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Motivation

Example from Microeconomics

Market entry

A firm can invest into a project with profit stream δ0, δ1, δ2, . . .

Sunk cost I > 0, interest rate r > 0

Profit if entry at τ : Gτ =
∑∞

t=τ δt(1 + r)−(t−τ)

Assumptions: δ0 = 1, δt+1 = δt(1 + Zt). (Zt) iid, ∼ F

maximize E (Gτ − I ) (1 + r)−τ
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Example from Operations Research

Selling a house

Real estate agent collects bids p0, p1, p2, . . . for the house

Running costs c > 0, interest rate r > 0

present value of sale at τ : Gτ = pτ (1 + r)−τ −
∑τ−1

t=0 c(1 + r)−t

Assumptions: (pt) iid, ∼ F

maximize EGτ
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Motivation

Example from Finance

American Options

Buyer has the right to buy the underlying asset for K > 0 at some
time τ before maturity

Profit from exercising: (Sτ − K )+

Buyer: maximize E (Sτ − K )+ (1 + r)−τ

Seller: ask a price of

max
τ

E∗ (Sτ − K )+ (1 + r)−τ

where P∗ is the pricing measure (equivalent martingale measure)

Assumptions of the buyer: S0 = 1,St+1 = St(1 + Zt). (Zt) iid, ∼ F

Assumptions of the seller: unique pricing measure,complete markets
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Motivation

. . . and two classics

The Parking Problem

You drive along a road towars a theatre

You want to park as close a spossible to the theatre

Parking spaces are free iid with probability p > 0

When is the right time to stop?

Secretary Problem

You see sequentially N applicants

and you are aiming for the best

rejected applicants do not come back

applicants come in random (uniform) order

What candidate to take?
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Motivation

Sensitive Assumptions

All examples presume that some distribution F is known, and frequently
some kind of independence assumption is added

Questions

Decision Theory

Unique prior in the sense of Savage
Ellsberg–Paradoxon
Weakening of subjective EU (Gilboa–Schmeidler): class of priors

Operations Research / Robust Statistics

Sensitivity analysis
how sensitive are the optimal sulotions to slight variations in the model
parameters?

Finance

Buyer: see decision theory
Seller: how to hedge if markets are incomplete
Multiple pricing measures P∗
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Model

Optimal Stopping with Multiple Priors

We choose the following modeling approach

Let X0,X1, . . . ,XT be a (finite) sequence of random variables

adapted to a filtration (Ft)

on a measurable space (Ω,F ),

let P be a set of probability measures

choose a stopping time τ ≤ T

that maximizes
inf

P∈P
EPXτ
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Model

Assumptions

for the talk: finite state space Ω
more general:

supt |Xt | ∈
⋂

P∈P L1(P)

there exists a reference measure P0: all P ∈ P are equivalent to P0

(wlog, Tutsch, PhD 07)

agent knows all null sets, Epstein/Marinacci 07

P weakly compact in L1
(
Ω,F ,P0

)
inf is always min, Föllmer/Schied 04, Chateauneuf, Maccheroni,

Marinacci, Tallon 05
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Optimal Stopping

Optimal Stopping: Classical Solution

Snell, Chow/Robbins/Siegmund: Great Expectations

Given a sequence X0,X1, . . . ,XT of random variables

adapted to a filtration (Ft)

on a probability space (Ω,F ,P),

choose a stopping time τ ≤ T

that maximizes EXτ .

Solution

Define the Snell envelope U via backward induction:

UT = XT

Ut = max {Xt , E [Ut+1|Ft ]} (t < T )

U is the smallest supermartingale ≥ X

An optimal stopping time is given by τ∗ = inf {t ≥ 0 : Xt = Ut}.
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Optimal Stopping

Time Consistency

With general P, one runs easily into inconsistencies in dynamic
settings

Time consistency ⇐⇒ law of iterated expectations:

min
Q∈P

EQ

[
ess inf
P∈P

EP [X |Ft ]

]
= min

P∈P
EPX

(Epstein/Schneider,R. , Artzner et al., Detlefsen/Scandolo, Peng,
Chen/Epstein ) ⇐⇒ stability under pasting:

let P,Q ∈ P and let (pt), (qt) be the density processes
fix a stopping time τ
define a new measure R via setting

rt =

{
pt if t ≤ τ

pτqt/qτ else

then R ∈ P as well
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Minimax Martingale Theory

Minimax Martingales

Definition

An adapted, bounded process (St) is called a minimax supermartingale iff

St ≥ ess inf
P∈P

EP [St+1 |Ft ]

holds true for all t ≥ 0.
Minimax martingale: =
Minimax submartingale: ≤

Remark

Nonlinear notion of martingales.

Different from P–martingale (martingale for all P ∈ P
simultaneously)
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Minimax Martingale Theory

Characterization of Minimax Martingales

Theorem

(St) is a minimax submartingale iff (St) is a P–submartingale.

(St) is a minimax supermartingale iff there exists a P ∈ P such that
(St) is a P–supermartingale.

(Mt) is a minimax martingale iff (Mt) is a P–submartingale and for
some P ∈ P a P–supermartingale.

Remark

For minimax supermartingales: ⇐ holds always true.⇒ needs
time–consistency.
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Minimax Martingale Theory

Doob Decomposition

Theorem

Let (St) be a minimax supermartingale.
Then there exists a minimax martingale M and a predictable,
nondecreasing process A with A0 = 0 such that S = M − A. Such a
decomposition is unique.

Remark

Standard proof goes through.
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Minimax Martingale Theory

Optional Sampling Theorem

Theorem

Let (St) be a minimax supermartingale. Let σ ≤ τ be stopping times.
Assume that τ is universally finite in the sense that P[τ < ∞] = 1 for all
P ∈ P. Then

ess inf
P∈P

EP [Sτ |Fσ] ≤ Sσ .

Remark

Not true without time consistency.
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Optimal Stopping Rules

Optimal Stopping under Ambiguity

With the concepts developed, one can proceed as in the classical case!

Solution

Define the minimax Snell envelope U via backward induction:

UT = XT

Ut = max

{
Xt , ess inf

P∈P
EP [Ut+1|Ft ]

}
(t < T )

U is the smallest minimax supermartingale ≥ X

An optimal stopping time is given by τ∗ = inf {t ≥ 0 : Xt = Ut}.
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Optimal Stopping Rules

Minimax Theorem

Question: what is the relation between the Snell envelopes UP for fixed
P ∈ P and the minimax Snell envelope U?

Theorem

U = ess inf
P∈P

UP .

Remark

Föllmer/Schied, Cvitanić/Karatzas for American Options in incomplete
markets

Corollary

Under our assumptions, there exists a measure P∗ ∈ P such that
U = UP∗

. The optimal stopping rule corresponds to the optimal stopping
rule under P∗.
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Infinite Time Horizon

Infinite Time Horizon (and unbounded X )

Backward induction no longer feasible.
Define the value function as

Vt = ess sup
τ≥t

ess inf
P∈P

EP [Xτ |Ft ]

Theorem

V is the smallest minimax supermartingale ≥ X

the Bellman principle holds true:
Vt = max

{
Xt , ess infP∈P EP [Vt+1|Ft ]

}
τ∗ = inf{t ≥ 0|Xt = Vt} is optimal as long as P[τ∗ < ∞] = 1 for all
P ∈ P
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Infinite Time Horizon

Infinite Time Horizon II

The solution of the finite time horizon problem converge to the infinite
time horizon solution.

Theorem

Let UT be the value function of the optimal stopping problem under
ambiguity for time horizon T . Then for all t ≥ 0

lim
T→∞

UT
t = Vt



Examples

Monotonicity and Stochastic Dominance

Suppose that (Yt) are iid under P∗ ∈ P and

for all P ∈ P

P∗[Yt ≤ x ] ≥ P[Yt ≤ x ] (x ∈ R)

and suppose that the payoff Xt = g(t,Yt) for a function g that is
isotone in y ,

then P∗ is for all optimal stopping problems (Xt) the worst–case
measure,

i.e. the robust optimal stopping rule is the optimal stopping rule
under P∗.

Parking problem: choose the smallest p for open lots

House sale: presume the least favorable distribution of bids in the
sens of first–order stochastic dominance
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Examples

More general problems

Knock–out options −→ ppt
Secretary problems



Examples

Ambiguous secretaries (with Tatjana Chudjakow)

Call applicant j a candidate if she is besser than all predecessors

We are interested in Xj = Prob[jbest|jcandidate]

Here, the payoff Xj is ambiguous — assume that this conditional
probability is minimal

If you compare this probability with the probability that later
candidates are best, you presume the maximal probability for them!
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