
Dafydd Gibbon (Universiẗat Bielefeld)∗
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1 Prosodic Annotation Mining: Objectives and Motivation

The objectives of the present contribution are theoretical, empirical and strategic:

• to outline a data–driven empirical method for exploiting the temporal
properties of annotated speech data;

• to apply this method to the automatic construction of hierarchical mod-
els of speech timing (Time Trees) in the context of a Rhythm Periodicity
Model (RPM ) of rhythm;

• to demonstrate the potential of the methodology of computational phonet-
ics as an empirical interface discipline between computational linguistics
and phonetics by relating the Time Trees to grammatical hierarchies.

The contribution is structured as follows. The objectives and motivation for
the prosodic data–mining of temporal annotations and the data–driven method-
ology are discussed in Section 1, followed by the introduction of Time Type The-
ory and relevant terminological clarification in Section 2.Representative data–
driven Global and Local Linear Models are discussed in some detail in Section 3,
and theory–driven hierarchical models are outlined in Section 4. In the following
sections, a proof–of–concept description of the data–driven Time Tree Induction
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(TTI) computational phonetic method for inducing tree–structures from tem-
porally annotated data is given: in Section 5 theTTI approach is introduced,
and the algorithm is presented; Section 5.3 describes a quantitative method for
comparing prosodic time trees and grammatical phrase trees, and an appropriate
Tree Similarity Index (TSI) alignment algorithm is given. Finally, the outlook
for empirical contributions by computational phonetics such as theTTI–TSI
induction and alignment method to the integration of phonetic and linguistic
knowledge is considered.

1.1 Motivation

The reason for starting with the induction of temporal information is that tem-
poral event sequence and overlap are the fundamental structuring principles of
speech, define the domain into which phonetic interpretation maps syntagmatic
phonological and other structures, and are the prerequisite for accurate time
modelling in speech technology (particularly in speech synthesis, somewhat less
in current methods of speech recognition).

Phonetic events, including prosodic events, are time functions; their phono-
logical representations are prosodic, distinctive and conditioned features. The
time functions are defined over temporal domains of different characteristic du-
rations and are associated with different ‘clock’ frequencies in speech production
and perception (cf. Tillmann and Mansell 1980). Levels in the discretely struc-
tured prosodic hierarchy (e.g. Selkirk 1984) from phones todiscourse units can
be phonetically interpreted in terms of such domains.

The phonetic time functions are transformations of the speech signal, and
are simple (e.g. a pitch or vowel formant target) or complex in terms of se-
quential temporal trajectories (e.g. pitch contours, hierarchically larger units)
or of overlap (e.g. co–functioning, partially simultaneous phonetic features). In
phonology, complex trajectories are represented by the abstract concatenation
operation, complex overlap is represented by feature bundles and autosegmental
lattices. For foundational discussion of prosodic overlapissues such as temporal
displacement, see Niebuhr and Kohler (2004) at the phoneticlevel, Clements and
Ford (1979) at the phonological level, Bird and Klein (1990)for an explication of
the issues in Event Phonology, and Carson-Berndsen (1998) for a computational
phonetic approach, Time Map Theory (TMT), which interrelates the two levels
and demonstrates a proof–of–concept application of TMT to speech recognition.

In the present study (Sections 5 to 5.3), words are chosen as the basic event
type for temporal induction, mainly on the heuristic grounds that they constitute
an ontologically basic linguistic rank and are a defining category for phonology
and prosody, that they are small enough to provide enough data, that they are
large and functionally clear enough to be immediately identified by labellers,
and that they have fairly clear properties in both grammar and phonetics (and
semantics, though this is not the concern of the present contribution). Words are
thus well–suited to the present proof–of–concept study within a new compu-
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tational phonetic methodological framework, in preparation for more extensive
study of other, more fine–grained phonetic dimensions and feature spaces.

1.2 Data–Driven vs. Theory–Driven Modelling

A striking contrast between phonetic and phonological approaches to temporal
modelling is that phonetic methods have generally been data–driven, and have
resulted in linear models of timing in speech production, while phonological ap-
proaches are theory–driven, and have resulted in hierarchical models of timing.
Temporal models for Text–To–Speech (TTS) synthesis have also often borrowed
from phonology, are then theory–driven and, typically, hierarchical, though con-
temporary statistical unit–selection methods are clearlydata–driven.

The present contribution tries to bridge this gap by refiningphonetic data–
driven methods to yield hierarchical rather than linear time models, in order to
provide atertium comparationisfor both theory–driven and data–driven models.
The kind of hierarchy addressed here is not the Classification and Regression
Tree (CART) kind of classificatory or paradigmatic hierarchy which has often
been used in time modelling. The present method is concernedwith composi-
tional, syntagmatic hierarchies over sequential and overlapping events.

The data–driven perspective is enhanced by the availability of large quanti-
ties of temporally annotated high quality speech data, bothaudio and visual,
and by the relative ease of creating more of the same. Data of this quantity and
quality puts empirical computational linguistic and phonetic methodologies po-
tentially on a comparable footing with the natural and technological sciences. In
fact, temporal annotation methodology, the basis of the broader ‘Language and
Speech Resources’ paradigm,1 originated in statistical methods in Speech Tech-
nology for Automatic Speech Recognition (ASR), later in unit-selection based
TTS synthesis.

Resources are there to be used. The information in the annotations istempo-
ral, in that event patterns are paired with time–stamped intervals,categorial, in
that boundaries are discrete and have a symbolic rather thannumeric basis, and
syntagmatic, in that annotations define the criteria for the sequence andoverlap
based composition of complex events. This kind of information is optimal for
the computational phonetic analysis of time structure induction and alignment
which is reported in the present contribution.

1 In the European context, most notably in the following consortia: Speech Assessment
Methodologies(SAM), Expert Advisory Groups for Endangered Language Systems(EA-
GLES),International Standards for Language Engineering(ISLE), and the MATE (Mul-
tilevel Annotation Tools Engineering) project consortia from the late 1980s to the early
2000s, with publication outlets in theLanguage Resources and Evaluation Conference
(LREC) series, and the newLanguage Resources and Documentationonline journal.
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2 Time, Time Type Theory and Event Alignment

Temporal structure is a traditional topic in philosophy as well as in linguistics
and phonetics. Objective and subjective, rationalist and empiricist notions of
the ontology of time are indirectly the concern of this contribution, in so far as
different levels of temporal organisation are aligned witheach other. In linguis-
tics, most attention has been paid to time in semantics. Unsurprisingly, formal
explications of time and event structure in terms of event logics and temporal
calculi are valid in both semantic interpretation and phonetic interpretation, and
the present contribution indeed uses concepts traditionally found in semantics.

2.1 Time in Phonetics

Studies of timing in phonetics, psychoacoustics, psycholinguistics and speech
technology are too numerous to cite extensively here. They have covered many
topics, of which the following are characteristic examples:

• correlates of rhythm patterns in terms of pitch, intensity and unit duration
(syllable, consonant cluster, vowel, mora), addressing issues such as unit
isochrony in whichduration(ui) = duration(ui−1)+N , whereN is an
interval constant;

• partial alignment of parallel information streams in physical acoustic time;

• graph representations of word hypotheses in automatic speech recogni-
tion;

• psychological correlates of time in speech production and perception, in-
cluding notions of subjective time;

• sequential and parallel ordering of units in time in prosodic phonologies;

• abstract notions of timeless structure, in which temporal sequentiality is
represented by a general concatenation operation which is neutral with
respect to temporal ordering in speech and handwriting processes, or to
spatial ordering in printed and handwritten texts;

• iconic relations between temporal event ordering in speechand temporal
event ordering in conventional semantic interpretation.

In phonetics, the issue of timing has long centred on the typological dis-
tinction of Pike (1945) between stress–timed and syllable–timed languages, on
Abercrombie’s notion of the foot in stress–timed languages(cf. Abercrombie
1967), and less frequently on more complex concepts of rhythm structure (cf.
Jassem 1951, Jassem and Gibbon 1980, Jassem et al. 1984) which include foot–
like structures, the pre–foot anacrusis constituent, and hierarchical structuring.
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In phonology, structural and functional criteria are central, and the focus has
been on abstract relational timing concepts such as contrastive and conditioned
segment duration, complex temporal organisation in the prosodic hierarchy and
in metrical grids, and on phonostylistic concepts such as tempo, pause and fast
speech phenomena, which have also been taken up in many discourse analytic
studies.

The old distinction between objective and subjective concepts of time is rele-
vant here, as already noted. The analogue to the objective–subjective distinction
in the study of speech is physical clock–measured time in data–driven phonetics,
versus subjective perception–based time identification ininterpretative phonet-
ics, phonology and discourse analysis.

In the present contribution the topic therefore needs to be carefully delimited
within the terms of reference of the linguist and phonetician, to concepts of time
which are expressed or implied by models of language and speech. On the for-
mal side, the linear, parallel and hierarchical structuresof temporal domains are
focussed. On the empirical side, the focus is on corpus phonetics, in particular
on temporal annotations of the acoustic speech signal (whether manual, semi-
automatic or automatic). The models discussed here are ‘cognitively neutral’:
the data are speech productions, but the models representedby the algorithms are
not claimed to be production models; this interpretation isleft open. As induc-
tive computational and data–driven models, the algorithmscould conceivably be
interpreted as emulations of temporal dimensions of speechperception, learning
and information alignment, but further cognitive, linguistic phonetic modelling
constraints are required in order for this to be plausible.

A systematic terminological clarification in terms of Time Type Theory and
event–based patterning will be given below, as a basis for the computationally
oriented further discussion, and as a contribution to the ontology of temporal
concepts in phonetics.2

2.2 Time Type Theory

Three Time Types are needed as a basis for prosodic event alignment in the
present analysis (cf. Gibbon 1992 and Carson-Berndsen 1998):

Absolute Timerelates to signal–oriented phonetics, that is, to time points and
intervals determined by calibrated physical measurement.For example,
standard digital signal sampling techniques generate Absolute Time struc-
tures. In the Absolute Time domain, the quantitatively measured lengths of
phones, syllables, etc., are important. Impressionistic phonetic judgments

2 The term ‘ontology’ is used here as in Artificial Intelligence and Text Technology with
respect to search strategy resources (cf. the ‘semantic web’). It refers to the organisation
of terms or concepts and their definitions in hierarchies andother complex structures, and
is related to taxonomic lexical semantics and terminology theory.
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on length and tempo, as practised in phonostylistics and discourse anal-
ysis, may be seen as coarse–grained and uncalibrated quantitative mea-
sures.

Relative Timerelates to ‘interpretative phonetics’, phonology and prosody, and
defines intervals and other relations between points in timewith no
explicit assignment to Absolute Time. Relative Time characterises the
prosodic phonologies; the key relations are sequence, overlap and hier-
archy, which are interpretable in terms of the Absolute Timedomain.

Categorial Timerelates to underlying lexical and grammatical levels, in partic-
ular to categories linked by algebraic operations such as concatenation. In
the Categorial Time domain, there is only a notion of temporally uninter-
preted structure; to include a notion of time, phonetic interpretations into
the Relative Time and Absolute Time domains are required.

The three–level distinction between Time Types is supported by work in formal
linguistic theory, in particular in Event Phonology (cf. Bird and Klein 1990;
Kornai 1991), in Time Type Theory (cf. Gibbon 1992) and in theTime Map
Phonology approach to alignment theory (cf. Carson-Berndsen 1998).

The key data–mining procedures in the exploitation of temporal annotations
for prosodic induction and alignment can now be formulated in terms of the
Time Types:

1. Analogue–digital transformation in the signal samplingprocess, between
two subdomains of Absolute Time.

2. Annotation as mapping the quasi–continuous digital domain of speech
signals into the discrete Absolute Time domain of annotation intervals.

3. Induction of temporal structures from the discrete Absolute Time sub-
domain of annotation intervals to linear and hierarchical Relative Time
structures.

4. Mapping of Relative Time structures to Categorial Time grammatical and
discourse patterns.

2.3 Event Alignment: Streams, Tracks, Tiers

Each of the three Time Types is associated with its own specific range of sequen-
tial and partially aligned parallel structures at different theoretical and heuristic
levels of description. The relevant levels for the present study are distinguished
as follows:

1. a set of parallel signalstreams(time functions describing continuous or
discrete sampled speech signals),
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2. partially aligned with a set of parallel annotationtracks (time functions
describing discrete, categorial sequences of events, as ina speech editor,
for example, with sampled speech signal and parallel annotation tracks),

3. which are often derived from specific phonologicaltiers (linguistic con-
structs defining partially aligned trajectories through a feature space in
Relative Time, as in autosegmental and other prosodic phonologies).

The ‘stream–track–tier’ terminology is intended to keep apart clean ontological
levels which are often indiscriminately labelled with terms like ‘tier’, ‘track’,
‘level’, ‘layer’, ‘stratum’, ‘stream’.

The following more detailed terminological overview is based largely on
the related models of Event Phonology (cf. Bird and Klein 1990), Time–Map
Phonology (cf. Carson-Berndsen 1998), and Annotation Graph theory (cf. Bird
and Liberman 2001).

Event: A pair of an Absolute Time or Relative Timeinterval and apatternof
values in some phonetic dimension, parameter or feature. Examples:

• an interval of 120 ms and a phone segment, as a static or a dynamic
time function in Absolute Time on an annotation track;

• an interval of 10 ms and a pitch value in an Absolute TimeF0 stream;

• an interval of 0.0208333 ms (corresponding to 48 kHz sampling rate)
paired with an amplitude value in an Absolute Time signal stream;

• a pair of a phonological segment and its phonemic or feature–based
properties in Relative Time.

• a signal annotation<< xmin, xmax >, transcription >, where
xmin andxmax range over points,transcription ranges over tex-
tual symbols,< xmin, xmin > ranges over intervals ((xmax−xmin)
ranges over durations); cf. the following (Brazilian Portuguese) syl-
lable annotation:

xmin = 0.48473069812858305
xmax = 0.6301876830002222
text = "koN"

Transcription: The name of the pattern of an event.

Annotation: The name of an Absolute Time event, consisting of a set of pairs of
transcriptions and either interval time–stamp pairs or point time–stamps.

Point: The undefined primitive for defining intervals as a pair of points (whether
abstract points as in Relative Time, or clock time points as in Absolute
Time), ignoring for present purposes the traditional discussion on whether
points or intervals are primitives.



Time Types and Time Trees 8

Time–stamp: The name of a point or a pair of points in Absolute Time, i.e. a
calibrated quantitative designation of a relative to some pre–defined initial
point (the term ‘tick’ is used in digital music and virtual machine technol-
ogy). Examples:

• 24th December 1976

• Mon Mar 28 13:32:30 BST 2005

• 321.5 ms

Absolute interval: The difference between two time points. Examples:

• 0.145457 = 0.6301876830002222− 0.48473069812858305

• the time elapsed between two metronome beats.

Relative interval: A segment at an abstract phonological level, related to other
intervals by relations of precedence and overlap. A relative interval has
no absolute duration unless explicitly mapped into an absolute interval.
Example:

• The epenthetic [t] in English [prints] “prince” arises whenthe end of
the nasal event interval of [n] precedes the end of the occlusive event
interval of [n].

Time–Map: A function within one Time Type or between Time Types, mapping
one temporal representation into another. Example:

• speech signal digitisation (analogue signal sampling),

• annotation (aligns digital speech signal with eventlabel sequence),

• phonetic interpretation (mapping of lexico–syntactic representation
of speech forms into a phonetic representation.

3 Linear Timing Models

Linear models of timing generally relate to some characterisation of ‘rhythm’,
as a sequencing of tendentially equi–temporal (isochronous) units of rhythmic
temporal organisation, such as mora (a sub–syllabic timingunit), syllable, or
foot (stress group). The present section addresses approaches of this type, and
compares them with a design for a Rhythm Periodicity Model,RPM , defined
as follows (modified from Gibbon and Gut 2001):

Rhythm is the directional periodic iteration of a possibly hier-
archical temporal pattern with constant duration and alternating
strongly marked (focal, foreground) and weakly marked (non-focal,
background) values of some observable parameter.
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Rhythm Sequence (iteration)

Rhythm Interval
(isochrony)

Rhythm Pattern

Prominent Nonprominent
IntervalPattern

Prominent Nonprominent
intervalpattern

Prominent Nonprominent
EventEvent

Rhythm Event (alternation)

Figure 1: Decomposition of rhythmic temporal structure (arrows: generalisation
of rhythm event from rhythm sequence; bold lines: sequence decom-
position; dotted lines: overlap decomposition).

The condition ‘constant duration’ does not refer simply to Absolute Time con-
stants: there are many factors which enter into judgments ofconstant duration at
different levels of perception (for example, pattern similarities). Generic mod-
elling conventions for rhythm structure based on this definition and the ontolog-
ical clarification given previously are illustrated in Figure 1, which shows two
levels of rhythm organisation: the focal and nonfocal structural components (tra-
ditionally: ‘ictus’ and ‘remiss’) each have internal alternating focal/non–focal
structure. The structure shown in Figure 1 is syntagmatically decomposed along
the two temporal dimensions of sequence and overlap.

Nothing is said in this definition about the epistemologicalstatus of rhythm
as a complex emergent property of cognitive construction onthe side of the lis-
tener and timing principles of speech production on the sideof the speaker, or
as a purely bottom–up physical pattern; cf. Gibbon and Fernandes (2005). It is
unlikely to be just the latter. A strictly positivistic characterisation of rhythm
in physical terms, often sought after in phonetic studies, is likely to fail: top–
down factors, including grammatical and discourse patterns and cognitive ex-
pectations, play a significant role.

In the Rhythm Periodicity Model definition, three structural factors in the
temporal organisation of rhythm are identified, and will be used as criteria for
the adequacy of other rhythm models in subsequent discussion:

Pattern alternation: The internal focal–nonfocal rhythmic temporal pattern:

1. the time structure of the rhythm pattern can be a binary alternation,
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or a more complex hierarchical rhythm, as found in metrical poetry,
music, and formal speech, giving the impression of ternary or more
complex rhythms;

2. non–semantic, structural terms ‘focal’ and ‘nonfocal’ applied to
rhythm constituents are phonetically interpreted as sequential alter-
nations of the following kinds (auditorily interpreted as prominence
patterns):

• Pitch:[pitchpeak]⌢[pitchtrough],
• Syllable:[long]⌢[short]
• Segment:[vowel]⌢[consonant]

A focal component can occur anywhere within the rhythm pattern,
not just initially or finally, but has to be consistently positioned in a
given sequence.

Compositionality: The external rhythmic environment:

Compositional iteration: the regular directional periodic recurrence of the
focal–nonfocal pattern within the rhythmic sequence domain as an
iterated and alternating sequence (iteration is often represented as
pure left or right recursion),

Compositional hierarchy: the recursive grouping of sequences of focal–
nonfocal patterns (represented as mixed left, right and centre recur-
sion).

Isochrony: The tendentially isochronous rhythmic domain, e.g. the syllable, the
foot or some other unit (sometimes called ‘rhythm unit’, ‘rhythm group’).

The pattern alternation, compositional iteration and isochrony conditions
together constitute the basic criterion ofperiodicity which characterises the
Rhythm Periodicity Model.

Current Linear Models of rhythm timing in speech are quite diverse but at
the same time tend to be atomistic and selective in that they focus on parame-
ters as different as global deviation of unit length, local unit length ratios, and
consonant-vowel ratios (cf. Roach 1982; Low et al. 2000; Ramus et al. 1999).
These Linear Models are dicussed in more detail below. It will be demonstrated
that while they address the isochrony condition, none covers all the necessary
formal and empirical properties of rhythm, in particular inrespect of the de-
scription of the pattern alternation and compositional iteration required for a
Rhythm Periodicity Model, or of other aspects such as non-binary rhythms and
rhythm hierarchies.

In the following subsections, formal and empirical aspectsof linear time mod-
els are discussed. First, a formal characterisation of alternation and iteration in
linear rhythm models is given in terms of Finite State Transducers (FSTs). Sec-
ond, representative global and local linear modelling approaches are examined
in terms of their formal and empirical modelling properties.
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longer:s

shorter:w

shorter:w

longer:sA

B

C

shorter:w

longer:|s

shorter:||w

−−:||

−−:||

longer:||s B

A

C

D

Figure 2: Strict binary rhythm
acceptor.

Figure 3: Rhythm acceptor with rhythm
group boundaries.

3.1 Finite State Models of Linear Rhythm Organisation

The appropriate formal model for the alignment of linear structures involving
alternation and iteration is the Finite State Transducer (FST), a translation device
based on the Finite State Automaton (FSA); both are standardgeneric processing
constructs in computational linguistics.3 Finite State Transducers are used in
the present study to define Time Map alignments between different levels of
temporal organisation

Figure 2 shows a basic binary rhythm acceptor model; ‘s’ (strong) stands for
a focal or prominent component of an alternation, ‘w’ (weak)for a nonfocal
or nonprominent component. Rhythm group or foot boundariesare pre–defined
according to the typological properties of the language as iambic or trochaic, and
can be inserted automatically if required: cf. the pipe ‘|’ characters in Figure 3 for
the trochaic case. The devices translate long–short sequences of units (syllables,
feet, etc.) into string sets of the following types (the general case, the trochaic
case, and the iambic case):

3 The FSA represents the simplest form of grammar which can license infinite sets of
finite strings over a finite vocabulary. FSAs permit iteration (equivalent to left or right
recursion) but no centre–embedding, unlike phrase–structure grammars. Therefore they
cannot model arbitrary tree structures (unless these are offinite depth, as in many prosodic
hierarchy models). At most FSAs model flat structures (sometimes described with ex-
clusively left or right branching trees) which are known to be sufficient for modelling
phonological and morphological forms, and probably also prosodic forms.

An FSA network is a rooted directed cyclic or acyclic graph composed of nodes linked
with transition arcs. The transition arcs are labelled withthe elements of the vocabulary
of which the strings to be accepted consist. The network topology defines the licensed
set of strings; loops permit strings of arbitrary length andthus infinite sets of strings.
The FST differs from the FSA in that transitions are labelledwith symbol pairs, one
symbol from an ‘input vocabulary’, one from an ‘output vocabulary’; the FST thereby not
only accepts strings of symbols from the input vocabulary but also translates them into
strings of symbols from the output vocabulary, an operationoften used to model mapping
operations expressed by phonological and tonological rules. FSTs are reversible; an FST
can thus be used not only as a ‘parser’ but also as a ‘generator’.
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−−:||

−−:||

longer:||s

shorter:|w

longer:s

shorter:|w

shorter:||w

shorter:||w

B

A

C

D

E

F

shorter:w

longer:s

shorter:w

longer:s

shorter:w

longer:s

B

A

C

longer:s

shorter:w

A

Figure 4: Strict ternary rhythm
acceptor.

Figure 5: Naive and minimised general
rhythm acceptors.

(1) {s, sw, sws, swsw, ...w, ws, wsw, wsws, ...}

(2) {||s||, ||sw||, ||sw|s||, ||sw|sw||, ...||w||, ||w|s||, ||w|sw||, ||w|sw|s||, ...}

(3) {||s||, ||s|w||, ||s|ws||, ||s|ws|w||, ...||w||, ||ws||, ||ws|w||, ||ws|ws||, ...}

The binary model is too strict: durations in real speech do not follow a sim-
ple long–short–long–short pattern; nor are they strictly linearly organised. A
ternary model is shown in Figure 4, here the trochaic (actually dactylic) case.
Both binary and ternary cases (at least) must be catered for;this is handled by
the union operation over FSTs, which combines the ternary model with the bi-
nary model. Effectively, this just means adding the transitions< B, w, C > and
< C, |s, B > to the ternary model. But the real–speech situation requires a more
general automaton, which could be reduced to an equivalent single–state de-
vice, as in Figure 5. Clearly this is not the end of the story: further constraints
on timing and structure are needed. The unreduced models provide contexts for
these: binary, ternary structures and their time behaviourneed to be modelled;
so–called ‘stress clash’ contexts need to be captured by mapping to abstract un-
derlying lexico–syntactic stress patterns, and (a more complex issue) hierarchi-
cal constraints for more complex models (cf. Campbell 1992;Cummins 2002;
Wagner 2001). This is still an open issue, but the present discussion will serve
as basic background for an evaluation of existing Linear Models of rhythmic
timing.

3.2 Global and Local Linear Models of Rhythm

The Linear Models of rhythmic temporal structure can be classified as follows:
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1. Global Linear Models (GLM), i.e. variance–based models of ‘regularity’
and ‘irregularity’ in sequences of unit durations, focussing on isochrony,

2. Local Linear Models (LLM):

a) Oscillation and Entrainment Models: Cummins (2002), O’Dell and
Nieminen (1999), Barbosa (2002), Wachsmuth (2002),

b) Pairwise variability models: Low et al. (2000), Gibbon and Gut
(2001).

The reasons for the classification as ‘global’ and ‘local’ models will appear
in the discussion.

Formal analysis of recent approaches in the Oscillation andEntrainment
paradigm of rhythm modelling (cf. Barbosa 2002; Cummins 2002; Wachsmuth
2002) requires modification of the basic FST mechanism. Workis in progress
on this; the approaches will not be considered in detail here, except for a brief
account of structural aspects of the Cummins model in Section 4.

3.2.1 Global Linear Models of Rhythm

One class of linear rhythm models is global, in that the localalternation property
of rhythm is ignored, and general ‘evenness’ properties of events involving a
particular parameter are characterised by means of variance measures.

The simple and precise method introduced by Roach (1982) is aGlobal Linear
Model: the sum of deviations from average foot duration is divided by total
utterance length, yielding normalised foot duration deviation. A similar measure
would be Standard Deviation of foot duration. The PFD is a measure of evenness
of duration, i.e. isochrony:

(4) Mean Foot Length (MFL)= Σn
i=1 |footi|

n

Percentage Foot Deviation (PFD)= 100 ×
Σn

i=1 |MFL − len(footi)|
n × MFL

Roach interpreted his results as showing that PFD is actually higher in English
than in French, Telugu and Yoruba, i.e. in languages classified as syllable-timed
by Abercrombie (1967), which is contradictory to expectations (assuming that
the category ‘foot’ is somehow applicable to these languages). While the global
evenness or isochrony criterion for rhythm is modelled in Roach’s approach,
pattern alternation, and compositional iteration and hierarchy are not. Further,
any arbitrary re-sorting of the units (random, shortest-to-longest, etc.) would
yield the same global index. The model is thus too unconstrained, in that it only
defines one necessary condition for a Rhythm Periodicity Model, isochrony, and
not the other necessary conditions.

A quantitative measure for ‘rhythmic irregularity’ is discussed by Scott et al.
(1986). This is an open-ended, normalised measure which is calculated pairwise
for all intervalsI in a sequence, i.e. globally over the whole sequence:
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(5) Rhythm Irregularity Measure (RIM ) = Σi6=j

∣

∣

∣

logIi

Ij

∣

∣

∣

The absolute value of the logarithm ensures that the correctratio is found, inde-
pendently of the order of division. The more similar the durations of units are,
the closer the value approaches 0. Like Roach (1982), Scott et al. (1986) deal
with the isochrony condition, but do not take pattern alternation or composi-
tional iteration into account.

Studies by Ramus et al. (1999), Ramus (2002) use subsyllabicvariables to lo-
cate different languages in a typological timing space:V %, percentage of V (vo-
calic intervals) relative to overall utterance length,∆C, variance of consonantal
intervals, and∆V . Like the single variablePFDandRIM measures, these two–
variable measures reflect preferences for certain phonotactic patterns (CV, CVC,
vowel length), though as corpus tokens rather than lexical types. The model uses
a form of global evenness or isochrony criterion, and also ignores pattern alter-
nation and compositional iteration: V stretches and C stretches would still yield
the same results if randomly sorted. The∆V measure reflects evenness of vowel
sequence lengths, lower values tending to isochrony; similarly the∆C measure
for consonants.

To summarise: the approaches of Roach (1982), Scott et al. (1986), Ramus
et al. (1999) and Ramus (2002) are ‘complete’ in that they capture evenness
of temporal structures, but are ‘unsound’ in that they only refer to isochrony
and capture many unwanted structures because of the neglectof focal/non–focal
alternation and the directional iteration of alternations.

3.2.2 Local Linear Models of Rhythm

The global evenness issue was addressed by Low et al. (2000),who developed
a Pairwise Variability Index (PV I) to take account of pattern alternation and
compositional iteration in rhythmic temporal structure. ThePV I is an averaged
distance measure for adjacent units (vowels, syllables, etc.):

(6) PV I = 100 × Σm−1
k=1

∣

∣

∣

dk−dk+1

(dk+dk+1)/2

∣

∣

∣

/(m − 1)

Differences between consecutive pairs of durations are normalised by the aver-
age duration of the pair, and absolute values of the normalised differences are
averaged and multiplied by 100. Normalisation is intended to handle speech rate
variation in the utterance and between utterances.4 Like theRIM thePV I is
lower when the durations of vowels in adjacent syllables aresimilar. TheRIM is
open ended as irregularity increases, but thePV I ranges between the limits of 0

4 Note that the comment by Wetzels (2002) that the (m−1) component factors out final
lengthening is mistaken: a sequence of lengthm simply hasm − 1 differences between
neighbours.
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and 200.5 For example, in the artificial ‘ideal’ case of perfect isochrony thePV I
for the duration sequence<100,100,100,100> is 0; in the artificial and impossi-
ble case of total non-isochrony, thePV I for <100,0,100,0> is 200. In a realistic
case, using Brazilian Portuguese syllables (not vowel lengths),6 a time–stamp se-
ries of length 8<0.084, 0.143, 0.357, 0.426, 0.588, 0.727, 0.889, 1.267> yields
a duration (neighbouring time–stamp difference) series oflength 7<0.06, 0.21,
0.07, 0.161, 0.139, 0.162, 0.378>, which in turn yields a (rounded)PV I of 67
(at the syllable level), corresponding to an average neighbouring syllable dura-
tion ratio of 2:1 (i.e. moderately non–isochronous).

A variant used in Gut et al. (2001), the Rhythm Ratio (RR), reverses the scale,
uses division rather than subtraction, and has a maximum of 100 for perfect
isochrony, but otherwise has the same fundamental properties as thePV I:

ThePV I andRR models have three serious inherent empirical problems:

1. Contrastive vowel length is ignored:pretty Sally tickled Tim, with short
stressed vowels, may well behave very differently fromtiny Davey danced
with Joan, with long stressed vowels.

2. The pattern measured is vowel length differences, but Dauer (1983), Ra-
mus et al. (1999) stress the role played by variation in consonantal dura-
tion; when Ramus (2002) compared his variance measure and the PV I
for bothC andV , he discovered that plottingPV I(C) × PV I(V ) and
∆C×∆V yields similar results. Clearly, other units need to be considered.

3. ThePV I and RR models assume strictly binary rhythm, as in “Little
John met Robin Hood and so the merrie men were born.”. But while the
focal—nonfocal property of rhythm is always binary, the nonfocal section
may be internally more complex, and thePV I andRR do not handle this.
Cf.

a) unary rhythms (effectively: stress–based syllable timing with CV al-
ternation), as in “This one big fat bear swam fast near Jane’s boat.”;

b) ternary dactylic and anapaestic rhythms (or rhythms witheven
higher cardinality), as in “Jonathan Appleby wandered around with
a tune on his lips and saw Jennifer Middleton playing a xylophone
down on the market-place.”

5 Case 1: The units in each pair have equal length. In this case,the difference between
adjacent units is 0, the normalised difference is 0, the average multiplied by 100 is 0. This
is the lower limit. Case 2: The units in each pair have very different length, with the length
of one approaching zero to all intents and purposes, and the other being much longer.
Then the difference will be approximately the same as the duration of the longer unit and
the average duration will be approximately half this, so thenormalised difference will be
approximately 2 and the average multiplied by 100 asymptotically approaches 200.
6 Data and annotations (speaker MC) due to Flaviane Fernandes, U Campinas, Brazil.
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Worse, thePV I andRR models have two serious inherent formal problems.
The distance measure isundirected, like the global measures, and does not dis-
tinguish between the ‘greater than’ and ‘less than’ orderings needed by the pat-
tern alternation condition:PFD uses absolute differences,RIM uses the abso-
lute log value of ratios,PV I uses the absolute value of differences, and theRR
uses an explicit condition to merge the two relations. The formal consequence
is that for an utterance containingn units, thePV I function generates by2n−1

combinations of increasing and decreasing duration relations.PV I is therefore
massively ambiguous. For example, for utterances of length3 (i.e. 2 durations),
thePV I function generates the same index for22 = 4 patterns:

(7) pvi(2, 4, 2) = pvi(4, 2, 4) = pvi(2, 4, 8) = pvi(8, 4, 2) = 66.6667

The Local Linear models are thus effectively just as unconstrained as the Global
Linear Models. Though formally ‘complete’ in that they handle all the required
patterns, the Linear Models discussed here are ‘unsound’ inthat they produce
spurious identical values for exponentially many alternating and non–alternating
patterns. As with the Global Linear Models, the ‘isochronous’ end of the scale
is meaningful, and the further away the indices get from isochrony, the less is
known about what ‘non–isochrony’ means. The use of an undirected distance
measure means, despite the original intention, that isochrony is addressed, but
not pattern alternation.

When Ramus (2002) compared plots of∆C×∆V PV I(C)×PV I(V ), very
similar results for a range of very different languages appeared. This apparently
provides mutual confirmation for consistency in both approaches. With hind-
sight the similarity is not too surprising: Ramus data are empirically controlled
for speech rate, whereas thePV I model normalises locally for speech rate. The
models are also conceptually similar: the variance model calculates (by defini-
tion) sums of squared duration differences from global duration means, while the
PV I model calculates sums of local duration differences divided (normalised)
by the local duration mean.

Summarising: Both Global Linear Models and Local Linear Models fail as
models of rhythm, though they are valid as models of isochrony. The Local Lin-
ear Models additionally use the iteration property of rhythm, though they fail
formally on the alternation property and basically reflect phonotactic structures;
cf. also Cummins (2002).

Nevertheless, all of these results show that there are finelytunable computa-
tional measures which can be used to provide partial models of linear rhythmic
temporal organisation in the Absolute Time domain. The Local Linear Models
add a distance measure which normalises utterance–internal speech rate vari-
ation; on the other hand, speech rate variation is in itself an interesting factor
in temporal analysis, in that it underlies fast speech phonostylistic phenomena
which affect rhythm, as well as individual differences.
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4 Higher Order Temporal Patterning

Non–phonetic approaches to rhythmic temporal organisation tend to be hier-
archical, with the hierarchies derived directly or indirectly from grammatical
structures. A large number of approaches to prosody in TTS synthesis also use
explicit or implicit hierarchical models (cf. for example Campbell 1992; Wagner
2001). In Cummins (2002) a number of additional factors involved in the pro-
duction of rhythm in different styles are discussed, ranging from a paradigm of
synchronous speaking designed to elicit maximally rhythmic utterances, to less
constrained styles. He addresses both hierarchical and linear factors, and pro-
poses a model for the more constrained styles with binary hierarchical structure,
i.e. groupings of two-word feet, higher level groupings of two feet with four
words, and so on.

The hierarchical approaches derive ultimately from the recursive approach to
abstract stress hierarchy definition with the Nuclear Stress Rule (NSR) in Gen-
erative Phonology (cf. Chomsky and Halle 1968). From the start (cf. Bierwisch
1966) the problem of arbitrary recursive depth was addressed, and ‘flattening’
measures were introduced in the form of readjustment rules (cf. Culicover and
Rochemont 1983). Metrical Phonology (cf. Liberman and Prince 1977; Selkirk
1984), one of the offspring of Generative Phonology, introduced a flattening
component in the form of an iterative, alternating linear filter, the ‘metrical grid’,
to readjust non–rhythmical ‘stress clashes’ in some contexts (cf. thirTEEN but
THIRteen MEN). The metrical grid is closely related to the FST models intro-
duced earlier, and explicates Relative Time pattern alternation and compositional
iteration rhythm constraints, but not the isochrony constraint, which would re-
quire a Time Map into Absolute Time.

TheNSR recursively defines a hierarchical iambic temporal structure; a sim-
ilar rule for English nominal compounds defines a trochaic structure. The idea
underlyingNSR recursion is that there is an alternation or relative prominence
relation between focal and non–focal constituents of a domain (theNSR says
nothing about empirical correlates such as duration or pitch). The relative promi-
nence relation holds recursively and compositionally at all levels of a hierarchy
and is used to interpret syntactic structures and assign ‘stress’ values to words.
TheNSR will be discussed in some detail (despite its controversialstatus) be-
cause in Section 5 a generalised inverseNSR function will be used as the core
of the induction algorithm.

It is the general recursive rather than simply iterative (either right or left re-
cursive) compositionality property of theNSR function which distinguishes it
from Local Linear Models: “the form of a complex expression is determined by
a fixed set of processes that take account of the form of its parts” (Chomsky and
Halle, 1968, 20). The same principle underlies compositional semantic interpre-
tation, in which ‘the meaning of the whole is a function of themeanings of the
parts’, (noted explicitly in Footnote 7 on the same page). Similarly, then, the
pronunciation of the whole is a function of the pronunciations of the parts’.
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Several equivalent formulations of theNSR have been proposed in the liter-
ature. A number are outlined here in order to make the point that ‘there is more
than one way to do it’, the important issue being the underlying formal property
of general recursion; the detail of the algorithm is purpose–dependent.

TheNSR as introduced by Chomsky and Halle (1968) is usually described
in the following operational terms:

Generate a sentence as a string of words with a structural description in the form of
a (labelled) bracketing, and assign the lexical stress value 1 to each word.
Iterate, for all sequences with no intervening brackets, until all brackets have beenre-
moved: Add 1 to all except final existing stress values in innermost bracket domains,
and remove innermost brackets.

A tree–based formulation was given by Liberman and Prince (1977), briefly:

Generate a sentence as a string of words with a structural description in the form of a
(labelled) bracketing. Label the root with ‘r’ and assign ‘s’ to each rightmost branch
in the tree corresponding to the bracketing, and ‘w’ to all the others.
Then, for each path in the tree from leaf to root:

Beginning with the first non-‘s’, count the number of nodes from this node to
the root (including this node) and assign these numbers to the leaves as their
stress values.

From a formal point of view it is simpler to define theNSR as a recursive
function which maps tree–structures and initial numericalvalues into a sequence
of pairs of ‘stress’ integers and leaves of the tree:7

(8) NSR: structure, nonfinalvalue, finalvalue → stresspattern

Definition: If structure is a leaf/atom, then pairstructure with finalvalue.
If structure is a sub–tree, re–adjoin the left branch ofstructure after recur-
sively applyingNSR with higher values to it with the right branch ofstructure

after recursively applyingNSR with higher nonfinalvalue and the same
finalvalue to it.

An incremental algorithm for strings representing well–formed bracketings (the
original NSR definition was formulated in similar terms) is also possible, but
something of a curiosity:8

7 For computational linguists, a proof–of–concept translation into Scheme:
(define (nsr t n m)

(if (symbol? t)

(cons t m)
(list (nsr (car t) (+ n 1) (+ n 1)) (nsr (cdr t) (+ n 1) m))))

e.g.(nsr ’((caring . kate) . (phoned . (darling . dave))) 1 1)yields the hierarchical ‘stress pattern’
(((caring . 3)(kate . 2))((phoned . 3)((darling . 4)(dave . 1)))), i.e. 3Caring 2Kate3phoned4darling
1Dave.
8 This sketch can be implemented directly in Perl, awk, etc., and the curious reader is
invited to do so as an exercise. The input “( ( big john ) ( saw ( (very little ) ( mary smith
) ) ) )” generates “3big 2john 3saw 5very 4little 5mary 1smith”.
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Initialise depth counter to 1, word store to empty, last constituent flag to ”off”, iterate
through the symbols in the string left–to–right:

if current symbol is a left bracket, the last constituent flagis set, and a word is stored,
then print the depth counter and the word.

if current symbol is a left bracket, then increment the depthcounter and turn off the
last constituent flag.

if the current symbol is a right bracket, then decrement the depth counter and turn
on the last constituent flag.

if current symbol is a word, and a word is stored, then print the depth counter and
the word, reset the word store.

if the current symbol is a word, then store it.

All theseNSR algorithms are equivalent; it does not really matter which
one is used to map tree–structures to numerical values. Since a mapping of this
kind is often seen as one of the tasks to be solved in TTS synthesis, it is not
surprising that the basicNSR idea (in some iambic or trochaic parametrisation)
has frequently been used in the TTS application domain.

There is an empirical problem with theNSR, however. As noted above,
the naive assumption of direct interpretation of grammatical structures does not
work: grammatical hierarchies are not only different from but also deeper and
more complex than temporal organisation hierarchies, so there can be no simple
alignment procedure for deeply embedded phrase structures. Nevertheless, this
does not detract from the validity of the basic insight of compositional phonetic
interpretation (often referred to by the term ‘cyclic’), which remains attractive,
particularly for the flatter structures of informal speech.

The hierarchicalNSR type approach in Metrical Phonology is criticised in
the context of TTS synthesis by Wagner (2001). Wagner does not reject the linear
alternation and iteration criteria provided by the metrical grid filter component,
however, and uses FSTs with local cycles to formalise linearmetrical grid filters
(cf. Section 3). She retains the idea that grammatical parts–of–speech are useful
predictors for alignments with rhythmic timing and demonstrates that better re-
sults for synthesis of German speech are given by a linear model based on five
part–of–speech (POS) sets with different intrinsic stressweights:

1. Nouns, Numerals, Proper Names;
2. Adverbs, Adjectives;
3. Verbs, Demonstrative Pronouns, WH-Pronouns;
4. Modal & Auxiliary Verbs, Affirmative & Negation Particles;
5. Determiners, Conjunctions, Subjunctions, Prepositions.

It must be pointed out, however, that the POS weights containstrong assump-
tions about syntax hierarchies. For example, in German (andin English), many
‘weaker’ parts of speech alternate with stronger items on syntactic grounds
alone, often preceding stronger items in a given construction. This induces shal-
low hierarchies and provides likely candidates for deriving iambic rhythms. In
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the study of tree induction which follows in Section 5, a similar relation be-
tween function words and non–function words appears in the induced hierarchy,
confirming that this kind of relation yields iambic timing structures.

The recursive compositionality property of theNSR function invites the
question whether there might be an inverse function,NSR−1, which would per-
mit the (re–)construction of a tree from a sequence of numerical values. In fact
it is possible to prove formally that there is indeed an inverse function; the proof
will be presented elsewhere. An algorithm based on a generalisation ofNSR−1

is used in the induction procedure presented in Section 5.

5 Tree Induction, Alignment and Comparison

The following sections are concerned with a data–driven approach to the mod-
elling of pattern alternation in hierarchical timing patterns. The approach does
not yet constitute a complete Rhythm Periodicity Model, because compositional
hierarchy is modelled at the expense of compositional iteration, and isochrony
is not yet incorporated. The term ‘induction’ is used here inthe sense in which it
is used in Machine Learning (ML; cf. recent linguistic applications by Sporleder
2004) and in data–mining. For linguistic purposes it is useful to make a distinc-
tion between paradigmatic and syntagmatic induction (though both are based on
generalisation and data compression techniques). Paradigmatic induction, as in
decision tree induction, or classfication and regression tree (CART) construction,
generalises over sets of units which have shared properties. Syntagmatic induc-
tion is the compositional induction of part–whole generalisations over sequences
of units, as in automaton induction or grammar learning. In the present computa-
tional phonetic context of theTTI–TSI induction and alignment methodology,
‘induction’ refers specifically to the syntagmatic hierarchical grouping of units
according to empirical dependency and constituency criteria, and ‘alignment’
refers to the identification of phonetic events in speech signal recordings by as-
signing time–stamps to units (phones, syllables, words etc.) in transcriptions;
‘comparison’ refers to a distance measure for trees with identical leaf sequences.

The tree–building procedure in the present study can also beinterpreted as
a kind of parsing procedure, in which the numericalgreater than orless than
relations define ‘categories’, and the trochaic and iambic orderings define ‘rules’
in a ‘grammar’. Parse trees are constructed with this grammar using top–down
or bottom–up parsing schedules: the procedure parses the annotation sequence
into Time Trees which are locally normalised for speech rate(as in the Local
Linear Models), and generates alternating and hierarchical timing structures.

The induction procedure is demonstrated here using word–level annotations;
it can be also used with temporally annotated data from any other time domain
and other types of numerically labelled data, for instance to investigate interfaces
between prosody and lexical, grammatical and discourse patterns.



21 Dafydd Gibbon

5.1 The Induction, Parsing and Comparison Procedures

The Local Linear Models examined in Section 3 represent progress beyond the
Global Linear Models in that they incorporate local speech rate normalisation
and (at least in intention) an alternation component. They fail on the alternation
property of rhythmic temporal organisation, however, because they use a non–
directional distance measure which ignores the differencebetweengreater than
andless thannumerical relations. In the present approach, based on the Rhythm
Periodicity Model, the directionality ofgreater thanandless thanis utilised in
the tree–building procedure in order to distinguish between hierarchical levels
in building time trees, i.e. syntagmatic tree structures over time-annotated se-
quences with pattern alternation; compositional iteration and isochrony criteria
are not yet incorporated.

CORPUS

signal
annotation

TTI

algorithm

PARSER

construction task
tree induction

Tree Similarity Index

TSI

tree similarity
algorithm

treebank

Figure 6:TTI–TSI tree induction, alignment and comparison architecture.

The Time Trees are compared with tree structures over the same strings from
other domains, in the present case hierarchical grammatical structure. For this
purpose, only unlabelled tree graphs are used; future developments will need
to take the categories of the nodes into account. The procedure, with two tree
analysis components and a comparison component, is as follows (cf. Figure 6;
see also Gibbon 2003a,b):

1. Time Tree Induction (TTI) from long-short local duration differences in
annotated speech signal data,

2. Parsing of the annotated transcriptions into syntax trees,
3. Calculation of a distance/proximity measure yielding a Tree Similarity

Index (TSI) between the Time Trees and grammatical trees.
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5.2 Time Tree Induction (TTI)

The data used in this procedure are from a narrative read by anEnglish native
speaker and hand–annotated at word level. The annotation relations have the fol-
lowing structure (in esps/waves+ format: time–stamps in the left–hand column
refer to ends of words; the centre number is irrelevant for present purposes):

(9) 42.799104 123

42.896017 123 there

42.977461 123 is

43.170525 123 nothing

43.336955 123 I

43.506263 123 can

43.730879 123 do

The tree–building algorithm9 used here is essentially a deterministic bottom-up
(shift–reduce) parser with a shift vs. reduce criterion derived from comparing
neighbouring duration pairs< ∆ti, ∆ti+1 >, like the PVI and RR algorithms
but without the absolute values of duration differences, and also comparing val-
ues assigned to sub–trees. Various parametrisations of thealgorithm are possi-
ble:greater/equalvs. less, greatervs. less/equal, or their association with condi-
tions may be reversed, or anequalitycondition may be introduced, to cover non-
binary structures. Formally, theTTI algorithm is a generalisation ofNSR−1,
the inverse of theNSR function, where differences are not restricted to integer
increments; the generalisation enables the algorithm to handle arbitrary numeri-
cal duration values. Given agreater/equalvs. lessparametrisation, either of two

9 For computational linguists, a proof–of–concept Scheme implementation:
(define (induce t stack)

(cond
((null? t) (reduce stack))
((null? (cdr t)) (reduce (cons (car t) stack)))
((<= (caar t) (caadr t))

(reduce (induce (cdr t) (cons (car t) stack))))

((if (not (null?stack)) (¡= (caar t) (caar stack)))
(induce (cons (car stack) t) (cdr stack)))

((> (caar t) (caadr t))
(induce (cons (list (caadr t) (car t) (cadr t)) (cddr t)) stack))))

(define(reduce stack)
(cond

((null? stack) stack)
((and (not (null? stack)) (null? (cdr stack))) stack)
(#t (cond

((> (caar stack) (caadr stack))
(reduce (cons (list (caadr stack) (cadr stack) (car stack))(cddr stack))))
((<= (caar stack) (caadr stack))
(reduce (cons (list (caar stack) (cadr stack) (car stack)) (cddr stack))))))))
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conditions may arise:

1. A greater/equalrelation is found: a subtree is created with these two du-
rations, and the duration of the longest unit (or shortest, depending on the
parametrisation) percolates up to the root of the new subtree as a basis for
recursive hierarchy construction by comparison with otherneighbours.

2. A lessrelation is found: subtrees are constructed from followingduration
pairs in the sequence, and adjoined later.

Each time a new subtree is created, the duration label of the longest daughter
percolates up to the top of this subtree, so ‘neighbour’ may refer either to a
neighbouring leaf, or to a neighbouring subtree which has already been parsed.
Duration percolation is used recursively to build larger subtrees until the entire
sequence has been mapped into a tree; the longest duration inthe sequence will
label the root of the tree.10

Figure 7:TTI tree over word durations in a complete narrative, illustrating di-
visions into constituents (e.g. the small leftmost main branch repre-
sents the title, others represent other episodes in the narrative). The
largest constituents are determined mainly by pause durations and fi-
nal lengthening.

Figure 7 shows a tree induced from the whole narrative. The durations of
the smallest units (words) are projected into a tree spanning the entire narrative.
Text structure is heterogeneous; the tree is correspondingly ‘noisy’. But visual
inspection also shows a number of interesting relations with discourse structure:
for instance, the small leftmost subtree corresponds to thetitle of the narrative;
other larger subtrees correspond to episodes in the story, and are largely de-
termined by the length of pauses between these episodes. Figure 8 zooms into
the tree, showing a syntax-timing correspondence (ZZZ denotes a pause) and
bottom-up duration percolation (cf. the value .043) in an iambic parametrisa-
tion. An example of the output format of the algorithm is:

10 John Wells has conjectured that the overall duration of the pair might be used instead.
This is worth investigating, but the duration of a deep subtree may then not be directly
comparable with the durations of shallower neighbouring subtrees or leaves.
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Figure 8: Zoom into a tree labelled with leaf strings and duration values, gener-
ated by an iambic parametrisation of theTTI algorithm (longer items
right, shorter values promoted).

(10) (.081

(.081 (.081 "is:42.977") (.193 "nothing:43.171"))

(.166

(.166 "I:43.337")

(.169

(.169 (.169 "can:43.506") (.225 "do:43.731"))

(.219 "ZZZ:43.950"))) ... )

The numerical labels following the left parentheses show durations; those fol-
lowing the colons are annotation time-stamps. The bracketing illustrates numer-
ical value percolation from leaf to root, in this case with promotion of the short-
est duration: the root value 0.081 is promoted from the valueof the leaf ’is’, here
yielding an iambic pattern.

5.3 Parsing and Grammar–Prosody Correlation

The information required for determining the predictive value of grammatical
information for timing, and vice versa, is purely structural, with no grammatical
tags. In the long term, a treebank creation procedure is required for this pur-
pose, but as an interim measure, and also in order to avoid falling into the trap
of fashionable theoretical prejudice in automatic parsing, a ‘subjective parsing’
procedure was developed: unlabelled syntax trees were obtained by dividing a
narrative into consecutive sentences, and requesting non-linguistics graduates to
group expressions by bracketing them. A typical subjectiveparse result (not too
different from conventional parsing wisdom) is the following, with top–down
NSR ‘stress pattern’ generated by the bracketed string algorithm:
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(11) ((there is (nothing I (can do))((said (the frog)) and hopped away)))
3there 3is 4nothing 4I 5can 3do 5said 6the 4frog 4and 4hopped1away

No attempt was made to ensure uniformity or theoretical consistency of brack-
eting. Some formally improper bracketings resulted, whichwere normalised by
adding additional brackets left or right of the bracketed sentence. A total of 120
subjective parses were elicited.

The induced time–trees and the syntax trees were compared automatically11

with a distance/proximity measure, yielding a Tree Similarity Index (TSI):

(12) TSI = |SUBSTR(T1)∩SUBSTR(T2)|
(|SUBSTR(T1)|+|SUBSTR(T2)|)/2

Each leaf in each tree is uniquely labelled (skolemised) before the algorithm is ap-
plied, non-branching nodes are pruned, and for each treeTi, the set of substrings
spanned by nodes in the treeSUBSTR(Ti) is collected.
The two substring sets are intersected and the cardinality of the intersection
|SUBSTR(T1) ∩ SUBSTR(T2)| is normalised in relation to the total number
of nodes, in this case by calculating the mean of the node counts of the two trees:

The results of the study are visualised in Figure 9. The thicksolid line shows
correspondence between timing trees and unparsed (UP) sentences, the higher
thin line shows meanTSI for the iambic condition, the lower thin line shows
meanTSI for the trochaic condition. Both the iambic (0.85) and the trochaic
(0.89) results correlate well with the unparsed sequence, probably due to the
shallow bracketing and dependence on constituent lengths,but the absolute in-
dex levels differ considerably. Averaged over all subjectsand sentences, the

11 For computational linguists, a proof–of–concept Scheme implementation:
(define (treecomp t1 t2 n)

(if (pair? t1)
(if (pair? (car t1))
(begin

(treecomp-1 (leaves (car t1)) t2 (+ 1 n))
(treecomp (car t1) t2 (+ 1 n))
(treecomp (cdr t1) t2 n))

(treecomp (cdr t1) t2 n))))

(define (treecomp-1 ll t2 n)
(if (pair? t2)

(if (pair? (car t2))
(begin

(if (equal? ll (leaves (car t2)))

(set! *count-sim* (+ 1 *count-sim*)))
(treecomp-1 ll (car t2) (+ 1 n))
(treecomp-1 ll (cdr t2) n))

(treecomp-1 ll (cdr t2) n))))

(define (leaves t)
(if (pair? t)

(append (leaves (car t)) (leaves (cdr t)))
(if (null? t) t (list t))))
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iambic condition yields a meanTSI of 0.47, the trochaic condition yields a
meanTSI of 0.2, while the unparsed condition yields a meanTSI of 0.19. The
trochaic and unparsed conditions are practically indistinguishable. Syntax and
TTI trees are thus interpreted as more similar under the iambic condition than
under the trochaic condition (the proof–of–concept orientation of the pilot study
and the number of samples involved did not justify further statistical evaluation).
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Figure 9: Syntax–timing tree correspondences in read-aloud narrative (X: syn-
tax/ TTI tree pairs, Y:TSI).

Table 1: Summary of main results.
mean UP-correlation meanTSI

parsed + iambic: 0.85 0.47
parsed + trochaic: 0.89 0.2
unparsed + iambic: 0.19
unparsed + trochaic: 0.19

The results in Figure 9 and Table 1 show a preference for a match between
grammatical structures and iambic groups, with short-longconstituent pairs. Ex-
amination of the sentences indicates that the measure provides substantive and
relevant information: the iambic pattern corresponds to the typical ‘short–long’
relation between function (closed class) words, which tendto be unstressed and
short, and lexical or content (open class) words, which tendto be stressed and
long. The potential which this comparison algorithm holds for the examination
of discourse hierarchies (cf. Figure 7) has not yet been exploited.

6 Conclusion: Toward an Integrated Timing Model

Concepts of time and temporal organisation in phonetics andneighbouring disci-
plines were examined from a computational phonetic perspective, with the aim
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of developing distributional data–driven hierarchical prosodic analyses. Possi-
ble ‘cognitively real’ dimensions of these analyses in terms of speech produc-
tion and perception were not investigated; at a later stage,the distributional and
correlationist methodology could perhaps be supplied witha cognitively rele-
vant interpretation. Consequently, the methodology has rather positivistic traits.
A purely positivistic account of timing structures may or may not be possible;
it seems unlikely, so the present distributional methodology will need to be en-
hanced with information from other sources in order to create a more differenti-
ated picture of emergent timing patterns, promising a future Emergent Rhythm
Theory; cf. Gibbon and Fernandes (2005). Such sources are complex grammat-
ical structures, discourse patterns, timing and alignmentin dialogue interaction,
cognitive expectations and neurological timing mechanisms, with Time Trees
for each of these data streams.

The computational phoneticTTI–TSI methodology seems to be a suitable
starting point for such enterprises in integrating alternating, iterating and hier-
archical timing patterns, however. First results appear plausible, for instance in
identifying the iambic,NSR–type prosodic structures associated with a cer-
tain kind of right–heavy syntactic structure: automatic induction and align-
ment of Time Trees produces a result which harmonises with linguistic ex-
pectations. Much remains to be done to develop Emergent Rhythm Theory, of
which the Rhythm Periodicity Model will be a part, includinggeneralisation
to other speech genres and languages, deeper bracketing, weighting of cate-
gories, normalisation for sentence length effects, interpretation of the tree struc-
tures in terms of ‘eurhythmic’ criteria, incorporating compositional iteration and
isochrony, methodological improvements concerning the size of the subject set,
the use of treebanks, statistical treatment with more data,and the use of differ-
ent empirical paradigms such as the investigation of rhythmicity by means of
perception experiments.

The computational phoneticTTI–TSI methodology is thus still in its in-
fancy, and very much a basic research activity. Nevertheless, on the basis of
the Rhythm Periodicity Model, computational phonetics holds promise for the
deployment of prosodic data mining strategies which will help to exploit the
enormous quantities of annotated speech resources which have been amassed
in many language resource projects all over the world. Potential fields of appli-
cation of this distributional analysis and alignment methodology in descriptive
linguistics and phonetics include the investigation of prosodic patterns in exist-
ing temporal annotations of endangered and extinct languages (particularly in
the latter case, in the permanent absence of native speakers). Potential fields of
application in speech technology are many; perhaps the mostobvious area of
application is prosodic pattern learning for TTS synthesis.
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