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Time Typesand Time Trees:
prosodic mining and alignment of
temporally annotated data

1 Prosodic Annotation Mining: Objectives and Motivation
The objectives of the present contribution are theoretirapirical and strategic:

« to outline a data—driven empirical method for exploiting ttemporal
properties of annotated speech data;

- to apply this method to the automatic construction of higreral mod-
els of speech timing (Time Trees) in the context of a Rhythmicdeity
Model (RP M) of rhythm;

- to demonstrate the potential of the methodology of compirtat phonet-
ics as an empirical interface discipline between companatilinguistics
and phonetics by relating the Time Trees to grammaticahhibiies.

The contribution is structured as follows. The objectived anotivation for
the prosodic data—mining of temporal annotations and tte-daiven method-
ology are discussed in Section 1, followed by the introdurctif Time Type The-
ory and relevant terminological clarification in SectionR2presentative data—
driven Global and Local Linear Models are discussed in soataidn Section 3,
and theory—driven hierarchical models are outlined iniSeet. In the following
sections, a proof—of—concept description of the dataedrivme Tree Induction

* Thanks to Steven Bird, Doris Bleiching, Julie Carson-Beerd Nick Campbell, Fred
Cummins, Kasia Dziubalska, Flaviane Romani FernandesprmtGalves, Charlotte
Galves, Esther Grabe, Ulrike Gut, Katja Jasinskaja, Klaokl&t, Andras Kornai, Bob
Ladd, Daniel Hirst, Peter Ladkin, Zofia Malisz, Francis Ngl&ranck Ramus, Alexandra
Thies, Thorsten Trippel, Hans Tillmann, Ipke Wachsmuthr&®/agner, Rudiger Wein-
garten and John Wells, to whom | am indebted for many disonssbn related topics
over a period of decades. | dedicate this study to my deardréad esteemed colleague,
Wiktor Jassem, for his pioneering contributions to the fieldmore than half a century.
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(T'TI) computational phonetic method for inducing tree—strrggifrom tem-
porally annotated data is given: in Section 5 fH€I approach is introduced,
and the algorithm is presented; Section 5.3 describes ditatare method for
comparing prosodic time trees and grammatical phrase @edsan appropriate
Tree Similarity Index {'SI) alignment algorithm is given. Finally, the outlook
for empirical contributions by computational phoneticstsas thel'T'[-T'S1
induction and alignment method to the integration of phignand linguistic
knowledge is considered.

1.1 Motivation

The reason for starting with the induction of temporal infiation is that tem-
poral event sequence and overlap are the fundamentalwgingprinciples of
speech, define the domain into which phonetic interpretatiaps syntagmatic
phonological and other structures, and are the prereguisitaccurate time
modelling in speech technology (particularly in speechisgsis, somewhat less
in current methods of speech recognition).

Phonetic events, including prosodic events, are time fanst their phono-
logical representations are prosodic, distinctive anddidmmed features. The
time functions are defined over temporal domains of diffeckaracteristic du-
rations and are associated with different ‘clock’ frequea speech production
and perception (cf. Tillmann and Mansell 1980). Levels ia diiscretely struc-
tured prosodic hierarchy (e.g. Selkirk 1984) from phonedisgourse units can
be phonetically interpreted in terms of such domains.

The phonetic time functions are transformations of the cipesignal, and
are simple (e.g. a pitch or vowel formant target) or complexerms of se-
quential temporal trajectories (e.g. pitch contours, dnehically larger units)
or of overlap (e.g. co—functioning, partially simultaneqhonetic features). In
phonology, complex trajectories are represented by thgahssoncatenation
operation, complex overlap is represented by feature lesratid autosegmental
lattices. For foundational discussion of prosodic oveidapes such as temporal
displacement, see Niebuhr and Kohler (2004) at the pholeetit, Clements and
Ford (1979) at the phonological level, Bird and Klein (198f)an explication of
the issues in Event Phonology, and Carson-Berndsen (1688)domputational
phonetic approach, Time Map Theory (TMT), which interretathe two levels
and demonstrates a proof—of—concept application of TMpé@sh recognition.

In the present study (Sections 5 to 5.3), words are chosedmedsaisic event
type for temporal induction, mainly on the heuristic grosititht they constitute
an ontologically basic linguistic rank and are a definingegaty for phonology
and prosody, that they are small enough to provide enough et they are
large and functionally clear enough to be immediately idiect by labellers,
and that they have fairly clear properties in both grammal @monetics (and
semantics, though this is not the concern of the presentibation). Words are
thus well-suited to the present proof—of—concept studpiwit new compu-
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tational phonetic methodological framework, in prepanatior more extensive
study of other, more fine—grained phonetic dimensions aaitife spaces.

1.2 Data—Driven vs. Theory—Driven Modelling

A striking contrast between phonetic and phonological apphnes to temporal
modelling is that phonetic methods have generally been-dataen, and have
resulted in linear models of timing in speech productionijeyphonological ap-

proaches are theory—driven, and have resulted in hieamodels of timing.

Temporal models for Text—-To—Speech (TTS) synthesis haeoexdten borrowed
from phonology, are then theory—driven and, typicallyraiehical, though con-
temporary statistical unit—selection methods are cledatp—driven.

The present contribution tries to bridge this gap by refirphgnetic data—
driven methods to yield hierarchical rather than linearwtimodels, in order to
provide atertium comparationifor both theory—driven and data—driven models.
The kind of hierarchy addressed here is not the Classifitatial Regression
Tree (CART) kind of classificatory or paradigmatic hiergraethich has often
been used in time modelling. The present method is concemtaccomposi-
tional, syntagmatic hierarchies over sequential and appihg events.

The data—driven perspective is enhanced by the availabilitarge quanti-
ties of temporally annotated high quality speech data, bwoitio and visual,
and by the relative ease of creating more of the same. Datasofjiantity and
quality puts empirical computational linguistic and phtimenethodologies po-
tentially on a comparable footing with the natural and tetbgical sciences. In
fact, temporal annotation methodology, the basis of thadeo ‘Language and
Speech Resources’ paradigrariginated in statistical methods in Speech Tech-
nology for Automatic Speech Recognition (ASR), later inttgglection based
TTS synthesis.

Resources are there to be used. The information in the aiomastempo-
ral, in that event patterns are paired with time—stamped iatgyeategorial in
that boundaries are discrete and have a symbolic rathentivaeric basis, and
syntagmaticin that annotations define the criteria for the sequenceoaadap
based composition of complex events. This kind of inforovais optimal for
the computational phonetic analysis of time structure atidm and alignment
which is reported in the present contribution.

1 In the European context, most notably in the following catiaoSpeech Assessment

MethodologiefSAM), Expert Advisory Groups for Endangered Language Sys(Ers
GLES),International Standards for Language Engineer{i§LE), and the MATE (Mul-
tilevel Annotation Tools Engineering) project consortiarh the late 1980s to the early
2000s, with publication outlets in tHeanguage Resources and Evaluation Conference
(LREC) series, and the nebanguage Resources and Documentatatine journal.
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2 Time, Time Type Theory and Event Alignment

Temporal structure is a traditional topic in philosophy adlhas in linguistics
and phonetics. Objective and subjective, rationalist amgigcist notions of
the ontology of time are indirectly the concern of this cénition, in so far as
different levels of temporal organisation are aligned vetith other. In linguis-
tics, most attention has been paid to time in semantics. tgrnisingly, formal

explications of time and event structure in terms of evegid® and temporal
calculi are valid in both semantic interpretation and phiariaterpretation, and
the present contribution indeed uses concepts traditioftalnd in semantics.

2.1 Time in Phonetics

Studies of timing in phonetics, psychoacoustics, psyagaiistics and speech
technology are too numerous to cite extensively here. Tlagg sovered many
topics, of which the following are characteristic examples

« correlates of rhythm patterns in terms of pitch, intensitgl anit duration
(syllable, consonant cluster, vowel, mora), addressisigeis such as unit
isochrony in whichluration(u;) = duration(u;—1)+ N, whereN is an
interval constant;

« partial alignment of parallel information streams in plogdacoustic time;

« graph representations of word hypotheses in automatichpegeogni-
tion;

» psychological correlates of time in speech production ardgption, in-
cluding notions of subjective time;

« sequential and parallel ordering of units in time in prosqalionologies;

« abstract notions of timeless structure, in which tempaogguentiality is
represented by a general concatenation operation whichugal with
respect to temporal ordering in speech and handwritinggases, or to
spatial ordering in printed and handwritten texts;

- iconic relations between temporal event ordering in spaachtemporal
event ordering in conventional semantic interpretation.

In phonetics, the issue of timing has long centred on thelogical dis-
tinction of Pike (1945) between stress—timed and syllabieed languages, on
Abercrombie’s notion of the foot in stress—timed langua@ésAbercrombie
1967), and less frequently on more complex concepts of rhgtiucture (cf.
Jassem 1951, Jassem and Gibbon 1980, Jassem et al. 1984 )iwehicle foot—
like structures, the pre—foot anacrusis constituent, aecichical structuring.
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In phonology, structural and functional criteria are cahtand the focus has
been on abstract relational timing concepts such as ceintrasd conditioned
segment duration, complex temporal organisation in theqiz hierarchy and
in metrical grids, and on phonostylistic concepts such agpte pause and fast
speech phenomena, which have also been taken up in manyiscnalytic
studies.

The old distinction between objective and subjective cptsef time is rele-
vant here, as already noted. The analogue to the objectibigedive distinction
in the study of speech is physical clock—measured time i-dhiven phonetics,
versus subjective perception—based time identificatianterpretative phonet-
ics, phonology and discourse analysis.

In the present contribution the topic therefore needs tcabefally delimited
within the terms of reference of the linguist and phoneticta concepts of time
which are expressed or implied by models of language ancdthp&m the for-
mal side, the linear, parallel and hierarchical structofdemporal domains are
focussed. On the empirical side, the focus is on corpus ghisné particular
on temporal annotations of the acoustic speech signal ghebtanual, semi-
automatic or automatic). The models discussed here arenitbogly neutral’:
the data are speech productions, but the models repredsrteelalgorithms are
not claimed to be production models; this interpretatiolefsopen. As induc-
tive computational and data—driven models, the algoritbougd conceivably be
interpreted as emulations of temporal dimensions of sppeateption, learning
and information alignment, but further cognitive, lingiggphonetic modelling
constraints are required in order for this to be plausible.

A systematic terminological clarification in terms of Timgpe Theory and
event—based patterning will be given below, as a basis actdmputationally
oriented further discussion, and as a contribution to thelogy of temporal
concepts in phonetics.

2.2 Time Type Theory

Three Time Types are needed as a basis for prosodic eventradigf in the
present analysis (cf. Gibbon 1992 and Carson-Berndser)1998

Absolute Timerelates to signal—oriented phonetics, that is, to time scamd
intervals determined by calibrated physical measurentertexample,
standard digital signal sampling techniques generate latesdime struc-
tures. In the Absolute Time domain, the quantitatively nueed lengths of
phones, syllables, etc., are important. Impressionistangtic judgments

2 The term ‘ontology’ is used here as in Artificial Intelligenand Text Technology with
respect to search strategy resources (cf. the ‘semantig.viatefers to the organisation
of terms or concepts and their definitions in hierarchiesathdr complex structures, and
is related to taxonomic lexical semantics and terminoldgppty.
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on length and tempo, as practised in phonostylistics antbdise anal-
ysis, may be seen as coarse—grained and uncalibrated tatigmetmea-
sures.

Relative Timerelates to ‘interpretative phonetics’, phonology and pdys and
defines intervals and other relations between points in tivita no
explicit assignment to Absolute Time. Relative Time chtadses the
prosodic phonologies; the key relations are sequencelagvand hier-
archy, which are interpretable in terms of the Absolute Tadomain.

Categorial Timerelates to underlying lexical and grammatical levels, irtipa
ular to categories linked by algebraic operations such asatenation. In
the Categorial Time domain, there is only a notion of temdprainter-
preted structure; to include a notion of time, phoneticriptetations into
the Relative Time and Absolute Time domains are required.

The three—level distinction between Time Types is suppdstework in formal
linguistic theory, in particular in Event Phonology (cf.r8iand Klein 1990;
Kornai 1991), in Time Type Theory (cf. Gibbon 1992) and in ffime Map
Phonology approach to alignment theory (cf. Carson-Beand$98).

The key data—mining procedures in the exploitation of terapannotations
for prosodic induction and alignment can now be formulatederms of the
Time Types:

1. Analogue—digital transformation in the signal samplimgcess, between
two subdomains of Absolute Time.

2. Annotation as mapping the quasi—continuous digital doroé& speech
signals into the discrete Absolute Time domain of annoteititervals.

3. Induction of temporal structures from the discrete AbsoITime sub-
domain of annotation intervals to linear and hierarchicela®ve Time
structures.

4. Mapping of Relative Time structures to Categorial Timaengmatical and
discourse patterns.

2.3 Event Alignment: Streams, Tracks, Tiers

Each of the three Time Types is associated with its own speaifige of sequen-
tial and partially aligned parallel structures at differéreoretical and heuristic
levels of description. The relevant levels for the presamdysare distinguished
as follows:

1. a set of parallel signatreams(time functions describing continuous or
discrete sampled speech signals),



7 Dafydd Gibbon

2. partially aligned with a set of parallel annotativacks (time functions
describing discrete, categorial sequences of events,aspeech editor,
for example, with sampled speech signal and parallel atinotaacks),

3. which are often derived from specific phonologitafs (linguistic con-
structs defining partially aligned trajectories througheatéire space in
Relative Time, as in autosegmental and other prosodic ghgies).

The ‘stream—track—tier’ terminology is intended to keepraplean ontological
levels which are often indiscriminately labelled with terike ‘tier’, ‘track’,
‘level’, ‘layer’, ‘stratum’, ‘stream’.

The following more detailed terminological overview is bdslargely on
the related models of Event Phonology (cf. Bird and Klein @99ime—Map
Phonology (cf. Carson-Berndsen 1998), and Annotation tlgory (cf. Bird
and Liberman 2001).

Event A pair of an Absolute Time or Relative Timaterval and apatternof
values in some phonetic dimension, parameter or featur@migles:

« an interval of 120 ms and a phone segment, as a static or a dynam
time function in Absolute Time on an annotation track;

« aninterval of 10 ms and a pitch value in an Absolute TiFgestream;

« aninterval of 0.0208333 ms (corresponding to 48 kHz sargpkite)
paired with an amplitude value in an Absolute Time signadaatn;

« a pair of a phonological segment and its phonemic or feabased
properties in Relative Time.

+ a signal annotatiord < x,in, Tmaz >, transcription >, where
Tmin ANA T4, FANQEe over pointsyranscription ranges over tex-
tual symbols< Zin, Tmin > ranges over interval$t, oz — Tmin)
ranges over durations); cf. the following (Brazilian Poptiese) syl-
lable annotation:

xmn = 0.48473069812858305
xmax = 0.6301876830002222
text = "koN'

Transcription The name of the pattern of an event.

Annotation The name of an Absolute Time event, consisting of a set ofudi
transcriptions and either interval time—stamp pairs onpiiine—stamps.

Point The undefined primitive for defining intervals as a pair ofp®(whether
abstract points as in Relative Time, or clock time pointsragbsolute
Time), ignoring for present purposes the traditional diston on whether
points or intervals are primitives.
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Time—stamp The name of a point or a pair of points in Absolute Time, i.e. a
calibrated quantitative designation of a relative to sonee-gefined initial
point (the term ‘tick’ is used in digital music and virtual otane technol-
ogy). Examples:

« 24th December 1976

« Mon Mar 28 13:32:30 BST 2005
« 321.5ms

Absolute interval The difference between two time points. Examples:

+ 0.145457 = 0.6301876830002222 — 0.48473069812858305
« the time elapsed between two metronome beats.

Relative interval A segment at an abstract phonological level, related teroth
intervals by relations of precedence and overlap. A redaitierval has
no absolute duration unless explicitly mapped into an altedhterval.
Example:

» The epenthetic [t] in English [prints] “prince” arises whitne end of
the nasal event interval of [n] precedes the end of the osel@sent
interval of [n].

Time—Map A function within one Time Type or between Time Types, maygpi
one temporal representation into another. Example:

+ speech signal digitisation (analogue signal sampling),
« annotation (aligns digital speech signal with eventlabglence),

« phonetic interpretation (mapping of lexico—syntacticresgntation
of speech forms into a phonetic representation.

3 Linear Timing Models

Linear models of timing generally relate to some charas#¢ion of ‘rhythm’,

as a sequencing of tendentially equi—temporal (isochrshouits of rhythmic
temporal organisation, such as mora (a sub—syllabic timimi¢), syllable, or

foot (stress group). The present section addresses apyesat this type, and
compares them with a design for a Rhythm Periodicity Mod&P, M, defined

as follows (modified from Gibbon and Gut 2001):

Rhythm is the directional periodic iteration of a possiblier
archical temporal pattern with constant duration and attating
strongly marked (focal, foreground) and weakly marked ¢(faual,
background) values of some observable parameter.
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Rhythm Sequence (iteration)

T\ // |
Rhythm Event (alternation) @(

Prominent Nonprominent Tl
Event @ Event Q{ /\_’\

K Rhythm Pattern ~ Rhythm Interval

N
N

(isochrony)

Prominent Prominent Nonprominent Nonprominent
Pattern Interval pattern interval

Figure 1: Decomposition of rhythmic temporal structuredess: generalisation
of rhythm event from rhythm sequence; bold lines: sequercem-
position; dotted lines: overlap decomposition).

The condition ‘constant duration’ does not refer simply tesalute Time con-
stants: there are many factors which enter into judgmerdsmstant duration at
different levels of perception (for example, pattern saritles). Generic mod-
elling conventions for rhythm structure based on this didiniand the ontolog-
ical clarification given previously are illustrated in Figul, which shows two
levels of rhythm organisation: the focal and nonfocal stited components (tra-
ditionally: ‘ictus’ and ‘remiss’) each have internal alteting focal/non—focal
structure. The structure shown in Figure 1 is syntagméyidaicomposed along
the two temporal dimensions of sequence and overlap.

Nothing is said in this definition about the epistemologstakus of rhythm
as a complex emergent property of cognitive constructiotherside of the lis-
tener and timing principles of speech production on the sidhe speaker, or
as a purely bottom—up physical pattern; cf. Gibbon and Fetes (2005). It is
unlikely to be just the latter. A strictly positivistic ctaaterisation of rhythm
in physical terms, often sought after in phonetic studiedikely to fail: top—
down factors, including grammatical and discourse pastemmd cognitive ex-
pectations, play a significant role.

In the Rhythm Periodicity Model definition, three structufactors in the
temporal organisation of rhythm are identified, and will lsedi as criteria for
the adequacy of other rhythm models in subsequent disgussio

Pattern alternation The internal focal-nonfocal rhythmic temporal pattern:

1. the time structure of the rhythm pattern can be a binagyradtion,
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or a more complex hierarchical rhythm, as found in metricedtpy,
music, and formal speech, giving the impression of ternamare
complex rhythms;

2. non—semantic, structural terms ‘focal’ and ‘nonfocgbphed to
rhythm constituents are phonetically interpreted as sstiplalter-
nations of the following kinds (auditorily interpreted a®minence
patterns):

« Pitch: [pitchpeak] ™ [pitchtrough],
« Syllable:[long] ™ [short]
+ Segmentfvowel] ™ [consonant]

A focal component can occur anywhere within the rhythm patte
not just initially or finally, but has to be consistently piisned in a
given sequence.

Compositionality The external rhythmic environment:

Compositional iteration the regular directional periodic recurrence of the
focal-nonfocal pattern within the rhythmic sequence donze an
iterated and alternating sequence (iteration is oftenesepted as
pure left or right recursion),

Compositional hierarchythe recursive grouping of sequences of focal—
nonfocal patterns (represented as mixed left, right antreeacur-
sion).

Isochrony The tendentially isochronous rhythmic domain, e.g. tHiable, the
foot or some other unit (sometimes called ‘rhythm unit’ yithm group’).

The pattern alternation, compositional iteration and lisony conditions
together constitute the basic criterion périodicity which characterises the
Rhythm Periodicity Model.

Current Linear Models of rhythm timing in speech are quiteedie but at
the same time tend to be atomistic and selective in that theysfon parame-
ters as different as global deviation of unit length, locait length ratios, and
consonant-vowel ratios (cf. Roach 1982; Low et al. 2000; Baet al. 1999).
These Linear Models are dicussed in more detail below. Itheildemonstrated
that while they address the isochrony condition, none a#rthe necessary
formal and empirical properties of rhythm, in particularrespect of the de-
scription of the pattern alternation and compositionalaiten required for a
Rhythm Periodicity Model, or of other aspects such as noadlyi rhythms and
rhythm hierarchies.

In the following subsections, formal and empirical aspettmear time mod-
els are discussed. First, a formal characterisation ofredteon and iteration in
linear rhythm models is given in terms of Finite State Tramsds (FSTs). Sec-
ond, representative global and local linear modelling epphes are examined
in terms of their formal and empirical modelling properties
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Figure 2: Strict binary rhythm Figure 3: Rhythm acceptor with rhythm
acceptor. group boundaries.

3.1 Finite State Models of Linear Rhythm Organisation

The appropriate formal model for the alignment of lineaustures involving
alternation and iteration is the Finite State TransducBi{-a translation device
based on the Finite State Automaton (FSA); both are starggarelric processing
constructs in computational linguistiésFinite State Transducers are used in
the present study to define Time Map alignments betweenreiffdevels of
temporal organisation

Figure 2 shows a basic binary rhythm acceptor model; ‘so(gly stands for
a focal or prominent component of an alternation, ‘w’ (we#d) a nonfocal
or nonprominent component. Rhythm group or foot boundaniepre—defined
according to the typological properties of the languagesbic or trochaic, and
can be inserted automatically if required: cf. the pipeharacters in Figure 3 for
the trochaic case. The devices translate long—short segseiffiunits (syllables,
feet, etc.) into string sets of the following types (the gahease, the trochaic
case, and the iambic case):

% The FSA represents the simplest form of grammar which camdie infinite sets of

finite strings over a finite vocabulary. FSAs permit iterat{equivalent to left or right
recursion) but no centre—embedding, unlike phrase-stigirammars. Therefore they
cannot model arbitrary tree structures (unless these dirgtefdepth, as in many prosodic
hierarchy models). At most FSAs model flat structures (somest described with ex-
clusively left or right branching trees) which are known ® sufficient for modelling
phonological and morphological forms, and probably alsspdic forms.

An FSA network is a rooted directed cyclic or acyclic grapmposed of nodes linked
with transition arcs. The transition arcs are labelled whign elements of the vocabulary
of which the strings to be accepted consist. The networkltgyodefines the licensed
set of strings; loops permit strings of arbitrary length d@hds infinite sets of strings.
The FST differs from the FSA in that transitions are labelgth symbol pairs, one
symbol from an ‘input vocabulary’, one from an ‘output voalry’; the FST thereby not
only accepts strings of symbols from the input vocabulanydiso translates them into
strings of symbols from the output vocabulary, an operatiten used to model mapping
operations expressed by phonological and tonologicasr#8Ts are reversible; an FST
can thus be used not only as a ‘parser’ but also as a ‘generator
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longer:s

longer:s

shorter:w
shorter:llw

shorter:w

Figure 4: Strict ternary rhythm Figure 5: Naive and minimised general
acceptor. rhythm acceptors.

1) {s,sw,sws, swsw, ...w, WS, WSW, WSWS, ...}
@) Allsll lIswl], [[swlsl], [[sw]swl], ... [wl], [[w]s|], |[w]sw]], [[w|sw]s]], ...}
@) Allsll slwll, [Islws]], [|s|ws[w|], ...[[wl], [|ws]], [ws|wl], [[ws|ws]], ..}

The binary model is too strict: durations in real speech ddfeltow a sim-
ple long—short—long—short pattern; nor are they stridthgdrly organised. A
ternary model is shown in Figure 4, here the trochaic (altutgctylic) case.
Both binary and ternary cases (at least) must be caterethferis handled by
the union operation over FSTs, which combines the ternagainwith the bi-
nary model. Effectively, this just means adding the tramsg< B, w,C > and
< C, s, B > to the ternary model. But the real-speech situation regairaore
general automaton, which could be reduced to an equivaleglesstate de-
vice, as in Figure 5. Clearly this is not the end of the stouytHer constraints
on timing and structure are needed. The unreduced model&iprocontexts for
these: binary, ternary structures and their time behavieed to be modelled;
so—called ‘stress clash’ contexts need to be captured bpimgo abstract un-
derlying lexico—syntactic stress patterns, and (a morepbexrissue) hierarchi-
cal constraints for more complex models (cf. Campbell 19@2nmins 2002;
Wagner 2001). This is still an open issue, but the presentidgon will serve
as basic background for an evaluation of existing Linear &®af rhythmic
timing.

3.2 Global and Local Linear Models of Rhythm

The Linear Models of rhythmic temporal structure can besifesl as follows:
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1. Global Linear Models (GLM), i.e. variance—based modéfsegularity’
and ‘irregularity’ in sequences of unit durations, focagsbn isochrony,

2. Local Linear Models (LLM):

a) Oscillation and Entrainment Models: Cummins (2002), €land
Nieminen (1999), Barbosa (2002), Wachsmuth (2002),

b) Pairwise variability models: Low et al. (2000), GibbondaGut
(2001).

The reasons for the classification as ‘global’ and ‘local’dals will appear
in the discussion.

Formal analysis of recent approaches in the Oscillation Bnttainment
paradigm of rhythm modelling (cf. Barbosa 2002; Cummins2Z0¥achsmuth
2002) requires modification of the basic FST mechanism. Vioik progress
on this; the approaches will not be considered in detail feteept for a brief
account of structural aspects of the Cummins model in Sedtio

3.2.1 Global Linear Models of Rhythm

One class of linear rhythm models is global, in that the ladt@irnation property
of rhythm is ignored, and general ‘evenness’ propertiesvehts involving a
particular parameter are characterised by means of varimeasures.

The simple and precise method introduced by Roach (198Z3islzal Linear
Model: the sum of deviations from average foot duration i@d#id by total
utterance length, yielding normalised foot duration déora A similar measure
would be Standard Deviation of foot duration. The PFD is asueaof evenness
of duration, i.e. isochrony:

(4) Mean Foot Length (MFL¥ w
- S, IMFL — len(foot;)|
Percentage Foot Deviation (PFD) 100 x L NIFL

Roach interpreted his results as showing that PFD is agthagher in English
than in French, Telugu and Yoruba, i.e. in languages cladsifs syllable-timed
by Abercrombie (1967), which is contradictory to expeatasi (assuming that
the category ‘foot’ is somehow applicable to these langspd®hile the global
evenness or isochrony criterion for rhythm is modelled ira&us approach,
pattern alternation, and compositional iteration andarigry are not. Further,
any arbitrary re-sorting of the units (random, shortedbtmest, etc.) would
yield the same global index. The model is thus too uncomsrgiin that it only
defines one necessary condition for a Rhythm Periodicity@liasochrony, and
not the other necessary conditions.

A quantitative measure for ‘rhythmic irregularity’ is disssed by Scott et al.
(1986). This is an open-ended, normalised measure whictidalated pairwise
for all intervals! in a sequence, i.e. globally over the whole sequence:



Time Types and Time Trees 14

(5)  Rhythm Irregularity MeasureRI M) = 3;;

Iogl—;

The absolute value of the logarithm ensures that the carméotis found, inde-
pendently of the order of division. The more similar the diaras of units are,
the closer the value approaches 0. Like Roach (1982), Statt €986) deall
with the isochrony condition, but do not take pattern akion or composi-
tional iteration into account.

Studies by Ramus et al. (1999), Ramus (2002) use subsyilabiables to lo-
cate different languages in a typological timing spac#, percentage of V (vo-
calic intervals) relative to overall utterance lengf(;’, variance of consonantal
intervals, and\ V. Like the single variabl®FD and RI M measures, these two—
variable measures reflect preferences for certain photiwpadterns (CV, CVC,
vowel length), though as corpus tokens rather than lexypad. The model uses
a form of global evenness or isochrony criterion, and alsoligs pattern alter-
nation and compositional iteration: V stretches and C ctiext would still yield
the same results if randomly sorted. Th& measure reflects evenness of vowel
sequence lengths, lower values tending to isochrony; aitpithe AC measure
for consonants.

To summarise: the approaches of Roach (1982), Scott et386§1Ramus
et al. (1999) and Ramus (2002) are ‘complete’ in that theywrapevenness
of temporal structures, but are ‘unsound’ in that they omffer to isochrony
and capture many unwanted structures because of the nefifectl/non—focal
alternation and the directional iteration of alternations

3.2.2 Local Linear Models of Rhythm

The global evenness issue was addressed by Low et al. (2060)leveloped
a Pairwise Variability Index V' I) to take account of pattern alternation and
compositional iteration in rhythmic temporal structur@ePV [ is an averaged
distance measure for adjacent units (vowels, syllables); et
6) PVI=100x 2;}:11’ e ’ /(m

=1 | (dr+dr+1)/2
Differences between consecutive pairs of durations armalised by the aver-
age duration of the pair, and absolute values of the noretliéfferences are
averaged and multiplied by 100. Normalisation is intenadtetndle speech rate
variation in the utterance and between utterarideige the RIM the PV is

lower when the durations of vowels in adjacent syllablesandar. TheRI M is
open ended as irregularity increases, butfhiél ranges between the limits of O

4 Note that the comment by Wetzels (2002) that the-{ 1) component factors out final
lengthening is mistaken: a sequence of lengtsimply hasm — 1 differences between
neighbours.
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and 200% For example, in the artificial ‘ideal’ case of perfect isamhy thePV I
for the duration sequene€100,100,100,108 is O; in the artificial and impossi-
ble case of total non-isochrony, t#8/ 1 for <100,0,100,68 is 200. In a realistic
case, using Brazilian Portuguese syllables (not voweltes)§ a time—stamp se-
ries of length 8<0.084, 0.143, 0.357, 0.426, 0.588, 0.727, 0.889, 1:2¢élds
a duration (neighbouring time—stamp difference) seridsrofth 7<0.06, 0.21,
0.07,0.161, 0.139, 0.162, 0.3¥8which in turn yields a (roundedyV I of 67
(at the syllable level), corresponding to an average neighibg syllable dura-
tion ratio of 2:1 (i.e. moderately non—isochronous).

Avariantused in Gut et al. (2001), the Rhythm Rafitf{), reverses the scale,
uses division rather than subtraction, and has a maximun®0ffar perfect
isochrony, but otherwise has the same fundamental prepexsi the?V I

The PV I and RR models have three serious inherent empirical problems:

1. Contrastive vowel length is ignoredretty Sally tickled Timwith short
stressed vowels, may well behave very differently ftomg Davey danced
with Joan with long stressed vowels.

2. The pattern measured is vowel length differences, buebDéip83), Ra-
mus et al. (1999) stress the role played by variation in coastal dura-
tion; when Ramus (2002) compared his variance measure anflithl
for both C' andV, he discovered that plottingVI(C) x PVI(V) and
AC x AV yields similar results. Clearly, other units need to be @ered.

3. The PVI and RR models assume strictly binary rhythm, as inittle
John met Robin Hood and so the merrie men were BoBut while the
focal—nonfocal property of rhythm is always binary, the famal section
may be internally more complex, and th&” 7 and R R do not handle this.
Cf.

a) unary rhythms (effectively: stress—based syllablertgmwiith CV al-
ternation), as in This one big fat bear swam fast near Jane’s bat.

b) ternary dactylic and anapaestic rhythms (or rhythms weitien
higher cardinality), as inJonathan Appleby wandered around with
a tune on his lips and saw Jennifer Middleton playing a xyhomph
down on the market-place.

® Case 1: The units in each pair have equal length. In this taselifference between

adjacent units is 0, the normalised difference is 0, theaeemultiplied by 100 is 0. This
is the lower limit. Case 2: The units in each pair have verfed#nt length, with the length
of one approaching zero to all intents and purposes, andttie being much longer.
Then the difference will be approximately the same as thataur of the longer unit and
the average duration will be approximately half this, sorthemalised difference will be
approximately 2 and the average multiplied by 100 asymgstyi approaches 200.

6 Data and annotations (speaker MC) due to Flaviane Fernadd@ampinas, Brazil.
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Worse, thePV I and RR models have two serious inherent formal problems.
The distance measureusdirected like the global measures, and does not dis-
tinguish between the ‘greater than’ and ‘less than’ ordgyineeded by the pat-
tern alternation condition? F' D uses absolute differencds/ M uses the abso-
lute log value of ratiosPV I uses the absolute value of differences, andrlie
uses an explicit condition to merge the two relations. Thenfd consequence
is that for an utterance containimgunits, thePV I function generates b3/ —!
combinations of increasing and decreasing duration oglatPV I is therefore
massively ambiguous. For example, for utterances of leBdtle. 2 durations),
the PV I function generates the same index28r= 4 patterns:

(7)  pvi(2,4,2) = pvi(4,2,4) = pvi(2,4,8) = pvi(8,4,2) = 66.6667

The Local Linear models are thus effectively just as uncairgtd as the Global
Linear Models. Though formally ‘complete’ in that they h#mdll the required
patterns, the Linear Models discussed here are ‘unsourttiainthey produce
spurious identical values for exponentially many alteéngand non—alternating
patterns. As with the Global Linear Models, the ‘isochrogiand of the scale
is meaningful, and the further away the indices get fromtisony, the less is
known about what ‘non—-isochrony’ means. The use of an uatdicedistance
measure means, despite the original intention, that ismghis addressed, but
not pattern alternation.

When Ramus (2002) compared plots¥f' x AV PVI(C)x PVI(V), very
similar results for a range of very different languages apge. This apparently
provides mutual confirmation for consistency in both apphes. With hind-
sight the similarity is not too surprising: Ramus data argieically controlled
for speech rate, whereas tid’ I model normalises locally for speech rate. The
models are also conceptually similar: the variance modeltates (by defini-
tion) sums of squared duration differences from global tiomaneans, while the
PVI model calculates sums of local duration differences divi(teormalised)
by the local duration mean.

Summarising: Both Global Linear Models and Local Linear Misdfail as
models of rhythm, though they are valid as models of isochréhe Local Lin-
ear Models additionally use the iteration property of rimyttthough they fail
formally on the alternation property and basically reflémbpotactic structures;
cf. also Cummins (2002).

Nevertheless, all of these results show that there are ftnable computa-
tional measures which can be used to provide partial modéilsear rhythmic
temporal organisation in the Absolute Time domain. The Lagazear Models
add a distance measure which normalises utterance—ihtgreach rate vari-
ation; on the other hand, speech rate variation is in itselinteresting factor
in temporal analysis, in that it underlies fast speech phtyfistic phenomena
which affect rhythm, as well as individual differences.
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4 Higher Order Temporal Patterning

Non—phonetic approaches to rhythmic temporal organisggad to be hier-
archical, with the hierarchies derived directly or indtlgdrom grammatical
structures. A large number of approaches to prosody in Thhegis also use
explicit or implicit hierarchical models (cf. for exampla@pbell 1992; Wagner
2001). In Cummins (2002) a number of additional factors imed in the pro-
duction of rhythm in different styles are discussed, ragdiom a paradigm of
synchronous speaking designed to elicit maximally rhythatierances, to less
constrained styles. He addresses both hierarchical aedrliiactors, and pro-
poses a model for the more constrained styles with binanatdhical structure,
i.e. groupings of two-word feet, higher level groupings wbtfeet with four
words, and so on.

The hierarchical approaches derive ultimately from theirgige approach to
abstract stress hierarchy definition with the Nuclear StRade (VSR) in Gen-
erative Phonology (cf. Chomsky and Halle 1968). From the ét& Bierwisch
1966) the problem of arbitrary recursive depth was addoess®d ‘flattening’
measures were introduced in the form of readjustment ragfle€licover and
Rochemont 1983). Metrical Phonology (cf. Liberman and &&ith977; Selkirk
1984), one of the offspring of Generative Phonology, intrcetl a flattening
componentin the form of an iterative, alternating lineaefijlthe ‘metrical grid’,
to readjust non—rhythmical ‘stress clashes’ in some cast@f. thirTEEN but
THIRteen MEN. The metrical grid is closely related to the FST modelsontr
duced earlier, and explicates Relative Time pattern atén and compositional
iteration rhythm constraints, but not the isochrony caisty which would re-
quire a Time Map into Absolute Time.

The N SR recursively defines a hierarchical iambic temporal stmegta sim-
ilar rule for English nominal compounds defines a trochaigcttire. The idea
underlyingN S R recursion is that there is an alternation or relative pramae
relation between focal and non—focal constituents of a dioifthe N.SR says
nothing about empirical correlates such as duration ohpifthe relative promi-
nence relation holds recursively and compositionally Heskls of a hierarchy
and is used to interpret syntactic structures and assiggsStvalues to words.
The NSR will be discussed in some detail (despite its controvestatiis) be-
cause in Section 5 a generalised invelsgR function will be used as the core
of the induction algorithm.

It is the general recursive rather than simply iterativéh@i right or left re-
cursive) compositionality property of th€ SR function which distinguishes it
from Local Linear Models: “the form of a complex expressismetermined by
a fixed set of processes that take account of the form of its'p@homsky and
Halle, 1968, 20). The same principle underlies compositisemantic interpre-
tation, in which ‘the meaning of the whole is a function of theanings of the
parts’, (noted explicitly in Footnote 7 on the same pagenil@rly, then, the
pronunciation of the whole is a function of the pronunciasiof the parts’.
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Several equivalent formulations of tihéS R have been proposed in the liter-
ature. A number are outlined here in order to make the poatt'there is more
than one way to do it’, the important issue being the undegyormal property
of general recursion; the detail of the algorithm is purpaspendent.

The NSR as introduced by Chomsky and Halle (1968) is usually deedrib
in the following operational terms:

Generate a sentence as a string of words with a structuratipiésn in the form of
a (labelled) bracketing, and assign the lexical stressevalo each word.
Iterate, for all sequences with no intervening bracket| alhbrackets have beer-

moved: Add 1 to all except final existing stress values inimmast bracket domains,
and remove innermost brackets.

A tree—based formulation was given by Liberman and Prin8&T}, briefly:

Generate a sentence as a string of words with a structurediplésn in the form of a
(labelled) bracketing. Label the root with ‘r' and assighttseach rightmost branch
in the tree corresponding to the bracketing, and ‘w’ to al ¢ithers.

Then, for each path in the tree from leaf to root:

Beginning with the first non-‘s’, count the number of nodesnirthis node to
the root (including this node) and assign these numbersetéetives as their
stress values.

From a formal point of view it is simpler to define tHé SR as a recursive
function which maps tree—structures and initial numereaflies into a sequence
of pairs of ‘stress’ integers and leaves of the tfee:

(8) NSR: structure, nonfinalvalue, finalvalue — stresspattern
Definition: If structure is a leaflatom, then paistructure with finalvalue.
If structure is a sub-tree, re—adjoin the left branchsofucture after recur-
sively applyingN S R with higher values to it with the right branch efructure
after recursively applyingVSR with higher non finalvalue and the same
finalvalue to it.

An incremental algorithm for strings representing welkafied bracketings (the
original NS R definition was formulated in similar terms) is also possilblat
something of a curiosit§:

" For computational linguists, a proof—of—concept tramstainto Scheme:

(define (nsrtnm)
(if (symbol? t)

(cons tm)
(list (nsr (car t) (+ n 1) (+ n 1)) (nsr (cdr t) (+ n 1) m))))

e.g.(nsr’'((caring . kate) . (phoned . (darling . dave))) 1viiglds the hierarchical ‘stress pattern’
(((caring . 3)(kate . 2))((phoned . 3)((darling . 4)(dave)))}, i.e. 2Caring 2Kate 3 phoned*darling
IDave
8 This sketch can be implemented directly in Perl, awk, etod, the curious reader is
invited to do so as an exercise. The input “( ( big john ) ( sawtry little ) ( mary smith
)) ) )" generates “3big 2john 3saw 5very 4little 5mary 1srith
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Initialise depth counter to 1, word store to empty, last tituent flag to "off”, iterate
through the symbols in the string left—to—right:

if current symbol is a left bracket, the last constituent ffegpet, and a word is stored,
then print the depth counter and the word.

if current symbol is a left bracket, then increment the degtiinter and turn off the
last constituent flag.

if the current symbol is a right bracket, then decrement #yetid counter and turn
on the last constituent flag.

if current symbol is a word, and a word is stored, then prietdepth counter and
the word, reset the word store.

if the current symbol is a word, then store it.

All these NSR algorithms are equivalent; it does not really matter which
one is used to map tree—structures to numerical valuese &imtapping of this
kind is often seen as one of the tasks to be solved in TTS syistheis not
surprising that the basiy S R idea (in some iambic or trochaic parametrisation)
has frequently been used in the TTS application domain.

There is an empirical problem with th&¥ SR, however. As noted above,
the naive assumption of direct interpretation of gramnastructures does not
work: grammatical hierarchies are not only different froat blso deeper and
more complex than temporal organisation hierarchies,s@tban be no simple
alignment procedure for deeply embedded phrase structNesertheless, this
does not detract from the validity of the basic insight of pasitional phonetic
interpretation (often referred to by the term ‘cyclic’), iwh remains attractive,
particularly for the flatter structures of informal speech.

The hierarchicalV SR type approach in Metrical Phonology is criticised in
the context of TTS synthesis by Wagner (2001). Wagner doeejett the linear
alternation and iteration criteria provided by the meftrgrad filter component,
however, and uses FSTs with local cycles to formalise linggtrical grid filters
(cf. Section 3). She retains the idea that grammatical paftspeech are useful
predictors for alignments with rhythmic timing and demoats that better re-
sults for synthesis of German speech are given by a lineaehiaded on five
part—of—speech (POS) sets with different intrinsic stvesights:

Nouns, Numerals, Proper Names;

Adverbs, Adjectives;

Verbs, Demonstrative Pronouns, WH-Pronouns;

Modal & Auxiliary Verbs, Affirmative & Negation Particles
Determiners, Conjunctions, Subjunctions, Preposition

gk wbdpE

It must be pointed out, however, that the POS weights comstaimg assump-
tions about syntax hierarchies. For example, in German iaithglish), many
‘weaker’ parts of speech alternate with stronger items amesyic grounds
alone, often preceding stronger items in a given constinciihis induces shal-
low hierarchies and provides likely candidates for degviambic rhythms. In
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the study of tree induction which follows in Section 5, a $amirelation be-
tween function words and non—function words appears intieded hierarchy,
confirming that this kind of relation yields iambic timingwsttures.

The recursive compositionality property of théSR function invites the
guestion whether there might be an inverse funct’és,R—!, which would per-
mit the (re-)construction of a tree from a sequence of nwakvialues. In fact
it is possible to prove formally that there is indeed an isedunction; the proof
will be presented elsewhere. An algorithm based on a gésatiah of VSR~!
is used in the induction procedure presented in Section 5.

5 Tree Induction, Alignment and Comparison

The following sections are concerned with a data—driven@ggh to the mod-
elling of pattern alternation in hierarchical timing paite. The approach does
not yet constitute a complete Rhythm Periodicity Model,chese compositional
hierarchy is modelled at the expense of compositionaltitataand isochrony
is not yet incorporated. The term ‘induction’ is used herthimsense in which it
is used in Machine Learning (ML; cf. recent linguistic applions by Sporleder
2004) and in data—mining. For linguistic purposes it is ubtef make a distinc-
tion between paradigmatic and syntagmatic induction (ghdaoth are based on
generalisation and data compression techniques). Pamatiginduction, as in
decision tree induction, or classfication and regressem(C ART) construction,
generalises over sets of units which have shared propeByesagmatic induc-
tion is the compositional induction of part—-whole genesations over sequences
of units, as in automaton induction or grammar learningh&ngresent computa-
tional phonetic context of th&7'/-7'S 1 induction and alignment methodology,
‘induction’ refers specifically to the syntagmatic hietaiaal grouping of units
according to empirical dependency and constituency @itand ‘alignment’
refers to the identification of phonetic events in speechaigecordings by as-
signing time—stamps to units (phones, syllables, wordg &tdranscriptions;
‘comparison’ refers to a distance measure for trees withtidal leaf sequences.

The tree-building procedure in the present study can alsatbgpreted as
a kind of parsing procedure, in which the numerigedaterthan orless than
relations define ‘categories’, and the trochaic and iamiienngs define ‘rules’
in a ‘grammar’. Parse trees are constructed with this granusiag top—down
or bottom—up parsing schedules: the procedure parses timation sequence
into Time Trees which are locally normalised for speech (atein the Local
Linear Models), and generates alternating and hierarktiiggng structures.

The induction procedure is demonstrated here using word-anotations;
it can be also used with temporally annotated data from amgrdaime domain
and other types of numerically labelled data, for instandevestigate interfaces
between prosody and lexical, grammatical and discourgerpat
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5.1 The Induction, Parsing and Comparison Procedures

The Local Linear Models examined in Section 3 representnessgbeyond the
Global Linear Models in that they incorporate local speeatle normalisation
and (at least in intention) an alternation component. Th#éyh the alternation
property of rhythmic temporal organisation, however, luseathey use a non—
directional distance measure which ignores the differdreteeergreater than
andless thamumerical relations. In the present approach, based onttith R
Periodicity Model, the directionality ajreater thanandless tharis utilised in
the tree—building procedure in order to distinguish betweierarchical levels
in building time trees, i.e. syntagmatic tree structuresrdime-annotated se-
quences with pattern alternation; compositional iteratiad isochrony criteria
are not yet incorporated.

PARSER

tree induction treebank
algorithm i

tree similarity
algorith

Tree Similarity Index

Figure 6:7TI-T ST tree induction, alignment and comparison architecture.

The Time Trees are compared with tree structures over the saings from
other domains, in the present case hierarchical gramnhaticecture. For this
purpose, only unlabelled tree graphs are used; future dewednts will need
to take the categories of the nodes into account. The proegdith two tree
analysis components and a comparison component, is as/foflf. Figure 6;
see also Gibbon 2003a,b):

1. Time Tree Induction{T'T) from long-short local duration differences in
annotated speech signal data,

2. Parsing of the annotated transcriptions into syntasfree

3. Calculation of a distance/proximity measure yieldingra€rl Similarity
Index (I'SI) between the Time Trees and grammatical trees.
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5.2 Time Tree Induction(7'])

The data used in this procedure are from a narrative read IBnglish native
speaker and hand—annotated at word level. The annotataiiore have the fol-
lowing structure (in esps/waves+ format: time—stamps éléffit—hand column
refer to ends of words; the centre number is irrelevant fesent purposes):

(9) 42.799104 123
42.896017 123 there
42.977461 123 is
43. 170525 123 not hi ng
43. 336955 123
43.506263 123 can
43.730879 123 do

The tree—building algorithfrused here is essentially a deterministic bottom-up
(shift-reduce) parser with a shift vs. reduce criterionivaa from comparing
neighbouring duration pairs At;, At;y; >, like the PVl and RR algorithms
but without the absolute values of duration differenced,&so comparing val-
ues assigned to sub—trees. Various parametrisations aldgbethm are possi-
ble: greater/equal/s.less greatervs.less/equalor their association with condi-
tions may be reversed, or aqualitycondition may be introduced, to cover non-
binary structures. Formally, tHET I algorithm is a generalisation 6f SR,

the inverse of théV.S R function, where differences are not restricted to integer
increments; the generalisation enables the algorithmrndleaarbitrary numeri-
cal duration values. Givengreater/equal/s. lessparametrisation, either of two

® For computational linguists, a proof—of—concept Schenm@émentation:

(define (induce t stack)
(cond
((null? t) (reduce stack))
((null? (cdr t)) (reduce (cons (car t) stack)))
((<= (caar t) (caadr t))
(reduce (induce (cdr t) (cons (car t) stack))))

((if (not (null?stack)) (j= (caar t) (caar stack)))
(induce (cons (car stack) t) (cdr stack)))

((> (caar t) (caadr t))
(induce (cons (list (caadr t) (car t) (cadr t)) (cddr t)) &)ap
(define(reduce stack)
(cond
((null? stack) stack)
((and (not (null? stack)) (null? (cdr stack))) stack)

(#t (cond
((> (caar stack) (caadr stack))

(reduce (cons (list (caadr stack) (cadr stack) (car stdcHpr stack))))
((<= (caar stack) (caadr stack))

(reduce (cons (list (caar stack) (cadr stack) (car stackidr(stack))))))))
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conditions may arise:

1. A greater/equatelation is found: a subtree is created with these two du-
rations, and the duration of the longest unit (or shortespethding on the
parametrisation) percolates up to the root of the new selstsea basis for
recursive hierarchy construction by comparison with otteghbours.

2. Alessrelation is found: subtrees are constructed from followdngation
pairs in the sequence, and adjoined later.

Each time a new subtree is created, the duration label ofoihgelst daughter
percolates up to the top of this subtree, so ‘neighbour’ nedgrreither to a

neighbouring leaf, or to a neighbouring subtree which hesadly been parsed.
Duration percolation is used recursively to build largdstseies until the entire
sequence has been mapped into a tree; the longest duratf@sequence will

label the root of the tre®

Figure 7:TTI tree over word durations in a complete narrative, illustigatli-
visions into constituents (e.g. the small leftmost maimibharepre-
sents the title, others represent other episodes in thativay. The
largest constituents are determined mainly by pause dasatind fi-
nal lengthening.

Figure 7 shows a tree induced from the whole narrative. Thatiuns of
the smallest units (words) are projected into a tree sparthimentire narrative.
Text structure is heterogeneous; the tree is correspolydimgjsy’. But visual
inspection also shows a number of interesting relationls digcourse structure:
for instance, the small leftmost subtree corresponds téitteeof the narrative;
other larger subtrees correspond to episodes in the stodyaee largely de-
termined by the length of pauses between these episodeseRgzooms into
the tree, showing a syntax-timing corresponderrzz (denotes a pause) and
bottom-up duration percolation (cf. the value .043) in amb& parametrisa-
tion. An example of the output format of the algorithm is:

10 John Wells has conjectured that the overall duration of &ierpight be used instead.
This is worth investigating, but the duration of a deep seimay then not be directly
comparable with the durations of shallower neighbouringraes or leaves.



Time Types and Time Trees 24

.043

.078 . . . .152
nd . . . . 162\ .342
7.86117.939 .

Figure 8: Zoom into a tree labelled with leaf strings and tarevalues, gener-
ated by an iambic parametrisation of the&'I algorithm (longer items
right, shorter values promoted).

(10) (.o81
(.081 (.081 "is:42.977") (.193 "not hi ng: 43.171"))
(.166
(.166 "1:43.337")
(.169
(.169 (.169 "can: 43.506") (.225 "do: 43.731"))
(.219 "ZZZ:43.950"))) ... )

The numerical labels following the left parentheses shovatins; those fol-
lowing the colons are annotation time-stamps. The bracfétustrates numer-
ical value percolation from leaf to root, in this case witloqmotion of the short-
est duration: the root value 0.081 is promoted from the vafike leaf 'is’, here
yielding an iambic pattern.

5.3 Parsing and Grammar—Prosody Correlation

The information required for determining the predictivéueaof grammatical

information for timing, and vice versa, is purely struciuveith no grammatical

tags. In the long term, a treebank creation procedure isinedjéor this pur-

pose, but as an interim measure, and also in order to avdidgfahto the trap

of fashionable theoretical prejudice in automatic parsinfpubjective parsing’
procedure was developed: unlabelled syntax trees weréneltay dividing a

narrative into consecutive sentences, and requestindimguistics graduates to
group expressions by bracketing them. A typical subjegiMese result (not too
different from conventional parsing wisdom) is the follogi with top—down

N SR ‘stress pattern’ generated by the bracketed string alyurit
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(11) ((thereis (nothing I (can do))((said (the frog)) angbped away)))
3there 3is 4nothing 41 5can 3do 5said 6the 4frog 4and 4hopaedy

No attempt was made to ensure uniformity or theoretical isterscy of brack-
eting. Some formally improper bracketings resulted, whighe normalised by
adding additional brackets left or right of the bracketeatsace. A total of 120
subjective parses were elicited.

The induced time—trees and the syntax trees were compateahatically
with a distance/proximity measure, yielding a Tree Sinityaindex (1'S1):

_ |SUBSTR(Ty)NSUBSTR(T%)|
(12) TSI = (|SUBSTR(T1)|1+\SUBSTR(T22)\)/2

Each leaf in each tree is uniquely labelled (skolemiseddreethe algorithm is ap-
plied, non-branching nodes are pruned, and for eachZrethe set of substrings
spanned by nodes in the tréé&/ BST R(T;) is collected.

The two substring sets are intersected and the cardinafitthe intersection
|[SUBSTR(T1) N SUBSTR(T>)| is normalised in relation to the total number
of nodes, in this case by calculating the mean of the nodetsaiithe two trees:

The results of the study are visualised in Figure 9. The thadid line shows
correspondence between timing trees and unparsed (URNnsest the higher
thin line shows meafi’SI for the iambic condition, the lower thin line shows
mean?'SI for the trochaic condition. Both the iambic (0.85) and theckraic
(0.89) results correlate well with the unparsed sequenwhably due to the
shallow bracketing and dependence on constituent lenitiishe absolute in-
dex levels differ considerably. Averaged over all subjentsl sentences, the

1 For computational linguists, a proof—of-concept Schenm@émentation:
(define (treecomp t1 t2 n)
(if (pair? t1)
(if (pair? (car t1))
(begin
(treecomp-1 (leaves (car t1)) t2 (+ 1 n))

(treecomp (car t1) t2 (+ 1 n))
(treecomp (cdr t1) t2 n))

(treecomp (cdr t1) t2 n))))
(define (treecomp-1 Il t2 n)
(if (pair? t2)
(if (pair? (car t2))
(begin
(if (equal? Il (leaves (car t2)))
(set! *count-sim* (+ 1 *count-sim*)))

(treecomp-1 Il (car t2) (+ 1 n))
(treecomp-1 Il (cdr t2) n))

(treecomp-1 Il (cdr t2) n))))

(define (leaves t)
(if (pair? t)
(append (leaves (car t)) (leaves (cdr t)))
(if (null? t) t (list t))))
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iambic condition yields a meaf'SI of 0.47, the trochaic condition yields a
meanT' ST of 0.2, while the unparsed condition yields a m&as\/ of 0.19. The
trochaic and unparsed conditions are practically indigtishable. Syntax and
TTI trees are thus interpreted as more similar under the i@odndition than
under the trochaic condition (the proof—of—concept oatah of the pilot study
and the number of samples involved did not justify furthatistical evaluation).

Syntax—Timing Tree Correspondences
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Figure 9: Syntax—timing tree correspondences in readdabaurative (X: syn-
tax/ TTl tree pairs, YI'SI).

Table 1: Summary of main results.

mean UP-correlation| mean'S7
parsed + iambic: 0.85 0.47
parsed + trochaic: 0.89 0.2
unparsed + iambic: 0.19
unparsed + trochaic: 0.19

The results in Figure 9 and Table 1 show a preference for amtstween
grammatical structures and iambic groups, with short-lorgstituent pairs. Ex-
amination of the sentences indicates that the measuredae®substantive and
relevant information: the iambic pattern corresponds éotytpical ‘short—long’
relation between function (closed class) words, which tertak unstressed and
short, and lexical or content (open class) words, which tertok stressed and
long. The potential which this comparison algorithm holoisthe examination
of discourse hierarchies (cf. Figure 7) has not yet beeroéepl.

6 Conclusion: Toward an Integrated Timing Model

Concepts of time and temporal organisation in phoneticsaighbouring disci-
plines were examined from a computational phonetic peta@eavith the aim
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of developing distributional data—driven hierarchicabgwdic analyses. Possi-
ble ‘cognitively real’ dimensions of these analyses in tewhspeech produc-
tion and perception were not investigated; at a later sthgedistributional and
correlationist methodology could perhaps be supplied wittognitively rele-
vant interpretation. Consequently, the methodology hidwergositivistic traits.
A purely positivistic account of timing structures may oryneot be possible;
it seems unlikely, so the present distributional methogghill need to be en-
hanced with information from other sources in order to eeatore differenti-
ated picture of emergent timing patterns, promising a giftmergent Rhythm
Theory; cf. Gibbon and Fernandes (2005). Such sources arpler grammat-
ical structures, discourse patterns, timing and alignriredialogue interaction,
cognitive expectations and neurological timing mechasjswith Time Trees
for each of these data streams.

The computational phoneti€T /-7'ST methodology seems to be a suitable
starting point for such enterprises in integrating alténtp iterating and hier-
archical timing patterns, however. First results appeangible, for instance in
identifying the iambic,/V.S R—type prosodic structures associated with a cer-
tain kind of right-heavy syntactic structure: automatiduntion and align-
ment of Time Trees produces a result which harmonises withulstic ex-
pectations. Much remains to be done to develop EmergentiRhyheory, of
which the Rhythm Periodicity Model will be a part, includiggneralisation
to other speech genres and languages, deeper bracketimgpting of cate-
gories, normalisation for sentence length effects, imtgtion of the tree struc-
tures in terms of ‘eurhythmic’ criteria, incorporating cpasitional iteration and
isochrony, methodological improvements concerning the ef the subject set,
the use of treebanks, statistical treatment with more @ata the use of differ-
ent empirical paradigms such as the investigation of rhythynby means of
perception experiments.

The computational phoneti€7'[-1'SI methodology is thus still in its in-
fancy, and very much a basic research activity. Nevertbelas the basis of
the Rhythm Periodicity Model, computational phoneticsdsgbromise for the
deployment of prosodic data mining strategies which wilphte exploit the
enormous quantities of annotated speech resources whiehtde®en amassed
in many language resource projects all over the world. Rialefrelds of appli-
cation of this distributional analysis and alignment melitlogy in descriptive
linguistics and phonetics include the investigation ofgmdic patterns in exist-
ing temporal annotations of endangered and extinct larggi§oarticularly in
the latter case, in the permanent absence of native spgaRetsntial fields of
application in speech technology are many; perhaps the aisbus area of
application is prosodic pattern learning for TTS synthesis
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