Rhythm

An interactive introduction

Dafydd Gibbon

U Bielefeld

Ak-Phon 2005-07-13
Overview

- Definitions and examples of rhythm
- Emergent Rhythm Theory (ERT)
- Timing factors in linguistics and phonetics
 - Levels of patterning and isochrony
- Phonological rhythm theories
 - Metrical Phonology, Prosodic Hierarchy
- Phonetic rhythm theories
 - Patterns: Pike, Abercrombie, Jassem
 - Global isochrony: Isard, Roach, ...
 - Global pattern ratio: Ramus, ...
 - Local linear: Low & Grabe
- A new strategy
 - Measuring rhythm types
 - Inducing hierarchical temporal patterns
Presentation strategy

- Lecture: introduction to
 - basic concepts
 - approaches
- Discussion: intuitive explicanda for “rhythm”
- Method practice:
 - temporal annotation (with annotation software)
 - selection of units – C/V clusters, syllables, feet
 - manual analysis of annotation (with spreadsheet)
 - mean durations
 - variance & standard deviation of durations
 - Low & Grabe PVI (pairwise variability index)
 - Gibbon TPA (temporal periodicity analysis)
Rhythm definitions & examples

Etymology: Middle French & Latin; Middle French rhythm, from Latin rhythmus, from Greek rhythmos, probably from rhein to flow -- more at STREAM

1 a : an ordered recurrent alternation of strong and weak elements in the flow of sound and silence in speech b : a particular example or form of rhythm <iambic rhythm>

2 a : the aspect of music comprising all the elements (as accent, meter, and tempo) that relate to forward movement b : a characteristic rhythmic pattern <rumba rhythm>; also : 1METER 2 c : the group of instruments in a band supplying the rhythm -- called also rhythm section

3 a : movement or fluctuation marked by the regular recurrence or natural flow of related elements b : the repetition in a literary work of phrase, incident, character type, or symbol

4 : a regularly recurrent quantitative change in a variable biological process <a circadian rhythm> -- compare BIORHYTHM

5 : the effect created by the elements in a play, movie, or novel that relate to the temporal development of the action
Rhythm definitions & examples

Rhythm in general...

Rhythms in particular:
- Acoustic
- Visual
- Patterns:
 - trochaic
 - iambic
 - dactylic
 - anapaestic
- Complex:
 - beat
 - heterodyne
 - moiré
What makes rhythm?

• Basic position:
 – rhythm is *emergent* i.e. a function of many different factors, e.g.
 • cognitive expectations
 • “biological clocks”
 • Temporal properties of prosodic hierarchies - cf. Tillmann's
 – A prosody: timing level of phonemes
 – B prosody: timing level of syllables, words
 – C prosody: timing level of phrases
 • Articulatory constraints (elastic tissues, weight of bones, ...)
 • Acoustic patterns
 • Integrative powers of the ear and hearing

• Pragmatic position:
 – this is all too complicated
 – let's concentrate first on what we can measure, for heuristic reasons (without rejecting other dimensions)
Emergent complex rhythms (1)

Rhythm 1:

Rhythm 2:

Rhythm 3:
Emergent complex rhythms (2)

Rhythm 1:

Rhythm 2:

Rhythm 3:
Timing factors in speech

● Phrase:
 – Speech tempo
 – Parenthetic speech
 – Emphatic accent
 – Focal / contrastive accent
 – Phrasal accent (realisation of sentence stress)

● Word:
 – Accent (realisation of word stress)
 – Word stress
 – Foot: speech tempo
 – Syllable: strong/long – weak/short syllables
 – C & V contrastive phoneme durations
 – Allophonic duration variation (e.g. Eng. V[+st])
Phonological rhythm theories

- Syllable vs. Stress/Foot timing
 - Pike
 - Abercrombie

- Stratified hierarchies:
 - Jassem
 - Prosodic Hierarchies
 - Selkirk, Hayes
 - Campbell

- General hierarchies:
 - Metrical Phonology
Phonetic rhythm theories

• Global:
 – variance, standard deviation (isochrony):
 • Isard
 • Roach
 – peak-trough ratio:
 • Ramus
 – Periodicity Analysis
 • Gibbon

• Local:
 – peak-trough alternation ratio:
 • Low, Grabe & Nolan (PVI)
 • Gibbon & Gut (RR)
 • Gibbon (Time Tree Induction)

• Dynamic:
 – Barbosa, Cummins, Wachsmuth, ...
Practical: annotation & analysis

- Choose a short speech file
- Annotate the following tiers with Praat:
 - Phonemes
 - Syllable
 - Feet
- The following can be done automatically, but...
 - Enter the time-stamps for each tier into separate worksheets of a spreadsheet program (OpenOffice Calc, Excel)
 - For each tier:
 - calculate average length (AL) of units
 - calculate standard deviation (SD) of units
 - normalise by dividing SD/AL (0 = isochrony)
Average length and speech rate

<table>
<thead>
<tr>
<th>Phon</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
</tr>
<tr>
<td>170</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syll</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>178,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
</tr>
<tr>
<td>420</td>
</tr>
<tr>
<td>446,5</td>
</tr>
</tbody>
</table>

AL: Average Length (in msec)
Rate: 1000 / AL (in sec)
SD: Standard Deviation
NDI: an isochrony measure

<table>
<thead>
<tr>
<th>Phon</th>
<th>Syll</th>
<th>Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>250</td>
<td>473</td>
</tr>
<tr>
<td>170</td>
<td>100</td>
<td>420</td>
</tr>
<tr>
<td>40</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AL	84.3	178.6	446.5
SD	42.3	90.19	37.48
NDI	0.5	0.51	0.08

SD: Standard Deviation
AL: Average Length
NDI = SD/AL: Normalised Deviation Index (>= 0)
 Perfect isochrony: NDI = 0
PVI: a binary alternation measure

| Phon | Δdur | |Δdur| | AVG | |Δdur|/AVG | Syll | Δdur | |Δdur| | AVG | |Δdur|/AVG | Foot | Δdur | |Δdur| | AVG | |Δdur|/AVG |
|------|------|-----|--------|------|------|-----|--------|------|------|-----|--------|------|-----|--------|------|-----|--------|------|-----|--------|------|-----|
| 80,00 | -90,00 | 90,00 | 125,00 | 0,72 | 250,00 | 150,00 | 150,00 | 175,00 | 0,86 | 473,00 | 53,00 | 53,00 | 446,50 | 0,12 |
| 170,00 | 130,00 | 130,00 | 105,00 | 1,24 | 100,00 | -23,00 | 23,00 | 111,50 | 0,21 | 420,00 | 420,00 | 420,00 | 420,00 | 1,00 |
| 40,00 | -20,00 | 20,00 | 50,00 | 0,40 | 123,00 | -177,00 | 177,00 | 211,50 | 0,84 |
| 60,00 | 0,00 | 0,00 | 60,00 | 0,00 | 300,00 | 180,00 | 180,00 | 210,00 | 0,86 |
| 60,00 | -3,00 | 3,00 | 61,50 | 0,05 | 120,00 |
| 63,00 | -47,00 | 47,00 | 86,50 | 0,54 |
| 110,00 | -30,00 | 30,00 | 125,00 | 0,24 |
| 140,00 | 90,00 | 90,00 | 95,00 | 0,95 |
| 50,00 | -20,00 | 20,00 | 60,00 | 0,33 |
| 70,00 |

AVG

| Phon | Δdur | |Δdur| | AVG | |Δdur|/AVG | Syll | Δdur | |Δdur| | AVG | |Δdur|/AVG | Foot | Δdur | |Δdur| | AVG | |Δdur|/AVG |
|------|------|-----|--------|------|------|-----|--------|------|------|-----|--------|------|-----|--------|------|-----|--------|------|-----|
| 80,00 | -90,00 | 90,00 | 125,00 | 0,72 | 250,00 | 150,00 | 150,00 | 175,00 | 0,86 | 473,00 | 53,00 | 53,00 | 446,50 | 0,12 |
| 170,00 | 130,00 | 130,00 | 105,00 | 1,24 | 100,00 | -23,00 | 23,00 | 111,50 | 0,21 | 420,00 | 420,00 | 420,00 | 420,00 | 1,00 |
| 40,00 | -20,00 | 20,00 | 50,00 | 0,40 | 123,00 | -177,00 | 177,00 | 211,50 | 0,84 |
| 60,00 | 0,00 | 0,00 | 60,00 | 0,00 | 300,00 | 180,00 | 180,00 | 210,00 | 0,86 |
| 60,00 | -3,00 | 3,00 | 61,50 | 0,05 | 120,00 |
| 63,00 | -47,00 | 47,00 | 86,50 | 0,54 |
| 110,00 | -30,00 | 30,00 | 125,00 | 0,24 |
| 140,00 | 90,00 | 90,00 | 95,00 | 0,95 |
| 50,00 | -20,00 | 20,00 | 60,00 | 0,33 |
| 70,00 |

AVG

- 0,50
- 0,69
- 0,56

PVI

- 49,68
- 68,94
- 55,94

PVI:

\[
100 \times \frac{\text{AVERAGE}(|\text{diff}_{i} - \text{diff}_{i+1}|)}{\text{AVERAGE}(\text{diff}_{i}, \text{diff}_{i+1})}
\]
Perspective...

- Implementation and further development dynamic approaches:
 - Barbosa
 - Cummins
 - Wachsmuth

- Development of rhythm typology measures:
 - unary (cf. syllable timing)
 - binary: iambic, trochaic
 - ternary: dactylic, anapaestic
 - other ...

- Relation of phonetic patterns to patterns of:
 - phonology
 - morphology
 - phrasal syntax
 - discourse