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Questions from Lecture 2

Q: Does the prosodic lexicon also contain meanings?

A: Yes, the information is in features; the meaning of a pitch accent is a function from a coextensive
locutionary segment to the deictic origo (/, here, now), comparable with other deictic forms such as “this”,
“here”.

Q: What is the Type 3 grammar for call contours?
A: ... B — palh, chroma] C, C — downstep B (pitch accent loop; see Pierrehumbert discussion later)
Q: Are your grammars for intonation and tone like those of Pierrehumbert?

A: Yes, they use the same formal theory, as a finite state automaton (dates back to the 1940s,
McCulloch-Pitts) or as a Type 3 grammar (dates back to the 1950s, Chomsky).

Q: What does ‘exponential complexity’ mean?

A: For a sentence of length n, where G is a property of the Grammar: linear time: Gn
cubic time: Gn3

exponential time: G"
Q: What is the difference between rhythm and prosody?

A: Prosody is the music of speech, consisting of rhythms and melodies.

Q: Why is a right-branching structure not centre-embedding, even if the nodes have the same
label, like in the example of Féry?

A: See the following slides.
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Question from Lecture 2

Q: Why is a right-branching structure not centre-

embed_dln_g’ even If the nOdeS,have the same First condition Second condition

label, like in the example of Féry? /)\

“l assume a recursive structure: All sentences are i- / \
phrases, the grouping of two sentences is also an i- [[Al  [[BI [Cliils [[[AlL Bl [Clils
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the

structures violate the Strict Level Hypothesis (but this does not affect the argument):

1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-
branching it is top-down, with left-branching it is bottom up.

2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state
automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.
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Question from Lecture 2

Q: Why is a right-branching structure not centre-

embed_dln_g’ even If the nOdeS,have the same First condition Second condition

label, like in the example of Féry? /)\

“l assume a recursive structure: All sentences are i- / \
phrases, the grouping of two sentences is also an i- [[Al  [[BI [Cliils [[[AlL Bl [Clils
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Question from Lecture 2

Q: Why is a right-branching structure not centre-

embed_dln_g’ even If the nOdeS,have the same First condition Second condition

label, like in the example of Féry? /)\

“l assume a recursive structure: All sentences are i- / \
phrases, the grouping of two sentences is also an i- [[Al  [[BI [Clilils [[[AlL Bl [Clils
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the

structures violate the Strict Level Hypothesis (but this does not affect the argument):

1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-
branching it is top-down, with left-branching it is bottom up.

2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state
automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

14) Boundary Pitch Accents Phrase Boundary
Tone . Accent _Tone

e
L L%
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Question from Lecture 2

Q: Why is a right-branching structure not centre-
embedding’ even If the nOdeS have the same First condition Second condition

label, like in the example of Féry? /)\
“I assume a recursive structure: All sentences are i- / \

phrases, the grouping of two sentences is also an i- [[Al  [[BI [Clilils [[[AlL Bl [Clils
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the

structures violate the Strict Level Hypothesis (but this does not affect the argument):

1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-
branching it is top-down, with left-branching it is bottom up.

2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state
automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

\ . . .
14) Boundary Pitch Accents farese - Satniany Equivalent right-branching Type 3 grammar:

A- ({H%,L%})B
A- ¢€B

H H%
DT B (Ut L e ot e
L L%

C - {H-,L-}D
C->¢B

e

D - {H%, L%}

H*+H™
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Question from Lecture 2

Q: Why is a right-branching structure not centre-
embedding’ even If the nOdeS have the same First condition Second condition

label, like in the example of Féry? /)\

“l assume a recursive structure: All sentences are i- / \
phrases, the grouping of two sentences is also an i- [[Al  [[BI [Clilils [[[AlL Bl [Clils
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the

structures violate the Strict Level Hypothesis (but this does not affect the argument):

1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-
branching it is top-down, with left-branching it is bottom up.

2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state
automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

W Bopey  lchhocents Mccent  Tone” Alternatively as a generate-and-test search system:

Grammatr: infinite set of sequences from finite lexicon:
GEN = ({H%,, L%,} U {H*, L*, L*H-, L-+H*,

H><Hz§%"’ H*+L-, H-+L*, H*+H-} U {H-, L-} U {H%,, L%.} U {g} )*
T D1z Finite constraint lexicon to evaluate for accepted subset:
CON ={o(<A,B>) e {H%,,L%,, €}
0(<B,C>) e { H*L*L*H-,L-+H* H*+L-,H-+L* H*+H-, H-, L-}
o(<C,B>) e{¢g}

o(<C,D>) €{H-, L-}
o(<D,E>) €{H%,, L%, }}

e

H*+H™
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Question from Lecture 2

Q: Why is a right-branching structure not centre-
embedding’ even If the nOdeS have the same First condition Second condition

label, like in the example of Féry? /)\

“l assume a recursive structure: All sentences are i- / \
phrases, the grouping of two sentences is also an i- [[Al  [[BI [Clilils [[[AlL Bl [Clils
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the

structures violate the Strict Level Hypothesis (but this does not affect the argument):

1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-
branching it is top-down, with left-branching it is bottom up.

2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state
automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

14) Boundary Pitch Acce

Tone

Phrase
Accent

Boundary
Tone

Equivalent right-branching Type 3 grammar:

A- ({H%,L%})B
A - €B

B - {H* L* L*H-, L-+H*, H*+L-, H-+L*, H*+H*} C
C->{H-,L-}D
C -¢B

D - {H%, L%}
D - €¢B
E - €A

H*+H™
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Question from Lecture 2

Q: Why is a right-branching structure not centre-
embedding’ even If the nOdeS have the same First condition Second condition

label, like in the example of Féry? /)\

“l assume a recursive structure: All sentences are i- / \
phrases, the grouping of two sentences is also an i- [[Al  [[BI [Clilils [[[AlL Bl [Clils
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the

structures violate the Strict Level Hypothesis (but this does not affect the argument):

1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-
branching it is top-down, with left-branching it is bottom up.

2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state
automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

14) Boundary Pitch Acce

Tone

Phrase
Accent

Boundary
Tone

Equivalent right-branching Type 3 grammar:

A- ({H%,L%})B
A - €B

B - {H* L* L*H-, L-+H*, H*+L-, H-+L*, H*+H*} C
C-{H-,L-}D Global contour:
C-¢B downtrend: declination, downstep,
level, inclination, upstep
Three iterations:
downtrend loop
reset loop

restart loop
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Question from Lecture 2

Q: Why is a right-branching structure not centre-
embedding’ even If the nOdeS have the same First condition Second condition

label, like in the example of Féry? /)\

“l assume a recursive structure: All sentences are i- / \
phrases, the grouping of two sentences is also an i- [[Al  [[BI [Clilils [[[AlL Bl [Clils
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the

structures violate the Strict Level Hypothesis (but this does not affect the argument):

1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-
branching it is top-down, with left-branching it is bottom up.

2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state
automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

14) Boundary Pitch Acce

Tone

Phrase
Accent

Boundary
Tone

Equivalent right-branching Type 3 grammar:

A~ ({H%,L%})B
A - onset B

B - {H* L* L*H-, L-+H*, H*+L-, H-+L*, H*+H* } C

C-{H-,L-}D Global contour:

C - downtrend B downtrend: declination, downstep,
level, inclination, upstep

D~ {H%, L%} Three iterations:

D - resetB downtrend looop

E - restart A reset loop

restart loop
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Question from Lecture 2

Q: Why is a right-branching structure not centre-

embedding, even |f the nOdeS have the same First condition Second condition

label, like in the example of Féry? />\ /

“l assume a recursive structure: All sentences are i- \
phrases, the grouping of two sentences is also an i- [[AL (Bl [Tl [[[A] [Blii  [Clils

phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the

structures violate the Strict Level Hypothesis (but this does not affect the argument):

1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-
branching it is top-down, with left-branching it is bottom up.

2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state
automaton,and require only finite memory and linear processing time, unlike centre-embedding grammars.

Pitch Acce

Phrase Boundary
Accent Tone
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T
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/\B
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B

downtrend
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Question from Lecture 2

Q: Why is a right-branching structure not centre-

embedding; even If the nOdeS have the same First condition Second condition

label, like in the example of Féry? / /

“l assume a recursive structure: All sentences are i- \
phrases, the grouping of two sentences is also an i- [[AL (Bl [Tl [[[A] [Blii  [Clils

phrase, and the whole utterance is an i-phrase as well.”
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1. Moving left-to-right, in each case the following item is not em ,_m ht-
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2. Left-branching and right-branching grammars describe the s: H*+/|_-\c e
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Sounds of Prosody

RFT: Rhythm Formant Theory
RFA: Rhythm Formant Analysis

How to do it:
1. Algorithms
2. Case studies

Code, articles: https://github.com/dafyddg/RFA
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Timing of Speech

Music and speech depend on the temporal constraints given by

the human body:
- Body rhythm timing:
* approximately one main movement per second:
- foot stamping, running, walking
hand clapping, head nodding
chewing, sucking

hand-shaking, intimate interaction
syllable and word sequences

Different speech rhythms:

- rhythms of syllable constituents (C, V)
- Rhythms of syllable types (strong, weak; stressed, unstressed)
- Rhythms of words or feet, phrases, sentences
- Rhythms of discourse episodes
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Timing of Speech

Music and speech depend on the temporal constraints given by

the human body:
Body rhythm timing:
* approximately one main movement per second:
- foot stamping, running, walking
- hand clapping, head nodding
- chewing, sucking
- hand-shaking, intimate interaction

syllable and word sequences

Different speech rhythms:
- rhythms of syllable constituents (C, V)

D. Gibbon:

Rhythms of syllable types (strong, weak; stressed, unstressed)

Rhythms of words or feet, phrases, sentences
Rhythms of discourse episodes

Sounds of Prosody

The association of the ‘Rhythm hierarchy’ with
the ‘Prosaodic Hierarchy’ is flexible and depends

on
e semantic constraints (e.g. contrast)
* pragmatic constraints (e.g. emphasis)

July 2022, Contemporary Phonetics and Phonology
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Metalocutionary Theory of Prosodic Function

time

Prosody: slow rhythms & melodies

Structures: (autosegmental) asssociation

Meanings: (spatiotemporal) metadeixis
Modalities: (multichannel) streaming

rY Y Y Y Y

Locution: fast CV alternatlon

Time Types:
cloud time  (intuitive everyday ‘real’ time)

clock time (Newtonian time, universal quantitative time)

-

rubber time (Aristotelian time: Event Phonology, tree structures)
categorial time (abstract time points: duration contrast; context)
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The Modulation Code: Time and the Frequency Scale

Low frequencies: Mid frequencies: High frequencies:
rhythm rhythm consonants and vowels

LFAM&FM < (de)modufanon <«—» HFAM&FM

rhythm formants ' phone formants

carrier signal: carrier- harmonics,

phrase, word,

syllable

discourse foot periodic / ‘noise’ obstruent ‘noise’
0 1Hz 10Hz|| _ 100Hz | 1kHz 10kHz,
v | ' ~"
_____________ RHYTHMS | FO, PITCH Il'MﬁEE_ VOICE QUALITY
Low Frequency High Frequency
AM and FM modulations AM and FM modulations
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Theory and practice of Rhythm Analysis: RFT and RFA
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Rhythm Formant Theory and Analysis

Rhythm Formant Theory (RFT):

- Arhythm formant is a frequency zone of higher magnitude values in the
normalised low frequency (LF) spectrum.

- Rhythm formants are detected both in the LF AM spectrum and also in the
LF FM spectrum.

Rhythm Formant Analysis (RFA):

- The spectrum frequencies and their magnitudes are obtained by FFT and
the magnitudes are normalised to the range 0,...,1.

- A minimum magnitude (e.g. about 0.2) is defined as a cutoff level; the
higher values are then shown as red dots in the RFA spectrum.

— The spectra of different recordings are
* compared using standard distance metrics

— and represented as distance maps,

- also (1) hierarchically clustered using (2) standard clustering criteria and represented
as dendrograms.

Thanks to Dr. Liu Huangmei, for suggesting the term ‘formant’ in this context.
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Rhythm Formant Analysis: implementation

RFA implementation (GitHub repository):

The applications included in the set are intended for experiments based on
the low frequency long-term AM and FM spectrum:

The set of demonstration applications can be freely adapted and modified to
suit your own needs.

RFA directory:
Articles
[ICBP2022-slides
LittleHelpers
README.1st
README.md
RFA_multiple_signal_processing
RFA_single_signal_processing

Code, articles: https://github.com/dafyddg/RFA
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Rhythm Formant Analysis: implementation

RFA implementation (GitHub repository):

The applications included in the set are intended for experiments based on
the low frequency long-term AM and FM spectrum:

The set of demonstration applications can be freely adapted and modified to
suit your own needs.

RFA directory: RFA_single_signal_processing:

Articles DATA _
ICBP2022-slides English_male_MLKO1.wav
LittleHelpers English_male_one-to-seven.wav
README.1st English_male_one-to-thirty 16k.wav
README.md Female_English_German:
RFA_multiple_signal_processing RT_El.wav
RFA_single_signal_processing RT_E2.wav

RT_E3.wav

RT_Gl.wav

RT_G2.wav

RT_G3.wav

Putonghua female one-to-seven.wav
sine-200x5x6.wav

FIGURES

module_dendrogram.py

module_FO0.py

module_spectrogram.py

rfa_single_conf.py

rfa_single.py

Code, articles: https://github.com/dafyddg/RFA
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RFA

Rhythm Formant Analysis: implementation

RFA implementation (GitHub repository):

The applications included in the set are intended for experiments based on

the low frequency long-term AM and FM spectrum:

The MIT licence is used, so demonstration applications can be freely
adapted and modified to suit your needs (with acknowledgments).

RFA_single_signal_processing

Articles

[ICBP2022-slides

LittleHelpers

README.1st

README.md
RFA_multiple_signal_processing
RFA_single_signal_processing

Code, articles: https://github.com/dafyddg/RFA

D. Gibbon: Sounds of Prosody

DATA
English_male MLKO1.wav

English_male_one-to-seven.wav
English_male_one-to-thirty 16k.wav

Female English_German:
RT _El.wav
RT_E2.wav
RT_E3.wav
RT_Gl.wav
RT_G2.wav
RT_G3.wav

Putonghua female one-to-seven.wav

sine-200x5x6.wav
FIGURES
module_dendrogram.py
module_FO0.py
module_spectrogram.py
rfa_single_conf.py
rfa_single.py

July 2022, Contemporary Phonetics and Phonology

RFA_multiple_signal_processing

CSV
DATA
Female_English_German

RT _El.wav
RT_E2.wav
RT_E3.wav
RT_Gl.wav
RT_G2.wav
RT_G3.wav

DENDRO

GRAPHVIZ

module_FO.py

module_spectrogram.py

numdistnetdendro_conf.py

numdistnetdendro.py

rfa_mult_conf.py

rfa_mult.py
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Empirical Background: Phonetic Domain, Phase Cycle
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Aims of this part of the talk

Overview of Rhythm Formants as low frequency modulations of
speech

Demonstration of how my software (also Praat etc.) does

- AM and FM demodulation
— spectral analysis

— comparing spectra from different recordings of comparable data using
distance tables, distance maps and distance based clustering

e Why?
- If you're a driver, it makes sense to know how a car works in practice.

- If you're a phonetician, it makes sense to know how ‘pitch’ extraction,
spectral analysis, distance maps and clustering etc. work in practice.

SPOILER

It's easier than you think!
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Empirical Background: Phonetic Domains and Methods

v

Articulatory
Phonetics

A

D. Gibbon: Sounds of Prosody

v

p Neuro_- -
phonetics
s Cognition = ~
Y |
Production Perception

July 2022, Contemporary Phonetics and Phonology

A

/ > Transmission —\

Acoustic
Phonetics

Auditory
Phonetics

}
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Overview

* Production and perception phases of prosodic events are well

known in phonetics:
— source-filter theory: larynx as source, oral & nasal cavity as filter
— cochlea transformation theory: extraction of signal frequencies

* Transmission theory is usually left to the audio engineers:

* So let’'s do something in this talk to correct this:

— Modulation Theory:
* Amplitude Modulation (AM)
* Frequency Modulation (FM)

- a 'do-it-yourself' approach to phonetic software
* an alternative, for some purposes, to using ready-made off-the-shelf applications

— you can download demonstration examples in Python
BUT: no programming experience is required
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Rhythm Formants

Rhythm Formant Theory (RFT):

* Arhythm formant is a frequency zone of higher magnitude values in the
normalised low frequency (LF) spectrum.

* Rhythm formants are detected in the LF AM spectrum and in the LF FM
spectrum.

Rhythm Formant Analysis (RFA):

* The spectrum magnitudes are obtained by FFT and normalised to the
magnitude range O,...,1.
* The spectra of different recordings are compared using
- standard distance metrics, then
* represented as distance maps, and

* hierarchically clustered using standard clustering criteria, and
represented as dendrograms.

D. Gibbon: Sounds of Prosody July 2022, Contemporary Phonetics and Phonology
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Modulation Theory
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Formal background: Modulation Theory

carrier signal modulated with information signal

1) carrier signal with frequency modulation signal (FM)
tone, pitch accent, intonation — larynx

2) carrier signal with amplitude modulation signal (AM)
consonants, vowels, syllables — oral & nasal cavities

3) speech: carrier signal with AM and FM simultaneously
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AM envelope demodulation:

AM and FM Demodulation

. 1.0 S
* phonetics: ©
amplitude curve, syllable, % 0.5 4
stress-accent £
e phonology: 0.04_- , | | , , , , :
sonority curve, syllables, stress 0 2 4 6 8 10 12 14 16
ﬁ U Time
l_
b}
E
Modulated carrier signal = 07
g
_1 E T T T T T T T T T
0 2 4 6 8 10 12 14 16
ﬂ Time
FM envelope demodulation: .
o P > 300 +
phonetlps. . L o A " :
FO, pitch track S oo '\ . J
[=n : H .
» phonology: | | g : N V& Vi o=z
tones, pitch accents, intonation 100 1— . . . . . : : .
0 2 4 6 8 10 12 14 16
Time
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AM and FM demodulation and detection of rhythm

speech signal input

demodulation

4

LF AM envelope |

T A AArAADNMA

Amplitude

-~ LF FM envelope

Frequenc
s

demodu;lation

1 " VIR |
100 T T T

demodulated

v | AM and FM

T
LF AM spectrum

rhythm formant
analysis

LF FM spectrum
rhythm formant
analysis

shapes

detected

. rhythm formants

Hartmut Traunmtiller (1994) "Conventional, biological, and environmental factors in speech
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmdiller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal

Inst. of Technology, Stockholm.
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Comparison with Traunmuller’s demodulation model

Acoustic signal

A 4

Auditory analysis
(demodulation)

!

Modulation of voice

|

Integration of
vocal
information

!

Vocal percept

Amplitude

LF AM envelope -

demodulation

4

| A AN R R A AN MA

-~ LF FM envelope

Frequenc
s

demodu;lation

speech signal input

1 " VIR |
100 T T T

demodulated

T T
6 8

LF AM spectrum
rhythm formant
analysis

AM and FM

LF FM spectrum
rhythm formant
analysis

2.00

shapes

detected
rhythm formants

Hartmut Traunmtiller (1994) "Conventional, biological, and environmental factors in speech
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmdiller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor

Inst. of Technology, Stockholm.

theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal
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Traunmuller: audiovisual perception (2007)

Acoustic signal Optic signal
A 4 A 4
Auditory analysis Visual analysis
(demodulation) (demodulation)

! !

Modulation of voice Modulation of face

Integration of Integration of
vocal gestural
information information
Vocal percept Gestural percept

Hartmut Traunmtiller (1994) "Conventional, biological, and environmental factors in speech
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmdiller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal
Inst. of Technology, Stockholm.
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Traunmuller: audiovisual perception (2007)

Acoustic signal Optic signal
\ 4 A 4 ‘
Auditory analysis Visual analysis LF AM envelope ~  LF FM envelope
(demodulation) (demodulation) demodulation demodulation
! ! v Y |
Modulation of voice Modulation of face | T WY W W Ll ) LN T
, , LF AM spectrum LF FM spectrum
Integration of Integration of hvthm f hvthm f
vocal gestural rhythm formant rhythm formant
information information analysis

analysis
: :

Vocal percept

Gestural percept | =

Hartmut Traunmtiller (1994) "Conventional, biological, and environmental factors in speech
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmdiller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal
Inst. of Technology, Stockholm.
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AM and FM modulation step by step
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Amplitude

Modulation: carrier signal

1. Larynx-source-like carrier signal = Ac;-cos(2n-80Hz-t + @)
T TR
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Amplitude

Amplitude

Modulation: FM signal with low frequency information

1. Larynx-source-like carrier signal = Ac;-cos(2n-80Hz-t + @)

L o o o o b o i

0 foar= BO Hz |
_1_ [ [ [ L) L [ L | L) L [ [ L) L) L) [ L) [ L) L) | ¥ L] L)

T T T T T T T
0.00s 0255 0.50s 0755 100s 1255 150s 1755 2.00s
2. Intonation-like FM signal (FM = Aﬁ-n cos{zn ‘0.5Hzt + rpfm] modulation overlaml]
14 ! T S N T T R T T TN |
OISR ETAN A D AR AR G A AR A e A F::a.'= a0 Hz

O T e e T T e e T T « fm=05Hz |
—pqrtrrrrrrrrneRner PERERET e e e e e e e e R e e et areny tEEvrrersrerveyrenn .. ................................... |

0.00s E.ZISS B.SII.".IS E.?ISS J.E:Ds 1.2I55 1.5|Ds 1.TI‘I55 2.00s

D. Gibbon: Sounds of Prosody July 2022, Contemporary Phonetics and Phonology 38/109



Amplitude

Amplitude

Modulation: AM signal with low frequency information

1. Larynx-source-like carrier signal = Ac;-cos(2n-80Hz-t + @)

T o
0 foar= BO Hz |
_1_-|I- i [} [} LI} [ L L} L} [ [ [} [} [} [ ] [} [} [} L} [ L] LI
0.00s III.2I55 IJ.SII.".IS III.?ISS 1.I3:I.".Is 1.2I55 1.5|Ds 1.?I55 2.00s
3. Sonority-like AM signal (AM = A,-cos(2n-3Hz t + ¢,,), modulation overlaid)
1 111114 111114 14714 3L e (e
“. frar= 80 Hz
0 Y Em=3tz f
1 \ I |1 L il
_1 Bl T T T T T T T
0.00s 0.25s 0.50s 0.75s 1.00s 1.25s 150s 1.75s 2.00s
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Amplitude

Amplitude

—-0.5

Modulation Theory

1. Larynx-source-like carrier signal = Ac;-cos(2n-80Hz-t + @)
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Demodulation and analysis procedures in RFA

D. Gibbon: Sounds of Prosody July 2022, Contemporary Phonetics and Phonology 41/109



Demodulation and analysis procedures in RFA

Time domain processing:

- Envelope extraction
- Fundamental frequency estimation (‘pitch’ extraction)

Time domain to frequency domain transformation:
- Spectral analysis

- Spectrogram analysis

- FO estimation:

* time domain procedures: zero-crossing count, autocorrelation (AC), average
magnitude difference (AMDF)

* frequency domain procedures: spectrum transformation and analysis

 Comparison using distance metrics
- distance calculation with different distance metrics
— hierarchical clustering with distance and different clustering criteria

e Output:
- Graphical display
— Numerical files and figure files
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Demodulation and analysis: output examples
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Example outputs
Story “The North Wind and the Sun”, read by an adult female German-English bilingual

Speech signal amplitude modulation properties [file: RT-2020-07-26-NWAS-English-01-mono-16k]

Sonority: Waveform and Envelope 100 Rhythm formants: AM LF long-term spectrum (whole utterance)
14 .
L :I:veforr:w '23H]_Z —— LF spectrum
¢ 5lms .
E _MMW’V\WWM\,M g0 —— magnitude peak
2 2 P
3 97 &
& g
_1 +
0s 55 10s 155 20s 255 30s 35s 40s OHz 2Hz 4Hz 6Hz 8Hz 10Hz
Time
Pitch: FO estimation Rhythm formants: FM LF long-term spectrum (whole utterance)
400 1.00
FO estimation frame i LF spectrum
Z 300 4 . . 8 0.75 |.'. —— magnitude peak
c [] = ( i
el bk A detha e i R
= ., [= . u
S o004 Searg 1‘ ML | P-'l |.. J \s Vs fAY "n e Me 1oy =
& lﬁ tl. . v " TNy Y TR £ 0.25 - ;
. ghs
nmo T T T T T T T T 0.00 T T T T 'E
0s 55 10s 155 20s 255 30s 35s 40s OHz 2Hz 4Hz 6Hz 8Hz 10

Time

Similarity of readings: The North Wind and the Sun, bilingual in English and German

RT-2020-07-26-N'WAS-German-03
cosine distance metric

n=5/15, 0.7 max dist

RT-2020-07-26-NWAS-English-01

0.675
RT-2020-07-26-NWAS-English-03
RT-2020-07-26-NWAS-English-02 RT-2020-07-26-N'WA5-German-02 .
RT-2020-07-26-NWAS-English-02
0.518 RT-2020-07-26-NWAS-English-01

RT-2020-07-26-NWAS-English-03 RT-2020-07-26-NWAS-German-02

RT-2020-07-26-N'WAS-German-03

RT-2020-07-26-NWAS-German-01

RT-2020-07-26-NWAS-German-03

T T T T T T T
0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00
DGRAMS/RT-2020-07-26-NWAS-German-03cosine-single
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Amplitude

Frequency

Sonority: Waveform and Envelope

Example outputs
Poem recitation: B-036 = /i [ £&#% ]-mono-16k

Speech signal amplitude modulation properties [file: B-036]
Rhythm formants: AM LF long-term spectrum (whole utterance)

waveform
— AM envelope
O_MMMM
-1 4
Os 5|s lll)s l:'las 2 [I)s 2 és 3[I)s
Time
250 Pitch: FO estimation
. . HE] 0 o= .
200 ] ‘. u li:l_l . :|-|! %estlmatlonf}[ﬁrﬁe
i ; iofet |t HEH i
150_._]5!_13 . t lil“!ir i 1.._=j:;!";;‘=it_,“'1‘l.... i,
* H il 3 A 11 " Il " .
MRS EE R WAl
A YUV Uy AN Y Y AYY
o5 5 105 15 208 25 s

Comparing two styles of Tang dynasty poetry

Distance network:

D. Gibbon: Sounds of Prosody

Magnitude

Magnitude

1.00

0.75 A

0.50 A

e

N

u
1

—— LF spectrum
—— magnitude peak

T
3Hz

T
4Hz 5Hz

Rhythm formants: FM LF long-term spectrum (whole utterance)

—— LF spectrum
—— magnitude peak

Hierarchical clustering::

4Hz 5Hz

T o e e e e
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Demodulation and analysis: software design
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Rhythm Formant Analysis Software Design: Data Flow

Single speech signal analysis

AM (envelope)
demodulation

signal spectral (FFT)
normalisation analysis
& FM (FO) screen
demodulation output
output e
collation ks
signal

input

archive & temporary
storage

data,
settings,
control
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Rhythm Formant Analysis Software Design: Data Flow

Single speech signal analysis

signal
normalisation

A

AM (envelope)
demodulation

spectral (FFT)

signal
input

D. Gibbon: Sounds of Prosody

analysis
FM (FO)
demodulation
Multiple spectrum & spectrogram comparison
] dlstance | distance
/ metrics maps
/ v
[ : :
hlerarchlcal dendrograms
| clustering |
\ —
\
~

archive & temporary

storage

output
collation’

ﬂ

data,
settings,
control
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Demonstration:

Demodulation, spectral analysis: processing single files
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Demonstration applications: outputs

30000 -

20000 4

10000

©

-10000

-20000

-30000 -

o 50000 100000 150000 200000 250000

DATA/one-to-ten-Putonghua-Lara-16k-mono.wav, 16000

Amplitude
o
S
3
:

-0.257

—0.50 1

—0.75

-1.004

o 2 4 6 8 10 12 14 16
Time

DATA/one-to-ten-Putonghua-Lara-16k-mono.wav, 16000

Amplitude
o
I
8

—0.254

—0.50 1

=0.75 4

-1.004

T T T T T T T T T
0 2 4 6 8 10 12 14 16

Time
DATA/one-to-ten-Putonghua-Lara-16k-mono.wav, 16000

Amplitude

-0.254

—0.50 4

—0.75 1

-1.00 4

T T T T T T T T T
0 2 4 6 8 10 12 14 16
Time
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Demonstration apps - time domain outputs

30000 -

20000 4

10000

-10000

-20000

-30000 -

TIME
DOMAIN

o 50000 100000 150000 200000 250000

DATA/one-to-ten-Putonghua-Lara-16k-mono.wav, 16000

1.00 4

0.75

0.50 1

0.25 4

0.00 4

Amplitude

-0.257

—0.50 1

—0.75

-1.004

Time

Time
DATA/one-to-ten-Putonghua-Lara-16k-mono.wav, 16000

Amplitude

1.00 4

0.754

0.50 1

0.25 4

0.00 4

Amplitude

—0.251

-0.50

—0.75 1

-1.004

Time

DATA/one-to-ten-Putonghua-Lara-16k-mono.wav, 16000

1.00 4

0.75 4

0.50 1

0.25 4

0.00 4

Amplitude

-0.254

—0.50 4

—0.75

-1.00 4

Time

D. Gibbon: Sounds of Prosody

July 2022, Contemporary Phonetics and Phonology

51/109



Demonstration apps — time and frequency domain outputs
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20000 4
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Software description: time domain analysis
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Time domain analysis: waveform display

# A wavefor:

import sys
import matp!.
import scip]

wavfilename
fs, signal

plt.plot (si¢
plt.show ()

Description

The programming language (in this case Python3) is provided with a
large collection of algorithm implementations for processing various
kinds of data for different purposes, stored in specialised ‘libraries’.

In this case, system function is imported, which allows the filename
to be input from the command line, a science library function is

: imported which permits input of an audio file, and a graphics library

IS imported to produce figures.

A mono WAV file is read, and the speech signal and the sampling
frequency are extracted from the file.

The signal is plotted as a graph and displayed.
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Time domain analysis: waveform display

# A waveform display.py Waveform. D. Gibbon 2021-07-06

import sys
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave

wavfilename = sys.argv[1l]
fs, signal = wave.read(wavfilename)

plt.plot(signal)
plt.show ()

#

*H* H* *H

import specialised modules

get input filename from command line
read sampling frequency and signal

plot waveform
display figure
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Time domain analysis: formatted waveform display

# B waveforn

import sys
import numpy
import matpl
import scipy

wavfilename
fs, signal =
signallengtkt
signalseconc
signal = sic

plt.suptitle

Description

In this application, in principle exactly the same thing happens,
except that the figure is formatted more informatively.

For the calculations which are involved, a library of numerical
functions is imported.

After reading the file, the amplitude of the signal is normalised
between -1 and 1 for the y-axis of the graph, and the overall time in
seconds is calculated for the x-axis from the sampling frequency and
the length of the signal.

mmand line
d signal
tes

conds

xaxis = np.]1 in seconds
plt.plot (xax . : : : : in grey
plt.xlabel (" 1he normalised signal is plotted as a graph and displayed with the |
plt.ylabel (' appropriate x-axis and y-axis information.
plt.tight 1=¢
plt.show() 2
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Time domain analysis: formatted waveform display

# B _waveform display.py Formatted waveform display. D. Gibbon. 2021-07-06

import sys # import specialised modules
import numpy as np

import matplotlib.pyplot as plt

import scipy.io.wavfile as wave

wavfilename = sys.argv[1l] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / f£fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1
ey
plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace (0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.xlabel ("Time") # add axis labels
plt.ylabel ("Amplitude")

plt.tight layout (pad=3)

plt.show() # display figure

D. Gibbon: Sounds of Prosody July 2022, Contemporary Phonetics and Phonology 57/109




Time domain analysis: waveform and envelope

# C waveform

envelope displayv.pv Waveform & AM envelope medfilt. D. Gibbon 2021-07-06

import
import
import matpl
import scipy
from scipy.s

sys
numpy

wavfilename
fs, signal =
signallength
signalsecond
signal = sig

envelope
envelope

plt.suptitle

xaxis = np.1l
plt.plot (xax
plt.plot (xax
plt.xlabel ("
plt.ylabel ("

Description

In this application, everything which happened in the previous
applications also happens, but in addition, the amplitude modulation
of the signal is demodulated.

This is done by taking the absolute signal, that is, only positive
values of the signal (or conversion of negative values of the signal
into positive values), and low-pass filtering (smoothing) the result.

Low-pass filtering (smoothing) is done here with a moving median
filter, which moves through the signal calculating the median values
of intervals in the signal. The method is rather slow, and somewhat
difficult to characterise. But it works...

| 1line
mal

» envelope

in seconds
in grey

in red

s

plt.
plt.

tight 1
show ()

I ==\~ 7

# display figure
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Time domain analysis: waveform and envelope

# C_waveform envelope display.py Waveform & AM envelope medfilt. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np

import matplotlib.pyplot as plt

import scipy.io.wavfile as wave

from scipy.signal import medfilt

wavfilename = sys.argv[l] # get input filename from command line

fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / f£fs) # define signal length in seconds

signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

envelope = medfilt(abs(signal), 301) # extract low frequency amplitude envelope
envelope = envelope / max(envelope) # normalise envelope to 0 ... 1

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace (0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red” # plot envelope in red
plt.xlabel ("Time") # add axis labels
plt.ylabel ("Amplitude")

plt.tight layout (pad=3)
plt.show() # display figure
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Time domain analysis: waveform and envelope

# D waveform envelope display.py Wwaveform, AM envelope Butterworth. D. Gibbon 2021-07-06

import
import
import matpl
import scipy
from scipy.s

sys
numpy

wavfilename
fs, signal =
signallength
signalsecond
signal = sig

b, a = butte
envelope =1
envelope = e

plt.suptitle

xaxis = np.l1
plt.
plt.
plt.
plt.

plot (xax
plot (xax
xlabel ("
ylabel ("

Description

Again, in this application, everything which happened in the previous
applications.

Low-pass filtering is done here with a Butterworth filter, which
lowers the amplitude of frequencies above a specified cutoff
frequency. This is advisable since the idea is to capture only the very
low frequencies in the spectrum which make up the rhythms of
speech.This filter is much more efficient than the moving median
filter.

nmand line
1 signal
ces

ronds

1

xnvelope

in seconds

in grey
in red
s

plt.

plt.show ()

tight layout (pad=3)

# display figure
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Time domain analysis: waveform and envelope

# D _waveform envelope display.py Wwaveform, AM envelope Butterworth. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np

import matplotlib.pyplot as plt

import scipy.io.wavfile as wave

from scipy.signal import medfilt, butter, 1lfilter

wavfilename = sys.argv[l] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / f£fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5/ (0.5 * fs), btype="low") # define Butterworth filter

envelope = 1lfilter (b, a, abs(signal)) # apply filter to create 1lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

o m m
plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace (0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red") # plot waveform in red
plt.xlabel ("Time") # add axis labels
plt.ylabel ("Amplitude")

plt.tight layout (pad=3)

plt.show() # display figure
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Frequency domain analysis: FFT and AM spectrum

Nalnlnanm

27NN

1-07-06

# E wavefor= ~==alama cmaabam ddamdlace Addibdan Af TT amaacdao n

import sys

import numpy as np

import matplotlib.pyplot as
t scipy.io.wavfile as
scipy.signal import med

impor
from

wavfilename = sys.argv[l]
fs, signal = wave.read (wavfi
signallength = len(signal)
signalseconds = signallength
signal = signal / max(abs (si]

b, a = butter(5, 5/ (0.5 *
ope = 1lfilter (b, a, abs
ope

enve
v = envelope / max(en

o
[

specmags =
specmags =
specmaglen
specfregs =
spectrummax
lfspecmaglen
lfspecmags =
lfspecfreqgs

[ )

fig, ((plto01,

plt.suptitle("%s, %d"$ (wavfi

xaxistime = np.linspace (0, s
pltO0l.plot(xaxistime, signal
plt0l.plot(xaxistime, enveld

plt0l.set xlabel ("Time")
plt0l.set_ylabel ("Amplitude"|

plt02.plot (1l
plt02.set x1
plt02.set yl

Description

In this app, a major step forward is taken: the amplitude envelope
has been extracted and now it is time to analyse the rhythms. No
additional library is needed for this.

The first step in analysing the speech rhythms is done by first
applying a Fast Fourier Transform to the entire envelope in order to
produce a spectral analysis.

This step means moving from the time domain of the signal, in which
the amplitude of the signal is a function of the time in seconds, to the
frequency domain, with the magnitude of each frequency in the
signal displayed as a spectrum, magnitudes normalised from O to 1.

The frequencies in the spectrum can be seen to cluster in identifiable
regions, which are interpreted as rhythm formants. The rhythm
formants have very low frequencies below about 10 Hz, that is, 10
beats per second. The phone formants, which identify vowels and
consonants, have much higher frequencies above about 300 Hz,
ranging to several thousand Hz.

rith FFT

spectrum
m length
\itudes
[uencies

» format

plt02.

plt.tight_layout (pad=3)
plt.show()

set x1im (0, spectrummax)

# display figure
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Frequency domain analysis: FFT and AM spectrum

# E _waveform envelope spectrum display Addition of LF spectrum. D. Gibbon, 2021-07-06

import sys # import specialised modules
import numpy as np

import matplotlib.pyplot as plt

import scipy.io.wavfile as wave

from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1l] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = 1lfilter(b, a, abs(signal)) # apply filter to create 1f envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft (envelope))
specmags = specmags / np.max (specmags)
specmaglen = len (specmags)

specfreqs = np.linspace(0,£fs/2, specmaglen) get frequencies in spectrum

spectrummax = 3 define maximum frequency in 1lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get 1lf spectrum length
lfspecmags = specmags[l:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[l:1lfspecmaglen] # set low frequency spectrum frequencies

calculate spectrum magnitudes with FFT
normalise magnitudes to 0 .. 1
get length of spectrum

H HHHH

fig, ((plt0l, plt02)) = plt.subplots(nrows=1l, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%$(wavfilename, fs), fontweight="bold") # display a title
xaxistime = np.linspace (0, signalseconds, signallength) # define x axis in seconds
plt0l.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt0l.plot(xaxistime, envelope, color="red")

plt0l.set_xlabel ("Time")
plt0l.set_ylabel ("Amplitude")

plt02.plot(lfspecfreqgs, lfspecmags)
plt02.set xlabel ("Frequency")
plt02.set _ylabel ("Magnitude")
plt02.set x1im (0, spectrummax)

plt.tight_layout (pad=3)
plt.show() # display figure
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Frequency domain analysis: peaks in AM spectrum

# F _waveform envelope spectrum display Addition of LF spectrum dots. D. Gibbon, 2021-07-06

import sys

import numpy as np

import matplotlib.pyplot as
import scipy.io.wavfile as
from scipy.signal import med

wavfilename = sys.argv[l]
fs, signal = wave.read(wavfi]
signallength = len(signal)

signalseconds = signallength
signal = signal / max(abs(si

b, a = butter(5, 5 / (0.5 *
envelope = 1lfilter(b, a, abs
envelope = envelope / max(en

specmags = np.abs (np.
specmags = specmags /
specmaglen = len (spec
specfreqgs = np.linspa

spectrummax = 3
lfspecmaglen = int(ro
lfspecmags = specmags

lfspecfreqs = specfre

topmagscount
topmags = so
toppos = [ 1
topfregs = |

fig, ((plt0l, plt02))
plt.suptitle("%s, %d"%(wavfi]
xaxistime = np.linspace(0, s
pltOl.plot(xaxistime, signall
plt0l.plot(xaxistime, envelg

plt0l.set xlabel ("Time")
plt0l.set ylabel ("Amplitude'

plt02.plot (lfspecfreq
plt02.scatte
for £f,m in z

plt02. te

Description

This app again takes a small step forward, and defines critical
minimal values for frequency magnitudes in the spectrum which
are relevant for Rhythm Formant Analysis. These values are found
by trial and error in the first stages of analysis, and later predicted on
the basis of previous analyses.

The relevant frequency magnitudes are marked in the spectrum.

spectrum

positions

ed dots
op values

d values

plt02.set_xlabel ("Frequency")
plt02.set_ylabel ("Magnitude")
plt02.set_x1im(0,spectrummax)

plt.tight_layout (pad=3)
plt.show()

# display figure
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import sys

import numpy as np

import matplotlib.pyplot as plt

import scipy.io.wavfile as wave

from scipy.signal import medfilt, butter, 1lfilter
wavfilename = sys.argv[1l]

fs, signal = wave.read(wavfilename)

signallength = len(signal)

signalseconds = signallength / fs

signal = signal / max(abs(signal)

b, a = butter(5, 5/ (0.5 * fs), btype="low")
envelope = 1lfilter (b, a, abs(signal)
envelope = envelope / max(envelope)

specmags = np.abs(np.fft.rfft (envelope))
specmags = specmags / np.max (specmags)
specmaglen = len (specmags)

specfreqs = np.linspace(0,£fs/2,specmaglen)
spectrummax = 3

lfspecmaglen =

lfspecmags = specmags[l:lfspecmaglen]
lfspecfreqs = specfreqs[l:1lfspecmaglen]

topmagscount = 6

import specialised modules

get input filename from command line
read sampling frequency and signal
define signal length in bytes

define signal length in seconds
normalise signal -1 ... 0 ... 1

define Butterworth filter
apply filter to create 1lf envelope
normalise envelope 0 ... 1

# calculate spectrum magnitudes with FFT
# normalise magnitudes to 0 .. 1
# get length of spectrum
# get frequencies in spectrum
# define maximum frequency in 1f spectrum

int (round (spectrummax * specmaglen / (fs / 2))) # get 1f spectrum length

# set low frequency spectrum magnitudes
# set low frequency spectrum frequencies

# define max frequency of 1lf spectrum

topmags sorted (lfspecmags) [-topmagscount: ]
toppos
topfregs

[ 1fspecfreqs[p] for p in toppos ]

fig, ((plt0l1l, plt02)) = plt.subplots(nrows=1l, ncols=2, figsize=(14, 4))

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

# define x axis in seconds
# plot waveform in grey

xaxistime = np.linspace (0,
plt0l.plot(xaxistime, signal,
plt0l.plot(xaxistime, envelope,
plt0l.set xlabel ("Time")
plt0l.set ylabel ("Amplitude")

signalseconds, signallength)
color="1lightgrey")
color="red")

plt02.plot(lfspecfreqgs,

plt02.scatter (topfreqs, topmags, color="red")
for £f,m in zip(topfreqgs, topmags):

lfspecmags)

[ list(lfspecmags) .index(m) for m in topmags ]

# get top magnitudes
# get top magnitude positions
# get top frequencies

# figure format

# Scatter plot red dots
# loop through top values

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(£,1000/f), fontsize=8)# print formatted values

plt02.set_xlabel ("Frequency")
plt02.set_ylabel ("Magnitude")
plt02.set_x1im(0,spectrummax)

plt.tight layout (pad=3)

plt.show() # display figure
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Frequency Domain Analysis: File output

# G waveform

import sys

import numpy as np
import matplotlib.pyplot
import scipy.io.wavfile
from scipy.signal import

wavfilename = sys.argv[l
fs, signal = wave.read(w
signallength = len(signa
signalseconds = signalle
signal = signal / max(ab

b, a = butter(5, 5 / (0.
envelope = 1lfilter (b, a,
envelope = envelope / ma

specmags = np.abs(np.ffY
specmags = specmags / np
specmaglen = len (specmag
specfreqgs = np.linspace (
spectrummax = 3

lfspecmaglen = int (round
lfspecmags = specmags|[l:
lfspecfreqs = specfregs]|

topmagscount = 6

topmags = sorted(lfspecm
toppos = [ list(lfspecmal
topfregs = [ lfspecfreqgs
# _______________________
fig, ((p1t01, plt02)) = p

plt.suptitle("%s, %d"% (W

xaxistime = np.linspace (
pltO0l.plot(xaxistime, si
pltO0l.plot(xaxistime, en
pltOl.set_xlabel ("Time")
pltOl.set_ylabel ("Amplit

plt02.plot(lfspecfregs,
plt02.scatter (topfregs,
for £,m in zip(topfreqgs,

plt02.text (£, m
plt02.set_xlabel ("Freque
plt02.set_ylabel ("Magnit
plt02.set_xlim(0,spectru

Description

The small step forward taken by this app is simply to output the
values of the spectrum to a file, formated as a table in CSV format,
as well as saving the figure in PNG format.

This format can be imported by other applications, such as
spreadsheet programs like Excel or LibreOffice Calc.

The figure display is not affected.

plt.tight layo
plt.savefig(wa
plt.show()

aname) :
w')
text)

aname) :
a')
text)

.join(
»ecfreqgs ]

2 (
»ecmags ]
filename)

Llename)

aname)

ucC (pau—g)
vfilename[:-3]+".png")
# display figure
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Frequency Domain Analysis: File output

# G _waveform spectrum file outputs.py D. Gibbon, 2021-07-

import sys # import specialised modules
import numpy as np

import matplotlib.pyplot as plt

import scipy.io.wavfile as wave

from scipy.signal import medfilt, butter, 1lfilter

—

wavfilename = sys.argv[1l] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter

envelope = 1lfilter(b, a, abs(signal)) # apply filter to create 1lf envelope
envelope = envelope / max (envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max (specmags) # normalise magnitudes to 0 .. 1
specmaglen = len (specmags) # get length of spectrum
specfreqs = np.linspace(0,£fs/2,specmaglen) # get frequencies in spectrum

spectrummax = 3 # define maximum frequency in 1f spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get 1f spectrum length
lfspecmags = specmags|[l:1lfspecmaglen] # set low frequency spectrum magnitudes

lfspecfreqs = specfreqs[l:lfspecmaglen] # set low frequency spectrum frequencies I

# define max frequency of 1f spectrum
# get top magnitudes

topmagscount = 6
topmags = sorted(lfspecmags) [-topmagscount:]

toppos = [ list(lfspecmags) .index(m) for m in topmags ] # get top magnitude positions
topfreqgs = [ lfspecfregs[p] for p in toppos ] # get top frequencies
# _________________________________________________________________________________________

fig, ((plt01l, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

# define x axis in seconds
# plot waveform in grey

xaxistime = np.linspace (0, signalseconds, signallength)
plt0l.plot(xaxistime, signal, color="lightgrey")
plt0l.plot(xaxistime, envelope, color="red")
pltOl.set_xlabel ("Time")

pltO0l.set_ylabel ("Amplitude")

plt02.plot(lfspecfreqgs, lfspecmags)
plt02.scatter (topfreqgs, topmags, color="red")
for £,m in zip(topfreqs, topmags):

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(£,1000/£),
plt02.set_xlabel ("Frequency")
plt02.set_ylabel ("Magnitude")
plt02.set_xlim (0, spectrummax)

# Scatter plot red dots
# loop through top values
fontsize=8)# print formatted values

plt.tight layout (pad=3)
plt.savefig(wavfilename[:-3]+" .png")

plt.show() # display figure

import os

def outputtextlines(text, filename):
handle = open(filename, 'w')
linelist = handle.write (text)
handle.close()
return

def appendtextlines(text, filename):
handle = open(filename, 'a')
linelist = handle.write (text)
handle.close()
return

csvfreqs = "lffreqgs\t"+"\t".join(

[ "%$.3f"%x for x in lfspecfregs ]

)+ll\nll

csvmags = "lfmags\t"+"\t".join(
[ "$.3f"%x for x in lfspecmags ]
)+ll\nll

outputtextlines (csvfreqs, csvfilename)
appendtextlines (csvmags, csvfilename)

os.system("soffice %s"%csvfilename)
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Comparing multiple files

Comparison of English and German story readings

An English example:
The North Wind and the Sun

A German example:
Nordwind und Sonne
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Distance metrics

B
n
Manhattan Distance Z z; — v
(Cityblock distance, Taxicab Distance) ;
‘around the corner’
A
Canberra Distance Z i —
(Normalised Manhattan Distance) ;| + ‘yz
B
Euclidean Distance L
2
direct distance \/ Z(&U?z — ;)
‘as the crow flies’ i=1
A
B
Cosine Distance n
angle, direction, not magnitude 2im1 TiYi
so not distance itself \/ g2 \/ g2
‘hiker’s orientation’ A e
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Spectrum Comparison: Distance

Table

\\\\\ Eng 01 Eng 02 Eng 03 Ger 01 Ger 02 Ger 03
0.67477731 1. 0.74745837 0.93762055 0.85622088
0.5184008 0.76221046 0.87568858 0.7706713
0.78197106 0.85094568 0.82617612
0.42298678 0.56668163
0.44727788
Adult Female English-German bilingual reading
The North Wind and the Sun,
3 English, 3 German, in order of production.
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Distance map

RTI-2020-07-26-NWAS-German-03
cosmne distance metric
n=15/15, 1.0 max dist

RT-2020-07-26-INWAS-English-01

RT-2020-07-26-INWAS-English-02

0.938

RT-‘?D‘?D 07-26-NWAS-English-03
RT-zmr:}-n}?-zﬁ-mms.-G@

.876 0.856

0.771

RT-2020-07-26-INWAS-German-02

RT-2020-07-26-NWAS5-German-03
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RT-2020-07-26-NWAS-English-01

i
¢

0.675

RT-2020-07-26-NWAS-Enghsh-02

0.518

RT-2020-07-26-NWAS-Enghsh-03

i
VY

An English example:
The North Wind and the Sun

D. Gibbon: Sounds of Prosody

Distance map

RT—EGEG-G?-E&-N%E&S-@

/423

RT-ZDZD-G?-E&-NEE&S-G@ 0.567

Nﬂﬁ

RT-2020-07-26-NWAS5-German-03

cosine distance metric

n=5/15, 0.7 max dist

RT—ZDZD—D?—EE—N“’AS—G@

A German example:
Nordwind und Sonne
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Spectrum Comparison — Distance Networks, Part One

# H waveform envelope spectrum distancenetwork.py. D. Gibbon, 2021-07-06

import sys, re, glob # import specialised modules
import numpy as np

import matplotlib.pyplot as plt

import scipy.io.wavfile as wave

from scipy.signal import butter, 1lfilter, medfilt, hilbert

import scipy.spatial.distance as dist
from graphviz import Graph

spectrummax = 3

distancelimit = 0.7

distancemetrics = [ 'canberra',6 'chebyshev', 'cityblock',
'correlation', 'cosine', 'euclidean' ]

wavfiledirectory = sys.argv[1l]
wavfilelist = sorted(glob.glob(wavfiledirectory+"*.wav"))
datasetname = sys.argv[2]

namelist = []

rawvaluelist = []

for wavfilename in wavfilelist: # Make spectra for all files
wavfilebase = re.sub(".*/", "", wavfilename)
wavfilebase = re.sub("-mono-l6k.wav","" ,wavfilebase)

fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / f£s) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 10 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create 1f envelope
envelope = envelope / max (envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft (envelope))

specmaglen = len (specmags)

lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2)))
lfspecmags = specmags[l:lfspecmaglen]

lfspecmags = lfspecmags / max (lfspecmags)

namelist += [ wavfilebase ]
rawvaluelist += [ lfspecmags ]
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Spectrum Comparison — Distance Networks, Part Two

Previous code:
read all files and calculate spectrum for each file.
calculate file namelist and rawvaluelist of spectra

Operations:
use interpolation to ensure that lengths of spectra are equal
calculate distances (differences) between spectra with distance metrics

newsize = np.max( [ len(val) for val in rawvaluelist ] ) # Make equal data lengths
valuelist = []
for val in rawvaluelist:

size = len(val)

xloc = np.arange (size)
new_xloc = np.linspace(0, size, newsize)
new_data = np.interp(new_xloc, xloc, val) # Interpolation
valuelist += [ new_data ]
valuelist = np.array(valuelist)

for distancemetric in distancemetrics:

distances = dist.pdist(valuelist, metric=distancemetric)

dist square = dist.squareform(distances) # format as 2D table
dist list = dist_square.reshape (dist_ square.shape[0] * dist square.shape[l]) # reformat
dist list = (dist_list - np.min(dist list)) / (np.max(dist list) - np.min(dist list)) # normalise

dist_square = dist_list.reshape(dist_square.shape)

Output:
Distances between spectra in a two-dimensional table
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Spectrum Comparison — Distance Networks, Part Three

Previous code:

read all files and calculate spectrum for each file.
calculate file namelist and rawvaluelist of spectra

Operations:

Create and save distance network graph

d = Graph('D', filename=graphvizfilename, engine='dot', format='png')
d.attr('node', shape='ellipse', fontsize='12', size='6,6', rankdir='LR')
allcount = 0
count = 0
for i in range(0, len(namelist)-1):
for j in range(i+l, len(namelist)):
firstname = namelist[i]
secondname = namelist[]j]
distance = dist _square[i] []]
allcount += 1
if distance <= distancelimit:
count += 1
d.node (firstname)
d.node (secondname)
d.edge (firstname, secondname, label="%.3f"%distance)
else:
print (firstname,distance, secondname, "too large.")

d.node (wavfilebase+"\n"+distancemetric + ' distance metric\nn=%d/%d, %s max dist'% (count,allcount,distancelimit),

shape='box"')
graphvizfilename="GRAPHVIZ/"+datasetname+"-graphviz -"+distancemetric

d.render (graphvizfilename, view=False) # switch screen view or only save file

plt.close(“all”)

Output:

Distance network graph
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Spectrum Comparison — Hierarchical Clustering

Previous code:
read all files and calculate spectrum for each file.
calculate distances between spectra

Operations:
Create and save hierarchical clustering dendrogram

import scipy.cluster.hierarchy as hy
figwidth = 6.5; figheight = 4
boxwidth = 0.6; boxheight = 0.83
halign = 0.02 ; valign = 0.14
orientation = "left"

dendrolevels = 20

for distancemetric in distancemetrics:

distances = dist.pdist(valuelist, metric=distancemetric)
clustermethods = methodlist euclid if distancemetric == "euclidean" else methodlist_ other

for clustermethod in clustermethods:

print ("Distance metric:", distancemetric,
fig = plt.figure(figsize=(figwidth, figheight))

axl = fig.add axes([halign, valign, boxwidth, boxheight])

axl.set_xlabel ("%s%s-%s"% (figurefilebase,distancemetric,clustermethod), fontsize=8)

orientation = 'left' # Change to 'right' or 'top' if leaf labels are cut off
Y1l = hy.linkage(distances, method=clustermethod)

hy.dendrogram(Y1,

p = dendrolevels, truncate_mode = "level",

orientation=orientation,
# cutoff = 0.3*np.max(Y1[:,2])

above_threshold color='black', color_ threshold=0,
count_sort="False", distance_sort=False, labels=namelist, leaf font_size=10)
figurefilename = figurefilebase + "%s-%$s-dendro.png"$% (distancemetric,clustermethod)

plt.savefig(figurefilename)

plt.close(fiqg) # Close each graph in loop after saving and displaying

Output: Hierarchical cluster graph (dendrogram)

"Clustering method:", clustermethod)
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FM Demodulation
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Low Frequency AM and FM Demodulation

AM envelope demodulation:

. 1.0 4
* phonetics: ©
amplitude curve, syllable, 2 o5 4
stress-accent g
e phonology: 0.04_- , | | , , , , :
sonority curve, syllables, stress 0 2 4 6 8 10 12 14 16
U Time
l_
=
Modulated carrier signal 2 o
g
_1 E T T T T T T T T T
0 2 4 6 8 10 12 14 16
ﬂ Time
FM envelope demodulation: - 300 .
* phonetics: 2 . o A o L :
FO, pitch track S 200 A \ : L ; _*f
g :
« phonology: i A VAR Vo=
1 1 1 lDU T T T T T T T T T
tones, pitch accents, intonation 5 ; A : z 5 5 o "
Time
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FM Demodulation — FO estimation (‘pitch’ extraction)

There are many algorithms for FO estimation, for example:
Time domain algorithms:
autocorrelation (AC), average magnitude difference function (AMDF),
average squared difference function (ASDF) ...
Frequency domain algorithms:
harmonic peak detection, spectral comb, ...

The AMDF algorithm:

1. Divide the speech signal into equal time frames.

2. Make a copy of the first frame, noting the start position.
3. Move the copy through the first frame:

* compare with the signal at each point
* save the differences in a list

4. Find the first smallest difference in the list;

 find its position in the signal

 find the fundamental period (PO) by subtracting the start position from this position and
divide by the sampling frequency.

* then the fundamental frequency in this frame is: FO = 1/P0

5. Move to the next frame and repeat until the last frame.
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For all algorithms: divide the signal into equal time frames

1.0

0.5 — Signal ]
0.0 — Frame limits |
-0.5 \/

-1.0 I L L
0.000 0.005 0.010 0.015 0.020 0.025 0.030

Time (s), sampling rate = 16000 Hz, segment length = 0.030 s, frame length = 0.010000 s

The duration of the time frame depends on the lowest frequency to be measured.
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1.0
0.5
0.0
-0.5

1.0
0.5
0.0
-0.5

-1.0
0

AMDF: make a copy of the first time frame

— Signal ]
WKWM/\/\/\/V —  Frame limits A

-1.0 I
0.000 0.005 0.010

0.015

0.020 0.025

Time (s), sampling rate = 16000 Hz, segment length = 0.030 s, frame length = 0.010000 s

0.030

| I | I — Signal ||
/\/\/\/\/\/\/W\/W L)
- Samples, samplingzr?aote = 16000 Hz, sample perioéﬂﬂ: 0.000063 s -
Note the start position of the time frame in the signal.
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1.0

AMDF: move copy through first time frame

0.5 | | I — Signal

0.0 /\N\M/WW/\/\/\/\/V — Frame limits 1A
-0.5 ]
-10 ‘ - - \/

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Time (s), sampling rate = 16000 Hz, segment length = 0.030 s, frame length = 0.010000 s
1.0
0.5 — Signal ||

0.0
-0.5

-1.0
0

1.0
0.5
0.0
-0.5

-1.0
0

Frame ||

NW\/\/

NN\

100

200 300

400

Samples, sampling rate = 16000 Hz, sample period = 0.000063 s

NS

— Signal ]
— Copy |
=== First smallest average difference ||

100

200 300

400

1. Compare the copy with the signal point by point at each position in the frame

2. Save each difference in a list, together with its current position in the frame

3. When finished with comparisons at all positions in the frame:
search the list for the smallest difference with the copy and its position.

D. Gibbon: Sounds of Prosody

July 2022, Contemporary Phonetics and Phonology

82/109



1.0
0.5
0.0
-0.5

1.0
0.5
0.0
-0.5

-1.0
0

1.0
0.5
0.0
-0.5
-1.0

AMDF: move the copy through the first frame to the end

VY A Ve,

— Signal
— Frame limits |

\/\/\/\/

\/,

-1.0 I
0.000 0.005 0.0

10 0.015 0.0

20 0.025

Time (s), sampling rate = 16000 Hz, segment length = 0.030 s, frame length = 0.010000 s

0.030

— Signal ||
Frame |/

NW\/\/

NN\

100

200 300

400

Samples, sampling rate = 16000 Hz, sample period = 0.000063 s

SadY

NS

— Signal ]
— Copy |
=== First smallest average difference ||

i

100

200 300

400

1. Compare the copy with the signal point by point at each position in the frame

2. Save each difference in a list, together with its current position in the frame

3. When finished with comparisons at all positions in the frame:
search the list for the smallest difference with the copy and its position.

In practice, comparison of the copy with the signal starts with an offset slightly after
the first position in the frame otherwise the smallest difference would always be
zero! The position of the offset depends on the highest frequency to be measured.
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Definition of AMDF

T is the lag, which ranges from the
beginning to the end of the frame

D(t)=o—=—3Ix(n)=x(n+1)

,0<t<N-1
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AMDEF: calculate differences, minimal difference, T, FO

1.0

0.5 — Signal ]
0.0 — Frame limits |
-0.5 \/

-1.0 I L L
0.000 0.005 0.010 0.015 0.020 0.025 0.030

Time (s), sampling rate = 16000 Hz, segment length = 0.030 s, frame length = 0.010000 s

1.0

0.5 — Signal ||
0.0 «*s« Frame ]
-0.5 g

-1.0 . .
0 100 200 300 400

Samples, sampling rate = 16000 Hz, sample period = 0.000063 s

1.0

0.5 — Signal ]
0.0 — Copy |
-0.5 === First smallest average difference ||
-1.0 L L . \
0

100 200 300 400

1.0 T T T T
0.8 AMDF
el TR PO === First smallest average difference

g.; n  Period: 0.004875s, Frequency: 205 Hz

0.0
0

1. Note the position of the minimal difference between copy and signal
2. Calculate time period T of the frame as the difference between
* the beginning of the frame and
* the position of the minimal difference
(in this case: 0.004875 s, i.e. 4.875 ms) divided by the sampling frequency fs
3. Calculate the frequency from the period: FO=1/T
(in this case: 1/ 0.04875 = 205 Hz)
Move to the next frame and repeat the procedure for the remaining frames
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FM demodulation, Part 1: waveform, AM envelope

# J waveform envelope FO0.py

import re, sys

import numpy as np

import matplotlib.pyplot as plt

import matplotlib

import scipy.io.wavfile as wave

from scipy.signal import butter, lfilter, medfilt
from module fm demodulation import *

wavfilename = sys.argv[1l] # get input filename from command line
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
wavfilebase = re.sub("*.*/","" ,wavfilename)

wavfilebase = re.sub("-1l6k-mono","" ,wavfilebase[:-4])

figurefilename = "PNG/RFA %s.png"%wavfilebase

signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5/ (0.5 * fs), btype="low") # define Butterworth filter

envelope = 1lfilter (b, a, abs(signal)) # apply filter to create 1lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1
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FM demodulation, Part 2: FO estimation

FM demodulation using the AMDF (Average Magnitude Difference Function) method.

The FO estimation routines are longer and more complex than previous routines, so they are
simply summarised here, for reasons of time, space and effort:

fOestimate (signal, £fs)
clipper (sig, thresh, type) # Clip low level noise
butterworthfilter (signaldata, cutoff, order, fs, type) # Low pass filter
fOmovingwindow (signal, fs, windowshape, framelength, frameskip, fO0diffoffsetlength)
fO0amdf (signal, fs, windowshape, framestart, framelength, fO0diffoffsetlength)

Postprocessing: moving median filter to remove ‘noisy’ outliers.
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FM demodulation, Part 3: FO parameters

A number of parameters are defined:

centrethresh = 0.0 # Deals with silence and low volume noise
limitthresh = 0.9

fmbutterhigh = fOmin * 2 # low pass filter

fmbutterhighorder = 5

fmbutterlow = fOmax # high pass filter

fmbutterloworder = 2

fOmin = 50 # minimum expected FO

fOmax = 450 # maximum expected FO

# Voice range dependent AMDF parameters
fOframelengthfactor = 0.75
fOframeskipfactor = 0.5
fOodiffoffsetlengthfactor = 0.1
fOframedispersion = 0.1
fOpeakoperation = "median"
fO0differenceoffset = 0.5

relative to fOmin, > 1

Default is 1, the frame length

relative fo fOmax

quasi-noise/voiceless detector - can this work?
the implmementation of "average"

3 HH I

# Atomatic voice model calculation based on minimum and maximum frequency settings
fOframeduration = 1 / £Omin

fOframeduration = fOframelengthfactor * fOframeduration

framerate = 2 / fO0frameduration

framelength = int (fO0Oframeduration * fs)

frameskip = int(framelength * fOframeskipfactor)

windowshape = tukey (framelength, fOtukeyfraction)

# AMDF offset
fOodiffoffsetdur = 1 / fOmax # seconds
fOdiffoffsetlength = int(fO0diffoffsetlengthfactor * fOdiffoffsetdur * f£fs) # samples
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FM demodulation, Part 4: FO estimation

FO preprocessing: filtering:

fsignal = clipper(signal, centrethresh, "centre")

fsignal clipper (fsignal,limitthresh,"limit")

fsignal butterworthfilter (fsignal, fmbutterlow, fmbutterloworder, fs, "low")
fsignal = butterworthfilter (fsignal, fmbutterhigh, fmbutterhighorder, fs, "high")

FO estimation frame loop:

def fOestimate(signal,fs, framelength, frameskip, fOmedfilter):
fOarray = np.array ([
fO0amdf (signal, fs, )
for framestart in range (0, len(signal)-3*framelength, frameskip)
1)
fO0array = medfilt (f0array, fOmedfilter)
return fOarray

The function of moving median filters is to provide a low-pass smoothing result without
being too influenced by outlier values.

This is a very common technique for smoothing FO tracks (‘pitch’ tracks).
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FM demodulation — F0 extraction, Part 5, AMDF

def fOamdf (signal, fs, windowshape, framestart, framelength, fOdiffoffsetlength) :

framestop = framestart + framelength
framecopy = signal[framestart:framestop]
framecopydiff = np.diff (framecopy)
framestd = np.std(framecopydiff)

if framestd < fOframedispersion: # anti-noise, quasi-voice-detector

movingwindowrange = range (framestart+fOdiffoffsetlength, framestop)

meandiffs = [np.sum(

np.abs (framecopy - signal [movwinstart:movwinstart+framelength]))
for movwinstart in movingwindowrange ]

meandiffs = list(np.array(meandiffs)/np.max (meandiffs))
smallestmeandiff = np.min (meandiffs)

if smallestmeandiff < fOdifferenceoffset:

smallestmeandiffpos = meandiffs.index(smallestmeandiff) + fOdiffoffsetlength
period = smallestmeandiffpos / fs

frequency = 1 / period

else:

frequency = 0
else:

frequency = 0

return frequency
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FM demodulation — F0 extraction, Part 6, graphics

The graphics output is a small extension of existing graphics output routines.

fig, (plt0l1l, plt02, plt03) = plt.subplots(nrows=3, ncols=1, figsize=(6, 6))
plt.suptitle = "%s [file: %s]"%("Speech signal demodulation", wavfilebase)

xaxistime = np.linspace (0, signalseconds, signallength) # define x axis in seconds
plt0l.plot(xaxistime, envelope, color="red")

pltO0l.set xlabel("Time")

plt0l.set ylabel ("Amplitude")

xaxistime = np.linspace (0, signalseconds, signallength) # define x axis in seconds
plt02.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt02.set xlabel ("Time")

plt02.set ylabel ("Amplitude")

xaxistime = np.linspace (0, signalseconds, fOarraylength) # define x axis in seconds
plt03.scatter (xaxistime, fOarray, s=1, color="blue") # plot waveform in grey
plt03.set ylim(fOmin, fOmax)

plt03.set xlabel("Time")

plt03.set_ylabel ("Frequency")

plt.tight layout(pad=1, w_pad=0, h pad=5)
plt.savefig(figurefilename)
plt.show ()
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Revision of AMDF
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Fundamental frequency estimation in quasi-periodic time series with Average Magnitude Difference Function (AMDF) [./AMDF-demo06.py]
1. Signal input, define frame duration (max_period x 2), framelen=2/fOmin (150 Hz, 13.3 ms), search_offset=0.5/fOmax (300 Hz, 1.7 ms)
— ana_lysis frame/window Ii‘r?lits {13.3 ms)
0 /-\ /\ —— 'signal ({time function)

T T T T
Oms sms 10ms 15ms 20ms 25ms 30ms 35ms
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Fundamental frequency estimation in quasi-periodic time series with Average Magnitude Difference Function (AMDF) [./AMDF-demo06.py]
1. Signal input, define frame duration (max_period x 2), framelen=2/fOmin (150 Hz, 13.3 ms), search_offset=0.5/fOmax (300 Hz, 1.7 ms)
— ana_lysis frame/window Ii‘r?lits {13.3 ms)
0 /-\ /\ —— 'signal ({time function)

T T T T T
Oms sms 10ms 15ms 20ms 25ms 30ms 35ms

2. Create copy of current signal frame

l -
/\ /\ /\ — maoving frame copy: start position
0 \/ \/ \
_1 N T T T T T T T
oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms
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Fundamental frequency estimation in quasi-periodic time series with Average Magnitude Difference Function (AMDF) [./AMDF-demo06.py]

1. Signal input, define frame duration (max_period x 2), framelen=2/fOmin (150 Hz, 13.3 ms), search_offset=0.5/fOmax (300 Hz, 1.7 ms)
— ana_lysis frame/window Ii‘r?lits {13.3 ms)
0 /-\ /\ —— signal (time function)
N \/ \/ \/ \/

T T T T T
Oms sms 10ms 15ms 20ms 25ms 30ms 35ms

2. Create copy of current signal frame

/\ /\ /\ — maoving frame copy: start position
0 \/ \/ \

_1 N T T T T T T T
oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms

3. Move copy sample by sample from offset to end of frame, collect mean absolute difference vectors (AMDF)

/ m= min diff search offset interval (1.7 ms)
o 4 PN /\ N VN NS N NS NN end of offset 1
: v \-/ \ —— moving frame copy: end position
: mean absolute copy-to-signal differences
-1 4 N -
oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms
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Fundamental frequency estimation in quasi-periodic time series with Average Magnitude Difference Function (AMDF) [./AMDF-demo06.py]
1. Signal input, define frame duration (max_period x 2), framelen=2/fOmin (150 Hz, 13.3 ms), search_offset=0.5/fOmax (300 Hz, 1.7 ms)
14 = —
—— analysis frame/window limits (13.3 ms)
0 /-\ /\ —— 'signal ({time function)

T T T T T
Oms sms 10ms 15ms 20ms 25ms 30ms 35ms

2. Create copy of current signal frame

l -
/\ /\ /\ — maoving frame copy: start position
0 \/ \/ \
_1 B T T T T T T T
Oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms
3. Move copy sample by sample from offset to end of frame, collect mean absolute difference vectors (AMDF)
1 . = =

wmmmm min diff search offset interval (1.7 ms)
----- end of offset

: v \-/ —— moving frame copy: end position
mean absolute copy-to-signal differences

ol ‘
T T T T T T T
oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms

2

e

4. Best match (first smallest value in mean absolute difference track), with offset (start at min_period / 2, not at 0)
AMDF (copy-to-signal mean abs diff track)

/\ /-\ /\ /\ —— mean absolute copy-to-signal differences |
0 : \/ \-/ \J \/ \/ wfirst smallest mean absolute difference

? T T T T T T
Oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms

A
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Fundamental frequency estimation in quasi-periodic time series with Average Magnitude Difference Function (AMDF) [./AMDF-demo06.py]

1. Signal input, define frame duration (max_period x 2), framelen=2/fOmin (150 Hz, 13.3 ms), search_offset=0.5/fOmax (300 Hz, 1.7 ms)

14 = —
—— analysis frame/window limits (13.3 ms)
0 /-\ /\ —— signal (time function)
_1 T T T T T T \/
Oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms
2. Create copy of current signal frame
l -
/\ /\ /\ — maoving frame copy: start position
0 \/ \/ \
_1 N T T T T T T T
Oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms
3. Move copy sample by sample from offset to end of frame, collect mean absolute difference vectors (AMDF)
1 . = =
/ = min diff search offset interval (1.7 ms)
o 4 PN /\ N VN NS N NS NN end of offset
: v \-/ \ —— moving frame copy: end position
: mean absolute copy-to-signal differences
-1 4 -
T T T T T T T
oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms
4. Best match {first smallest value in mean absolute difference track), with offset (start at min_period / 2, not at 0)
l ]

/N

A

/N

AMDF (copy-to-signal mean abs diff track)
— mean absolute copy-to-signal differences

\/\/\

NS\

wﬁr‘st smallest mean absolute difference

_1 T T T T T T

Oms 5ms les 15ms 20ms 25ms 30ms 35ms

5. Result: calculate frame start to best match start as period, then FO=1/period
l - 0
{ —— signal period
0 { - end of period
\/: mmm= period: 5.00 ms, FO: 200.00 Hz

_1 T ; T T T T T T

oms 5ms 10ms 15ms 20ms 25ms 30ms 35ms
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FM spectral analysis, Part 1, FO estimation

# K waveform envelope FO spectrum.py. D. Gibbon, 2021-07-06

import
import
import matpl¢
import scipy
from scipy.s:
from module :

sys, !
numpy

specmax

= 2
magscount =

if len(sys.a:

Description

In this demonstration application, a novel and unusual step is taken:
the spectrum of the demodulated FM signal is calculated.

The procedures are entirely parallel, but with fOarray instead of

. waviilen envelope, and framerate instead of fs. mand line
else:

wavifilen _ _
wavfilebase : FOr example, corresponding lines can be compared:
wavfilebase :
figurefilenal gmspecmags = np.abs (np.f£ft.rfft (envelope))

fmspecmags = np.abs(np.fft.rfft(f0array))

fs, signal = signal
s%gnallength amspecfreqs = np.linspace(0,£fs/2,amspecmaglen) es
signalsecond: fmspecfreqs = np.linspace (0, framerate/2, fmspecmaglen) onds
signal = sigi 1
b, a = butte:
envelope = 1: nvelope
envelope = e . - . .
fOarray, framerate = fOestimate(signal, f£fs)
fOarraylength = len(fOarray)
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AM and FM spectral analysis, Part 2, spectral analysis

amspecmags = np.abs(np.fft.rfft (envelope))
amspecmags = amspecmags / np.max (amspecmags)
amspecmaglen = len (amspecmags)

amspecfreqs = np.linspace(0,fs/2,amspecmaglen)

amspectrummax = specmax

lfamspecmaglen = int (round (amspectrummax * amspecmaglen / (fs / 2)))
lfamspecmags = amspecmags[l:lfamspecmaglen]

l1famspecfreqs = amspecfreqgs[l:l1famspecmaglen]

amtopmagscount = magscount # define max frequency of 1lf spectrum
amtopmags = sorted (lfamspecmags) [-amtopmagscount: ]
amtoppos = [ list(lfamspecmags) .index(m) for m in amtopmags ]

amtopfreqs = [ lfamspecfreqgs[p] for p in amtoppos ]

fmspecmags = np.abs(np.fft.rfft(f0array))

fmspecmags = fmspecmags / np.max (fmspecmags)
fmspecmaglen = len (fmspecmags)

fmspecfreqs = np.linspace (0, framerate/2, fmspecmaglen)

fmspectrummax = specmax

lffmspecmaglen = int (round (fmspectrummax * fmspecmaglen / (framerate / 2)))
lffmspecmags = fmspecmags[l:lffmspecmaglen]

lffmspecfreqs = fmspecfreqs|[l:l1ffmspecmaglen]

fmtopmagscount = magscount # define max frequency of 1lf spectrum
fmtopmags = sorted(lffmspecmags) [-fmtopmagscount:]

fmtoppos = [ list(lffmspecmags) .index(m) for m in fmtopmags ]

fmtopfreqs = [ lffmspecfreqs[p] for p in fmtoppos ]
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AM and FM spectral analysis, Part 3: graphics

fig, ((p1t01, plt02), (p1t03, plt04)) = plt.subplots(nrows=2, ncols=2, figsize=(14, 4))# define figure
format
plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold")# display a title

# Time domain

xaxistime = np.linspace (0, signalseconds, signallength) # define x axis in seconds
pltO0l.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt0l.plot(xaxistime, envelope, color="red")

pltOl.set xlabel ("Time")

pltO0l.set_ylabel ("Amplitude")

xaxistime = np.linspace (0, signalseconds, fOarraylength) # define x axis in seconds
plt03.scatter (xaxistime, fOarray, s=1, color="blue") # plot waveform in grey
plt03.set ylim(fOmin, fOmax)

plt03.set xlabel ("Time")

plt03.set_ylabel ("Frequency")

# Frequency domain
plt02.plot(lfamspecfreqs, lfamspecmags)
plt02.scatter (amtopfreqs, amtopmags, color="red")
for £,m in zip(amtopfreqs, amtopmags):
plt02.text(f, m-0.1, "%.3fHz\n%dms"%(£,1000/f), fontsize=8)
plt02.set_xlabel ("Frequency")
plt02.set_ylabel ("Magnitude")
plt02.set x1im (0, amspectrummax)

plt04.plot(lffmspecfreqs, lffmspecmags)
plt04.scatter (fmtopfreqs, fmtopmags, color="red")
for £,m in zip(fmtopfreqs, fmtopmags):
pltO04.text(f, m-0.1, "%$.3fHz\n%dms"%$(£,1000/£f), fontsize=8)
plt04.set xlabel ("Frequency")
pltO04.set_ylabel ("Magnitude")
plt04.set x1im (0, amspectrummax)

plt.savefig(figurefilename)
plt.tight layout (pad=3)

plt.show() # display figure
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Finally ...
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Science about trying to prove yourself to be wrong.

Then trying to do more with new data if you are right
(and others agree that you are right using similar methods).

But improving your theory or method, or using different data
if you are wrong.
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Scientific Discovery: a clear example of Critical Rationalism

Chomsky, N. 1957. Syntactic Structures. The Hague:
Mouton.
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A Critical Rationalist approach to methodology

FORMAL METHODS:
theory, model

logic,
mathematics
heuristic
symbolism measurement,
companson. EMPIRICAL
guantitative _
ana|ysis METHODS
observation
hermeneutics,
intuition
textual
description

syllable word

SPEECH DOMAIN RANKS

dialogue  (categories with their phonetic and
semantic interpretations)

sentence

text/turn

D. Gibbon: Sounds of Prosody July 2022, Contemporary Phonetics and Phonology 106/109



Summary

* Lecture 1:
- Semiotics of prosody

- Rhythm and melody the real world
* Lecture 2: ~thythm ™,
- Rhythm analysis method: ~ formants
* Rhythm Formant Theory -
 Rhythm Formant Analysis rhythm
melody
* Lecture 3: I
_ : ~ cohesion
Modulation Theory - rhetoric

- Rhythm Formant Analysis: “do it yourself”
- Scientific methodology
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115

Many thanks for participating,

and good luck with your coding!
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Thanks — looking forward to future contacts!
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