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Abstract
Empirical study of the syntax-prosody relation is hampered
by the fact that current prosodic models are essentially linear,
while syntactic structure is hierarchical. The present contribu-
tion describes a syntax-prosody comparison heuristic based on
two new algorithms: Time Tree Induction, TTI, for building a
prosodic treebank from time-annotated speech data, and Tree
Similarity Indexing, TSI) for comparing syntactic trees with
the prosodic trees. Two parametrisations of the TTI algorithm,
for different tree branching conditions, are applied to sentences
taken from a read-aloud narrative, and compared with parses of
the same sentences, using the TSI. In addition, null-hypotheses
in the form of flat bracketing of the sentences are compared.
A preference for iambic (heavy rightmost branch) grouping is
found. The resulting quantitative evidence for syntax-prosody
relations has applications in speech genre characterisation and
in duration models for speech synthesis.

1. Hierarchical syntax, linear prosody?
The objective of this contribution is to provide a well-defined al-
gorithmic approach to extracting complex prosodic information
from speech corpora.1

Current empirical models of speech timing are based on a
variety of algorithms, from single indices for timing patterns
[1, 2] in psycholinguistics and phonetics to, in the speech syn-
thesis domain, sum-of-products, CART and Bayesian classifi-
cation approaches [3, 4], including models which use grammat-
ical information. Campbell [5] has a model based on a strictly
layered hierarchy, but in general duration models are linear, and
hold for flat strings of words or syntactic categories. When syn-
tagmatic grammatical information is used as a predictor for hi-
erarchical structuring, in general the information used is also
linear, based on strings of paradigmatic part-of-speech (POS)
classes (grammatical categories) which provide weight factors
for duration models. Wagner [6] uses a linear model for German
speech synthesis based on five weighted POS sets. Grammatical
categories imply at least local “hidden hierarchies”, of course.
Rarely, explicit hierarchical approaches have been used [7], and
detailed approaches to the partially hierarchical description of
timing are once more becoming available [8], [9, 10, 11];

But there is currently no technique available for data-driven
investigation of more complex hierarchical duration models for
syntagmatic prosodic relations, and the issue is not addressed in
recent authoritative literature [12]. Classification methods need
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Gut, Katrin Johanning, Sara Johannsen, Josef Raab, Alexandra Thies,
Thorsten Trippel for contributing data. The software developed for this
work is in the public domain (GPL).

to include complex hierarchical timing information in addition
to other to other phonetic and lexical properties of speech units.
Further, it is a well-known phonostylistic effect that speech tim-
ing relations vary in highly complex ways depending on speech
genre, including so-called fast speech phenomena [13]. Finally,
other discourse factors such as focus and emotion are thought
to affecting prosody, and thereby reducing the determining role
of phrasal syntax, though these effects are currently not well
understood (but see [14]).

2. Linear timing measures
One set of approaches to investigating syntagmatic properties
of timing is found in phonetic analyses of isochrony in syllable
and foot timing.

In [15], tone unit duration is divided by the number of feet
in the tone unit, yielding average or “ideal” isochronous foot
duration, and normalised deviation from mean foot length is
measured. Neither hierarchy nor linear alternation of timing
units figure in the approach, which may be said to use a Global
Evenness (GE) criterion as a measure of the isochrony property,
rather than the alternation property. Any arbitrary re-sorting
of the relevant segments in an utterance (random, shortest-to-
longest, etc.) would yield the same index. Timing fulfils the
GE criterion, in some sense, but it has other properties too, so
while the GE criterion for timing is a necessary criterion for
isochrony it is (going beyond Roach’s stated goals, of course)
not a sufficient criterion for an adequate timing model.

Ramus, Nespor & Mehler [2] locate different languages in a
timing space with the following parameters:

���
, percentage of

vocalic intervals relative to overall utterance length; ��� , vari-
ance of consonantal intervals; � �

, variance of vocalic inter-
vals. The model also uses a variety of GE criterion: V stretches
and C stretches would still yield the same results if randomly
sorted (by length, longer consonant sequences first, etc.). Sim-
ilar considerations apply to the � �

measure, which reflects
evenness of vowel sequence lengths, lower values tending to
isochrony, and to the ��� measure. The model does not have
hierarchical and alternating timing components and is thus is
incomplete as a model of rhythm timing, though it is claimed
to be a model of rhythm. Cummins has pointed out [9] that the
model makes a statement about the evenness of the phonotactics
of the language, rather than timing. The model possibly reflects
necessary conditions on timing, but falls short of providing a
sufficient condition.

Low, Grabe & Nolan [1] addressed the GE issue
and developed the Pairwise Variability Index (PVI) in
order to take iterative alternation into account. The
PVI measures normalised differences between the du-
rations of adjacent units (vowels, syllables, etc.):

PVI = ���	��
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���
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The model yields a minimal value of 0 (perfect isochrony),
asymptotically approaching 200 for larger length differences.
the variant used in [16] reverses the scale, and has a maximum
of 100 for perfect isochrony.

The model has an empirical problem: PVI assumes strictly
binary alternation. Hence, alternations as in “Little John met
Robin Hood and so the merrie men were born.” are adequately
modelled, but not unary rhythm (syllable timing) as in “This one
big fat bear swam fast near Jane’s boat.” or ternary dactylic
and anapaestic rhythms (or those with even higher cardinality)
as in “Jonathan Appleby wandered around with a tune on his
lips and saw Jenni fer Middleton playing a xylophone down on
the market-place.”

The model has worse a formal problem: the PVI is ambigu-
ous and yields the same value for sets of alternating patterns,
for monotonic geometrical series, and for mixtures of these,
as shown by the following alternating and exponential series:� ��� )������	�
�����	�
����� /� � ��� )����������	� ��� ������� � � / . A series of
length � yields ��� patterns with identical PVI, obviously not
the required result. So the model presupposes alternating input,
and since this will not generally be the case it is not at all clear
what the PVI is actually an index of.

3. Procedure
The empirical approaches examined in Section 2 are linear: the
timing relations defined in the formulae are either global, and
hold for arbitrary linear re-orderings, or local, and do not take
global structures into account. One way of taking both types of
property into account is to assume that timing is hierarchically
structured, and to induce syntagmatic tree structures over the
time-annotated sequence.
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Figure 1: Corpus-based tree induction and comparison archi-
tecture.)

Hierarchical timing patterns would already be a useful
source of information, but the timing trees still need to be re-
lated to other levels of description, in particular to hierarchi-
cal grammatical structure, in order to provide both useful and
theoretically significant information about language processing.
The kind of grammatical information required is of two kinds:
first, purely structural, i.e. the hierarchy proper, represented by
an unlabelled tree graph or bracketing; second, categorial, i.e.
labels on the nodes or edges of the tree graph or in the brack-
eting, or an attribute-value structure. At the present stage, only
the first goal, induction of unlabelled tree graphs, is pursued.

Timing, including the rhythmic factor, is a complex func-
tion of hierarchical and linear structuring, as already noted, and
is combined here with local alternation criteria and with gram-
matical predictors for timing trees:

1. Timing Tree Induction (TTI) from long-short local dura-
tion differences in annotated speech signal data,

2. calculation of a Tree Similarity Index (TSI) between the
resulting timing trees and grammatical trees.

4. Parsing
The evaluation strategy for determining the predictive value of
grammatical information is purely hierarchical, and does not
use named categories, unlike Wagner [6]. In order to avoid
the twin traps of theoretical and personal prejudice in automatic
parsing, the unlabelled syntax trees were obtained by dividing a
narrative into a set of 20 consecutive sentences, and requesting
six linguistically literate subjects to group expressions in the
sentences by bracketing them (subjective parsing). A typical
parse result is the following:

( ( there is
( nothing I

( can do ) ) )
( ( said

( the frog ) )
and hopped away ) )

Deliberately, no attempt was made to ensure uniformity or
theoretical consistency of bracketing. Some formally improper
bracketings resulted, which were normalised by adding addi-
tional brackets left or right of the entire bracketed sentence. A
total of 120 bracketings were elicited.

In large scale application, the unlabelled bracketed are
taken from automatically constructed treebanks; however,
cross-checking with the subjective parsing method seems de-
sirable in order to have at least some operational criterion for
naturalness during the development stage.

5. Time tree induction (TTI)
Timing trees, also as unlabelled bracketings, were extracted
from readings of these sentences by a different subject, and
hand-annotated at word level. The handmade annotations have
tabular structure (in this case in esps/waves+ format):

42.799104 123
42.896017 123 there
42.977461 123 is
43.170525 123 nothing
43.336955 123 I
43.506263 123 can
43.730879 123 do
43.950073 123
44.116510 123 said
44.187593 123 the
44.534352 123 frog
44.976206 123
45.051352 123 and
45.286240 123 hopped
45.549465 123 away
46.708926 123

The TTI algorithm compares the durations of neighbour-
ing items (in the present case, words), and groups sequences
of monotonically increasing (or, in another variant, decreasing)
durations together into a (not necessarily binary) local tree (rep-
resented by a branching node in a tree graph), and the first



(in another variant, the last) value percolates up to become
the node’s durational value. This value is used recursively to
build larger trees until the entire sequence has been mapped
into a tree. Formally, the TTI algorithm is a modification of
the inverse of the Nuclear Stress Rule of Generative Phonology,
though it handles real timing values, not abstract stress num-
bers. The algorithm will be described in detail elsewhere. Four
variants of the algorithm exist, of which two are used in this
study: TTI-A, grouping short-long, left-hand (short) value per-
colates up, TTI-B, grouping long-short, right-hand (long) value
percolates up. In this study, A and B conditions were used; the
implementation will be described elsewhere. The output of the
TTI-A algorithm for the annotation file is:

(.071
(.081
(.097 "there:42.896")
(.081 (.081 (.081 "is:42.977")

(.193 "nothing:43.171"))
(.166 (.166 "I:43.337")

(.169 (.169 "can:43.506")
(.225 "do:43.731")))

(.166 "said:44.117")))
(.071
(.071 (.071 "the:44.188")

(.347 "frog:44.534"))
(.075 (.075 "and:45.051")

(.235 (.235 "hopped:45.286")
(.263 "away:45.549")))))

The numerical labels following the left parentheses show
durations; those following the colons are annotation time-
stamps. The bracketting illustrates numerical value percolation
from the leaves to the root. The temporal labels output are fil-
tered out of the tree before passing it to the TSI algorithm:

(
(
( there )
( ( ( is ) ( nothing ))
( ( I ) ( ( can ) ( do )))

( said )))
(
( ( the ) ( frog ))
( ( and )
( ( hopped ) ( away )))))

)

Figure 2: TTI tree over word durations in a narrative.

Figure 2 shows a tree induced from the whole narrative.
The durations of the smallest units (words) are projected into a
tree spanning the entire narrative. Figure 3 zooms into the tree,
showing a syntax-timing correspondence (ZZZ denotes a pause)
and bottom-up duration percolation (cf. the value .043).

sad
21.063

.342

very
20.722

.152

.152

was
20.569

.059

.059

mouse
20.511

.264

the
20.246

.062

.062

ZZZ
20.184

.865

too
19.319

.275

.275

you
19.044

.148

.148

eat
18.896

.209

I’ll
18.687

.19

.19

ZZZ
18.497

.07

.07

.07

go
18.427

.228

don’t
18.199

.217

.217

you
17.982

.043

.043

.043

.043

.043

if
17.939

.078

and
17.861

Figure 3: Zoom into the TTI tree.

6. Tree similarity indexing (TSI)
The task for the second stage of the procedure is to compare
syntactically parsed trees with the duration trees and calculate
an index of similarity. It is not immediately obvious how to
do this, as trees have many properties which could be used as
sources of criteria: number of nodes, number of edges, branch-
ing factor (binary or n-ary), branching tendency (right vs. left
vs. centre branching), homomorphism or strict isomorphism.

Table 1: TSI algorithm as Scheme code.

(define (treecomp t1 t2 n)
(if (pair? t1)
(if (pair? (car t1))
(begin
(treecomp-1 (leaves (car t1)) t2 (+ 1 n))
(treecomp (car t1) t2 (+ 1 n))
(treecomp (cdr t1) t2 n))

(treecomp (cdr t1) t2 n))))

(define (treecomp-1 ll t2 n)
(if (pair? t2)
(if (pair? (car t2))
(begin
(if (equal? ll (leaves (car t2)))
(set! *count-sim* (+ 1 *count-sim*)))

(treecomp-1 ll (car t2) (+ 1 n))
(treecomp-1 ll (cdr t2) n))

(treecomp-1 ll (cdr t2) n))))

(define (leaves t)
(if (pair? t)
(append (leaves (car t)) (leaves (cdr t)))
(if (null? t)
t
(list t))))

The basic requirement has already been defined, how-
ever: comparison in respect of the way trees are used to
represent syntagmatic structuring (parsing) of sentences and
prosodic series. Consequently, a new but conceptually sim-
ply similarity measure was defined, based on the number of
nodes in each tree which span the same substring of the an-
notated and parsed sequence, i.e. the same leaf node se-
quence. Each leaf is uniquely labelled before the algo-
rithm is applied, and non-branching nodes are pruned. To
derive an index of similarity (TSI, Tree Similarity Index)
the number of shared nodes spanning the same substring is
simply divided by the mean node count of the two trees:
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The recursive algorithm for calculating ������������ � climbs the
trees, comparing pairwise the leaf sequences spanned by the
nodes in each tree, and incrementing a counter if nodes share
a leaf sequence. The algorithm is implemented in Scheme; the
code itself is given in a portable style in Table 1. This imple-
mentation of the algorithm is overly greedy (nodes may be vac-
uously compared) but has the merit of simplicity.

7. Tentative results
The results of the study are visualised in Figure 4. The thick
solid line shows correspondence between timing trees and un-
parsed (UP) sentences. For parsed (P) sentences, the higher thin
line shows mean TSI for TTI-A short-long (iambic) grouped
trees, the lower thin line shows mean TSI for TTI-B long-short
(trochaic) grouped trees. Both TTI-A (0.85) and TTI-B (0.89)
TSI sequences correlate highly with the UP sequence, maybe
due to shallow bracketing. TSI levels differ considerably, how-
ever, as summarised in Table 2 (averaged over all subjects and
sentences). The mean TSI for TTI-A trees is much higher than
for TTI-B trees or UP strings which are indistinguishable. Syn-
tax trees are thus more similar to iambic timing trees than to
trochaic timing trees.

Table 2: Overview of main results.
mean UP-correlation mean TSI

P + TTI-A: 0.85 0.47
P + TTI-B: 0.89 0.2
UP + TTI-A: 0.19
UP + TTI-B: 0.19

8. Summary and prospects
The results show a preference for a match between grammatical
structures and iambic groups, with short-long constituent pairs,
indicating that the measure provides substantive and relevant in-
formation related to patterns (such as the iambic Nuclear Stress
Rule) which figures in traditional descriptions of the intonation
of West Germanic languages. Work in progress includes: gener-
alisation to other speech genres and languages, deeper bracket-
ing, weighting of categories, normalisation for sentence length
effects, size of subject set, use of treebanks, full statistical treat-
ment. The available software is suitable for application in larger

scale applications, and these questions are currently being ad-
dressed in cooperation with specialists in a number of European
and African languages.

9. References
[1] E. L. Low, E. Grabe, and F. Nolan, “Quantitative char-

acterisations of speech rhythm: Syllable-timing in Singa-
pore English,” Language and Speech, vol. 43, no. 4, pp.
377–401, 2000.

[2] F. Ramus, M. Nespor, and J. Mehler, “Correlates of lin-
guistic rhythm in the speech signal,” Cognition, vol. 73,
no. 3, pp. 265–292, 1999.

[3] J. P. H. van Santen, “Assignment of segmental duration
in text-to-speech synthesis,” Computer Speech and Lan-
guage, vol. 8, no. 3, pp. 95–128, 1994.

[4] O. Goubanova and P. Taylor, “Bayesian belief networks
for model duration in text-to-speech systems,” in CD-
ROM Proceedings of ICSLP2000, Beijing, 2000.

[5] N. Campbell, “Multi-level timing in speech,” Ph.D. dis-
sertation, University of Sussex, 1992.

[6] P. Wagner, “Rhythmic alternations in German read
speech,” in Proceedings of Prosody 2000, Poznan, 2001,
pp. 237–245.

[7] K. Alter, J. Matiasek, and G. Niklfeld, “VIECTOS:
The Vienna Concept-to-Speech System,” in Natural Lan-
guage Processing and Speech Technology, D. Gibbon, Ed.
Berlin: Mouton de Gruyter, 1996, pp. 156–165.

[8] W. Jassem, D. R. Hill, and I. H. Witten, “Isochrony in
English speech: its statistical validity and linguistic rel-
evance.” in Intonation, Accent and Rhythm: Studies in
Discourse Phonology., D. Gibbon and H. Richter, Eds.
Berlin”, year = 1984,: Walter de Gruyter, pp. 203–205.

[9] F. Cummins, “Speech rhythm and rhythmic taxonomy,” in
Proceedings of Speech Prosody 2002, Aix-en-Provence,
2002, pp. 121–126.

[10] D. Gibbon, “Measuring speech rhythm in varieties of En-
glish,” in Proceedings of EUROSPEECH 2001, 2001, pp.
91–94.

[11] I. Wachsmuth, “Communicative rhythm in gesture and
speech,” in Language, Vision and Music, P. McKevitt,
C. Mulvihill, and S. O’Nuallain, Eds. Amsterdam: John
Benjamin, 2002, pp. 117–132.

[12] R. I. Damper, Ed., Data-driven Techniques in Speech Syn-
thesis. Boston: Kluwer Academic Publishers, 2001.

[13] K. Dziubalska-Kołaczyk, Beats-and-Binding Phonology.
Frankfurt: Peter Lang, 2002.

[14] S. Mozziconacci, Speech Variability and Emotion: Pro-
duction and Perception. Eindhoven: Technische Univer-
siteit Eindhoven, 1998.

[15] P. Roach, “On the distinction between ‘stress-timed’ and
‘syllable-timed’ languages,” in Linguistic Controversies:
Essays in Linguistic Theory and Practice, D. Crystal, Ed.
London: Edward Arnold, 1982, pp. 73–79.

[16] U. Gut, S. Adouakou, E.-A. Urua, and D. Gibbon,
“Rhythm in West African tone languages: a study of
Ibibio, Anyi and Ega,” in Proceedings of ”Typology of
African Prosodic Systems 2001” (TAPS), 2001, pp. 159–
165.


