Funktionen

Grundsätzlich wie, das, was man aus der Schule kennt! Z.B. f(x)=2x. Hier sagen wir, dass das Element x (das Element des Definitionsbereichs (M) ist) in einer Relation zu einem Element y (aus dem Wertebereich (N)) steht. Also xRy. Und was ist die Relation? Ganz einfach, die Funktion beschreibt die Relation. Paare wären also etwa <1,2>, <2, 4>, <3,6> usw. Jedes x muss irgendeinem y zugeordnet werden, es muss ein Ergebnis geben. Und zwar gibt es für jedes x nur ein Ergebnis! (Hier unterscheidet sich das ganze etwas zu den komplexeren Funktionen aus der Schule, z.B. f(x)= vx) Schreibweise: $f: M \rightarrow N$ (f bildet eine Funktion von f nach f ab) oder auch f: f wy Was links vom Pfeil steht ist Definitionsbereich, was rechts davon steht der Wertebereich. Elemente aus dem Wertebereich können "doppelt vergeben" werden, (vgl. $f(x)=x^2$)

Surjektiv

Wenn jedes y (min.) einem x zugeordnet ist.

Iniektiv

Wenn jedes y max. einem x zugeordnet ist.

Bijektiv

Wenn Funktion = surjektiv + injektiv

Verkettungen

Einfache Anleitung: Wenn du f(x) und g(x) verketten willst, ersetze das x des Funktionsterms, der links vom Kringel steht durch den Funktionsterm, der rechts vom Kringel steht.

Beispiel: f(x) = 2x und g(x) = x+3 fog = f(g(x)) = 2(x+3) (= 2x +6)

Direktes Bild

Das direkte Bild zeigt, welches Element oder welche Elemente einer Funktion von verschiedenen Elementen "getroffen" werden.

f sei {<a,1>, <b,1>, <c,3>} dann wäre f [{a,b}] = {1}

Einschränkungen

Es wird eine Funktion f: $M \rightarrow M$ genommen. K sei eine Teilmenge von M. Dann ist f \(\cdot K \) (sprich: f eingeschränkt auf K) alle jene geordneten Paare, die sowohl Element von f als auch von K sind.

Induzierte Partition

Partition, bei der die Bündelung angibt, welche x einem y zugeordnet sind. Zu gut deutsch: Alles, was innerhalb der Partition in einer Mengenklammer steht, ist dem gleichen y zugeordnet. Beispiel:

```
M:= {<1,a>, <2, b>, <3, a>}
Induzierte Partition: {{1,3}, {2}}
```

Nur weil eine Partition keine induzierte Partition ist, ist das egal, wenn es darum geht, zu entscheiden, ob die Partition denn nun wirklich eine Partition ist.

Umkehrrelationen

Bei einfachen Funktionen reicht es, einfach die Gleichung "umzudrehen" (aus x^2 wird $\forall x$ usw) aber bei Funktionen, die "mehr" enthalten machen wir folgendes: Wir ersetzen f(x) durch y (denn das ist ja das gleiche) und lösen dann zu x hin auf. Einfach plus, minus, mal, geteilt rechnen, bis nur noch x ganz nackig und alleine da steht. Dann vertauschen wir x und y und nennen das ganze die Umkehrfunktion von f(x) (f(x)).

Ein paar Beispiele:

```
f(x) = 3x + 4
y = 3x +4
```

$$y - 4 = 3x$$

$$(y-4)/3=x$$

$$(x - 4)/3 = x$$

$$(x-4)/3 = x$$

f $(x)=(x-4)/3$

$$f(x) = \frac{x+2}{3}$$
$$y = \frac{x+2}{3}$$
$$3y = x + 2$$

$$y = \frac{x+2}{2}$$

$$3y = x + 2$$

$$3y - 2 = x$$

$$3x - 2 = x$$

$$f'(x) = 3x-2$$