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The Main Topics https://github.com/dafyddg/RFA

https://github.com/dafyddg/RFA
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Questions from Lecture 2

Q: Does the prosodic lexicon also contain meanings?

A: Yes, the information is in features; the meaning of a pitch accent is a function from a coextensive 
locutionary segment to the deictic origo (I, here, now), comparable with other deictic forms such as “this”, 
“here”.

Q: What is the Type 3 grammar for call contours?

A: ... B → pa[h, chroma] C, C → downstep B (pitch accent loop; see Pierrehumbert discussion later)

Q: Are your grammars for intonation and tone like those of Pierrehumbert?

A: Yes, they use the same formal theory, as a finite state automaton (dates back to the 1940s, 
McCulloch-Pitts) or as a Type 3 grammar (dates back to the 1950s, Chomsky).

Q: What does ‘exponential complexity’ mean?

A: For a sentence of length n, where G is a property of the Grammar: 

Q: What is the difference between rhythm and prosody?

A: Prosody is the music of speech, consisting of rhythms and melodies.

Q: Why is a right-branching structure not centre-embedding, even if the nodes have the same 
label, like in the example of Féry?

A: See the following slides.

linear time: Gn
cubic time: Gn3

exponential time: Gn
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Question from Lecture 2
Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.
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Question from Lecture 2
Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

Right-branching Type 3:
A → it B
B → is C
C → very C
C → good

Left-branching Type 3:
A → B good
B → B very
B → C is
C → it

A

B good

veryB

B very

C is

it
it good

very

is

A

it B

is C

very C

very C

good
right-branching left-branching FSN ≡ FSA

Right-recursive 
grammars are 
equivalent to iterative 
finite state automata.

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.

There are processing differences, not 
differences in the language described:

● Right branching: left-to-right is simplest.
● Left branching: right-to-left is simplest.
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Question from Lecture 2
Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.
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Question from Lecture 2

Equivalent right-branching Type 3 grammar:

A → ( { H%, L% } ) B
A → ε B

B → { H*, L*, L*H-, L-+H*, H*+L-, H-+L*, H*+H* } C
C → { H-, L- } D
C → ε B

D → { H%, L% }

A B C D EA B C D E

ε

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.
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Question from Lecture 2

Alternatively as a generate-and-test search system:

Grammar: infinite set of sequences from finite lexicon:
GEN = ( {H%1, L%1}  {∪ H*, L*, L*H-, L-+H*,

      H*+L-, H-+L*, H*+H-}  {∪ H-, L-}  {H%∪ 2, L%2}   {∪ ε} )*

Finite constraint lexicon to evaluate for accepted subset:
CON = { o(<A,B>) {H%∈ 1,L%1, ε}

     o(<B,C>) { ∈ H*,L*,L*H-,L-+H*,H*+L-,H-+L*,H*+H-, H-, L- }
     o(<C,B>) {∈ ε} 
     o(<C,D>) { H-, L- }∈
     o(<D,E>) { H%∈ 2, L%2 } }

A B C D EA B C D E

ε

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.
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Question from Lecture 2

A B C D EA B C D E

ε ε ε

Equivalent right-branching Type 3 grammar:

A → ( { H%, L% } ) B
A → ε B

B → { H*, L*, L*H-, L-+H*, H*+L-, H-+L*, H*+H* } C
C → { H-, L- } D
C → ε B

D → { H%, L% }
D → ε B
E → ε A

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.
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Question from Lecture 2

A B C D EA B C D E

ε ε ε

Equivalent right-branching Type 3 grammar:

A → ( { H%, L% } ) B
A → ε B

B → { H*, L*, L*H-, L-+H*, H*+L-, H-+L*, H*+H* } C
C → { H-, L- } D
C → ε B

D → { H%, L% }
D → ε B
E → ε A

Global contour:
   downtrend: declination, downstep,
   level, inclination, upstep
Three iterations:
   downtrend loop
   reset loop
   restart loop

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.
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Question from Lecture 2

A B C D EA B C D E

downtrend restartreset

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.

Equivalent right-branching Type 3 grammar:

A → ( { H%, L% } ) B
A → onset B

B → { H*, L*, L*H-, L-+H*, H*+L-, H-+L*, H*+H* } C
C → { H-, L- } D
C → downtrend B

D → { H%, L% }
D → reset B
E → restart A

Global contour:
   downtrend: declination, downstep,
   level, inclination, upstep
Three iterations:
   downtrend looop
   reset loop
   restart loop

onset
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Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

Question from Lecture 2

A B C D EA B C D E

downtrend restartreset

A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.

onsetonset

A

H-
CH*+L-

downtrend

B

B

CH*+L-

H- D

L%
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A: The labelling decision is internal to the theory, which is not very clear. Incidentally, the 
structures violate the Strict Level Hypothesis (but this does not affect the argument):
1. Moving left-to-right, in each case the following item is not embedded, but added on to the previous item, with right-

branching it is top-down, with left-branching it is bottom up.
2. Left-branching and right-branching grammars describe the same terminal strings as the corresponding finite state 

automaton,and  require only finite memory and linear processing time, unlike centre-embedding grammars.

Q: Why is a right-branching structure not centre-
embedding, even if the nodes have the same 
label, like in the example of Féry?

“I assume a recursive structure: All sentences are i-
phrases, the grouping of two sentences is also an i-
phrase, and the whole utterance is an i-phrase as well.”

Question from Lecture 2

A B C D EA B C D E

downtrend restartreset

B

C

H%

H*+L-

A

B

CH*+L-

H- D

reset
CH*+L-

downtrend

B

B

CH*+L-

H- D

L%

downtrend
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Sounds of Prosody

Code, articles: https://github.com/dafyddg/RFA

RFT: Rhythm Formant Theory
RFA: Rhythm Formant Analysis

How to do it:
1. Algorithms
2. Case studies

https://github.com/dafyddg/RFA
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Timing of Speech

Music and speech depend on the temporal constraints given by 
the human body:
– Body rhythm timing:

● approximately one main movement per second:
– foot stamping, running, walking
– hand clapping, head nodding
– chewing, sucking
– hand-shaking, intimate interaction
– syllable and word sequences

Different speech rhythms:
– rhythms of syllable constituents (C, V)
– Rhythms of syllable types (strong, weak; stressed, unstressed)
– Rhythms of words or feet, phrases, sentences
– Rhythms of discourse episodes
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Timing of Speech

Music and speech depend on the temporal constraints given by 
the human body:
– Body rhythm timing:

● approximately one main movement per second:
– foot stamping, running, walking
– hand clapping, head nodding
– chewing, sucking
– hand-shaking, intimate interaction
– syllable and word sequences

Different speech rhythms:
– rhythms of syllable constituents (C, V)
– Rhythms of syllable types (strong, weak; stressed, unstressed)
– Rhythms of words or feet, phrases, sentences
– Rhythms of discourse episodes

The association of the ‘Rhythm hierarchy’ with 
the ‘Prosodic Hierarchy’ is flexible and depends 
on
● semantic constraints (e.g. contrast)
● pragmatic constraints (e.g. emphasis)
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Metalocutionary Theory of Prosodic Function

Prosody: slow rhythms & melodies

Locution: fast CV alternation

time

Structures: (autosegmental) asssociation
Meanings: (spatiotemporal) metadeixis
Modalities: (multichannel) streaming

Time Types:

cloud time (intuitive everyday ‘real’ time)

clock time (Newtonian time, universal quantitative time)

rubber time (Aristotelian time: Event Phonology, tree structures)

categorial time (abstract time points: duration contrast; context)
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The Modulation Code: Time and the Frequency Scale

Low frequencies:
rhythm

Mid frequencies:
rhythm

High frequencies:
consonants and vowels

Low Frequency
AM and FM modulations

High Frequency
AM and FM modulations
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Theory and practice of Rhythm Analysis: RFT and RFA
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Rhythm Formant Theory and Analysis

Rhythm Formant Theory (RFT):
– A rhythm formant is a frequency zone of higher magnitude values in the 

normalised low frequency (LF) spectrum.
– Rhythm formants are detected both in the LF AM spectrum and also in the 

LF FM spectrum.

Rhythm Formant Analysis (RFA):
– The spectrum frequencies and their magnitudes are obtained by FFT and 

the magnitudes are normalised to the range 0,…,1.
– A minimum magnitude (e.g. about 0.2) is defined as a cutoff level; the 

higher values are then shown as red dots in the RFA spectrum.
– The spectra of different recordings are

● compared using standard distance metrics 
– and represented as distance maps,
– also (1) hierarchically clustered using (2) standard clustering criteria and represented 

as dendrograms.

Thanks to Dr. Liu Huangmei, for suggesting the term ‘formant’ in this context.
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Rhythm Formant Analysis: implementation

RFA implementation (GitHub repository):
The applications included in the set are intended for experiments based on 
the low frequency long-term AM and FM spectrum:
The set of demonstration applications can be freely adapted and modified to 
suit your own needs.

RFA directory:
Articles
IICBP2022-slides
LittleHelpers
README.1st
README.md
RFA_multiple_signal_processing
RFA_single_signal_processing

Code, articles: https://github.com/dafyddg/RFA

https://github.com/dafyddg/RFA


July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 22/109

Rhythm Formant Analysis: implementation

RFA implementation (GitHub repository):
The applications included in the set are intended for experiments based on 
the low frequency long-term AM and FM spectrum:
The set of demonstration applications can be freely adapted and modified to 
suit your own needs.

RFA_single_signal_processing:
DATA

English_male_MLK01.wav
English_male_one-to-seven.wav
English_male_one-to-thirty_16k.wav
Female_English_German:

RT_E1.wav
RT_E2.wav
RT_E3.wav
RT_G1.wav
RT_G2.wav
RT_G3.wav

Putonghua_female_one-to-seven.wav
sine-200x5x6.wav

FIGURES
module_dendrogram.py
module_F0.py
module_spectrogram.py
rfa_single_conf.py
rfa_single.py

RFA directory:
Articles
IICBP2022-slides
LittleHelpers
README.1st
README.md
RFA_multiple_signal_processing
RFA_single_signal_processing

Code, articles: https://github.com/dafyddg/RFA

https://github.com/dafyddg/RFA
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Rhythm Formant Analysis: implementation

RFA implementation (GitHub repository):
The applications included in the set are intended for experiments based on 
the low frequency long-term AM and FM spectrum:
The MIT licence is used, so demonstration applications can be freely 
adapted and modified to suit your needs (with acknowledgments).

RFA_single_signal_processing
DATA

English_male_MLK01.wav
English_male_one-to-seven.wav
English_male_one-to-thirty_16k.wav
Female_English_German:

RT_E1.wav
RT_E2.wav
RT_E3.wav
RT_G1.wav
RT_G2.wav
RT_G3.wav

Putonghua_female_one-to-seven.wav
sine-200x5x6.wav

FIGURES
module_dendrogram.py
module_F0.py
module_spectrogram.py
rfa_single_conf.py
rfa_single.py

RFA
Articles
IICBP2022-slides
LittleHelpers
README.1st
README.md
RFA_multiple_signal_processing
RFA_single_signal_processing

RFA_multiple_signal_processing
CSV
DATA

Female_English_German
RT_E1.wav
RT_E2.wav
RT_E3.wav
RT_G1.wav
RT_G2.wav
RT_G3.wav

DENDRO
GRAPHVIZ
module_F0.py
module_spectrogram.py
numdistnetdendro_conf.py
numdistnetdendro.py
rfa_mult_conf.py
rfa_mult.py

Code, articles: https://github.com/dafyddg/RFA

https://github.com/dafyddg/RFA
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Empirical Background: Phonetic Domain, Phase Cycle
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Aims of this part of the talk

Overview of Rhythm Formants as low frequency modulations of 
speech

Demonstration of how my software (also Praat etc.) does
– AM and FM demodulation
– spectral analysis
– comparing spectra from different recordings of comparable data using 

distance tables, distance maps and distance based clustering

● Why?
– If you’re a driver, it makes sense to know how a car works in practice.
– If you’re a phonetician, it makes sense to know how ‘pitch’ extraction, 

spectral analysis, distance maps and clustering etc. work in practice.

SPOILER

It’s easier than you think!



July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 26/109

Empirical Background: Phonetic Domains and Methods

Transmission

Cognition

Production Perception

Acoustic
Phonetics

Neuro-
phonetics

Articulatory
Phonetics

Auditory
Phonetics
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Overview

● Production and perception phases of prosodic events are well 
known in phonetics:
– source-filter theory: larynx as source, oral & nasal cavity as filter
– cochlea transformation theory: extraction of signal frequencies

● Transmission theory is usually left to the audio engineers:
● So let’s do something in this talk to correct this:

– Modulation Theory:
● Amplitude Modulation (AM)
● Frequency Modulation (FM)

– a 'do-it-yourself' approach to phonetic software
● an alternative, for some purposes, to using ready-made off-the-shelf applications

– you can download demonstration examples in Python
BUT: no programming experience is required
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Rhythm Formants

Rhythm Formant Theory (RFT):
● A rhythm formant is a frequency zone of higher magnitude values in the 

normalised low frequency (LF) spectrum.
● Rhythm formants are detected in the LF AM spectrum and in the LF FM 

spectrum.

Rhythm Formant Analysis (RFA):
● The spectrum magnitudes are obtained by FFT and normalised to the 

magnitude range 0,…,1.
● The spectra of different recordings are compared using

– standard distance metrics, then
● represented as distance maps, and
● hierarchically clustered using standard clustering criteria, and

represented as dendrograms.
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Modulation Theory
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Formal background: Modulation Theory

carrier signal modulated with information signal

1) carrier signal with frequency modulation signal (FM)
tone, pitch accent, intonation → larynx

 
2) carrier signal with amplitude modulation signal (AM)

consonants, vowels, syllables → oral & nasal cavities

3) speech: carrier signal with AM and FM simultaneously
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AM and FM Demodulation

AM envelope demodulation:
● phonetics:

amplitude curve, syllable,
stress-accent

● phonology:
sonority curve, syllables, stress

FM envelope demodulation:
● phonetics:

F0, pitch track
● phonology:

tones, pitch accents, intonation

Modulated carrier signal
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AM and FM demodulation and detection of rhythm

speech signal input

demodulated
AM and FM

shapes

detected
rhythm formants

LF AM envelope
demodulation

LF FM envelope
demodulation

LF AM spectrum 
rhythm formant

analysis

LF FM spectrum
rhythm formant

analysis

Hartmut Traunmüller (1994) "Conventional, biological, and environmental factors in speech 
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmüller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor 
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal 
Inst. of Technology, Stockholm.
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Comparison with Traunmüller’s demodulation model

Hartmut Traunmüller (1994) "Conventional, biological, and environmental factors in speech 
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmüller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor 
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal 
Inst. of Technology, Stockholm.

speech signal input

demodulated
AM and FM

shapes

detected
rhythm formants

LF AM envelope
demodulation

LF FM envelope
demodulation

LF AM spectrum 
rhythm formant

analysis

LF FM spectrum
rhythm formant

analysis
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Traunmüller: audiovisual perception (2007)

Hartmut Traunmüller (1994) "Conventional, biological, and environmental factors in speech 
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmüller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor 
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal 
Inst. of Technology, Stockholm.
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Traunmüller: audiovisual perception (2007)

Hartmut Traunmüller (1994) "Conventional, biological, and environmental factors in speech 
communication: A modulation theory" Phonetica 51: 170-183. doi (Also in PERILUS XVIII: 92-102.)

Hartmut Traunmüller (2007) "Demodulation, mirror neurons and audiovisual perception nullify the motor 
theory" Contr. to Fonetik 2007, TMH-QPSR 50: 17-20. Detpt. of Speech, Music and Hearing, Royal 
Inst. of Technology, Stockholm.

LF AM envelope
demodulation

LF FM envelope
demodulation

LF AM spectrum 
rhythm formant

analysis

LF FM spectrum
rhythm formant

analysis
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AM and FM modulation step by step
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Modulation: carrier signal
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Modulation: FM signal with low frequency information
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Modulation: AM signal with low frequency information
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Modulation Theory
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Demodulation and analysis procedures in RFA
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Demodulation and analysis procedures in RFA

● Time domain processing:
– Envelope extraction
– Fundamental frequency estimation (‘pitch’ extraction)

● Time domain to frequency domain transformation:
– Spectral analysis
– Spectrogram analysis
– F0 estimation:

● time domain procedures: zero-crossing count, autocorrelation (AC), average 
magnitude difference (AMDF)

● frequency domain procedures: spectrum transformation and analysis

● Comparison using distance metrics
– distance calculation with different distance metrics
– hierarchical clustering with distance and different clustering criteria

● Output:
– Graphical display
– Numerical files and figure files



July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 43/109

Demodulation and analysis: output examples



July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 44/109

Example outputs

Similarity of readings: The North Wind and the Sun, bilingual in English and German

Story “The North Wind and the Sun”, read by an adult female German-English bilingual
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Example outputs

Comparing two styles of Tang dynasty poetry

Poem recitation: B-036塞上曲 [王昌龄 ]-mono-16k

Distance network: Hierarchical clustering::



July 2022, Contemporary Phonetics and PhonologyD. Gibbon: Sounds of Prosody 46/109

Demodulation and analysis: software design
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Single speech signal analysis

Rhythm Formant Analysis Software Design: Data Flow

signal
normalisation

data,
settings,
control 

archive & temporary
storage

AM (envelope)
demodulation

screen
output

signal
input

spectral (FFT)
analysis

output
collation

FM (F0)
demodulation
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Single speech signal analysis

Multiple spectrum & spectrogram comparison

Rhythm Formant Analysis Software Design: Data Flow

signal
normalisation

data,
settings,
control 

archive & temporary
storage

AM (envelope)
demodulation

distance
metrics

hierarchical
clustering

distance
maps

dendrograms

screen
output
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output
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Demonstration:

Demodulation, spectral analysis: processing single files
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Demonstration applications: outputs
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Demonstration apps - time domain outputs

TIME
DOMAIN
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Demonstration apps – time and frequency domain outputs

TIME
DOMAIN

(waveform)

FREQUENCY
DOMAIN

(spectrum)

TIME
DOMAIN

Amplitude as a
function of time

Magnitude as a
function of frequency
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Software description: time domain analysis
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Time domain analysis: waveform display

# A_waveform_display.py Waveform. D. Gibbon 2021-07-06

import sys # import specialised modules
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal

plt.plot(signal) # plot waveform
plt.show() # display figure

Description

The programming language (in this case Python3) is provided with a 
large collection of algorithm implementations for processing various 
kinds of data for different purposes, stored in specialised ‘libraries’.

In this case, system function is imported, which allows the filename 
to be input from the command line, a science library function is 
imported which permits input of an audio file, and a graphics library 
is imported to produce figures.

A mono WAV file is read, and the speech signal and the sampling 
frequency are extracted from the file.

The signal is plotted as a graph and displayed.
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Time domain analysis: waveform display

# A_waveform_display.py Waveform. D. Gibbon 2021-07-06

import sys # import specialised modules
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal

plt.plot(signal) # plot waveform
plt.show() # display figure
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Time domain analysis: formatted waveform display

# B_waveform_display.py Formatted waveform display. D. Gibbon. 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

#-----------------------------------------------------------------------------------------

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure

Description

In this application, in principle exactly the same thing happens, 
except that the figure is formatted more informatively.

For the calculations which are involved, a library of numerical 
functions is imported.

After reading the file, the amplitude of the signal is normalised 
between -1 and 1 for the y-axis of the graph, and the overall time in 
seconds is calculated for the x-axis from the sampling frequency and 
the length of the signal.

The normalised signal is plotted as a graph and displayed with the 
appropriate x-axis and y-axis information. 
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Time domain analysis: formatted waveform display

# B_waveform_display.py Formatted waveform display. D. Gibbon. 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

#-----------------------------------------------------------------------------------------

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure
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Time domain analysis: waveform and envelope

# C_waveform_envelope_display.py Waveform & AM envelope medfilt. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

envelope = medfilt(abs(signal), 301) # extract low frequency amplitude envelope
envelope = envelope / max(envelope) # normalise envelope to 0 ... 1

#-----------------------------------------------------------------------------------------

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red” # plot envelope in red
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure

Description

In this application, everything which happened in the previous 
applications also happens, but in addition, the amplitude modulation 
of the signal is demodulated.

This is done by taking the absolute signal, that is, only positive 
values of  the signal (or conversion of negative values of the signal 
into positive values), and low-pass filtering (smoothing) the result.

Low-pass filtering (smoothing) is done here with a moving median 
filter, which moves through the signal calculating the median values 
of intervals in the signal. The method is rather slow, and somewhat 
difficult to characterise. But it works...
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Time domain analysis: waveform and envelope

# C_waveform_envelope_display.py Waveform & AM envelope medfilt. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

envelope = medfilt(abs(signal), 301) # extract low frequency amplitude envelope
envelope = envelope / max(envelope) # normalise envelope to 0 ... 1

#-----------------------------------------------------------------------------------------

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red” # plot envelope in red
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure
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Time domain analysis: waveform and envelope
# D_waveform_envelope_display.py Wwaveform, AM envelope Butterworth. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

#-----------------------------------------------------------------------------------------

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds

plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red") # plot waveform in red
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure

Description

Again, in this application, everything which happened in the previous 
applications.

Low-pass filtering is done here with a Butterworth filter, which 
lowers the amplitude of frequencies above a specified cutoff 
frequency. This is advisable since the idea is to capture only the very 
low frequencies in the spectrum which make up the rhythms of 
speech.This filter is much more efficient than the moving median 
filter.
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Time domain analysis: waveform and envelope
# D_waveform_envelope_display.py Wwaveform, AM envelope Butterworth. D. Gibbon 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

#-----------------------------------------------------------------------------------------

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxis = np.linspace(0, signalseconds, signallength) # define x axis in seconds

plt.plot(xaxis, signal, color="lightgrey") # plot waveform in grey
plt.plot(xaxis, envelope, color="red") # plot waveform in red
plt.xlabel("Time") # add axis labels
plt.ylabel("Amplitude")

plt.tight_layout(pad=3)
plt.show() # display figure
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Frequency domain analysis: FFT and AM spectrum
#  E_waveform_envelope_spectrum_display Addition of LF spectrum. D. Gibbon, 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

#-----------------------------------------------------------------------------------------

fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format
plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.show() # display figure

Description

In this app, a major step forward is taken: the amplitude envelope 
has been extracted and now it is time to analyse the rhythms. No 
additional library is needed for this.

The first step in analysing the speech rhythms is done by first 
applying a Fast Fourier Transform to the entire envelope in order to 
produce a spectral analysis.

This step means moving from the time domain of the signal, in which 
the amplitude of the signal is a function of the time in seconds, to the 
frequency domain, with the magnitude of each frequency in the 
signal displayed as a spectrum, magnitudes normalised from 0 to 1. 

The frequencies in the spectrum can be seen to cluster in identifiable 
regions, which are interpreted as rhythm formants. The rhythm 
formants have very low frequencies below about 10 Hz, that is, 10 
beats per second. The phone formants, which identify vowels and 
consonants, have much higher frequencies above about 300 Hz, 
ranging to several thousand Hz.
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Frequency domain analysis: FFT and AM spectrum
#  E_waveform_envelope_spectrum_display Addition of LF spectrum. D. Gibbon, 2021-07-06

import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

#-----------------------------------------------------------------------------------------

fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format
plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.show() # display figure
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Frequency domain analysis: peaks in AM spectrum
#  F_waveform_envelope_spectrum_display Addition of LF spectrum dots. D. Gibbon, 2021-07-06
import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

topmagscount = 6 # define max frequency of lf spectrum
topmags = sorted(lfspecmags)[-topmagscount:] # get top magnitudes
toppos = [ list(lfspecmags).index(m) for m in topmags ] # get top magnitude positions
topfreqs = [ lfspecfreqs[p] for p in toppos ] # get top frequencies

#-----------------------------------------------------------------------------------------
fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)

plt02.scatter(topfreqs, topmags, color="red") # Scatter plot red dots
for f,m in zip(topfreqs, topmags): # loop through top values

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)# print formatted values
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.show() # display figure

Description

This app again takes a small step forward, and defines critical 
minimal values for frequency magnitudes in the spectrum which 
are relevant for Rhythm Formant Analysis. These values are found 
by trial and error in the first stages of analysis, and later predicted on 
the basis of previous analyses.

The relevant frequency magnitudes are marked in the spectrum.
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Frequency domain analysis: peaks in AM spectrum
#  F_waveform_envelope_spectrum_display Addition of LF spectrum dots. D. Gibbon, 2021-07-
06
import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

topmagscount = 6 # define max frequency of lf spectrum
topmags = sorted(lfspecmags)[-topmagscount:] # get top magnitudes
toppos = [ list(lfspecmags).index(m) for m in topmags ] # get top magnitude positions
topfreqs = [ lfspecfreqs[p] for p in toppos ] # get top frequencies

#-----------------------------------------------------------------------------------------
fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)

plt02.scatter(topfreqs, topmags, color="red") # Scatter plot red dots
for f,m in zip(topfreqs, topmags): # loop through top values

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)# print formatted values
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.show() # display figure
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Frequency Domain Analysis: File output

# G_waveform_spectrum_file_outputs.py D. Gibbon, 2021-07-06
import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

topmagscount = 6 # define max frequency of lf spectrum
topmags = sorted(lfspecmags)[-topmagscount:] # get top magnitudes
toppos = [ list(lfspecmags).index(m) for m in topmags ] # get top magnitude positions
topfreqs = [ lfspecfreqs[p] for p in toppos ] # get top frequencies

#-----------------------------------------------------------------------------------------

fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)
plt02.scatter(topfreqs, topmags, color="red") # Scatter plot red dots
for f,m in zip(topfreqs, topmags): # loop through top values

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)# print formatted values
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.savefig(wavfilename[:-3]+".png")
plt.show() # display figure

import os

def outputtextlines(text, filename):
handle = open(filename,'w')
linelist = handle.write(text)
handle.close()
return

def appendtextlines(text, filename):
handle = open(filename,'a')
linelist = handle.write(text)
handle.close()
return

csvfreqs = "lffreqs\t"+"\t".join(
[ "%.3f"%x for x in lfspecfreqs ]
)+"\n"

csvmags = "lfmags\t"+"\t".join(
[ "%.3f"%x for x in lfspecmags ]
)+"\n"

outputtextlines(csvfreqs, csvfilename)
appendtextlines(csvmags, csvfilename)

os.system("soffice %s"%csvfilename)

Description

The small step forward taken by this app is simply to output the 
values of the spectrum to a file, formated as a table in CSV format, 
as well as saving the figure in PNG format.

This format can be imported by other applications, such as 
spreadsheet programs like Excel or LibreOffice Calc.

The figure display is not affected.
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Frequency Domain Analysis: File output

# G_waveform_spectrum_file_outputs.py D. Gibbon, 2021-07-06
import sys # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope)) # calculate spectrum magnitudes with FFT
specmags = specmags / np.max(specmags) # normalise magnitudes to 0 .. 1
specmaglen = len(specmags) # get length of spectrum
specfreqs = np.linspace(0,fs/2,specmaglen) # get frequencies in spectrum
spectrummax = 3 # define maximum frequency in lf spectrum
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2))) # get lf spectrum length
lfspecmags = specmags[1:lfspecmaglen] # set low frequency spectrum magnitudes
lfspecfreqs = specfreqs[1:lfspecmaglen] # set low frequency spectrum frequencies

topmagscount = 6 # define max frequency of lf spectrum
topmags = sorted(lfspecmags)[-topmagscount:] # get top magnitudes
toppos = [ list(lfspecmags).index(m) for m in topmags ] # get top magnitude positions
topfreqs = [ lfspecfreqs[p] for p in toppos ] # get top frequencies

#-----------------------------------------------------------------------------------------

fig,((plt01, plt02)) = plt.subplots(nrows=1, ncols=2, figsize=(14, 4)) # figure format

plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold") # display a title

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

plt02.plot(lfspecfreqs, lfspecmags)
plt02.scatter(topfreqs, topmags, color="red") # Scatter plot red dots
for f,m in zip(topfreqs, topmags): # loop through top values

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)# print formatted values
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,spectrummax)

plt.tight_layout(pad=3)
plt.savefig(wavfilename[:-3]+".png")
plt.show() # display figure

import os

def outputtextlines(text, filename):
handle = open(filename,'w')
linelist = handle.write(text)
handle.close()
return

def appendtextlines(text, filename):
handle = open(filename,'a')
linelist = handle.write(text)
handle.close()
return

csvfreqs = "lffreqs\t"+"\t".join(
[ "%.3f"%x for x in lfspecfreqs ]
)+"\n"

csvmags = "lfmags\t"+"\t".join(
[ "%.3f"%x for x in lfspecmags ]
)+"\n"

outputtextlines(csvfreqs, csvfilename)
appendtextlines(csvmags, csvfilename)

os.system("soffice %s"%csvfilename)
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Comparing multiple files

Comparison of English and German story readings

An English example:
The North Wind and the Sun

A German example:
Nordwind und Sonne
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Distance metrics

Manhattan Distance
Manhattan Distance

(Cityblock distance, Taxicab Distance)
‘around the corner’

Canberra Distance
(Normalised Manhattan Distance)

Euclidean Distance
direct distance
‘as the crow flies’

Cosine Distance
angle, direction, not magnitude

so not distance itself
‘hiker’s orientation’

 A

 B

 A

 B

 A

 B
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Spectrum Comparison: Distance Table

Eng 01 Eng 02 Eng 03 Ger 01 Ger 02 Ger 03

Eng 01 0. 0.67477731 1. 0.74745837 0.93762055 0.85622088

Eng 02 0.67477731 0. 0.5184008 0.76221046 0.87568858 0.7706713

Eng 03 1. 0.5184008 0. 0.78197106 0.85094568 0.82617612

Ger 01 0.74745837 0.76221046 0.78197106 0. 0.42298678 0.56668163

Ger 02 0.93762055 0.87568858 0.85094568 0.42298678 0. 0.44727788

Ger 03 0.85622088 0.7706713 0.82617612 0.56668163 0.44727788 0.

Adult Female English-German bilingual reading
The North Wind and the Sun,

3 English, 3 German, in order of production.
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Distance map
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Distance map

An English example:
The North Wind and the Sun

A German example:
Nordwind und Sonne
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Spectrum Comparison – Distance Networks, Part One
#  H_waveform_envelope_spectrum_distancenetwork.py. D. Gibbon, 2021-07-06
import sys, re, glob # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import butter, lfilter, medfilt, hilbert

import scipy.spatial.distance as dist
from graphviz import Graph

spectrummax = 3
distancelimit = 0.7
distancemetrics = [ 'canberra', 'chebyshev', 'cityblock',

'correlation', 'cosine', 'euclidean' ]
wavfiledirectory = sys.argv[1]
wavfilelist = sorted(glob.glob(wavfiledirectory+"*.wav"))
datasetname = sys.argv[2]

namelist = []
rawvaluelist = []
for wavfilename in wavfilelist: # Make spectra for all files

wavfilebase = re.sub(".*/", "", wavfilename)
wavfilebase = re.sub("-mono-16k.wav","",wavfilebase)

fs, signal = wave.read(wavfilename) # read sampling frequency and signal

signallength = len(signal) # define signal length in bytes
signalseconds = int(signallength / fs) # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 10 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

specmags = np.abs(np.fft.rfft(envelope))
specmaglen = len(specmags)
lfspecmaglen = int(round(spectrummax * specmaglen / (fs / 2)))
lfspecmags = specmags[1:lfspecmaglen]
lfspecmags = lfspecmags / max(lfspecmags)

namelist += [ wavfilebase ]
rawvaluelist += [ lfspecmags ]
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Spectrum Comparison – Distance Networks, Part Two

Previous code:
read all files and calculate spectrum for each file.

 calculate file namelist and rawvaluelist of spectra

Operations:
use interpolation to ensure that lengths of spectra are equal
calculate distances (differences) between spectra with distance metrics

newsize = np.max( [ len(val) for val in rawvaluelist ] ) # Make equal data lengths

valuelist = []
for val in rawvaluelist:

size = len(val)
xloc = np.arange(size)
new_xloc = np.linspace(0, size, newsize)
new_data = np.interp(new_xloc, xloc, val) # Interpolation
valuelist += [ new_data ]

valuelist = np.array(valuelist)

for distancemetric in distancemetrics:

distances = dist.pdist(valuelist, metric=distancemetric)
dist_square = dist.squareform(distances) # format as 2D table
dist_list = dist_square.reshape(dist_square.shape[0] * dist_square.shape[1]) # reformat
dist_list = (dist_list - np.min(dist_list)) / (np.max(dist_list) - np.min(dist_list)) # normalise
dist_square = dist_list.reshape(dist_square.shape)

Output:
Distances between spectra in a two-dimensional table
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Spectrum Comparison – Distance Networks, Part Three

Previous code:
read all files and calculate spectrum for each file.

 calculate file namelist and rawvaluelist of spectra

Operations:
Create and save distance network graph

d = Graph('D', filename=graphvizfilename, engine='dot', format='png')
d.attr('node', shape='ellipse', fontsize='12', size='6,6', rankdir='LR')
allcount = 0
count = 0
for i in range(0, len(namelist)-1):

for j in range(i+1, len(namelist)):
firstname = namelist[i]
secondname = namelist[j]
distance = dist_square[i][j]
allcount += 1
if distance <= distancelimit:

count += 1
d.node(firstname)
d.node(secondname)
d.edge(firstname, secondname, label="%.3f"%distance)

else:
print(firstname,distance,secondname,"too large.")

d.node(wavfilebase+"\n"+distancemetric + ' distance metric\nn=%d/%d, %s max dist'%(count,allcount,distancelimit),
shape='box')

graphvizfilename="GRAPHVIZ/"+datasetname+"-graphviz -"+distancemetric
d.render(graphvizfilename, view=False) # switch screen view or only save file
plt.close(“all”)

Output:
Distance network graph
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Spectrum Comparison – Hierarchical Clustering

Previous code:
read all files and calculate spectrum for each file.

 calculate distances between spectra

Operations:
Create and save hierarchical clustering dendrogram

import scipy.cluster.hierarchy as hy
figwidth = 6.5; figheight = 4
boxwidth = 0.6; boxheight = 0.83
halign = 0.02 ; valign = 0.14
orientation = "left"
dendrolevels = 20

for distancemetric in distancemetrics:

distances = dist.pdist(valuelist, metric=distancemetric)
clustermethods = methodlist_euclid if distancemetric == "euclidean" else methodlist_other

for clustermethod in clustermethods:
print("Distance metric:", distancemetric, "Clustering method:", clustermethod)
fig = plt.figure(figsize=(figwidth, figheight))
ax1 = fig.add_axes([halign, valign, boxwidth, boxheight])
ax1.set_xlabel("%s%s-%s"%(figurefilebase,distancemetric,clustermethod), fontsize=8)

orientation = 'left' # Change to 'right' or 'top' if leaf labels are cut off
Y1 = hy.linkage(distances, method=clustermethod)
hy.dendrogram(Y1,

p = dendrolevels, truncate_mode = "level",
orientation=orientation,

# cutoff = 0.3*np.max(Y1[:,2])
above_threshold_color='black', color_threshold=0,
count_sort="False", distance_sort=False, labels=namelist, leaf_font_size=10)

figurefilename = figurefilebase + "%s-%s-dendro.png"%(distancemetric,clustermethod)
plt.savefig(figurefilename)
plt.close(fig) # Close each graph in loop after saving and displaying

Output: Hierarchical cluster graph (dendrogram)
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FM Demodulation
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Low Frequency AM and FM Demodulation

AM envelope demodulation:
● phonetics:

amplitude curve, syllable,
stress-accent

● phonology:
sonority curve, syllables, stress

FM envelope demodulation:
● phonetics:

F0, pitch track
● phonology:

tones, pitch accents, intonation

Modulated carrier signal
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FM Demodulation – F0 estimation (‘pitch’ extraction)

There are many algorithms for F0 estimation, for example:

Time domain algorithms:

autocorrelation (AC), average magnitude difference function (AMDF),

average squared difference function (ASDF) ...

Frequency domain algorithms:

harmonic peak detection, spectral comb, ...

The AMDF algorithm:

1. Divide the speech signal into equal time frames.

2. Make a copy of the first frame, noting the start position.

3. Move the copy through the first frame:
● compare with the signal at each point
● save the differences in a list

4. Find the first smallest difference in the list:
● find its position in the signal
● find the fundamental period (P0) by subtracting the start position from this position and 

divide by the sampling frequency.
● then the fundamental frequency in this frame is: F0 = 1/P0

5. Move to the next frame and repeat until the last frame.
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For all algorithms: divide the signal into equal time frames

The duration of the time frame depends on the lowest frequency to be measured.
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AMDF: make a copy of the first time frame

Note the start position of the time frame in the signal.
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AMDF: move copy through first time frame

1. Compare the copy with the signal point by point at each position in the frame

2. Save each difference in a list, together with its current position in the frame

3. When finished with comparisons at all positions in the frame:
search the list for the smallest difference with the copy and its position.
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AMDF: move the copy through the first frame to the end

1. Compare the copy with the signal point by point at each position in the frame

2. Save each difference in a list, together with its current position in the frame

3. When finished with comparisons at all positions in the frame:
search the list for the smallest difference with the copy and its position.

In practice, comparison of the copy with the signal starts with an offset slightly after 
the first position in the frame otherwise the smallest difference would always be 
zero! The position of the offset depends on the highest frequency to be measured.
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τ is the lag, which ranges from the 
beginning to the end of the frame

Definition of AMDF

D (τ )=
1

N−1−τ∑n=0

N−1−τ
|x (n)−x (n+τ )|,0≤τ≤N−1
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AMDF: calculate differences, minimal difference, T, F0

1. Note the position of the minimal difference between copy and signal

2. Calculate time period T of the frame as the difference between
● the beginning of the frame and
● the position of the minimal difference

(in this case: 0.004875 s, i.e. 4.875 ms) divided by the sampling frequency fs

3. Calculate the frequency from the period: F0 = 1 / T

(in this case: 1 / 0.04875 = 205 Hz)

Move to the next frame and repeat the procedure for the remaining frames
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FM demodulation, Part 1: waveform, AM envelope

# J_waveform_envelope_F0.py

import re, sys
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import scipy.io.wavfile as wave
from scipy.signal import butter, lfilter, medfilt
from module_fm_demodulation import *

wavfilename = sys.argv[1] # get input filename from command line 
fs, signal = wave.read(wavfilename) # read sampling frequency and signal
wavfilebase = re.sub("^.*/","",wavfilename)
wavfilebase = re.sub("-16k-mono","",wavfilebase[:-4])
figurefilename = "PNG/RFA_%s.png"%wavfilebase

signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1
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FM demodulation, Part 2: F0 estimation

FM demodulation using the AMDF (Average Magnitude Difference Function) method.

The F0 estimation routines are longer and more complex than previous routines, so they are 
simply summarised here, for reasons of time, space and effort:

f0estimate(signal,fs)
clipper(sig,thresh,type) # Clip low level noise
butterworthfilter(signaldata, cutoff, order, fs, type) # Low pass filter
f0movingwindow(signal, fs, windowshape, framelength, frameskip, f0diffoffsetlength)

f0amdf(signal, fs, windowshape, framestart, framelength, f0diffoffsetlength)

Postprocessing: moving median filter to remove ‘noisy’ outliers.
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FM demodulation, Part 3: F0 parameters
A number of parameters are defined:

centrethresh = 0.0 # Deals with silence and low volume noise
limitthresh = 0.9
fmbutterhigh = f0min * 2 # low pass filter
fmbutterhighorder = 5
fmbutterlow = f0max # high pass filter
fmbutterloworder = 2

f0min = 50 # minimum expected F0
f0max = 450 # maximum expected F0

# Voice range dependent AMDF parameters
f0framelengthfactor = 0.75 # relative to f0min, > 1
f0frameskipfactor = 0.5 # Default is 1, the frame length
f0diffoffsetlengthfactor = 0.1 # relative fo f0max
f0framedispersion = 0.1 # quasi-noise/voiceless detector - can this work?
f0peakoperation = "median" # the implmementation of "average"
f0differenceoffset = 0.5

# Atomatic voice model calculation based on minimum and maximum frequency settings
f0frameduration =  1 / f0min
f0frameduration = f0framelengthfactor * f0frameduration
framerate = 2 / f0frameduration
framelength = int(f0frameduration * fs)
frameskip = int(framelength * f0frameskipfactor)
windowshape = tukey(framelength, f0tukeyfraction)

# AMDF offset
f0diffoffsetdur = 1 / f0max # seconds
f0diffoffsetlength = int(f0diffoffsetlengthfactor * f0diffoffsetdur * fs) # samples
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FM demodulation, Part 4: F0 estimation

F0 preprocessing: filtering:

fsignal = clipper(signal,centrethresh,"centre")
fsignal = clipper(fsignal,limitthresh,"limit")
fsignal = butterworthfilter(fsignal, fmbutterlow, fmbutterloworder, fs, "low")
fsignal = butterworthfilter(fsignal, fmbutterhigh, fmbutterhighorder, fs, "high")

F0 estimation frame loop:

def f0estimate(signal,fs, framelength, frameskip, f0medfilter):
f0array = np.array([

f0amdf(signal, fs, )
for framestart in range(0, len(signal)-3*framelength, frameskip)

])
f0array = medfilt(f0array, f0medfilter)
return f0array

The function of moving median filters is to provide a low-pass smoothing result without 
being too influenced by outlier values.

This is a very common technique for smoothing F0 tracks (‘pitch’ tracks).
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FM demodulation – F0 extraction, Part 5, AMDF

def f0amdf(signal, fs, windowshape, framestart, framelength, f0diffoffsetlength):

framestop = framestart + framelength
framecopy = signal[framestart:framestop]
framecopydiff = np.diff(framecopy)
framestd = np.std(framecopydiff)

if framestd < f0framedispersion: # anti-noise, quasi-voice-detector

movingwindowrange = range(framestart+f0diffoffsetlength, framestop)

meandiffs = [np.sum(
np.abs(framecopy - signal[movwinstart:movwinstart+framelength]))
for movwinstart in movingwindowrange ]

meandiffs = list(np.array(meandiffs)/np.max(meandiffs))
smallestmeandiff = np.min(meandiffs)

if smallestmeandiff < f0differenceoffset:
smallestmeandiffpos = meandiffs.index(smallestmeandiff) + f0diffoffsetlength
period = smallestmeandiffpos / fs
frequency = 1 / period

else:
frequency = 0

else:
frequency = 0

return frequency
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FM demodulation – F0 extraction, Part 6, graphics

The graphics output is a small extension of existing graphics output routines.

fig, (plt01, plt02, plt03) = plt.subplots(nrows=3, ncols=1, figsize=(6, 6))
plt.suptitle = "%s [file: %s]"%("Speech signal demodulation", wavfilebase)

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt02.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt02.set_xlabel("Time")
plt02.set_ylabel("Amplitude")

xaxistime = np.linspace(0, signalseconds, f0arraylength) # define x axis in seconds
plt03.scatter(xaxistime, f0array, s=1, color="blue") # plot waveform in grey
plt03.set_ylim(f0min, f0max)
plt03.set_xlabel("Time")
plt03.set_ylabel("Frequency")

plt.tight_layout(pad=1, w_pad=0, h_pad=5)
plt.savefig(figurefilename)
plt.show()
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Revision of AMDF
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FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction
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FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction
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FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction
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FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction
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FM Demodulation – F0 extraction, Part 4, AMDFFM Demodulation – F0 extraction
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FM spectral analysis, Part 1, F0 estimation
# K_waveform_envelope_F0_spectrum.py. D. Gibbon, 2021-07-06

import sys, re # import specialised modules
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wave
from scipy.signal import medfilt, butter, lfilter
from module_fm_demodulation import *

specmax = 2
magscount = 6

if len(sys.argv) > 1:
wavfilename = sys.argv[1] # get input filename from command line 

else:
wavfilename = "DATA/one-to-ten-Putonghua-Lara-16k-mono.wav"

wavfilebase = re.sub("^.*/","",wavfilename)
wavfilebase = re.sub("-16k-mono","",wavfilebase[:-4])
figurefilename = "PNG/F_%s.png"%wavfilebase

fs, signal = wave.read(wavfilename) # read sampling frequency and signal
signallength = len(signal) # define signal length in bytes
signalseconds = signallength / fs # define signal length in seconds
signal = signal / max(abs(signal)) # normalise signal -1 ... 0 ... 1

b, a = butter(5, 5 / (0.5 * fs), btype="low") # define Butterworth filter
envelope = lfilter(b, a, abs(signal)) # apply filter to create lf envelope
envelope = envelope / max(envelope) # normalise envelope 0 ... 1

f0array, framerate = f0estimate(signal, fs)
f0arraylength = len(f0array)

Description

In this demonstration application, a novel and unusual step is taken: 
the spectrum of the demodulated FM signal is calculated.

The procedures are entirely parallel, but with f0array instead of 
envelope, and framerate instead of fs.

For example, corresponding lines can be compared:

amspecmags = np.abs(np.fft.rfft(envelope))
fmspecmags = np.abs(np.fft.rfft(f0array))

amspecfreqs = np.linspace(0,fs/2,amspecmaglen)
fmspecfreqs = np.linspace(0,framerate/2,fmspecmaglen)
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AM and FM spectral analysis, Part 2, spectral analysis
amspecmags = np.abs(np.fft.rfft(envelope))
amspecmags = amspecmags / np.max(amspecmags)
amspecmaglen = len(amspecmags)
amspecfreqs = np.linspace(0,fs/2,amspecmaglen)

amspectrummax = specmax
lfamspecmaglen = int(round(amspectrummax * amspecmaglen / (fs / 2)))
lfamspecmags = amspecmags[1:lfamspecmaglen]
lfamspecfreqs = amspecfreqs[1:lfamspecmaglen]

amtopmagscount = magscount # define max frequency of lf spectrum
amtopmags = sorted(lfamspecmags)[-amtopmagscount:]
amtoppos = [ list(lfamspecmags).index(m) for m in amtopmags ]
amtopfreqs = [ lfamspecfreqs[p] for p in amtoppos ]

#-----------------------------------------------------------------------------------------

fmspecmags = np.abs(np.fft.rfft(f0array))
fmspecmags = fmspecmags / np.max(fmspecmags)
fmspecmaglen = len(fmspecmags)
fmspecfreqs = np.linspace(0,framerate/2,fmspecmaglen)

fmspectrummax = specmax
lffmspecmaglen = int(round(fmspectrummax * fmspecmaglen / (framerate / 2)))
lffmspecmags = fmspecmags[1:lffmspecmaglen]
lffmspecfreqs = fmspecfreqs[1:lffmspecmaglen]

fmtopmagscount = magscount # define max frequency of lf spectrum
fmtopmags = sorted(lffmspecmags)[-fmtopmagscount:]
fmtoppos = [ list(lffmspecmags).index(m) for m in fmtopmags ]
fmtopfreqs = [ lffmspecfreqs[p] for p in fmtoppos ]
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AM and FM spectral analysis, Part 3: graphics
fig,((plt01, plt02),(plt03, plt04)) = plt.subplots(nrows=2, ncols=2, figsize=(14, 4))# define figure 
format
plt.suptitle("%s, %d"%(wavfilename, fs), fontweight="bold")# display a title

# Time domain
xaxistime = np.linspace(0, signalseconds, signallength) # define x axis in seconds
plt01.plot(xaxistime, signal, color="lightgrey") # plot waveform in grey
plt01.plot(xaxistime, envelope, color="red")
plt01.set_xlabel("Time")
plt01.set_ylabel("Amplitude")

xaxistime = np.linspace(0, signalseconds, f0arraylength) # define x axis in seconds
plt03.scatter(xaxistime, f0array, s=1, color="blue") # plot waveform in grey
plt03.set_ylim(f0min, f0max)
plt03.set_xlabel("Time")
plt03.set_ylabel("Frequency")

# Frequency domain
plt02.plot(lfamspecfreqs, lfamspecmags)
plt02.scatter(amtopfreqs, amtopmags, color="red")
for f,m in zip(amtopfreqs, amtopmags):

plt02.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)
plt02.set_xlabel("Frequency")
plt02.set_ylabel("Magnitude")
plt02.set_xlim(0,amspectrummax)

plt04.plot(lffmspecfreqs, lffmspecmags)
plt04.scatter(fmtopfreqs, fmtopmags, color="red")
for f,m in zip(fmtopfreqs, fmtopmags):

plt04.text(f, m-0.1, "%.3fHz\n%dms"%(f,1000/f), fontsize=8)
plt04.set_xlabel("Frequency")
plt04.set_ylabel("Magnitude")
plt04.set_xlim(0,amspectrummax)

plt.savefig(figurefilename)
plt.tight_layout(pad=3)
plt.show() # display figure
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Finally ...
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Science about trying to prove yourself to be wrong.

Then trying to do more with new data if you are right
(and others agree that you are right using similar methods).

But improving your theory or method, or using different data
if you are wrong.
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Scientific Discovery: a clear example of Critical Rationalism

Chomsky, N. 1957. Syntactic Structures. The Hague: 
Mouton.
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Scientific Discovery: a clear example of Critical Rationalism

2. Finite State Grammars – falsified!

3. Phrase Structure Grammars – falsified!

4. Transformational Grammars – not falsified!

1. Domain characterisation and delimitation

Chomsky, N. 1957. Syntactic Structures. The Hague: 
Mouton.
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Scientific Discovery: a clear example of Critical Rationalism

2. Finite State Grammars – falsified!

3. Phrase Structure Grammars – falsified!

4. Transformational Grammars – not falsified!

1. Domain characterisation and delimitation

Chomsky, N. 1957. Syntactic Structures. The Hague: 
Mouton.

Chomsky’s models have been shown to 
overgeneralise: complete but not sound.

For example, phonology, prosody, 
morphology, as well as syntax in 
conversational speech (but not semantics), 
can be fully modelled with  Finite State 
Grammars.
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A Critical Rationalist approach to methodology

EMPIRICAL 
METHODS:
observation

FORMAL METHODS: 
theory, model

SPEECH DOMAIN RANKS
(categories with their phonetic and 
semantic interpretations)

textual 
description

logic, 
mathematics

heuristic 
symbolism

hermeneutics, 
intuition

measurement, 
comparison, 
quantitative 
analysis

syllable word sentence
text/turn dialogue
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Summary

● Lecture 1:
– Semiotics of prosody
– Rhythm and melody

● Lecture 2:
– Rhythm analysis method:

● Rhythm Formant Theory
● Rhythm Formant Analysis

● Lecture 3:
– Modulation Theory
– Rhythm Formant Analysis: “do it yourself”
– Scientific methodology

rhythm
formants

cohesion
rhetoric

rhythm
melody

the real world
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谢谢

Many thanks for participating,

and good luck with your coding!
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Thanks – looking forward to future contacts!
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