Optimal Stopping with Multiple Priors

Frank Riedel

Institute for Mathematical Economics Bielefeld University

March 2007

Market entry

- A firm can invest into a project with profit stream $\delta_0, \delta_1, \delta_2, \ldots$
- Sunk cost l > 0, interest rate r > 0
- Profit if entry at au: $G_{ au} = \sum_{t= au}^{\infty} \delta_t (1+r)^{-(t- au)}$
- Assumptions: $\delta_0 = 1, \delta_{t+1} = \delta_t (1 + Z_t)$. (Z_t) iid, $\sim F$
- maximize $\mathbb{E} \left(G_{\tau} I \right) (1+r)^{-\tau}$

Market entry

• A firm can invest into a project with profit stream $\delta_0, \delta_1, \delta_2, \ldots$

• Sunk cost l > 0, interest rate r > 0

- Profit if entry at au: $G_{ au} = \sum_{t= au}^{\infty} \delta_t (1+r)^{-(t- au)}$
- Assumptions: $\delta_0 = 1, \delta_{t+1} = \delta_t (1 + Z_t)$. (Z_t) iid, $\sim F$

• maximize $\mathbb{E} (G_{\tau} - I) (1 + r)^{-1}$

Market entry

• A firm can invest into a project with profit stream $\delta_0, \delta_1, \delta_2, \ldots$

- Sunk cost I > 0, interest rate r > 0
- Profit if entry at au: $G_{ au} = \sum_{t= au}^{\infty} \delta_t (1+r)^{-(t- au)}$
- Assumptions: $\delta_0 = 1, \delta_{t+1} = \delta_t (1 + Z_t)$. (Z_t) iid, $\sim F$
- maximize $\mathbb{E}\left(\mathsf{G}_{ au} \mathsf{I}
 ight) (1+r)^{-r}$

Market entry

• A firm can invest into a project with profit stream $\delta_0, \delta_1, \delta_2, \ldots$

- Sunk cost I > 0, interest rate r > 0
- Profit if entry at τ : $G_{\tau} = \sum_{t=\tau}^{\infty} \delta_t (1+r)^{-(t-\tau)}$
- Assumptions: $\delta_0 = 1, \delta_{t+1} = \delta_t (1 + Z_t)$. (Z_t) iid, $\sim F$
- maximize $\mathbb{E}\left(\mathit{G}_{ au}-\mathit{I}
 ight)(1+r)^{- au}$

Market entry

• A firm can invest into a project with profit stream $\delta_0, \delta_1, \delta_2, \ldots$

- Sunk cost I > 0, interest rate r > 0
- Profit if entry at au: $G_{ au} = \sum_{t= au}^{\infty} \delta_t (1+r)^{-(t- au)}$
- Assumptions: $\delta_0 = 1, \delta_{t+1} = \delta_t (1 + Z_t)$. (Z_t) iid, $\sim F$

• maximize $\mathbb{E} (G_{\tau} - I) (1 + r)^{-\tau}$

Market entry

• A firm can invest into a project with profit stream $\delta_0, \delta_1, \delta_2, \ldots$

- Sunk cost I > 0, interest rate r > 0
- Profit if entry at τ : $G_{\tau} = \sum_{t=\tau}^{\infty} \delta_t (1+r)^{-(t-\tau)}$
- Assumptions: $\delta_0 = 1, \delta_{t+1} = \delta_t (1 + Z_t)$. (Z_t) iid, $\sim F$
- maximize $\mathbb{E} \left(G_{\tau} I \right) (1 + r)^{-\tau}$

Selling a house

- Real estate agent collects bids p_0, p_1, p_2, \ldots for the house
- Running costs c > 0, interest rate r > 0
- ullet present value of sale at $au\colon G_ au=p_ au(1+r)^{- au}-\sum_{t=0}^{ au-1}c(1+r)^{- au}$
- Assumptions: (p_t) iid, $\sim F$
- maximize $\mathbb{E}G_{\tau}$

Selling a house

- Real estate agent collects bids p_0, p_1, p_2, \ldots for the house
- Running costs c > 0, interest rate r > 0
- ullet present value of sale at $au\colon G_ au=p_ au(1+r)^{- au}-\sum_{t=0}^{ au-1}c(1+r)^{- au}$

- Assumptions: (p_t) iid, $\sim F$
- maximize $\mathbb{E}G_{\tau}$

Selling a house

- Real estate agent collects bids p_0, p_1, p_2, \ldots for the house
- Running costs c > 0, interest rate r > 0
- present value of sale at au: $G_{ au} = p_{ au}(1+r)^{- au} \sum_{t=0}^{ au-1} c(1+r)^{-t}$

- Assumptions: (p_t) iid, ~ F
- maximize $\mathbb{E}G_{\tau}$

Selling a house

- Real estate agent collects bids p_0, p_1, p_2, \ldots for the house
- Running costs c > 0, interest rate r > 0
- present value of sale at au: $G_{ au} = p_{ au}(1+r)^{- au} \sum_{t=0}^{ au-1} c(1+r)^{-t}$

- Assumptions: (p_t) iid, $\sim F$
- maximize $\mathbb{E}G_{\tau}$

Selling a house

- Real estate agent collects bids p_0, p_1, p_2, \ldots for the house
- Running costs c > 0, interest rate r > 0
- present value of sale at au: $G_{ au} = p_{ au}(1+r)^{- au} \sum_{t=0}^{ au-1} c(1+r)^{-t}$

- Assumptions: (p_t) iid, $\sim F$
- maximize $\mathbb{E}G_{\tau}$

Selling a house

- Real estate agent collects bids p_0, p_1, p_2, \ldots for the house
- Running costs c > 0, interest rate r > 0
- present value of sale at au: $G_{ au} = p_{ au}(1+r)^{- au} \sum_{t=0}^{ au-1} c(1+r)^{-t}$

- Assumptions: (p_t) iid, $\sim F$
- maximize $\mathbb{E}G_{\tau}$

American Options

- Buyer has the right to buy the underlying asset for K > 0 at some time τ before maturity
- Profit from exercising: $(S_{ au} K)^+$
- Buyer: maximize $\mathbb{E}\left(S_{ au}-K
 ight)^{+}(1+r)^{- au}$
- Seller: ask a price of

$$\max_{\tau} \mathbb{E}^* \left(S_{\tau} - K \right)^+ (1+r)^{-\tau}$$

- Assumptions of the buyer: $S_0=1, S_{t+1}=S_t(1+Z_t).$ (Z_t) iid, $\sim F$
- Assumptions of the seller: unique pricing measure, complete markets

American Options

- Buyer has the right to buy the underlying asset for K > 0 at some time τ before maturity
- Profit from exercising: $(S_{\tau} K)^+$
- ullet Buyer: maximize $\mathbb{E}\left(S_{ au}-K
 ight)^{+}(1+r)^{- au}$
- Seller: ask a price of

$$\max_{\tau} \mathbb{E}^* \left(S_{\tau} - K \right)^+ (1+r)^{-\tau}$$

- Assumptions of the buyer: $S_0=1, S_{t+1}=S_t(1+Z_t).$ (Z_t) iid, $\sim F$
- Assumptions of the seller: unique pricing measure, complete markets

American Options

- Buyer has the right to buy the underlying asset for K > 0 at some time τ before maturity
- Profit from exercising: $(S_{\tau} K)^+$
- Buyer: maximize $\mathbb{E} (S_{\tau} K)^+ (1 + r)^{-\tau}$
- Seller: ask a price of

$$\max_{\tau} \mathbb{E}^* \left(S_{\tau} - K \right)^+ (1+r)^{-\tau}$$

- Assumptions of the buyer: $S_0=1, S_{t+1}=S_t(1+Z_t).$ (Z_t) iid, $\sim F$
- Assumptions of the seller: unique pricing measure, complete markets

American Options

- Buyer has the right to buy the underlying asset for K > 0 at some time τ before maturity
- Profit from exercising: $(S_{\tau} K)^+$
- Buyer: maximize $\mathbb{E}\left(S_{ au}-\mathcal{K}
 ight)^{+}(1+r)^{- au}$
- Seller: ask a price of

$$\max_{\tau} \mathbb{E}^* \left(S_{\tau} - K \right)^+ (1+r)^{-\tau}$$

- Assumptions of the buyer: $S_0=1, S_{t+1}=S_t(1+Z_t).$ (Z_t) iid, \sim F
- Assumptions of the seller: unique pricing measure, complete markets

American Options

- Buyer has the right to buy the underlying asset for K > 0 at some time τ before maturity
- Profit from exercising: $(S_{\tau} K)^+$
- Buyer: maximize $\mathbb{E}\left(S_{ au}-\mathcal{K}
 ight)^{+}(1+r)^{- au}$
- Seller: ask a price of

$$\max_{\tau} \mathbb{E}^* \left(S_{\tau} - \mathcal{K} \right)^+ (1+r)^{-\tau}$$

- Assumptions of the buyer: $S_0=1, S_{t+1}=S_t(1+Z_t).$ (Z_t) iid, \sim F
- Assumptions of the seller: unique pricing measure, complete markets

American Options

- Buyer has the right to buy the underlying asset for K > 0 at some time τ before maturity
- Profit from exercising: $(S_{\tau} K)^+$
- Buyer: maximize $\mathbb{E}\left(S_{ au}-\mathcal{K}
 ight)^{+}(1+r)^{- au}$
- Seller: ask a price of

$$\max_{\tau} \mathbb{E}^* \left(S_{\tau} - \mathcal{K} \right)^+ (1+r)^{-\tau}$$

where P^* is the pricing measure (equivalent martingale measure)

• Assumptions of the buyer: $S_0 = 1, S_{t+1} = S_t(1+Z_t)$. (Z_t) iid, \sim F

• Assumptions of the seller: unique pricing measure, complete markets

American Options

- Buyer has the right to buy the underlying asset for K > 0 at some time τ before maturity
- Profit from exercising: $(S_{\tau} K)^+$
- Buyer: maximize $\mathbb{E}\left(S_{ au}-\mathcal{K}
 ight)^{+}(1+r)^{- au}$
- Seller: ask a price of

$$\max_{\tau} \mathbb{E}^* \left(S_{\tau} - \mathcal{K} \right)^+ (1+r)^{-\tau}$$

- Assumptions of the buyer: $S_0 = 1, S_{t+1} = S_t(1+Z_t)$. (Z_t) iid, \sim F
- Assumptions of the seller: unique pricing measure, complete markets

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

The Parking Problem

• You drive along a road towars a theatre

- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

- You see sequentially N applicants
 - and you are aiming for the best
 - rejected applicants do not come back
 - applicants come in random (uniform) ordered
 - What candidate to take?

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

- You see sequentially N applicants
- and you are aiming for the best.
- rejected applicants do not come back
- applicants come in random (uniform) ordered
- What candidate to take?

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

- You see sequentially N applicants
- and you are aiming for the best
- rejected applicants do not come back
- applicants come in random (uniform) order
- What candidate to take?

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

- You see sequentially N applicants
- and you are aiming for the best
- rejected applicants do not come back
- applicants come in random (uniform) order
- What candidate to take?

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

- You see sequentially N applicants
- and you are aiming for the best
- rejected applicants do not come back
- applicants come in random (uniform) order
- What candidate to take?

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

- You see sequentially N applicants
- and you are aiming for the best
- rejected applicants do not come back
- applicants come in random (uniform) order
- What candidate to take?

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

- You see sequentially N applicants
- and you are aiming for the best
- rejected applicants do not come back
- applicants come in random (uniform) order
- What candidate to take?

The Parking Problem

- You drive along a road towars a theatre
- You want to park as close a spossible to the theatre
- Parking spaces are free iid with probability p > 0
- When is the right time to stop?

- You see sequentially N applicants
- and you are aiming for the best
- rejected applicants do not come back
- applicants come in random (uniform) order
- What candidate to take?

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

Questions

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa–Schmeidler): class of priors
- Operations Research / Robust Statistics

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

Questions

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa–Schmeidler): class of priors
- Operations Research / Robust Statistics

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

Questions

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa–Schmeidler): class of priors
- Operations Research / Robust Statistics

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

Questions

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa–Schmeidler): class of priors
- Operations Research / Robust Statistics

how sensitive are the optimal sulptions to slight variations in the model parameters?

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

Questions

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa-Schmeidler): class of priors
- Operations Research / Robust Statistics
 - Sensitivity analysis
 - how sensitive are the optimal sulotions to slight variations in the mode parameters?
- Finance
All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa-Schmeidler): class of priors
- Operations Research / Robust Statistics
 - Sensitivity analysis
 - how sensitive are the optimal sulotions to slight variations in the model parameters?
- Finance

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa-Schmeidler): class of priors
- Operations Research / Robust Statistics
 - Sensitivity analysis
 - how sensitive are the optimal sulotions to slight variations in the model parameters?
- Finance
 - Buyer: see decision theory.
 - Seller: how to hedge if markets are incomplete
 - Multiple pricing measures P^*

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

Questions

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa-Schmeidler): class of priors
- Operations Research / Robust Statistics
 - Sensitivity analysis
 - how sensitive are the optimal sulotions to slight variations in the model parameters?

• Finance

- Buyer: see decision theory
- Seller: how to hedge if markets are incomplete
- Multiple pricing measures P*

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

Questions

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa-Schmeidler): class of priors
- Operations Research / Robust Statistics
 - Sensitivity analysis
 - how sensitive are the optimal sulotions to slight variations in the model parameters?

Finance

- Buyer: see decision theory
- Seller: how to hedge if markets are incomplete
- Multiple pricing measures P*

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa-Schmeidler): class of priors
- Operations Research / Robust Statistics
 - Sensitivity analysis
 - how sensitive are the optimal sulotions to slight variations in the model parameters?
- Finance
 - Buyer: see decision theory
 - Seller: how to hedge if markets are incomplete
 - Multiple pricing measures P*

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa-Schmeidler): class of priors
- Operations Research / Robust Statistics
 - Sensitivity analysis
 - how sensitive are the optimal sulotions to slight variations in the model parameters?
- Finance
 - Buyer: see decision theory
 - Seller: how to hedge if markets are incomplete
 - Multiple pricing measures P*

All examples presume that some distribution F is known, and frequently some kind of independence assumption is added

- Decision Theory
 - Unique prior in the sense of Savage
 - Ellsberg–Paradoxon
 - Weakening of subjective EU (Gilboa-Schmeidler): class of priors
- Operations Research / Robust Statistics
 - Sensitivity analysis
 - how sensitive are the optimal sulotions to slight variations in the model parameters?
- Finance
 - Buyer: see decision theory
 - Seller: how to hedge if markets are incomplete
 - Multiple pricing measures P*

We choose the following modeling approach

- Let X_0, X_1, \ldots, X_T be a (finite) sequence of random variables
- adapted to a filtration (\mathscr{F}_t)
- ullet on a measurable space (Ω,\mathscr{F})
- let \mathscr{P} be a set of probability measures
- choose a stopping time $au \leq au$
- that maximizes

 $\inf_{P\in\mathscr{P}} \mathbb{E}^P X_{\tau}$

We choose the following modeling approach

- Let X_0, X_1, \ldots, X_T be a (finite) sequence of random variables
- adapted to a filtration (\mathcal{F}_t)
- on a measurable space (Ω, \mathscr{F}) ,
- let ${\mathscr P}$ be a set of probability measures
- choose a stopping time $au \leq 7$
- that maximizes

 $\inf_{P\in\mathscr{P}} \mathbb{E}^{P} X_{\tau}$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ う へ の ・

We choose the following modeling approach

- Let X_0, X_1, \ldots, X_T be a (finite) sequence of random variables
- adapted to a filtration (\mathscr{F}_t)
- on a measurable space (Ω,\mathscr{F}) ,
- let \mathscr{P} be a set of probability measures
- choose a stopping time $au \leq 7$

• that maximizes

 $\inf_{P\in\mathscr{P}}\mathbb{E}^{P}X_{\tau}$

We choose the following modeling approach

- Let X_0, X_1, \ldots, X_T be a (finite) sequence of random variables
- adapted to a filtration (\mathscr{F}_t)
- on a measurable space (Ω,\mathscr{F}) ,
- let \mathscr{P} be a set of probability measures
- choose a stopping time $\tau \leq T$

• that maximizes

 $\inf_{P\in\mathscr{P}}\mathbb{E}^P X_{\tau}$

We choose the following modeling approach

- Let X_0, X_1, \ldots, X_T be a (finite) sequence of random variables
- adapted to a filtration (\mathscr{F}_t)
- on a measurable space (Ω,\mathscr{F}) ,
- let \mathscr{P} be a set of probability measures
- choose a stopping time $\tau \leq T$

• that maximizes

 $\inf_{P\in\mathscr{P}} \mathbb{E}^P X_{\tau}$

We choose the following modeling approach

- Let X_0, X_1, \ldots, X_T be a (finite) sequence of random variables
- adapted to a filtration (\mathscr{F}_t)
- on a measurable space (Ω,\mathscr{F}) ,
- let \mathscr{P} be a set of probability measures
- choose a stopping time $\tau \leq T$
- that maximizes

$$\inf_{P\in\mathscr{P}} \mathbb{E}^P X_{\tau}$$

•
$$\sup_t |X_t| \in \bigcap_{P \in \mathscr{P}} L^1(P)$$

- there exists a reference measure P⁰: all P ∈ 𝒫 are equivalent to P⁰ (wlog, Tutsch, PhD 07)
- agent knows all null sets, Epstein/Marinacci 07
- \mathscr{P} weakly compact in $L^1\left(\Omega,\mathscr{F},\mathsf{P}^0
 ight)$
- inf is always min, Föllmer/Schied 04, Chateauneuf, Maccheroni, Marinacci, Tallon 05

- $\sup_t |X_t| \in \bigcap_{P \in \mathscr{P}} L^1(P)$
- there exists a reference measure P⁰: all P ∈ 𝒫 are equivalent to P⁰ (wlog, Tutsch, PhD 07)
- agent knows all null sets, Epstein/Marinacci 07
- \mathscr{P} weakly compact in $L^1(\Omega, \mathscr{F}, P^0)$
- inf is always min, Föllmer/Schied 04, Chateauneuf, Maccheroni, Marinacci, Tallon 05

- $\sup_t |X_t| \in \bigcap_{P \in \mathscr{P}} L^1(P)$
- there exists a reference measure P⁰: all P ∈ 𝒫 are equivalent to P⁰ (wlog, Tutsch, PhD 07)
- agent knows all null sets, Epstein/Marinacci 07
- \mathscr{P} weakly compact in $L^1(\Omega, \mathscr{F}, P^0)$
- inf is always min, Föllmer/Schied 04, Chateauneuf, Maccheroni, Marinacci, Tallon 05

- $\sup_t |X_t| \in \bigcap_{P \in \mathscr{P}} L^1(P)$
- there exists a reference measure P⁰: all P ∈ 𝒫 are equivalent to P⁰ (wlog, Tutsch, PhD 07)
- agent knows all null sets, Epstein/Marinacci 07
- \mathscr{P} weakly compact in $L^1\left(\Omega,\mathscr{F},P^0\right)$
- inf is always min, Föllmer/Schied 04, Chateauneuf, Maccheroni, Marinacci, Tallon 05

- $\sup_t |X_t| \in \bigcap_{P \in \mathscr{P}} L^1(P)$
- there exists a reference measure P⁰: all P ∈ 𝒫 are equivalent to P⁰ (wlog, Tutsch, PhD 07)
- agent knows all null sets, Epstein/Marinacci 07
- \mathscr{P} weakly compact in $L^1\left(\Omega,\mathscr{F},P^0\right)$
- inf is always min, Föllmer/Schied 04, Chateauneuf, Maccheroni, Marinacci, Tallon 05

Snell, Chow/Robbins/Siegmund: Great Expectations

- Given a sequence X_0, X_1, \ldots, X_T of random variables
- adapted to a filtration (\mathcal{F}_t)
- on a probability space (Ω, \mathscr{F}, P) ,
- choose a stopping time $au \leq 7$
- that maximizes $\mathbb{E}X_{\tau}$.

Solution

Snell, Chow/Robbins/Siegmund: Great Expectations

- Given a sequence X_0, X_1, \ldots, X_T of random variables
- adapted to a filtration (\mathcal{F}_t)
- on a probability space (Ω, \mathscr{F}, P) ,
- choose a stopping time $au \leq au$
- that maximizes $\mathbb{E}X_{\tau}$.

Solution

Snell, Chow/Robbins/Siegmund: Great Expectations

- Given a sequence X_0, X_1, \ldots, X_T of random variables
- adapted to a filtration (\mathcal{F}_t)
- on a probability space (Ω, \mathscr{F}, P) ,
- choose a stopping time $\tau \leq T$
- that maximizes $\mathbb{E}X_{ au}$.

Solution

Snell, Chow/Robbins/Siegmund: Great Expectations

- Given a sequence X_0, X_1, \ldots, X_T of random variables
- adapted to a filtration (\mathcal{F}_t)
- on a probability space (Ω, \mathscr{F}, P) ,
- choose a stopping time $\tau \leq {\cal T}$
- that maximizes $\mathbb{E}X_{\tau}$.

Solution

Define the Snell envelope U via backward induction:

 $U_T = X_T$ $U_C = \max\{X_C \mathbb{E}[U_{C-1}|\mathscr{F}_{t}]\} = \{t < T\}$

U is the smallest supermartingale $\geq X$. An optimal stopping time is given by $r^* = \inf\{t \geq 0 : X_t = U_t\}$.

Snell, Chow/Robbins/Siegmund: Great Expectations

- Given a sequence X_0, X_1, \ldots, X_T of random variables
- adapted to a filtration (\mathscr{F}_t)
- on a probability space (Ω, \mathscr{F}, P) ,
- choose a stopping time $au \leq extsf{T}$
- that maximizes $\mathbb{E}X_{\tau}$.

Solution

Define the Snell envelope U via backward induction:

 $egin{aligned} &U_T = X_T \ &U_t = \max\left\{X_t, \mathbb{E}\left[U_{t+1}|\mathscr{F}_t
ight]
ight\} \qquad (t < T) \end{aligned}$

- U is the smallest supermartingale $\geq X$
- An optimal stopping time is given by $r^* = \inf \{t \geq 0 : X_t = U_t\}$

Snell, Chow/Robbins/Siegmund: Great Expectations

- Given a sequence X_0, X_1, \ldots, X_T of random variables
- adapted to a filtration (\mathscr{F}_t)
- on a probability space (Ω, \mathscr{F}, P) ,
- choose a stopping time $\tau \leq T$
- that maximizes $\mathbb{E}X_{\tau}$.

Solution

• Define the *Snell envelope U* via backward induction:

$$egin{aligned} & U_{\mathcal{T}} = X_{\mathcal{T}} \ & U_t = \max\left\{X_t, \mathbb{E}\left[U_{t+1}|\mathscr{F}_t
ight]
ight\} \qquad (t < \mathcal{T}) \end{aligned}$$

• U is the smallest supermartingale $\geq X$

• An optimal stopping time is given by $\tau^* = \inf \{t \ge 0 : X_t = U_t\}$.

Snell, Chow/Robbins/Siegmund: Great Expectations

- Given a sequence X_0, X_1, \ldots, X_T of random variables
- adapted to a filtration (\mathscr{F}_t)
- on a probability space (Ω, \mathscr{F}, P) ,
- choose a stopping time $au \leq T$
- that maximizes $\mathbb{E}X_{\tau}$.

Solution

• Define the Snell envelope U via backward induction:

$$egin{aligned} &U_{\mathcal{T}} = X_{\mathcal{T}} \ &U_t = \max\left\{X_t, \mathbb{E}\left[U_{t+1}|\mathscr{F}_t
ight]
ight\} \qquad (t < T) \end{aligned}$$

• U is the smallest supermartingale $\geq X$

• An optimal stopping time is given by $au^* = \inf \{t \ge 0 : X_t = U_t\}$.

Snell, Chow/Robbins/Siegmund: Great Expectations

- Given a sequence X_0, X_1, \ldots, X_T of random variables
- adapted to a filtration (\mathscr{F}_t)
- on a probability space (Ω, \mathscr{F}, P) ,
- choose a stopping time $au \leq T$
- that maximizes $\mathbb{E}X_{\tau}$.

Solution

• Define the Snell envelope U via backward induction:

$$egin{aligned} &U_T = X_T \ &U_t = \max\left\{X_t, \mathbb{E}\left[U_{t+1}|\mathscr{F}_t
ight]
ight\} & (t < T) \end{aligned}$$

• U is the smallest supermartingale $\geq X$

• An optimal stopping time is given by $\tau^* = \inf \{t \ge 0 : X_t = U_t\}$.

Snell, Chow/Robbins/Siegmund: Great Expectations

- Given a sequence X_0, X_1, \ldots, X_T of random variables
- adapted to a filtration (\mathscr{F}_t)
- on a probability space (Ω, \mathscr{F}, P) ,
- choose a stopping time $au \leq T$
- that maximizes $\mathbb{E}X_{\tau}$.

Solution

• Define the Snell envelope U via backward induction:

$$U_T = X_T$$

$$U_t = \max \{ X_t, \mathbb{E} [U_{t+1} | \mathscr{F}_t] \} \qquad (t < T)$$

- U is the smallest supermartingale $\geq X$
- An optimal stopping time is given by $\tau^* = \inf \{t \ge 0 : X_t = U_t\}$.

Extending the General Theory to Multiple Priors

Aims

• Work as close as possible along the classical lines

イロト 不得 トイヨト イヨト

3

- Time Consistency
- Minimax Martingale Theory
- Backward Induction

Optimal Stopping

Extending the General Theory to Multiple Priors

Aims

• Work as close as possible along the classical lines

イロト 不得下 イヨト イヨト 二日

- Time Consistency
- Minimax Martingale Theory
- Backward Induction

Optimal Stopping

Extending the General Theory to Multiple Priors

Aims

• Work as close as possible along the classical lines

イロト 不得下 イヨト イヨト 二日

- Time Consistency
- Minimax Martingale Theory
- Backward Induction

Extending the General Theory to Multiple Priors

Aims

• Work as close as possible along the classical lines

イロト イポト イヨト イヨト

3

- Time Consistency
- Minimax Martingale Theory
- Backward Induction

Extending the General Theory to Multiple Priors

Aims

• Work as close as possible along the classical lines

(日) (同) (三) (三) (三)

3

- Time Consistency
- Minimax Martingale Theory
- Backward Induction

• With general \mathscr{P} , one runs easily into inconsistencies in dynamic settings

• Time consistency \iff *law of iterated expectations*:

$$\min_{Q \in \mathscr{P}} \mathbb{E}^{Q} \left[\operatorname{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^{P} \left[X \,|\, \mathscr{F}_{t} \right] \right] = \min_{P \in \mathscr{P}} \mathbb{E}^{P} X$$

 (Epstein/Schneider,R., Artzner et al., Detlefsen/Scandolo, Peng, Chen/Epstein) ⇐⇒ stability under pasting:

 \circ let $P, Q \in \mathscr{P}$ and let $(p_i), (q_i)$ be the density processes .

fix a stopping time au

define a new measure R via setting

$$\tau \ge t$$
 if $t \ge \tau$ if $t \ge \tau$ is a set of $q = q - q$ if $t \ge \tau$.

then $R \in \mathscr{P}$ as well

- With general \mathscr{P} , one runs easily into inconsistencies in dynamic settings
- Time consistency \iff *law of iterated expectations*:

$$\min_{Q \in \mathscr{P}} \mathbb{E}^{Q} \left[\operatorname{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^{P} \left[X \, | \, \mathscr{F}_{t} \right] \right] = \min_{P \in \mathscr{P}} \mathbb{E}^{P} X$$

- (Epstein/Schneider,R., Artzner et al., Detlefsen/Scandolo, Peng, Chen/Epstein) ⇐⇒ stability under pasting:
 - let $P, Q \in \mathscr{P}$ and let $(p_t), (q_t)$ be the density processes
 - fix a stopping time au
 - define a new measure R via setting

$$\tau \ge h \quad \text{if } h \le \tau$$

$$\rho_{r} = \left\{ \begin{array}{c} \rho_{r} & \text{if } h \ge \tau \\ \rho_{r} q_{r} / q_{r} & \text{else} \end{array} \right\}$$

<□> <@> < E> < E> E のQ@

 \circ then $R\in \mathscr{P}$ as well

- With general \mathscr{P} , one runs easily into inconsistencies in dynamic settings
- Time consistency \iff law of iterated expectations:

$$\min_{Q \in \mathscr{P}} \mathbb{E}^{Q} \left[\operatorname{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^{P} \left[X \, | \, \mathscr{F}_{t} \right] \right] = \min_{P \in \mathscr{P}} \mathbb{E}^{P} X$$

- - let $P, Q \in \mathscr{P}$ and let $(p_t), (q_t)$ be the density processes
 - fix a stopping time au
 - define a new measure R via setting

$$r_t = \begin{cases} p_t & \text{if } t \leq \tau \\ p_\tau q_t / q_\tau & \text{else} \end{cases}$$

• then $R \in \mathscr{P}$ as well

- With general \mathscr{P} , one runs easily into inconsistencies in dynamic settings
- Time consistency \iff *law of iterated expectations*:

$$\min_{Q \in \mathscr{P}} \mathbb{E}^{Q} \left[\operatorname{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^{P} \left[X \, | \, \mathscr{F}_{t} \right] \right] = \min_{P \in \mathscr{P}} \mathbb{E}^{P} X$$

- - let $P, Q \in \mathscr{P}$ and let $(p_t), (q_t)$ be the density processes
 - fix a stopping time τ
 - define a new measure R via setting

$$r_t = \left\{ egin{array}{cc} p_t & ext{if } t \leq au \ p_ au q_t / q_ au & ext{else} \end{array}
ight.$$

• then $R \in \mathscr{P}$ as well
Time Consistency

- With general \mathscr{P} , one runs easily into inconsistencies in dynamic settings
- Time consistency \iff *law of iterated expectations*:

$$\min_{Q \in \mathscr{P}} \mathbb{E}^{Q} \left[\operatorname{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^{P} \left[X \, | \, \mathscr{F}_{t} \right] \right] = \min_{P \in \mathscr{P}} \mathbb{E}^{P} X$$

- - let $P, Q \in \mathscr{P}$ and let $(p_t), (q_t)$ be the density processes
 - fix a stopping time τ
 - define a new measure R via setting

$$r_t = \left\{ egin{array}{cc} p_t & ext{if } t \leq au \ p_ au q_t / q_ au & ext{else} \end{array}
ight.$$

• then $R \in \mathscr{P}$ as well

Time Consistency

- With general *P*, one runs easily into inconsistencies in dynamic settings
- Time consistency \iff *law of iterated expectations*:

$$\min_{Q \in \mathscr{P}} \mathbb{E}^{Q} \left[\operatorname{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^{P} \left[X \, | \, \mathscr{F}_{t} \right] \right] = \min_{P \in \mathscr{P}} \mathbb{E}^{P} X$$

- - let $P, Q \in \mathscr{P}$ and let $(p_t), (q_t)$ be the density processes
 - fix a stopping time τ
 - define a new measure R via setting

$$r_t = \left\{ egin{array}{cc} p_t & ext{if } t \leq au \ p_ au q_t/q_ au & ext{else} \end{array}
ight.$$

• then $R \in \mathscr{P}$ as well

Time Consistency

- With general *P*, one runs easily into inconsistencies in dynamic settings
- Time consistency \iff *law of iterated expectations*:

$$\min_{Q \in \mathscr{P}} \mathbb{E}^{Q} \left[\operatorname{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^{P} \left[X \, | \, \mathscr{F}_{t} \right] \right] = \min_{P \in \mathscr{P}} \mathbb{E}^{P} X$$

- - let $P, Q \in \mathscr{P}$ and let $(p_t), (q_t)$ be the density processes
 - fix a stopping time τ
 - define a new measure R via setting

$$r_t = \left\{ egin{array}{cc} p_t & ext{if } t \leq au \ p_ au q_t/q_ au & ext{else} \end{array}
ight.$$

• then $R \in \mathscr{P}$ as well

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

An adapted, bounded process (S_t) is called a minimax supermartingale iff

$$S_t \geq \operatorname*{ess\,inf}_{P\in\mathscr{P}} \mathbb{E}^{P}\left[S_{t+1} \,|\, \mathscr{F}_t\right]$$

holds true for all $t \ge 0$. Minimax martingale: = Minimax submartingale: \le

- Nonlinear notion of martingales.
- Different from \mathscr{P} -martingale (martingale for all $P \in \mathscr{P}$ simultaneously)

Definition

An adapted, bounded process (S_t) is called a minimax supermartingale iff

$$S_t \geq \operatorname*{ess\,inf}_{P\in\mathscr{P}} \mathbb{E}^P \left[S_{t+1} \,|\, \mathscr{F}_t
ight]$$

holds true for all $t \ge 0$. Minimax martingale: = Minimax submartingale: \le

- Nonlinear notion of martingales.
 - Different from 𝒫−martingale (martingale for all P ∈ 𝒫 simultaneously)

Definition

An adapted, bounded process (S_t) is called a minimax supermartingale iff

$$S_t \geq \operatorname*{ess\,inf}_{P\in\mathscr{P}} \mathbb{E}^P \left[S_{t+1} \,|\, \mathscr{F}_t
ight]$$

holds true for all $t \ge 0$. Minimax martingale: = Minimax submartingale: \le

- Nonlinear notion of martingales.
- Different from 𝒫-martingale (martingale for all P ∈ 𝒫 simultaneously)

Definition

An adapted, bounded process (S_t) is called a minimax supermartingale iff

$$S_t \geq \operatorname*{ess\,inf}_{P\in\mathscr{P}} \mathbb{E}^{P}\left[S_{t+1} \,|\, \mathscr{F}_t\right]$$

holds true for all $t \ge 0$. Minimax martingale: = Minimax submartingale: \le

- Nonlinear notion of martingales.
- Different from 𝒫-martingale (martingale for all P ∈ 𝒫 simultaneously)

Theorem

- (S_t) is a minimax submartingale iff (S_t) is a \mathcal{P} -submartingale.
- (S_t) is a minimax supermartingale iff there exists a P ∈ 𝒫 such that
 (S_t) is a P-supermartingale.
- (M_t) is a minimax martingale iff (M_t) is a 𝒫-submartingale and for some P ∈ 𝒫 a P-supermartingale.

Remark

For minimax supermartingales: ⇐ holds always true.⇒ needs time–consistency.

Theorem

- (S_t) is a minimax submartingale iff (S_t) is a \mathcal{P} -submartingale.
- (S_t) is a minimax supermartingale iff there exists a $P \in \mathscr{P}$ such that (S_t) is a P-supermartingale.
- (M_t) is a minimax martingale iff (M_t) is a 𝒫−submartingale and for some P ∈ 𝒫 a P−supermartingale.

イロト イポト イヨト イヨト

Remark

For minimax supermartingales: \Leftarrow holds always true. \Rightarrow needs time–consistency.

Theorem

- (S_t) is a minimax submartingale iff (S_t) is a \mathcal{P} -submartingale.
- (S_t) is a minimax supermartingale iff there exists a $P \in \mathscr{P}$ such that (S_t) is a P-supermartingale.
- (M_t) is a minimax martingale iff (M_t) is a 𝒫−submartingale and for some P ∈ 𝒫 a P−supermartingale.

イロト 不得下 イヨト イヨト 二日

Remark

For minimax supermartingales: \Leftarrow holds always true. \Rightarrow needs time–consistency.

Theorem

- (S_t) is a minimax submartingale iff (S_t) is a \mathcal{P} -submartingale.
- (S_t) is a minimax supermartingale iff there exists a $P \in \mathscr{P}$ such that (S_t) is a P-supermartingale.
- (M_t) is a minimax martingale iff (M_t) is a 𝒫−submartingale and for some P ∈ 𝒫 a P−supermartingale.

イロン イロン イヨン イヨン 三日

Remark

For minimax supermartingales: \Leftarrow holds always true. \Rightarrow needs time–consistency.

Theorem

- (S_t) is a minimax submartingale iff (S_t) is a \mathcal{P} -submartingale.
- (S_t) is a minimax supermartingale iff there exists a $P \in \mathscr{P}$ such that (S_t) is a P-supermartingale.
- (M_t) is a minimax martingale iff (M_t) is a 𝒫−submartingale and for some P ∈ 𝒫 a P−supermartingale.

(日) (同) (三) (三) (三)

Remark

For minimax supermartingales: \leftarrow holds always true. \Rightarrow needs time-consistency.

Doob Decomposition

Theorem

Let (S_t) be a minimax supermartingale. Then there exists a minimax martingale M and a predictable, nondecreasing process A with $A_0 = 0$ such that S = M - A. Such a decomposition is unique.

イロト 不得下 イヨト イヨト 二日

Remark Standard proof goes through.

Doob Decomposition

Theorem

Let (S_t) be a minimax supermartingale. Then there exists a minimax martingale M and a predictable, nondecreasing process A with $A_0 = 0$ such that S = M - A. Such a decomposition is unique.

イロト 不得下 イヨト イヨト 二日

Remark

Standard proof goes through.

Optional Sampling Theorem

Theorem

Let (S_t) be a minimax supermartingale. Let $\sigma \leq \tau$ be stopping times. Assume that τ is universally finite in the sense that $P[\tau < \infty] = 1$ for all $P \in \mathscr{P}$. Then

$$\operatorname{ess\,inf}_{P\in\mathscr{P}} \mathbb{E}^{P}\left[S_{\tau}|\mathscr{F}_{\sigma}\right] \leq S_{\sigma} \,.$$

(日) (同) (三) (三) (三)

Remark

Not true without time consistency.

Optional Sampling Theorem

Theorem

Let (S_t) be a minimax supermartingale. Let $\sigma \leq \tau$ be stopping times. Assume that τ is universally finite in the sense that $P[\tau < \infty] = 1$ for all $P \in \mathscr{P}$. Then

$$\operatorname{ess\,inf}_{P\in\mathscr{P}} \mathbb{E}^{P}\left[S_{\tau}|\mathscr{F}_{\sigma}\right] \leq S_{\sigma} \,.$$

イロト イポト イヨト イヨト

Remark

Not true without time consistency.

With the concepts developed, one can proceed as in the classical case!

Solution

• Define the *minimax Snell envelope U* via backward induction:

$$U_{T} = X_{T}$$
$$U_{t} = \max \left\{ X_{t}, \underset{P \in \mathscr{P}}{\operatorname{ess inf}} \mathbb{E}^{P} \left[U_{t+1} | \mathscr{F}_{t} \right] \right\} \qquad (t < T)$$

イロト イポト イヨト イヨト

• U is the smallest minimax supermartingale $\geq X$

• An optimal stopping time is given by $\tau^* = \inf \{t \ge 0 : X_t = U_t\}$.

With the concepts developed, one can proceed as in the classical case!

Solution

• Define the *minimax Snell envelope U* via backward induction:

$$U_{T} = X_{T}$$
$$U_{t} = \max \left\{ X_{t}, \underset{P \in \mathscr{P}}{\operatorname{ess inf}} \mathbb{E}^{P} \left[U_{t+1} | \mathscr{F}_{t} \right] \right\} \qquad (t < T)$$

イロト 不得 トイヨト イヨト 二日

• U is the smallest minimax supermartingale $\geq X$

• An optimal stopping time is given by $\tau^* = \inf \{t \ge 0 : X_t = U_t\}$.

With the concepts developed, one can proceed as in the classical case!

Solution

• Define the *minimax Snell envelope U* via backward induction:

$$U_{T} = X_{T}$$
$$U_{t} = \max \left\{ X_{t}, \underset{\substack{P \in \mathscr{P}}{\mathcal{P}}}{\operatorname{ess\,inf}} \mathbb{E}^{P} \left[U_{t+1} | \mathscr{F}_{t} \right] \right\} \qquad (t < T)$$

- U is the smallest minimax supermartingale $\geq X$
- An optimal stopping time is given by $\tau^* = \inf \{t \ge 0 : X_t = U_t\}.$

With the concepts developed, one can proceed as in the classical case!

Solution

• Define the *minimax Snell envelope U* via backward induction:

$$U_{T} = X_{T}$$
$$U_{t} = \max \left\{ X_{t}, \underset{\substack{P \in \mathscr{P}}{\mathcal{P}}}{\operatorname{ess\,inf}} \mathbb{E}^{P} \left[U_{t+1} | \mathscr{F}_{t} \right] \right\} \qquad (t < T)$$

- U is the smallest minimax supermartingale $\geq X$
- An optimal stopping time is given by $\tau^* = \inf \{t \ge 0 : X_t = U_t\}$.

Minimax Theorem

Question: what is the relation between the Snell envelopes U^P for fixed $P \in \mathscr{P}$ and the minimax Snell envelope U?

Theorem

$$U = \operatorname*{ess\,inf}_{P \in \mathscr{P}} U^P$$
.

Remark

Föllmer/Schied, Cvitanić/Karatzas for American Options in incomplete markets

Corollary

Under our assumptions, there exists a measure $P^* \in \mathscr{P}$ such that $U = U^{P^*}$. The optimal stopping rule corresponds to the optimal stopping rule under P^* .

Minimax Theorem

Question: what is the relation between the Snell envelopes U^P for fixed $P \in \mathscr{P}$ and the minimax Snell envelope U?

Theorem

$$U = \operatorname{ess\,inf}_{P \in \mathscr{P}} U^P$$

Remark

Föllmer/Schied, Cvitanić/Karatzas for American Options in incomplete markets

Corollary

Under our assumptions, there exists a measure $P^* \in \mathscr{P}$ such that $U = U^{P^*}$. The optimal stopping rule corresponds to the optimal stopping rule under P^* .

Minimax Theorem

Question: what is the relation between the Snell envelopes U^P for fixed $P \in \mathscr{P}$ and the minimax Snell envelope U?

Theorem

$$U = \mathop{\mathrm{ess\,inf}}_{P \in \mathscr{P}} U^P$$

Remark

Föllmer/Schied, Cvitanić/Karatzas for American Options in incomplete markets

Corollary

Under our assumptions, there exists a measure $P^* \in \mathscr{P}$ such that $U = U^{P^*}$. The optimal stopping rule corresponds to the optimal stopping rule under P^* .

Backward induction no longer feasible. Define the value function as

$$V_t = \mathop{\mathrm{ess\,sup\,ess\,inf}}_{ au \geq t} \mathbb{E}^{\mathcal{P}}\left[X_{ au} | \mathscr{F}_t
ight]$$

Theorem

• V is the smallest minimax supermartingale $\geq X$

the Bellman principle holds true: V_t = max {X_t, ess inf_{P∈𝒫} ℝ^P [V_{t+1}|𝒫_t]}
τ^{*} = inf{t ≥ 0|X_t = V_t} is optimal as long as P[τ^{*} < ∞] = 1 for all P ∈ 𝒫

Backward induction no longer feasible. Define the value function as

$$V_t = \mathop{\mathrm{ess\,sup\,ess\,inf}}_{ au \geq t} \mathop{\mathbb{E}}^P \left[X_{ au} | \mathscr{F}_t
ight]$$

Theorem

• V is the smallest minimax supermartingale $\geq X$

the Bellman principle holds true: V_t = max {X_t, ess inf_{P∈𝒫} ℝ^P [V_{t+1}|𝒫_t]}
τ^{*} = inf{t ≥ 0|X_t = V_t} is optimal as long as P[τ^{*} < ∞] = 1 for all P ∈ 𝒫

Backward induction no longer feasible. Define the value function as

$$V_t = \mathop{\mathrm{ess\,sup\,ess\,inf}}_{ au \geq t} \mathop{\mathbb{E}}^P \left[X_{ au} | \mathscr{F}_t
ight]$$

Theorem

- V is the smallest minimax supermartingale $\geq X$
- the Bellman principle holds true: $V_t = \max \{X_t, \operatorname{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^P [V_{t+1} | \mathscr{F}_t]\}$ • $\tau^* = \inf\{t \ge 0 | X_t = V_t\}$ is optimal as long as $P[\tau^* < \infty] = 1$ for all $P \in \mathscr{P}$

Backward induction no longer feasible. Define the value function as

$$V_t = \mathop{\mathrm{ess\,sup\,ess\,inf}}_{ au \geq t} \mathbb{E}^P \left[X_{ au} | \mathscr{F}_t \right]$$

Theorem

• V is the smallest minimax supermartingale $\geq X$

• the Bellman principle holds true: $V_t = \max \{X_t, \operatorname{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^P [V_{t+1} | \mathscr{F}_t]\}$ • $\tau^* = \inf\{t \ge 0 | X_t = V_t\}$ is optimal as long as $P[\tau^* < \infty] = 1$ for all $P \in \mathscr{P}$

Infinite Time Horizon II

The solution of the finite time horizon problem converge to the infinite time horizon solution.

Theorem

Let U^T be the value function of the optimal stopping problem under ambiguity for time horizon T. Then for all $t \ge 0$

$$\lim_{T\to\infty} U_t^T = V_t$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Monotonicity and Stochastic Dominance

• Suppose that (Y_t) are iid under $P^* \in \mathscr{P}$ and

• for all $P \in \mathscr{P}$

 $P^*[Y_t \le x] \ge P[Y_t \le x] \qquad (x \in \mathbb{R})$

- and suppose that the payoff $X_t = g(t, Y_t)$ for a function g that is isotone in y,
- then *P*^{*} is for all optimal stopping problems (*X_t*) the worst–case measure,
- i.e. the robust optimal stopping rule is the optimal stopping rule under P*.
- Parking problem: choose the smallest p for open lots
- House sale: presume the least favorable distribution of bids in the sens of first-order stochastic dominance

Monotonicity and Stochastic Dominance

• Suppose that (Y_t) are iid under $P^* \in \mathscr{P}$ and

• for all $P \in \mathscr{P}$

$P^*[Y_t \le x] \ge P[Y_t \le x] \qquad (x \in \mathbb{R})$

- and suppose that the payoff X_t = g(t, Y_t) for a function g that is isotone in y,
- then *P*^{*} is for all optimal stopping problems (*X_t*) the worst–case measure,
- i.e. the robust optimal stopping rule is the optimal stopping rule under *P**.
- Parking problem: choose the smallest p for open lots
- House sale: presume the least favorable distribution of bids in the sens of first-order stochastic dominance

Monotonicity and Stochastic Dominance

- Suppose that (Y_t) are iid under $P^* \in \mathscr{P}$ and
- for all $P \in \mathscr{P}$

$$P^*[Y_t \leq x] \geq P[Y_t \leq x] \qquad (x \in \mathbb{R})$$

- and suppose that the payoff $X_t = g(t, Y_t)$ for a function g that is isotone in y,
- then *P*^{*} is for all optimal stopping problems (*X_t*) the worst–case measure,
- i.e. the robust optimal stopping rule is the optimal stopping rule under *P**.
- Parking problem: choose the smallest *p* for open lots
- House sale: presume the least favorable distribution of bids in the sens of first-order stochastic dominance

Monotonicity and Stochastic Dominance

- Suppose that (Y_t) are iid under $P^* \in \mathscr{P}$ and
- for all $P \in \mathscr{P}$

$$P^*[Y_t \leq x] \geq P[Y_t \leq x]$$
 $(x \in \mathbb{R})$

- and suppose that the payoff $X_t = g(t, Y_t)$ for a function g that is isotone in y,
- then *P*^{*} is for all optimal stopping problems (*X_t*) the worst–case measure,
- i.e. the robust optimal stopping rule is the optimal stopping rule under *P**.
- Parking problem: choose the smallest *p* for open lots
- House sale: presume the least favorable distribution of bids in the sens of first-order stochastic dominance

Monotonicity and Stochastic Dominance

- Suppose that (Y_t) are iid under $P^* \in \mathscr{P}$ and
- for all $P \in \mathscr{P}$

$$P^*[Y_t \leq x] \geq P[Y_t \leq x]$$
 $(x \in \mathbb{R})$

- and suppose that the payoff X_t = g(t, Y_t) for a function g that is isotone in y,
- then *P*^{*} is for all optimal stopping problems (*X_t*) the worst–case measure,
- i.e. the robust optimal stopping rule is the optimal stopping rule under *P**.
- Parking problem: choose the smallest p for open lots
- House sale: presume the least favorable distribution of bids in the sens of first-order stochastic dominance

Monotonicity and Stochastic Dominance

- Suppose that (Y_t) are iid under $P^* \in \mathscr{P}$ and
- for all $P \in \mathscr{P}$

$$P^*[Y_t \leq x] \geq P[Y_t \leq x]$$
 $(x \in \mathbb{R})$

- and suppose that the payoff $X_t = g(t, Y_t)$ for a function g that is isotone in y,
- then *P*^{*} is for all optimal stopping problems (*X*_t) the worst-case measure,
- i.e. the robust optimal stopping rule is the optimal stopping rule under *P**.
- Parking problem: choose the smallest *p* for open lots
- House sale: presume the least favorable distribution of bids in the sens of first-order stochastic dominance

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Monotonicity and Stochastic Dominance

- Suppose that (Y_t) are iid under $P^* \in \mathscr{P}$ and
- for all $P \in \mathscr{P}$

$$P^*[Y_t \leq x] \geq P[Y_t \leq x]$$
 $(x \in \mathbb{R})$

- and suppose that the payoff $X_t = g(t, Y_t)$ for a function g that is isotone in y,
- then *P*^{*} is for all optimal stopping problems (*X*_t) the worst-case measure,
- i.e. the robust optimal stopping rule is the optimal stopping rule under *P**.
- Parking problem: choose the smallest *p* for open lots
- House sale: presume the least favorable distribution of bids in the sens of first-order stochastic dominance

More general problems

Knock-out options \longrightarrow ppt Secretary problems
• Call applicant *j* a *candidate* if she is besser than all predecessors

- We are interested in $X_j = Prob[jbest|jcandidate]$
- Here, the payoff X_j is ambiguous assume that this conditional probability is minimal
- If you compare this probability with the probability that later candidates are best, you presume the *maximal* probability for them!

- Call applicant *j* a *candidate* if she is besser than all predecessors
- We are interested in $X_j = Prob[jbest|jcandidate]$
- Here, the payoff X_j is ambiguous assume that this conditional probability is minimal
- If you compare this probability with the probability that later candidates are best, you presume the *maximal* probability for them!

- Call applicant *j* a *candidate* if she is besser than all predecessors
- We are interested in $X_j = Prob[jbest|jcandidate]$
- Here, the payoff X_j is ambiguous assume that this conditional probability is minimal
- If you compare this probability with the probability that later candidates are best, you presume the *maximal* probability for them!

- Call applicant *j* a *candidate* if she is besser than all predecessors
- We are interested in $X_j = Prob[jbest|jcandidate]$
- Here, the payoff X_j is ambiguous assume that this conditional probability is minimal
- If you compare this probability with the probability that later candidates are best, you presume the *maximal* probability for them!

Optimal Stopping under Ambiguity in discrete time solved

- First steps of a theory of minimax martingales
- Extension to Dynamic Variational Preferences (Maccheroni, Marinacci, Rustichini)
- continuous time ...
- secretary problem with learning

- Optimal Stopping under Ambiguity in discrete time solved
- First steps of a theory of minimax martingales
- Extension to Dynamic Variational Preferences (Maccheroni, Marinacci, Rustichini)

- continuous time ...
- secretary problem with learning

- Optimal Stopping under Ambiguity in discrete time solved
- First steps of a theory of minimax martingales
- Extension to Dynamic Variational Preferences (Maccheroni, Marinacci, Rustichini)

- continuous time ...
- secretary problem with learning

- Optimal Stopping under Ambiguity in discrete time solved
- First steps of a theory of minimax martingales
- Extension to Dynamic Variational Preferences (Maccheroni, Marinacci, Rustichini)

- continuous time ...
- secretary problem with learning

- Optimal Stopping under Ambiguity in discrete time solved
- First steps of a theory of minimax martingales
- Extension to Dynamic Variational Preferences (Maccheroni, Marinacci, Rustichini)

- continuous time ...
- secretary problem with learning