feedback behavior
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Fig. 1. Architecture of the incremental feedback generation model (dashed modules
were not implemented in the current system).

to generate and when; (4) generating suitable multimodal behaviors. The central
feedback planner decides upon the occurrence of intentional and aware feedback
acts. It is only active when the agent is in a listening state or turn-transition
phases (as indicated by the turn state model). The planner maps decisive ex-
ternal or internal events onto feedback acts that fulfill a required responsive or
eliciting function. For example, results from input analysis can, via the state
variables, give rise to feedback to signal problems with following. A generator
is in charge of selecting the actual backchannel behaviors and is responsible for
producing, possibly in overlap, less aware cues about the current listener state.
For example, an event from the EOU module may trigger affirmative feedback,
which is then enriched with prosodic cues for unsure understanding.

The reactive layer is constituted by direct connections from the input pro-
cessing units to the production units. This pathway allows for incorporating
feedback produced independent of the awareness and intentional control of the
sender, e.g. blushing, as well as behaviors that are only potentially amenable to
awareness and control, like smiles or emotional prosody. The planning layer also
delegates control of behaviors with a longer duration (e.g. raising the eyebrows as
long as input is not understood) to this layer. Behaviors using this path support
the rest of the generated feedback instead of replacing it.

4 Module realization in Max

Input processing Input processing continuously updates the listener states
and sends important events directly to the feedback planner. At the moment,
Max gives feedback solely based on typed verbal input. Incoming text needs to



be evaluated in a rapid and incremental fashion. Single words are the minimal
unit of verbal input processing, which is accomplished by two modules, the lex-
icon and the parser. The lexicon determines the word class by part-of-speech
tagging [12] and looks up the resulting lemma. Lookup failures lead to lowering
of the perception state, if a word is found, perception is increased by the same
constant. The understanding parameter is mainly coupled to syntactic-semantic
analysis through parsing, which employs a shallow but robust rule-based ap-
proach. Depending on whether the word(s) in the current phrase context can
be interpreted or not, i.e. interpretation rules are applicable, the understanding
parameter is increased or lowered by a constant.

End-of-utterance (EOU) detection is one of the most important aspects when
it comes to determining the right moment for giving feedback. Purely textual
input as Max uses it at the moment can be considered an impoverished input
for EOU detection, which usually draws on prosodic information. The system
tries to gain as much information as possible from the words flowing into the
system. End of utterance is simply signaled by enter-pressed events. In addition,
appropriate places for feedback are found using the part-of-speech tags supplied
by the lexicon. Feedback after e.g. articles is very improbable, while feedback
after relevant content words like nouns, verbs, or adjectives is more appropriate.

Listener states The listener states of the agent are quantified by explicit nu-
merical parameters for contact, perception, and understanding evaluations. Per-
ception has values between one (1.0) for excellent, flawless perception of the
verbal stimulus and zero (0.0) for completely incomprehensible input. Under-
standing has values between one (1.0) for complete understanding of the in-
coming utterances in the phrasal context and zero (0.0) for unintelligible input.
Future extensions may specify in similar ways parameters that carry further
attitudinal or epistemic states like acceptance or uncertainty.

Feedback planning The feedback planner combines two approaches, a rule-
based approach that connects context conditions with conventionalized multi-
modal feedback behaviors, and a probabilistic approach that captures not so
clear-cut, less aware causal-effect structures. The current rule-based part of the
planner is based on a linguistic analysis of German backchannels [9]. It states,
e.g., that after a user contribution with matches in the lexicon and interpretation
rule(s) verbal feedback by saying ”yes”, ”I understand” or ”mhm” in connection
with a head nod and repetition of the user’s last content word should be given.
The probabilistic part of the planner employs a Bayesian network to represent
behavior probabilities conditioned on speaker elicitation events as well as the
current listener states.

To combine feedback requests, a simple weighted-combination method is ap-
plied, in which behaviors are picked from the repertoire by order of priority, with
higher levels of evaluation (understanding) yielding higher weights than lower
appraisals (perception). Notwithstanding, since reception is modeled in a cas-
caded fashion, lower processes are faster and trigger behavior earlier than higher



processes. In result, Max would at first look certain and nod due to a positive
perception evaluation, but would then start to look confused once a negative un-
derstanding evaluation barged in, eventually leading to a corresponding verbal
request for repetition or elaboration like ‘Pardon me?’.

Feedback generation The feedback generator receives from the planner spe-
cific requests for verbal feedback expressions or abstract specifications of weighted
to-be-achieved feedback functions (e.g. ”signal-positive-understanding”). The
latter are mapped onto multimodal feedback by drawing on modality-specific
behavior repertoires. In addition, the listener state variables as well as the emo-
tional state of the agent are constantly available to the generator, which sets
appropriate facial expressions and overlays appropriate prosodic cues to verbal
feedback requests from the planner.

The feedback generator operates a number of modality-specific generators,
realized in the Articulated Communicator Engine (ACE) [11]. To be able to
realize verbal backchannels with appropriate prosodic cues, ACE was extended
with a novel feedback prosody generator [13] that allows fine prosody control on
five parameters. The pitch contour, selected out of a set of six shape templates, is
added to the base frequency of the voice and multiplied by a value to control the
slope of the contour. Timing is adjustable by two further parameters, duration
and hesitation, the latter of which controls the ratio between the first phone and
the remaining phone(s), if any, in order to enable hesitative feedback. A listening
study was conducted to determine the semantic potential of these parameters
[13]. A long duration was found to communicate boredness, a flat pitch contour
with increasing duration was evaluated as anger, and a sombrero-shape pitch
contour was found to communicate agreement and a happy mood. The mean
evaluations from the listening test are used as a fingerprint to pick from prosodies
when producing positive verbal feedback.

5 Conclusion

We have presented work aiming at conversational agents to become more active
and responsive listeners in natural human-agent interaction. Here we focused on a
very important but so far too underrated aspect, the development of a model that
combines rule-based, behavioral feedback responses to speaker elicitation events
with the notion of a ”concerned”, collaborative listener that strives to keep track
of what a speaker is saying. We have described a first implementation with Max
in a restricted scenario (typed-in speech) and our first results with the prototype
are promising to demonstrate that (and how) the actual processing of other’s
dialogue acts can be dynamically reflected in an agent’s multimodal feedback. It
remains to be shown in future work whether this makes Max a ”better” listener.
Future work should also concern the incorporation of further input modalities
and in particular spoken language, which will then enable the use of end-of-
utterance detectors as well as the generation of appropriate reactions to different
types of recognition errors.
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