
Sounds of Prosody

Rhythm, Melody and Quite Big Data

2019-07-24, 14:00-16:00 Beijing, 08:00-10:00 Berlin

Dafydd Gibbon

Bielefeld University

Chinese Summer School:
Contemporary Phonetics and Phonology

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 2/109

The Main Topics https://github.com/dafyddg/RFA

https://github.com/dafyddg/RFA

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 3/109

Questions from Lecture 2

Q: Does the prosodic lexicon also contain meanings?

A: Yes, the information is in features; the meaning of a pitch accent is a function from a coextensive
locutionary segment to the deictic origo (I, here, now), comparable with other deictic forms such as “this”,
“here”.

Q: What is the Type 3 grammar for call contours?

A: ... B → pa[h, chroma] C, C → downstep B (pitch accent loop; see Pierrehumbert discussion later)

Q: Are your grammars for intonation and tone like those of Pierrehumbert?

A: Yes, they use the same formal theory, as a finite state automaton (dates back to the 1940s,
McCulloch-Pitts) or as a Type 3 grammar (dates back to the 1950s, Chomsky).

Q: What does ‘exponential complexity’ mean?

A: For a sentence of length n, where G is a property of the Grammar:

Q: What is the difference between rhythm and prosody?

A: Prosody is the music of speech, consisting of rhythms and melodies.

Q: Why is a right-branching structure not centre-embedding, even if the nodes have the same
label, like in the example of Féry?

A: See the following slides.

linear time: Gn
cubic time: Gn3

exponential time: Gn

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 4/109

Question from Lecture 2
Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 5/109

Question from Lecture 2
Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

Right-branching Type 3:
A → it B
B → is C
C → very C
C → good

Left-branching Type 3:
A → B good
B → B very
B → C is
C → it

A

B good

veryB

B very

C is

it
it good

very

is

A

it B

is C

very C

very C

good
right-branching left-branching FSN ≡ FSA

Right-recursive
grammars are
equivalent to iterative
finite state automata.

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

There are processing differences, not
differences in the language described:

● Right branching: left-to-right is simplest.
● Left branching: right-to-left is simplest.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 6/109

Question from Lecture 2
Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 7/109

Question from Lecture 2

Equivalent right-branching Type 3 grammar:

A → ({ H%, L% }) B
A → ε B

B → { H*, L*, L*H-, L-+H*, H*+L-, H-+L*, H*+H* } C
C → { H-, L- } D
C → ε B

D → { H%, L% }

A B C D EA B C D E

ε

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 8/109

Question from Lecture 2

Alternatively as a generate-and-test search system:

Grammar: infinite set of sequences from finite lexicon:
GEN = ({H%1, L%1} {∪ H*, L*, L*H-, L-+H*,

 H*+L-, H-+L*, H*+H-} {∪ H-, L-} {H%∪ 2, L%2} {∪ ε})*

Finite constraint lexicon to evaluate for accepted subset:
CON = { o(<A,B>) {H%∈ 1,L%1, ε}

 o(<B,C>) { ∈ H*,L*,L*H-,L-+H*,H*+L-,H-+L*,H*+H-, H-, L- }
 o(<C,B>) {∈ ε}
 o(<C,D>) { H-, L- }∈
 o(<D,E>) { H%∈ 2, L%2 } }

A B C D EA B C D E

ε

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 9/109

Question from Lecture 2

A B C D EA B C D E

ε ε ε

Equivalent right-branching Type 3 grammar:

A → ({ H%, L% }) B
A → ε B

B → { H*, L*, L*H-, L-+H*, H*+L-, H-+L*, H*+H* } C
C → { H-, L- } D
C → ε B

D → { H%, L% }
D → ε B
E → ε A

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 10/109

Question from Lecture 2

A B C D EA B C D E

ε ε ε

Equivalent right-branching Type 3 grammar:

A → ({ H%, L% }) B
A → ε B

B → { H*, L*, L*H-, L-+H*, H*+L-, H-+L*, H*+H* } C
C → { H-, L- } D
C → ε B

D → { H%, L% }
D → ε B
E → ε A

Global contour:
 downtrend: declination, downstep,
 level, inclination, upstep
Three iterations:
 downtrend loop
 reset loop
 restart loop

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 11/109

Question from Lecture 2

A B C D EA B C D E

downtrend restartreset

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

Equivalent right-branching Type 3 grammar:

A → ({ H%, L% }) B
A → onset B

B → { H*, L*, L*H-, L-+H*, H*+L-, H-+L*, H*+H* } C
C → { H-, L- } D
C → downtrend B

D → { H%, L% }
D → reset B
E → restart A

Global contour:
 downtrend: declination, downstep,
 level, inclination, upstep
Three iterations:
 downtrend looop
 reset loop
 restart loop

onset

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 12/109

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

Question from Lecture 2

A B C D EA B C D E

downtrend restartreset

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

onsetonset

A

H-
CH*+L-

downtrend

B

B

CH*+L-

H- D

L%

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 13/109

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state

automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

Question from Lecture 2

A B C D EA B C D E

downtrend restartreset

B

C

H%

H*+L-

A

B

CH*+L-

H- D

reset
CH*+L-

downtrend

B

B

CH*+L-

H- D

L%

downtrend

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 14/109

Sounds of Prosody

Code, articles: https://github.com/dafyddg/RFA

RFT: Rhythm Formant Theory
RFA: Rhythm Formant Analysis

How to do it:
1. Algorithms
2. Case studies

https://github.com/dafyddg/RFA

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 15/109

Timing of Speech

Music and speech depend on the temporal constraints given by
the human body:
– Body rhythm timing:

● approximately one main movement per second:
– foot stamping, running, walking
– hand clapping, head nodding
– chewing, sucking
– hand-shaking, intimate interaction
– syllable and word sequences

Different speech rhythms:
– rhythms of syllable constituents (C, V)
– Rhythms of syllable types (strong, weak; stressed, unstressed)
– Rhythms of words or feet, phrases, sentences
– Rhythms of discourse episodes

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 16/109

Timing of Speech

Music and speech depend on the temporal constraints given by
the human body:
– Body rhythm timing:

● approximately one main movement per second:
– foot stamping, running, walking
– hand clapping, head nodding
– chewing, sucking
– hand-shaking, intimate interaction
– syllable and word sequences

Different speech rhythms:
– rhythms of syllable constituents (C, V)
– Rhythms of syllable types (strong, weak; stressed, unstressed)
– Rhythms of words or feet, phrases, sentences
– Rhythms of discourse episodes

The association of the ‘Rhythm hierarchy’ with
the ‘Prosodic Hierarchy’ is flexible and depends
on
● semantic constraints (e.g. contrast)
● pragmatic constraints (e.g. emphasis)

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 17/109

Metalocutionary Theory of Prosodic Function

Prosody: slow rhythms & melodies

Locution: fast CV alternation

time

Structures: (autosegmental) asssociation
Meanings: (spatiotemporal) metadeixis
Modalities: (multichannel) streaming

Time Types:

cloud time (intuitive everyday ‘real’ time)

clock time (Newtonian time, universal quantitative time)

rubber time (Aristotelian time: Event Phonology, tree structures)

categorial time (abstract time points: duration contrast; context)

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 18/109

The Modulation Code: Time and the Frequency Scale

Low frequencies:
rhythm

Mid frequencies:
rhythm

High frequencies:
consonants and vowels

Low Frequency
AM and FM modulations

High Frequency
AM and FM modulations

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 19/109

Theory and practice of Rhythm Analysis: RFT and RFA

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 20/109

Rhythm Formant Theory and Analysis

Rhythm Formant Theory (RFT):
– A rhythm formant is a frequency zone of higher magnitude values in the

normalised low frequency (LF) spectrum.
– Rhythm formants are detected both in the LF AM spectrum and also in the

LF FM spectrum.

Rhythm Formant Analysis (RFA):
– The spectrum frequencies and their magnitudes are obtained by FFT and

the magnitudes are normalised to the range 0,…,1.
– A minimum magnitude (e.g. about 0.2) is defined as a cutoff level; the

higher values are then shown as red dots in the RFA spectrum.
– The spectra of different recordings are

● compared using standard distance metrics
– and represented as distance maps,
– also (1) hierarchically clustered using (2) standard clustering criteria and represented

as dendrograms.

Thanks to Dr. Liu Huangmei, for suggesting the term ‘formant’ in this context.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 21/109

Rhythm Formant Analysis: implementation

RFA implementation (GitHub repository):
The applications included in the set are intended for experiments based on
the low frequency long-term AM and FM spectrum:
The set of demonstration applications can be freely adapted and modified to
suit your own needs.

RFA directory:
Articles
IICBP2022-slides
LittleHelpers
README.1st
README.md
RFA_multiple_signal_processing
RFA_single_signal_processing

Code, articles: https://github.com/dafyddg/RFA

https://github.com/dafyddg/RFA

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 22/109

Rhythm Formant Analysis: implementation

RFA implementation (GitHub repository):
The applications included in the set are intended for experiments based on
the low frequency long-term AM and FM spectrum:
The set of demonstration applications can be freely adapted and modified to
suit your own needs.

RFA_single_signal_processing:
DATA

English_male_MLK01.wav
English_male_one-to-seven.wav
English_male_one-to-thirty_16k.wav
Female_English_German:

RT_E1.wav
RT_E2.wav
RT_E3.wav
RT_G1.wav
RT_G2.wav
RT_G3.wav

Putonghua_female_one-to-seven.wav
sine-200x5x6.wav

FIGURES
module_dendrogram.py
module_F0.py
module_spectrogram.py
rfa_single_conf.py
rfa_single.py

RFA directory:
Articles
IICBP2022-slides
LittleHelpers
README.1st
README.md
RFA_multiple_signal_processing
RFA_single_signal_processing

Code, articles: https://github.com/dafyddg/RFA

https://github.com/dafyddg/RFA

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 23/109

Rhythm Formant Analysis: implementation

RFA implementation (GitHub repository):
The applications included in the set are intended for experiments based on
the low frequency long-term AM and FM spectrum:
The MIT licence is used, so demonstration applications can be freely
adapted and modified to suit your needs (with acknowledgments).

RFA_single_signal_processing
DATA

English_male_MLK01.wav
English_male_one-to-seven.wav
English_male_one-to-thirty_16k.wav
Female_English_German:

RT_E1.wav
RT_E2.wav
RT_E3.wav
RT_G1.wav
RT_G2.wav
RT_G3.wav

Putonghua_female_one-to-seven.wav
sine-200x5x6.wav

FIGURES
module_dendrogram.py
module_F0.py
module_spectrogram.py
rfa_single_conf.py
rfa_single.py

RFA
Articles
IICBP2022-slides
LittleHelpers
README.1st
README.md
RFA_multiple_signal_processing
RFA_single_signal_processing

RFA_multiple_signal_processing
CSV
DATA

Female_English_German
RT_E1.wav
RT_E2.wav
RT_E3.wav
RT_G1.wav
RT_G2.wav
RT_G3.wav

DENDRO
GRAPHVIZ
module_F0.py
module_spectrogram.py
numdistnetdendro_conf.py
numdistnetdendro.py
rfa_mult_conf.py
rfa_mult.py

Code, articles: https://github.com/dafyddg/RFA

https://github.com/dafyddg/RFA

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 24/109

Empirical Background: Phonetic Domain, Phase Cycle

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 25/109

Aims of this part of the talk

Overview of Rhythm Formants as low frequency modulations of
speech

Demonstration of how my software (also Praat etc.) does
– AM and FM demodulation
– spectral analysis
– comparing spectra from different recordings of comparable data using

distance tables, distance maps and distance based clustering

● Why?
– If you’re a driver, it makes sense to know how a car works in practice.
– If you’re a phonetician, it makes sense to know how ‘pitch’ extraction,

spectral analysis, distance maps and clustering etc. work in practice.

SPOILER

It’s easier than you think!

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 26/109

Empirical Background: Phonetic Domains and Methods

Transmission

Cognition

Production Perception

Acoustic
Phonetics

Neuro-
phonetics

Articulatory
Phonetics

Auditory
Phonetics

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 27/109

Overview

● Production and perception phases of prosodic events are well
known in phonetics:
– source-filter theory: larynx as source, oral & nasal cavity as filter
– cochlea transformation theory: extraction of signal frequencies

● Transmission theory is usually left to the audio engineers:
● So let’s do something in this talk to correct this:

– Modulation Theory:
● Amplitude Modulation (AM)
● Frequency Modulation (FM)

– a 'do-it-yourself' approach to phonetic software
● an alternative, for some purposes, to using ready-made off-the-shelf applications

– you can download demonstration examples in Python
BUT: no programming experience is required

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 28/109

Rhythm Formants

Rhythm Formant Theory (RFT):
● A rhythm formant is a frequency zone of higher magnitude values in the

normalised low frequency (LF) spectrum.
● Rhythm formants are detected in the LF AM spectrum and in the LF FM

spectrum.

Rhythm Formant Analysis (RFA):
● The spectrum magnitudes are obtained by FFT and normalised to the

magnitude range 0,…,1.
● The spectra of different recordings are compared using

– standard distance metrics, then
● represented as distance maps, and
● hierarchically clustered using standard clustering criteria, and

represented as dendrograms.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 29/109

Modulation Theory

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 30/109

Formal background: Modulation Theory

carrier signal modulated with information signal

1) carrier signal with frequency modulation signal (FM)
tone, pitch accent, intonation → larynx

2) carrier signal with amplitude modulation signal (AM)

consonants, vowels, syllables → oral & nasal cavities

3) speech: carrier signal with AM and FM simultaneously

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 31/109

AM and FM Demodulation

AM envelope demodulation:
● phonetics:

amplitude curve, syllable,
stress-accent

● phonology:
sonority curve, syllables, stress

FM envelope demodulation:
● phonetics:

F0, pitch track
● phonology:

tones, pitch accents, intonation

Modulated carrier signal

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 32/109

AM and FM demodulation and detection of rhythm

speech signal input

demodulated
AM and FM

shapes

detected
rhythm formants

LF AM envelope
demodulation

LF FM envelope
demodulation

LF AM spectrum
rhythm formant

analysis

LF FM spectrum
rhythm formant

analysis

Hartmut Traunmüller (1994) "Conventional, biological, and environmental factors in speech
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmüller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal
Inst. of Technology, Stockholm.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 33/109

Comparison with Traunmüller’s demodulation model

Hartmut Traunmüller (1994) "Conventional, biological, and environmental factors in speech
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmüller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal
Inst. of Technology, Stockholm.

speech signal input

demodulated
AM and FM

shapes

detected
rhythm formants

LF AM envelope
demodulation

LF FM envelope
demodulation

LF AM spectrum
rhythm formant

analysis

LF FM spectrum
rhythm formant

analysis

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 34/109

Traunmüller: audiovisual perception (2007)

Hartmut Traunmüller (1994) "Conventional, biological, and environmental factors in speech
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmüller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal
Inst. of Technology, Stockholm.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 35/109

Traunmüller: audiovisual perception (2007)

Hartmut Traunmüller (1994) "Conventional, biological, and environmental factors in speech
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmüller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal
Inst. of Technology, Stockholm.

LF AM envelope
demodulation

LF FM envelope
demodulation

LF AM spectrum
rhythm formant

analysis

LF FM spectrum
rhythm formant

analysis

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 36/109

AM and FM modulation step by step

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 37/109

Modulation: carrier signal

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 38/109

Modulation: FM signal with low frequency information

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 39/109

Modulation: AM signal with low frequency information

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 40/109

Modulation Theory

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 41/109

Demodulation and analysis procedures in RFA

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 42/109

Demodulation and analysis procedures in RFA

● Time domain processing:
– Envelope extraction
– Fundamental frequency estimation (‘pitch’ extraction)

● Time domain to frequency domain transformation:
– Spectral analysis
– Spectrogram analysis
– F0 estimation:

● time domain procedures: zero-crossing count, autocorrelation (AC), average
magnitude difference (AMDF)

● frequency domain procedures: spectrum transformation and analysis

● Comparison using distance metrics
– distance calculation with different distance metrics
– hierarchical clustering with distance and different clustering criteria

● Output:
– Graphical display
– Numerical files and figure files

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 43/109

Demodulation and analysis: output examples

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 44/109

Example outputs

Similarity of readings: The North Wind and the Sun, bilingual in English and German

Story “The North Wind and the Sun”, read by an adult female German-English bilingual

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 45/109

Example outputs

Comparing two styles of Tang dynasty poetry

Poem recitation: B-036塞上曲 [王昌龄]-mono-16k

Distance network: Hierarchical clustering::

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 46/109

Demodulation and analysis: software design

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 47/109

Single speech signal analysis

Rhythm Formant Analysis Software Design: Data Flow

signal
normalisation

data,
settings,
control

archive & temporary
storage

AM (envelope)
demodulation

screen
output

signal
input

spectral (FFT)
analysis

output
collation

FM (F0)
demodulation

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 48/109

Single speech signal analysis

Multiple spectrum & spectrogram comparison

Rhythm Formant Analysis Software Design: Data Flow

signal
normalisation

data,
settings,
control

archive & temporary
storage

AM (envelope)
demodulation

distance
metrics

hierarchical
clustering

distance
maps

dendrograms

screen
output

signal
input

spectral (FFT)
analysis

output
collation

FM (F0)
demodulation

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 49/109

Demonstration:

Demodulation, spectral analysis: processing single files

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 50/109

Demonstration applications: outputs

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 51/109

Demonstration apps - time domain outputs

TIME
DOMAIN

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 52/109

Demonstration apps – time and frequency domain outputs

TIME
DOMAIN

(waveform)

FREQUENCY
DOMAIN

(spectrum)

TIME
DOMAIN

Amplitude as a
function of time

Magnitude as a
function of frequency

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 53/109

Software description: time domain analysis

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 54/109

Time domain analysis: waveform display

A_waveform_display.py Waveform. D. Gibbon 2021-07-06

import sys # import specialised modules
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal

plt.plot(signal) # plot waveform
plt.show() # display figure

Description

The programming language (in this case Python3) is provided with a
large collection of algorithm implementations for processing various
kinds of data for different purposes, stored in specialised ‘libraries’.

In this case, system function is imported, which allows the filename
to be input from the command line, a science library function is
imported which permits input of an audio file, and a graphics library
is imported to produce figures.

A mono WAV file is read, and the speech signal and the sampling
frequency are extracted from the file.

The signal is plotted as a graph and displayed.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 55/109

Time domain analysis: waveform display

A_waveform_display.py Waveform. D. Gibbon 2021-07-06

import sys # import specialised modules
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal

plt.plot(signal) # plot waveform
plt.show() # display figure

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 56/109

Time domain analysis: formatted waveform display

B_waveform_display.py Formatted waveform display. D. Gibbon. 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

#---

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure

Description

In this application, in principle exactly the same thing happens,
except that the figure is formatted more informatively.

For the calculations which are involved, a library of numerical
functions is imported.

After reading the file, the amplitude of the signal is normalised
between -1 and 1 for the y-axis of the graph, and the overall time in
seconds is calculated for the x-axis from the sampling frequency and
the length of the signal.

The normalised signal is plotted as a graph and displayed with the
appropriate x-axis and y-axis information.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 57/109

Time domain analysis: formatted waveform display

B_waveform_display.py Formatted waveform display. D. Gibbon. 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

#---

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 58/109

Time domain analysis: waveform and envelope

C_waveform_envelope_display.py Waveform & AM envelope medfilt. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

envelope = medfilt(abs(signal), 301) # extract low frequency amplitude envelope
envelope = envelope / max(envelope) # normalise envelope to 0 ... 1

#---

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red” # plot envelope in red
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure

Description

In this application, everything which happened in the previous
applications also happens, but in addition, the amplitude modulation
of the signal is demodulated.

This is done by taking the absolute signal, that is, only positive
values of the signal (or conversion of negative values of the signal
into positive values), and low-pass filtering (smoothing) the result.

Low-pass filtering (smoothing) is done here with a moving median
filter, which moves through the signal calculating the median values
of intervals in the signal. The method is rather slow, and somewhat
difficult to characterise. But it works...

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 59/109

Time domain analysis: waveform and envelope

C_waveform_envelope_display.py Waveform & AM envelope medfilt. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

envelope = medfilt(abs(signal), 301) # extract low frequency amplitude envelope
envelope = envelope / max(envelope) # normalise envelope to 0 ... 1

#---

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red” # plot envelope in red
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 60/109

Time domain analysis: waveform and envelope
D_waveform_envelope_display.py Wwaveform, AM envelope Butterworth. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

#---

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds

plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red") # plot waveform in red
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure

Description

Again, in this application, everything which happened in the previous
applications.

Low-pass filtering is done here with a Butterworth filter, which
lowers the amplitude of frequencies above a specified cutoff
frequency. This is advisable since the idea is to capture only the very
low frequencies in the spectrum which make up the rhythms of
speech.This filter is much more efficient than the moving median
filter.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 61/109

Time domain analysis: waveform and envelope
D_waveform_envelope_display.py Wwaveform, AM envelope Butterworth. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

#---

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds

plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red") # plot waveform in red
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 62/109

Frequency domain analysis: FFT and AM spectrum
E_waveform_envelope_spectrum_display Addition of LF spectrum. D. Gibbon, 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

#---

fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format
plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.show() # display figure

Description

In this app, a major step forward is taken: the amplitude envelope
has been extracted and now it is time to analyse the rhythms. No
additional library is needed for this.

The first step in analysing the speech rhythms is done by first
applying a Fast Fourier Transform to the entire envelope in order to
produce a spectral analysis.

This step means moving from the time domain of the signal, in which
the amplitude of the signal is a function of the time in seconds, to the
frequency domain, with the magnitude of each frequency in the
signal displayed as a spectrum, magnitudes normalised from 0 to 1.

The frequencies in the spectrum can be seen to cluster in identifiable
regions, which are interpreted as rhythm formants. The rhythm
formants have very low frequencies below about 10 Hz, that is, 10
beats per second. The phone formants, which identify vowels and
consonants, have much higher frequencies above about 300 Hz,
ranging to several thousand Hz.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 63/109

Frequency domain analysis: FFT and AM spectrum
E_waveform_envelope_spectrum_display Addition of LF spectrum. D. Gibbon, 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

#---

fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format
plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.show() # display figure

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 64/109

Frequency domain analysis: peaks in AM spectrum
F_waveform_envelope_spectrum_display Addition of LF spectrum dots. D. Gibbon, 2021-07-06
import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

topmagscount = 6 # define max frequency of lf spectrum
topmags = sorted(lfspecmags)[-topmagscount:] # get top magnitudes
toppos = [list(lfspecmags).index(m) for m in topmags] # get top magnitude positions
topfreqs = [lfspecfreqs[p] for p in toppos] # get top frequencies

#---
fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)

plt02.scatter(topfreqs, topmags, color="red") # Scatter plot red dots
for f,m in zip(topfreqs, topmags): # loop through top values

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)# print formatted values
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.show() # display figure

Description

This app again takes a small step forward, and defines critical
minimal values for frequency magnitudes in the spectrum which
are relevant for Rhythm Formant Analysis. These values are found
by trial and error in the first stages of analysis, and later predicted on
the basis of previous analyses.

The relevant frequency magnitudes are marked in the spectrum.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 65/109

Frequency domain analysis: peaks in AM spectrum
F_waveform_envelope_spectrum_display Addition of LF spectrum dots. D. Gibbon, 2021-07-
06
import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

topmagscount = 6 # define max frequency of lf spectrum
topmags = sorted(lfspecmags)[-topmagscount:] # get top magnitudes
toppos = [list(lfspecmags).index(m) for m in topmags] # get top magnitude positions
topfreqs = [lfspecfreqs[p] for p in toppos] # get top frequencies

#---
fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)

plt02.scatter(topfreqs, topmags, color="red") # Scatter plot red dots
for f,m in zip(topfreqs, topmags): # loop through top values

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)# print formatted values
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.show() # display figure

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 66/109

Frequency Domain Analysis: File output

G_waveform_spectrum_file_outputs.py D. Gibbon, 2021-07-06
import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

topmagscount = 6 # define max frequency of lf spectrum
topmags = sorted(lfspecmags)[-topmagscount:] # get top magnitudes
toppos = [list(lfspecmags).index(m) for m in topmags] # get top magnitude positions
topfreqs = [lfspecfreqs[p] for p in toppos] # get top frequencies

#---

fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)
plt02.scatter(topfreqs, topmags, color="red") # Scatter plot red dots
for f,m in zip(topfreqs, topmags): # loop through top values

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)# print formatted values
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.savefig(wavfilename[:-3]+".png")
plt.show() # display figure

import os

def outputtextlines(text, filename):
handle = open(filename,'w')
linelist = handle.write(text)
handle.close()
return

def appendtextlines(text, filename):
handle = open(filename,'a')
linelist = handle.write(text)
handle.close()
return

csvfreqs = "lffreqs\t"+"\t".join(
["%.3f"%x for x in lfspecfreqs]
)+"\n"

csvmags = "lfmags\t"+"\t".join(
["%.3f"%x for x in lfspecmags]
)+"\n"

outputtextlines(csvfreqs, csvfilename)
appendtextlines(csvmags, csvfilename)

os.system("soffice %s"%csvfilename)

Description

The small step forward taken by this app is simply to output the
values of the spectrum to a file, formated as a table in CSV format,
as well as saving the figure in PNG format.

This format can be imported by other applications, such as
spreadsheet programs like Excel or LibreOffice Calc.

The figure display is not affected.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 67/109

Frequency Domain Analysis: File output

G_waveform_spectrum_file_outputs.py D. Gibbon, 2021-07-06
import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

topmagscount = 6 # define max frequency of lf spectrum
topmags = sorted(lfspecmags)[-topmagscount:] # get top magnitudes
toppos = [list(lfspecmags).index(m) for m in topmags] # get top magnitude positions
topfreqs = [lfspecfreqs[p] for p in toppos] # get top frequencies

#---

fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)
plt02.scatter(topfreqs, topmags, color="red") # Scatter plot red dots
for f,m in zip(topfreqs, topmags): # loop through top values

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)# print formatted values
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.savefig(wavfilename[:-3]+".png")
plt.show() # display figure

import os

def outputtextlines(text, filename):
handle = open(filename,'w')
linelist = handle.write(text)
handle.close()
return

def appendtextlines(text, filename):
handle = open(filename,'a')
linelist = handle.write(text)
handle.close()
return

csvfreqs = "lffreqs\t"+"\t".join(
["%.3f"%x for x in lfspecfreqs]
)+"\n"

csvmags = "lfmags\t"+"\t".join(
["%.3f"%x for x in lfspecmags]
)+"\n"

outputtextlines(csvfreqs, csvfilename)
appendtextlines(csvmags, csvfilename)

os.system("soffice %s"%csvfilename)

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 68/109

Comparing multiple files

Comparison of English and German story readings

An English example:
The North Wind and the Sun

A German example:
Nordwind und Sonne

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 69/109

Distance metrics

Manhattan Distance
Manhattan Distance

(Cityblock distance, Taxicab Distance)
‘around the corner’

Canberra Distance
(Normalised Manhattan Distance)

Euclidean Distance
direct distance
‘as the crow flies’

Cosine Distance
angle, direction, not magnitude

so not distance itself
‘hiker’s orientation’

 A

 B

 A

 B

 A

 B

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 70/109

Spectrum Comparison: Distance Table

Eng 01 Eng 02 Eng 03 Ger 01 Ger 02 Ger 03

Eng 01 0. 0.67477731 1. 0.74745837 0.93762055 0.85622088

Eng 02 0.67477731 0. 0.5184008 0.76221046 0.87568858 0.7706713

Eng 03 1. 0.5184008 0. 0.78197106 0.85094568 0.82617612

Ger 01 0.74745837 0.76221046 0.78197106 0. 0.42298678 0.56668163

Ger 02 0.93762055 0.87568858 0.85094568 0.42298678 0. 0.44727788

Ger 03 0.85622088 0.7706713 0.82617612 0.56668163 0.44727788 0.

Adult Female English-German bilingual reading
The North Wind and the Sun,

3 English, 3 German, in order of production.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 71/109

Distance map

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 72/109

Distance map

An English example:
The North Wind and the Sun

A German example:
Nordwind und Sonne

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 73/109

Spectrum Comparison – Distance Networks, Part One
H_waveform_envelope_spectrum_distancenetwork.py. D. Gibbon, 2021-07-06
import sys, re, glob # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import butter, lfilter, medfilt, hilbert

import scipy.spatial.distance as dist
from graphviz import Graph

spectrummax = 3
distancelimit = 0.7
distancemetrics = ['canberra', 'chebyshev', 'cityblock',

'correlation', 'cosine', 'euclidean']
wavfiledirectory = sys.argv[1]
wavfilelist = sorted(glob.glob(wavfiledirectory+"*.wav"))
datasetname = sys.argv[2]

namelist = []
rawvaluelist = []
for wavfilename in wavfilelist: # Make spectra for all files

wavfilebase = re.sub(".*/", "", wavfilename)
wavfilebase = re.sub("-mono-16k.wav","",wavfilebase)

fs, signal = wave.read(wavfilename) # read sampling frequency and signal

signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 10 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope))
specmaglen = len(specmags)
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2)))
lfspecmags = specmags[1:lfspecmaglen]
lfspecmags = lfspecmags / max(lfspecmags)

namelist += [wavfilebase]
rawvaluelist += [lfspecmags]

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 74/109

Spectrum Comparison – Distance Networks, Part Two

Previous code:
read all files and calculate spectrum for each file.

 calculate file namelist and rawvaluelist of spectra

Operations:
use interpolation to ensure that lengths of spectra are equal
calculate distances (differences) between spectra with distance metrics

newsize = np.max([len(val) for val in rawvaluelist]) # Make equal data lengths

valuelist = []
for val in rawvaluelist:

size = len(val)
xloc = np.arange(size)
new_xloc = np.linspace(0, size, newsize)
new_data = np.interp(new_xloc, xloc, val) # Interpolation
valuelist += [new_data]

valuelist = np.array(valuelist)

for distancemetric in distancemetrics:

distances = dist.pdist(valuelist, metric=distancemetric)
dist_square = dist.squareform(distances) # format as 2D table
dist_list = dist_square.reshape(dist_square.shape[0] * dist_square.shape[1]) # reformat
dist_list = (dist_list - np.min(dist_list)) / (np.max(dist_list) - np.min(dist_list)) # normalise
dist_square = dist_list.reshape(dist_square.shape)

Output:
Distances between spectra in a two-dimensional table

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 75/109

Spectrum Comparison – Distance Networks, Part Three

Previous code:
read all files and calculate spectrum for each file.

 calculate file namelist and rawvaluelist of spectra

Operations:
Create and save distance network graph

d = Graph('D', filename=graphvizfilename, engine='dot', format='png')
d.attr('node', shape='ellipse', fontsize='12', size='6,6', rankdir='LR')
allcount = 0
count = 0
for i in range(0, len(namelist)-1):

for j in range(i+1, len(namelist)):
firstname = namelist[i]
secondname = namelist[j]
distance = dist_square[i][j]
allcount += 1
if distance <= distancelimit:

count += 1
d.node(firstname)
d.node(secondname)
d.edge(firstname, secondname, label="%.3f"%distance)

else:
print(firstname,distance,secondname,"too large.")

d.node(wavfilebase+"\n"+distancemetric + ' distance metric\nn=%d/%d, %s max dist'%(count,allcount,distancelimit),
shape='box')

graphvizfilename="GRAPHVIZ/"+datasetname+"-graphviz -"+distancemetric
d.render(graphvizfilename, view=False) # switch screen view or only save file
plt.close(“all”)

Output:
Distance network graph

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 76/109

Spectrum Comparison – Hierarchical Clustering

Previous code:
read all files and calculate spectrum for each file.

 calculate distances between spectra

Operations:
Create and save hierarchical clustering dendrogram

import scipy.cluster.hierarchy as hy
figwidth = 6.5; figheight = 4
boxwidth = 0.6; boxheight = 0.83
halign = 0.02 ; valign = 0.14
orientation = "left"
dendrolevels = 20

for distancemetric in distancemetrics:

distances = dist.pdist(valuelist, metric=distancemetric)
clustermethods = methodlist_euclid if distancemetric == "euclidean" else methodlist_other

for clustermethod in clustermethods:
print("Distance metric:", distancemetric, "Clustering method:", clustermethod)
fig = plt.figure(figsize=(figwidth, figheight))
ax1 = fig.add_axes([halign, valign, boxwidth, boxheight])
ax1.set_xlabel("%s%s-%s"%(figurefilebase,distancemetric,clustermethod), fontsize=8)

orientation = 'left' # Change to 'right' or 'top' if leaf labels are cut off
Y1 = hy.linkage(distances, method=clustermethod)
hy.dendrogram(Y1,

p = dendrolevels, truncate_mode = "level",
orientation=orientation,

cutoff = 0.3*np.max(Y1[:,2])
above_threshold_color='black', color_threshold=0,
count_sort="False", distance_sort=False, labels=namelist, leaf_font_size=10)

figurefilename = figurefilebase + "%s-%s-dendro.png"%(distancemetric,clustermethod)
plt.savefig(figurefilename)
plt.close(fig) # Close each graph in loop after saving and displaying

Output: Hierarchical cluster graph (dendrogram)

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 77/109

FM Demodulation

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 78/109

Low Frequency AM and FM Demodulation

AM envelope demodulation:
● phonetics:

amplitude curve, syllable,
stress-accent

● phonology:
sonority curve, syllables, stress

FM envelope demodulation:
● phonetics:

F0, pitch track
● phonology:

tones, pitch accents, intonation

Modulated carrier signal

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 79/109

FM Demodulation – F0 estimation (‘pitch’ extraction)

There are many algorithms for F0 estimation, for example:

Time domain algorithms:

autocorrelation (AC), average magnitude difference function (AMDF),

average squared difference function (ASDF) ...

Frequency domain algorithms:

harmonic peak detection, spectral comb, ...

The AMDF algorithm:

1. Divide the speech signal into equal time frames.

2. Make a copy of the first frame, noting the start position.

3. Move the copy through the first frame:
● compare with the signal at each point
● save the differences in a list

4. Find the first smallest difference in the list:
● find its position in the signal
● find the fundamental period (P0) by subtracting the start position from this position and

divide by the sampling frequency.
● then the fundamental frequency in this frame is: F0 = 1/P0

5. Move to the next frame and repeat until the last frame.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 80/109

For all algorithms: divide the signal into equal time frames

The duration of the time frame depends on the lowest frequency to be measured.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 81/109

AMDF: make a copy of the first time frame

Note the start position of the time frame in the signal.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 82/109

AMDF: move copy through first time frame

1. Compare the copy with the signal point by point at each position in the frame

2. Save each difference in a list, together with its current position in the frame

3. When finished with comparisons at all positions in the frame:
search the list for the smallest difference with the copy and its position.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 83/109

AMDF: move the copy through the first frame to the end

1. Compare the copy with the signal point by point at each position in the frame

2. Save each difference in a list, together with its current position in the frame

3. When finished with comparisons at all positions in the frame:
search the list for the smallest difference with the copy and its position.

In practice, comparison of the copy with the signal starts with an offset slightly after
the first position in the frame otherwise the smallest difference would always be
zero! The position of the offset depends on the highest frequency to be measured.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 84/109

τ is the lag, which ranges from the
beginning to the end of the frame

Definition of AMDF

D (τ)=
1

N−1−τ∑n=0

N−1−τ
|x (n)−x (n+τ)|,0≤τ≤N−1

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 85/109

AMDF: calculate differences, minimal difference, T, F0

1. Note the position of the minimal difference between copy and signal

2. Calculate time period T of the frame as the difference between
● the beginning of the frame and
● the position of the minimal difference

(in this case: 0.004875 s, i.e. 4.875 ms) divided by the sampling frequency fs

3. Calculate the frequency from the period: F0 = 1 / T

(in this case: 1 / 0.04875 = 205 Hz)

Move to the next frame and repeat the procedure for the remaining frames

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 86/109

FM demodulation, Part 1: waveform, AM envelope

J_waveform_envelope_F0.py

import re, sys
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import scipy.io.wavfile as wave
from scipy.signal import butter, lfilter, medfilt
from module_fm_demodulation import *

wavfilename = sys.argv[1] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
wavfilebase = re.sub("^.*/","",wavfilename)
wavfilebase = re.sub("-16k-mono","",wavfilebase[:-4])
figurefilename = "PNG/RFA_%s.png"%wavfilebase

signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 87/109

FM demodulation, Part 2: F0 estimation

FM demodulation using the AMDF (Average Magnitude Difference Function) method.

The F0 estimation routines are longer and more complex than previous routines, so they are
simply summarised here, for reasons of time, space and effort:

f0estimate(signal,fs)
clipper(sig,thresh,type) # Clip low level noise
butterworthfilter(signaldata, cutoff, order, fs, type) # Low pass filter
f0movingwindow(signal, fs, windowshape, framelength, frameskip, f0diffoffsetlength)

f0amdf(signal, fs, windowshape, framestart, framelength, f0diffoffsetlength)

Postprocessing: moving median filter to remove ‘noisy’ outliers.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 88/109

FM demodulation, Part 3: F0 parameters
A number of parameters are defined:

centrethresh = 0.0 # Deals with silence and low volume noise
limitthresh = 0.9
fmbutterhigh = f0min * 2 # low pass filter
fmbutterhighorder = 5
fmbutterlow = f0max # high pass filter
fmbutterloworder = 2

f0min = 50 # minimum expected F0
f0max = 450 # maximum expected F0

Voice range dependent AMDF parameters
f0framelengthfactor = 0.75 # relative to f0min, > 1
f0frameskipfactor = 0.5 # Default is 1, the frame length
f0diffoffsetlengthfactor = 0.1 # relative fo f0max
f0framedispersion = 0.1 # quasi-noise/voiceless detector - can this work?
f0peakoperation = "median" # the implmementation of "average"
f0differenceoffset = 0.5

Atomatic voice model calculation based on minimum and maximum frequency settings
f0frameduration = 1 / f0min
f0frameduration = f0framelengthfactor * f0frameduration
framerate = 2 / f0frameduration
framelength = int(f0frameduration * fs)
frameskip = int(framelength * f0frameskipfactor)
windowshape = tukey(framelength, f0tukeyfraction)

AMDF offset
f0diffoffsetdur = 1 / f0max # seconds
f0diffoffsetlength = int(f0diffoffsetlengthfactor * f0diffoffsetdur * fs) # samples

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 89/109

FM demodulation, Part 4: F0 estimation

F0 preprocessing: filtering:

fsignal = clipper(signal,centrethresh,"centre")
fsignal = clipper(fsignal,limitthresh,"limit")
fsignal = butterworthfilter(fsignal, fmbutterlow, fmbutterloworder, fs, "low")
fsignal = butterworthfilter(fsignal, fmbutterhigh, fmbutterhighorder, fs, "high")

F0 estimation frame loop:

def f0estimate(signal,fs, framelength, frameskip, f0medfilter):
f0array = np.array([

f0amdf(signal, fs,)
for framestart in range(0, len(signal)-3*framelength, frameskip)

])
f0array = medfilt(f0array, f0medfilter)
return f0array

The function of moving median filters is to provide a low-pass smoothing result without
being too influenced by outlier values.

This is a very common technique for smoothing F0 tracks (‘pitch’ tracks).

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 90/109

FM demodulation – F0 extraction, Part 5, AMDF

def f0amdf(signal, fs, windowshape, framestart, framelength, f0diffoffsetlength):

framestop = framestart + framelength
framecopy = signal[framestart:framestop]
framecopydiff = np.diff(framecopy)
framestd = np.std(framecopydiff)

if framestd < f0framedispersion: # anti-noise, quasi-voice-detector

movingwindowrange = range(framestart+f0diffoffsetlength, framestop)

meandiffs = [np.sum(
np.abs(framecopy - signal[movwinstart:movwinstart+framelength]))
for movwinstart in movingwindowrange]

meandiffs = list(np.array(meandiffs)/np.max(meandiffs))
smallestmeandiff = np.min(meandiffs)

if smallestmeandiff < f0differenceoffset:
smallestmeandiffpos = meandiffs.index(smallestmeandiff) + f0diffoffsetlength
period = smallestmeandiffpos / fs
frequency = 1 / period

else:
frequency = 0

else:
frequency = 0

return frequency

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 91/109

FM demodulation – F0 extraction, Part 6, graphics

The graphics output is a small extension of existing graphics output routines.

fig, (plt01, plt02, plt03) = plt.subplots(nrows=3, ncols=1, figsize=(6, 6))
plt.suptitle = "%s [file: %s]"%("Speech signal demodulation", wavfilebase)

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt02.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt02.set_xlabel("Time")
plt02.set_ylabel("Amplitude")

xaxistime = np.linspace(0, signalseconds, f0arraylength) # define x axis in seconds
plt03.scatter(xaxistime, f0array, s=1, color="blue") # plot waveform in grey
plt03.set_ylim(f0min, f0max)
plt03.set_xlabel("Time")
plt03.set_ylabel("Frequency")

plt.tight_layout(pad=1, w_pad=0, h_pad=5)
plt.savefig(figurefilename)
plt.show()

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 92/109

Revision of AMDF

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 93/109

FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 94/109

FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 95/109

FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 96/109

FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 97/109

FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 98/109

FM spectral analysis, Part 1, F0 estimation
K_waveform_envelope_F0_spectrum.py. D. Gibbon, 2021-07-06

import sys, re # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter
from module_fm_demodulation import *

specmax = 2
magscount = 6

if len(sys.argv) > 1:
wavfilename = sys.argv[1] # get input filename from command line

else:
wavfilename = "DATA/one-to-ten-Putonghua-Lara-16k-mono.wav"

wavfilebase = re.sub("^.*/","",wavfilename)
wavfilebase = re.sub("-16k-mono","",wavfilebase[:-4])
figurefilename = "PNG/F_%s.png"%wavfilebase

fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

f0array, framerate = f0estimate(signal, fs)
f0arraylength = len(f0array)

Description

In this demonstration application, a novel and unusual step is taken:
the spectrum of the demodulated FM signal is calculated.

The procedures are entirely parallel, but with f0array instead of
envelope, and framerate instead of fs.

For example, corresponding lines can be compared:

amspecmags = np.abs(np.fft.rfft(envelope))
fmspecmags = np.abs(np.fft.rfft(f0array))

amspecfreqs = np.linspace(0,fs/2,amspecmaglen)
fmspecfreqs = np.linspace(0,framerate/2,fmspecmaglen)

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 99/109

AM and FM spectral analysis, Part 2, spectral analysis
amspecmags = np.abs(np.fft.rfft(envelope))
amspecmags = amspecmags / np.max(amspecmags)
amspecmaglen = len(amspecmags)
amspecfreqs = np.linspace(0,fs/2,amspecmaglen)

amspectrummax = specmax
lfamspecmaglen = int(round(amspectrummax * amspecmaglen / (fs / 2)))
lfamspecmags = amspecmags[1:lfamspecmaglen]
lfamspecfreqs = amspecfreqs[1:lfamspecmaglen]

amtopmagscount = magscount # define max frequency of lf spectrum
amtopmags = sorted(lfamspecmags)[-amtopmagscount:]
amtoppos = [list(lfamspecmags).index(m) for m in amtopmags]
amtopfreqs = [lfamspecfreqs[p] for p in amtoppos]

#---

fmspecmags = np.abs(np.fft.rfft(f0array))
fmspecmags = fmspecmags / np.max(fmspecmags)
fmspecmaglen = len(fmspecmags)
fmspecfreqs = np.linspace(0,framerate/2,fmspecmaglen)

fmspectrummax = specmax
lffmspecmaglen = int(round(fmspectrummax * fmspecmaglen / (framerate / 2)))
lffmspecmags = fmspecmags[1:lffmspecmaglen]
lffmspecfreqs = fmspecfreqs[1:lffmspecmaglen]

fmtopmagscount = magscount # define max frequency of lf spectrum
fmtopmags = sorted(lffmspecmags)[-fmtopmagscount:]
fmtoppos = [list(lffmspecmags).index(m) for m in fmtopmags]
fmtopfreqs = [lffmspecfreqs[p] for p in fmtoppos]

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 100/109

AM and FM spectral analysis, Part 3: graphics
fig,((plt01, plt02),(plt03, plt04)) = plt.subplots(nrows=2, ncols=2, figsize=(14, 4))# define figure
format
plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold")# display a title

Time domain
xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

xaxistime = np.linspace(0, signalseconds, f0arraylength) # define x axis in seconds
plt03.scatter(xaxistime, f0array, s=1, color="blue") # plot waveform in grey
plt03.set_ylim(f0min, f0max)
plt03.set_xlabel("Time")
plt03.set_ylabel("Frequency")

Frequency domain
plt02.plot(lfamspecfreqs, lfamspecmags)
plt02.scatter(amtopfreqs, amtopmags, color="red")
for f,m in zip(amtopfreqs, amtopmags):

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,amspectrummax)

plt04.plot(lffmspecfreqs, lffmspecmags)
plt04.scatter(fmtopfreqs, fmtopmags, color="red")
for f,m in zip(fmtopfreqs, fmtopmags):

plt04.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)
plt04.set_xlabel("Frequency")
plt04.set_ylabel("Magnitude")
plt04.set_xlim(0,amspectrummax)

plt.savefig(figurefilename)
plt.tight_layout(pad=3)
plt.show() # display figure

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 101/109

Finally ...

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 102/109

Science about trying to prove yourself to be wrong.

Then trying to do more with new data if you are right
(and others agree that you are right using similar methods).

But improving your theory or method, or using different data
if you are wrong.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 103/109

Scientific Discovery: a clear example of Critical Rationalism

Chomsky, N. 1957. Syntactic Structures. The Hague:
Mouton.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 104/109

Scientific Discovery: a clear example of Critical Rationalism

2. Finite State Grammars – falsified!

3. Phrase Structure Grammars – falsified!

4. Transformational Grammars – not falsified!

1. Domain characterisation and delimitation

Chomsky, N. 1957. Syntactic Structures. The Hague:
Mouton.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 105/109

Scientific Discovery: a clear example of Critical Rationalism

2. Finite State Grammars – falsified!

3. Phrase Structure Grammars – falsified!

4. Transformational Grammars – not falsified!

1. Domain characterisation and delimitation

Chomsky, N. 1957. Syntactic Structures. The Hague:
Mouton.

Chomsky’s models have been shown to
overgeneralise: complete but not sound.

For example, phonology, prosody,
morphology, as well as syntax in
conversational speech (but not semantics),
can be fully modelled with Finite State
Grammars.

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 106/109

A Critical Rationalist approach to methodology

EMPIRICAL
METHODS:
observation

FORMAL METHODS:
theory, model

SPEECH DOMAIN RANKS
(categories with their phonetic and
semantic interpretations)

textual
description

logic,
mathematics

heuristic
symbolism

hermeneutics,
intuition

measurement,
comparison,
quantitative
analysis

syllable word sentence
text/turn dialogue

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 107/109

Summary

● Lecture 1:
– Semiotics of prosody
– Rhythm and melody

● Lecture 2:
– Rhythm analysis method:

● Rhythm Formant Theory
● Rhythm Formant Analysis

● Lecture 3:
– Modulation Theory
– Rhythm Formant Analysis: “do it yourself”
– Scientific methodology

rhythm
formants

cohesion
rhetoric

rhythm
melody

the real world

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 108/109

谢谢

Many thanks for participating,

and good luck with your coding!

July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 109/109

Thanks – looking forward to future contacts!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109

