On Equilibrium Prices in Continuous Time

Frank Riedel

\(^1\)Rheinische Friedrich–Wilhelms–Universität Bonn

February 2006
Outline

1. General Equilibrium Theory
 - Purpose of Equilibrium Theory
 - Relation with Mathematical Finance
 - The Hindy–Huang–Kreps Approach: Local Substitution
 - Equilibrium Existence Problem

2. Nice Prices
 - Equilibrium with Nice Prices: Previous Work
 - Characterization of Nice Price Functionals
 - Proof of the Main Theorem
1. General Equilibrium Theory
 - Purpose of Equilibrium Theory
 - Relation with Mathematical Finance
 - The Hindy–Huang–Kreps Approach: Local Substitution
 - Equilibrium Existence Problem

2. Nice Prices
 - Equilibrium with Nice Prices: Previous Work
 - Characterization of Nice Price Functionals
 - Proof of the Main Theorem
What is Equilibrium Theory?

In Option Pricing

- Price process \((S_t)\) of an underlying asset given, say geometric Brownian motion
- no arbitrage condition determines prices for a derivative with payoff \(D = f(S_T)\) at maturity \(T\)
- but where does the price of the underlying come from? supply and demand
- the competitive market forces of supply and demand are explored in (general) equilibrium theory
What is Equilibrium Theory?

In Option Pricing

- Price process \((S_t)\) of an underlying asset given, say geometric Brownian motion
- no arbitrage condition determines prices for a derivative with payoff \(D = f(S_T)\) at maturity \(T\)
- but where does the price of the underlying come from?
- supply and demand
- the competitive market forces of supply and demand are explored in (general) equilibrium theory
What is Equilibrium Theory?

In Option Pricing

- Price process \((S_t)\) of an underlying asset given, say geometric Brownian motion
- no arbitrage condition determines prices for a derivative with payoff \(D = f(S_T)\) at maturity \(T\)
- but where does the price of the underlying come from?
 - supply and demand
 - the competitive market forces of supply and demand are explored in (general) equilibrium theory
In Option Pricing

- Price process \((S_t)\) of an underlying asset given, say geometric Brownian motion
- no arbitrage condition determines prices for a derivative with payoff \(D = f(S_T)\) at maturity \(T\)
- but where does the price of the underlying come from?
- *supply and demand*

the competitive market forces of supply and demand are explored in (general) equilibrium theory
What is Equilibrium Theory?

In Option Pricing

- Price process (S_t) of an underlying asset given, say geometric Brownian motion
- no arbitrage condition determines prices for a derivative with payoff $D = f(S_T)$ at maturity T
- but where does the price of the underlying come from?
- supply and demand
- the competitive market forces of supply and demand are explored in (general) equilibrium theory
The framework for equilibrium theory:

- (rational) agents that choose optimal portfolio and consumption plans
- competition: agents take prices as given when maximizing
- prices balance supply and demand
Equilibrium Theory: Model

The framework for equilibrium theory:

- (rational) agents that choose optimal portfolio and consumption plans
- competition: agents take prices as given when maximizing
- prices balance supply and demand
Equilibrium Theory: Model

The framework for equilibrium theory:

- (rational) agents that choose optimal portfolio and consumption plans
- competition: agents take prices as given when maximizing
- prices balance supply and demand
Equilibrium Theory: Formal Model

- commodity space \(\mathcal{X} \) is a partially ordered topological vector space
- the positive cone \(\mathcal{X}_+ \) is the consumption set
- price: a linear, positive functional \(\Psi : \mathcal{X} \to \mathbb{R} \)
- prices should be continuous on the consumption set (similar commodities should have similar prices)
- agents have utility functions \(U^i : \mathcal{X}_+ \to \mathbb{R} \), continuous, increasing, concave, and an endowment \(E^i \in \mathcal{X}_+ \)
- agents maximize \(U^i(C^i) \) subject to the budget constraint \(\Psi(C^i - E^i) \leq 0 \)
- in equilibrium, \(\sum_i (C^i - E^i) = 0 \).
Equilibrium Theory: Formal Model

- commodity space \mathcal{X}: partially ordered topological vector space
- the positive cone \mathcal{X}_+ is the consumption set
- price: a linear, positive functional $\Psi : \mathcal{X} \rightarrow \mathbb{R}$
- prices should be continuous on the consumption set (similar commodities should have similar prices)
- agents have utility functions $U^i : \mathcal{X}_+ \rightarrow \mathbb{R}$, continuous, increasing, concave, and an endowment $E^i \in \mathcal{X}_+$
- agents maximize $U^i(C^i)$ subject to the budget constraint $\Psi(C^i - E^i) \leq 0$
- in equilibrium, $\sum_i (C^i - E^i) = 0$.
Equilibrium Theory: Formal Model

- commodity space \mathcal{X}: partially ordered topological vector space
- the positive cone \mathcal{X}^+ is the consumption set
- price: a linear, positive functional $\Psi: \mathcal{X} \rightarrow \mathbb{R}$
- prices should be continuous on the consumption set (similar commodities should have similar prices)
- agents have utility functions $U^i: \mathcal{X}^+ \rightarrow \mathbb{R}$, continuous, increasing, concave, and an endowment $E^i \in \mathcal{X}^+$
- agents maximize $U^i(C^i)$ subject to the budget constraint $\Psi(C^i - E^i) \leq 0$
- in equilibrium, $\sum_i(C^i - E^i) = 0$.
Equilibrium Theory: Formal Model

- commodity space \mathcal{X}: partially ordered topological vector space
- the positive cone \mathcal{X}_+ is the consumption set
- price: a linear, positive functional $\Psi : \mathcal{X} \to \mathbb{R}$
- prices should be continuous on the consumption set (similar commodities should have similar prices)
- agents have utility functions $U^i : \mathcal{X}_+ \to \mathbb{R}$, continuous, increasing, concave, and an endowment $E^i \in \mathcal{X}_+$
- agents maximize $U^i(C^i)$ subject to the budget constraint $\Psi(C^i - E^i) \leq 0$
- in equilibrium, $\sum_i (C^i - E^i) = 0$.
Equilibrium Theory: Formal Model

- commodity space \mathcal{X}: partially ordered topological vector space
- the positive cone \mathcal{X}_+ is the consumption set
- price: a linear, positive functional $\Psi: \mathcal{X} \to \mathbb{R}$
- prices should be continuous on the consumption set (similar commodities should have similar prices)
- agents have utility functions $U^i: \mathcal{X}_+ \to \mathbb{R}$, continuous, increasing, concave, and an endowment $E^i \in \mathcal{X}_+$
- agents maximize $U^i(C^i)$ subject to the budget constraint $\Psi(C^i - E^i) \leq 0$
- in equilibrium, $\sum_i (C^i - E^i) = 0$.
commodity space \mathcal{X}: partially ordered topological vector space
the positive cone \mathcal{X}_+ is the *consumption set*
price: a linear, positive functional $\Psi : \mathcal{X} \rightarrow \mathbb{R}$
prices should be continuous on the consumption set (similar commodities should have similar prices)
agents have utility functions $U^i : \mathcal{X}_+ \rightarrow \mathbb{R}$, continuous, increasing, concave, and an endowment $E^i \in \mathcal{X}_+$
agents maximize $U^i(C^i)$ subject to the budget constraint $\Psi(C^i - E^i) \leq 0$
in equilibrium, $\sum_i (C^i - E^i) = 0$.
Equilibrium Theory: Formal Model

- commodity space \mathcal{X}: partially ordered topological vector space
- the positive cone \mathcal{X}_+ is the consumption set
- price: a linear, positive functional $\Psi : \mathcal{X} \rightarrow \mathbb{R}$
- prices should be continuous on the consumption set (similar commodities should have similar prices)
- agents have utility functions $U^i : \mathcal{X}_+ \rightarrow \mathbb{R}$, continuous, increasing, concave, and an endowment $E^i \in \mathcal{X}_+$
- agents maximize $U^i(C^i)$ subject to the budget constraint $\Psi(C^i - E^i) \leq 0$
- in equilibrium, $\sum_i(C^i - E^i) = 0$.
In equilibrium, there is no arbitrage.

- Usually, the price functional Ψ can be represented by some stochastic process $\psi = (\psi_t)$
- If ψ is a semimartingale, it can be used as a state price density
- In other words: Ψ determines the equivalent martingale measure
- Question: is ψ a semimartingale with continuous compensator (cumulative interest)?
- Semimartingale with absolutely continuous compensator (interest rate)?
In equilibrium, there is no arbitrage.

- Usually, the price functional Ψ can be represented by some stochastic process $\psi = (\psi_t)$
- If ψ is a semimartingale, it can be used as a state price density
- In other words: Ψ determines the equivalent martingale measure
- Question: is ψ a semimartingale with continuous compensator (cumulative interest)?
- Semimartingale with absolutely continuous compensator (interest rate)?
What is the use for Mathematical Finance?

Theorem

In equilibrium, there is no arbitrage.

- Usually, the price functional Ψ can be represented by some stochastic process $\psi = (\psi_t)$
- *If* ψ is a semimartingale, it can be used as a state price density
- In other words: Ψ determines the equivalent martingale measure
- Question: is ψ a
 - semimartingale with continuous compensator (cumulative interest)?
 - semimartingale with absolutely continuous compensator (interest rate)?
What is the use for Mathematical Finance?

Theorem

In equilibrium, there is no arbitrage.

- Usually, the price functional Ψ can be represented by some stochastic process $\psi = (\psi_t)$
- *if* ψ is a semimartingale, it can be used as a state price density
- in other words: Ψ determines the equivalent martingale measure
- Question: is ψ a semimartingale?
 - semimartingale with continuous compensator (cumulative interest)?
 - semimartingale with absolutely continuous compensator (interest rate)?
What is the use for Mathematical Finance?

Theorem

In equilibrium, there is no arbitrage.

- Usually, the price functional Ψ can be represented by some stochastic process $\psi = (\psi_t)$
- If ψ is a semimartingale, it can be used as a state price density
- In other words: Ψ determines the equivalent martingale measure
- Question: is ψ a semimartingale with continuous compensator (cumulative interest)?
- Semimartingale with absolutely continuous compensator (interest rate)?
What is the use for Mathematical Finance?

Theorem

In equilibrium, there is no arbitrage.

- Usually, the price functional Ψ can be represented by some stochastic process $\psi = (\psi_t)$
- *If* ψ is a semimartingale, it can be used as a state price density
- In other words: Ψ determines the equivalent martingale measure
- Question: is ψ a semimartingale with continuous compensator (cumulative interest)?
- Semimartingale with absolutely continuous compensator (interest rate)?
Highlights in Equilibrium Theory

- **Debreu**, *Theory of Value*
- **Arrow**, *Le rôle des valeurs boursières pour la repartition la meilleure des risques*
- **Duffie, Zame**, *The Consumption-Based CAPM*
- **Karatzas, Lehoczky, Shreve**, *Existence and Uniqueness of Multi-Agent Equilibrium...*
 - sufficient conditions for \(\psi \) to be a diffusion
 - consumption in rates, \(C_t = \int_{0}^{t} c_s ds \)
- **Hindy, Huang, Kreps**, *On Intertemporal Preferences in Continuous Time...*
 - consumption as optional random measures
 - economically sensible topology: weak topology for measures (on the time axis)
Highlights in Equilibrium Theory

- Debreu, *Theory of Value*
- Arrow, *Le rôle des valeurs boursières pour la repartition la meilleure des risques*

- Duffie, Zame, *The Consumption-Based CAPM*
- Karatzas, Lehoczky, Shreve, *Existence and Uniqueness of Multi-Agent Equilibrium* ...
 - sufficient conditions for ψ to be a diffusion
 - consumption in rates, $C_t = \int_0^t c_s ds$

- Hindy, Huang, Kreps, *On Intertemporal Preferences in Continuous Time* ...
 - consumption as optional random measures
 - economically sensible topology: weak topology for measures (on the time axis)
Highlights in Equilibrium Theory

- **Debreu**, *Theory of Value*
- **Arrow**, *Le rôle des valeurs boursières pour la répartition la meilleure des risques*
- Duffie, Zame, *The Consumption-Based CAPM*
- Karatzas, Lehoczky, Shreve, *Existence and Uniqueness of Multi-Agent Equilibrium* ...
 - sufficient conditions for ψ to be a diffusion
 - consumption in rates, $C_t = \int_0^t c_s ds$
- Hindy, Huang, Kreps, *On Intertemporal Preferences in Continuous Time* ...
 - consumption as optional random measures
 - economically sensible topology: weak topology for measures (on the time axis)
Highlights in Equilibrium Theory

- Debreu, *Theory of Value*
- Arrow, *Le rôle des valeurs boursières pour la repartition la meilleure des risques*
- Duffie, Zame, *The Consumption-Based CAPM*
- Karatzas, Lehoczky, Shreve, *Existence and Uniqueness of Multi-Agent Equilibrium*
- Hindy, Huang, Kreps, *On Intertemporal Preferences in Continuous Time*

- sufficient conditions for ψ to be a diffusion
- consumption in rates, $C_t = \int_0^t c_s ds$
- consumption as optional random measures
- economically sensible topology: weak topology for measures (on the time axis)
Highlights in Equilibrium Theory

- Debreu, *Theory of Value*
- Arrow, *Le rôle des valeurs boursières pour la repartition la meilleure des risques*
- Duffie, Zame, *The Consumption-Based CAPM*
 - sufficient conditions for ψ to be a diffusion
 - consumption in rates, $C_t = \int_0^t c_s ds$
- Hindy, Huang, Kreps, *On Intertemporal Preferences in Continuous Time . . .*
 - consumption as optional random measures
 - economically sensible topology: weak topology for measures (on the time axis)
Highlights in Equilibrium Theory

- Debreu, Theory of Value
- Arrow, Le rôle des valeurs boursières pour la repartition la meilleure des risques
- Duffie, Zame, *The Consumption-Based CAPM*
- Karatzas, Lehoczky, Shreve, *Existence and Uniqueness of Multi-Agent Equilibrium*
- Hindy, Huang, Kreps, *On Intertemporal Preferences in Continuous Time*

- sufficient conditions for ψ to be a diffusion
- consumption in rates, $C_t = \int_0^t c_s ds$
Highlights in Equilibrium Theory

- Debreu, *Theory of Value*
- Arrow, *Le rôle des valeurs boursières pour la répartition la meilleure des risques*

- **Duffie, Zame**, *The Consumption-Based CAPM*

 Existence and Uniqueness of Multi-Agent Equilibrium . . .

 - sufficient conditions for ψ to be a diffusion
 - consumption in rates, $C_t = \int_0^t c_s ds$

- **Hindy, Huang, Kreps**

 On Intertemporal Preferences in Continuous Time . . .

 - consumption as optional random measures
 - economically sensible topology: weak topology for measures (on the time axis)
Highlights in Equilibrium Theory

- Debreu, *Theory of Value*
- Arrow, *Le rôle des valeurs boursières pour la répartition la meilleure des risques*
- Duffie, Zame, *The Consumption-Based CAPM*
- Karatzas, Lehoczky, Shreve, *Existence and Uniqueness of Multi-Agent Equilibrium...*
 - sufficient conditions for ψ to be a diffusion
 - consumption in rates, $C_t = \int_0^t c_s ds$
- Hindy, Huang, Kreps, *On Intertemporal Preferences in Continuous Time...*
 - consumption as optional random measures
 - economically sensible topology: weak topology for measures (on the time axis)
Highlights in Equilibrium Theory

- Debreu, Theory of Value
- Arrow, Le rôle des valeurs boursières pour la repartition la meilleure des risques

- Duffie, Zame, *The Consumption-Based CAPM*
 - sufficient conditions for ψ to be a diffusion
 - consumption in rates, $C_t = \int_0^t c_s \, ds$

- Hindy, Huang, Kreps
 - *On Intertemporal Preferences in Continuous Time* . . .
 - consumption as optional random measures
 - economically sensible topology: weak topology for measures (on the time axis)
The HHK Model

- $\mathcal{X} = \text{space of signed optional random measures with } L^1\text{–bounded total variation}$
- $\mathcal{X} = \text{rightcontinuous, adapted processes of bounded variation}$
- order: $X \geq Y$ iff $X - Y$ is nondecreasing
- $\mathcal{X}_+ = \text{optional random measures } C \text{ with } \mathbb{E}C_T < \infty$
- topology: small shifts over time should not affect preferences and prices much:

$$\|C - C'\| = \mathbb{E} \int_0^T |C_t - C'_t| dt + \mathbb{E}|C_T - C'_T|$$

- on \mathcal{X}_+ essentially equivalent to topology of weak convergence in probability
The HHK Model

- $\mathcal{X} =$ space of signed optional random measures with L^1–bounded total variation
- $\mathcal{X} =$ rightcontinuous, adapted processes of bounded variation
- order: $X \geq Y$ iff $X - Y$ is nondecreasing
- $\mathcal{X}_+ =$ optional random measures C with $\mathbb{E} C_T < \infty$
- topology: small shifts over time should not affect preferences and prices much:

$$
\left\| C - C' \right\| = \mathbb{E} \int_0^T |C_t - C'_t| dt + \mathbb{E} |C_T - C'_T|
$$

- on \mathcal{X}_+ essentially equivalent to topology of weak convergence in probability
The HHK Model

- \mathcal{X} = space of signed optional random measures with L^1-bounded total variation
- \mathcal{X} = rightcontinuous, adapted processes of bounded variation
- order: $X \succeq Y$ iff $X - Y$ is nondecreasing
- $\mathcal{X}_+ = \text{optional random measures } C \text{ with } \mathbb{E}C_T < \infty$
- topology: small shifts over time should not affect preferences and prices much:

$$\|C - C'\| = \mathbb{E} \int_0^T |C_t - C'_t| dt + \mathbb{E} |C_T - C'_T|$$

- on \mathcal{X}_+ essentially equivalent to topology of weak convergence in probability
The HHK Model

\[\mathcal{X} = \text{space of signed optional random measures with } L^1\text{–bounded total variation} \]
\[\mathcal{X} = \text{rightcontinuous, adapted processes of bounded variation} \]
\[\text{order: } X \succeq Y \text{ iff } X - Y \text{ is nondecreasing} \]
\[\mathcal{X}_+ = \text{optional random measures } C \text{ with } \mathbb{E}C_T < \infty \]
\[\text{topology: small shifts over time should not affect preferences and prices much:} \]
\[\| C - C' \| = \mathbb{E} \int_0^T |C_t - C'_t| dt + \mathbb{E} |C_T - C'_T| \]
\[\text{on } \mathcal{X}_+ \text{ essentially equivalent to topology of weak convergence in probability} \]
The HHK Model

- $X = \text{space of signed optional random measures with } L^1\text{-bounded total variation}$
- $X = \text{rightcontinuous, adapted processes of bounded variation}$
- order: $X \succeq Y$ iff $X - Y$ is nondecreasing
- $X_+ = \text{optional random measures } C \text{ with } \mathbb{E}C_T < \infty$
- topology: small shifts over time should not affect preferences and prices much:

$$\|C - C'\| = \mathbb{E} \int_0^T |C_t - C'_t| dt + \mathbb{E}|C_T - C'_T|$$

on X_+ essentially equivalent to topology of weak convergence in probability
The HHK Model

- $\mathcal{X} =$ space of signed optional random measures with L^1–bounded total variation
- $\mathcal{X} =$ rightcontinuous, adapted processes of bounded variation
- order: $X \geq Y$ iff $X - Y$ is nondecreasing
- $\mathcal{X}_+ =$ optional random measures C with $\mathbb{E} C_T < \infty$
- topology: small shifts over time should not affect preferences and prices much:

$$\|C - C'\| = \mathbb{E} \int_0^T |C_t - C'_t| dt + \mathbb{E} |C_T - C'_T|$$

- on \mathcal{X}_+ essentially equivalent to topology of weak convergence in probability
the HHK topological dual consists of $\Psi(C) = \mathbb{E} \int \psi_t dC_t$ for $\psi = M + A$, where M is a bounded martingale and A an absolutely continuous process.

- everything would be great if we had equilibrium with prices in the topological dual.
- but: in general, equilibrium prices do not belong to the HHK dual.
- reason: the HHK dual is not a lattice (Tanaka!)
The Problem

- the HHK topological dual consists of $\Psi(C) = \mathbb{E} \int \psi_t dC_t$ for $\psi = M + A$, where M is a bounded martingale and A an absolutely continuous process
- everything would be great if we had equilibrium with prices in the topological dual
- but: in general, equilibrium prices do not belong to the HHK dual
- reason: the HHK dual is not a lattice (Tanaka!)
The Problem

- the HHK topological dual consists of $\Psi(C) = \mathbb{E} \int \psi_t dC_t$ for $\psi = M + A$, where M is a bounded martingale and A an absolutely continuous process.
- everything would be great if we had equilibrium with prices in the topological dual.
- but: in general, equilibrium prices do not belong to the HHK dual.
- reason: the HHK dual is not a lattice (Tanaka!)
The Problem

- the HHK topological dual consists of $\Psi(C) = \mathbb{E} \int \psi_t dC_t$ for $\psi = M + A$, where M is a bounded martingale and A an absolutely continuous process.

- everything would be great if we had equilibrium with prices in the topological dual.

- but: in general, equilibrium prices do not belong to the HHK dual.

- reason: the HHK dual is not a lattice (Tanaka!)
Price Functionals

- Bank, R. 2001: sufficient conditions on utility functions that yield equilibrium with prices $\psi = M + A$, A continuous
- da Rocha, R. 2006: weaken the assumption in BR 01, provide a framework for formulating the most general, and weakest, assumptions that lead to equilibrium

Today’s Aim

Characterize all linear, positive functionals $\Psi : \mathcal{X} \rightarrow \mathbb{R}$ that are continuous on \mathcal{X}_+

Call these functionals nice.
Price Functionals

- Bank, R. 2001: sufficient conditions on utility functions that yield equilibrium with prices $\psi = M + A$, A continuous
- da Rocha, R. 2006: weaken the assumption in BR 01, provide a framework for formulating the most general, and weakest, assumptions that lead to equilibrium

Today’s Aim

Characterize all linear, positive functionals $\Psi : X^+ \rightarrow \mathbb{R}$ that are continuous on X^+

Call these functionals nice.
Bank, R. 2001: sufficient conditions on utility functions that yield equilibrium with prices $\psi = M + A$, A continuous

da Rocha, R. 2006: weaken the assumption in BR 01, provide a framework for formulating the most general, and weakest, assumptions that lead to equilibrium

Today’s Aim

Characterize all linear, positive functionals $\Psi : X \to \mathbb{R}$ that are continuous on X_+

Call these functionals nice.
Price Functionals

- Bank, R. 2001: sufficient conditions on utility functions that yield equilibrium with prices $\psi = M + A$, A continuous
- da Rocha, R. 2006: weaken the assumption in BR 01, provide a framework for formulating the most general, and weakest, assumptions that lead to equilibrium

Today’s Aim

Characterize all linear, positive functionals $\Psi : X \to \mathbb{R}$ that are continuous on X_+

Call these functionals *nice*.
A functional \(\Psi : \mathcal{X} \to \mathbb{R} \) is nice if and only if it can be written as
\[
\Psi(X) = \mathbb{E} \int \psi_t \, dX_t
\]
for a process \(\psi \) that is
- bounded, cadlag, and positive,
- the optional projection of a raw continuous process \(\zeta \) with
\[
\mathbb{E} \sup \abs{\zeta_t} < \infty
\]
Supermartingale Price Densities

But: didn’t we want semimartingale prices?

Theorem

Assume that all individuals are impatient in the sense that

\[U^i(1_{\{t \geq \tau\}}) \geq U^i(1_{\{t \geq \tau'\}}) \]

for all stopping times \(\tau \leq \tau' \). Then an equilibrium exists with price density \(\psi \) that is

- a bounded, positive supermartingale
- the optional projection of a raw continuous process \(\zeta \) with
\[\mathbb{E} \sup |\zeta_t| < \infty. \]
Supermartingale Price Densities

But: didn’t we want semimartingale prices?

Theorem

Assume that all individuals are impatient in the sense that

\[U^i(1_{\{t \geq \tau\}}) \geq U^i(1_{\{t \geq \tau'\}}) \]

for all stopping times \(\tau \leq \tau' \). Then an equilibrium exists with price density \(\psi \) that is

- a bounded, positive supermartingale
- the optional projection of a raw continuous process \(\zeta \) with

\[\mathbb{E} \sup |\zeta_t| < \infty. \]
Proof of the Main Theorem: Sufficiency

Sufficiency part is easy!

- We have $\psi(C) = \mathbb{E} \int \zeta dC$ as $\psi = \circ \zeta$.
- As ζ continuous, weak convergence of (C^n) to C in probability implies $\mathbb{E} \int \zeta dC^n \rightarrow \mathbb{E} \int \zeta dC$.
Proof of the Main Theorem: Sufficiency

Sufficiency part is easy!

- we have $\psi(C) = \mathbb{E} \int \zeta dC$ as $\psi \circ \zeta$,
- As ζ continuous, weak convergence of (C^n) to C in probability implies $\mathbb{E} \int \zeta dC^n \to \mathbb{E} \int \zeta dC$.

Proof of the Main Theorem: Sufficiency

Sufficiency part is easy!

- we have $\psi(C) = \mathbb{E} \int \zeta dC$ as $\psi = \circ \zeta$,
- As ζ continuous, weak convergence of (C^n) to C in probability implies $\mathbb{E} \int \zeta dC^n \rightarrow \mathbb{E} \int \zeta dC$.
Necessity

1. Construct a \mathcal{F}–system $(\phi^\tau)_\tau$ stopping time
2. Aggregate the \mathcal{F}–system $(\phi^\tau)_\tau$ stopping time into an optional process ψ
3. Show that ψ is the optional projection of a raw continuous process
Necessity

1. Construct a \mathcal{F}–system $(\phi^\tau)_\tau$ stopping time

2. Aggregate the \mathcal{F}–system $(\phi^\tau)_\tau$ stopping time into an optional process ψ

3. Show that ψ is the optional projection of a raw continuous process
Necessity

1. Construct a \mathcal{F}–system $(\phi^\tau)_\tau$ stopping time

2. Aggregate the \mathcal{F}–system $(\phi^\tau)_\tau$ stopping time into an optional process ψ

3. Show that ψ is the optional projection of a raw continuous process
Fix a stopping time τ. Let $H \in L^1(\Omega, \mathcal{F}_\tau, \mathbb{P})$ and denote by $H1_{\{t \geq \tau\}}$ the measure with jump of size H at time τ. Define a linear functional

$$\psi^\tau : L^1(\Omega, \mathcal{F}_\tau, \mathbb{P}) \to \mathbb{R}$$

via

$$\psi^\tau(H) = \psi(H1_{\{t \geq \tau\}}).$$

ψ^τ is continuous on L^1. Thus, there exists a bounded random variable $\phi^\tau \geq 0$ with

$$\psi^\tau(H) = \mathbb{E}H\phi^\tau.$$
Construction of the \mathcal{F}–system

Fix a stopping time τ. Let $H \in L^1(\Omega, \mathcal{F}_\tau, \mathbb{P})$ and denote by $H1_{\{t \geq \tau\}}$ the measure with jump of size H at time τ.

Define a linear functional

$$\psi^\tau : L^1(\Omega, \mathcal{F}_\tau, \mathbb{P}) \to \mathbb{R}$$

via

$$\psi^\tau(H) = \psi(H1_{\{t \geq \tau\}}).$$

ψ^τ is continuous on L^1. Thus, there exists a bounded random variable $\phi^\tau \geq 0$ with

$$\psi^\tau(H) = \mathbb{E}H\phi^\tau.$$
Fix a stopping time τ. Let $H \in L^1(\Omega, \mathcal{F}_\tau, \mathbb{P})$ and denote by $H_1\{t \geq \tau\}$ the measure with jump of size H at time τ. Define a linear functional

$$\psi^\tau : L^1(\Omega, \mathcal{F}_\tau, \mathbb{P}) \to \mathbb{R}$$

via

$$\psi^\tau(H) = \psi(H_1\{t \geq \tau\}).$$

ψ^τ is continuous on L^1. Thus, there exists a bounded random variable $\phi^\tau \geq 0$ with

$$\psi^\tau(H) = \mathbb{E}H\phi^\tau.$$
Construction of the \mathcal{F}–system

Fix a stopping time τ. Let $H \in L^1(\Omega, \mathcal{F}_\tau, \mathbb{P})$ and denote by $H1_{\{t \geq \tau\}}$ the measure with jump of size H at time τ.

Define a linear functional

$$\psi^\tau : L^1(\Omega, \mathcal{F}_\tau, \mathbb{P}) \to \mathbb{R}$$

via

$$\psi^\tau(H) = \psi(H1_{\{t \geq \tau\}}).$$

ψ^τ is continuous on L^1. Thus, there exists a bounded random variable $\phi^\tau \geq 0$ with

$$\psi^\tau(H) = \mathbb{E}H\phi^\tau.$$
Aggregation of the \mathcal{F}–system

Now we have a bounded r.v. ϕ^τ for every stopping time τ. Can one find an optional process ψ such that

$$\psi_\tau = \phi^\tau \text{ a.s.}$$

First condition: the \mathcal{F}–system must be consistent
$(\phi^\tau = \phi^\sigma$ on $\{\tau = \sigma\}$, ok here)

Dellacherie/Lenglart, *Sur des Problèmes de Régularisation, de Recollement et d’Interpolation* . . ., Sém. de Prob. 1980:
(right)continuity in expectation is enough! Let $\tau_n \downarrow \tau$. Then
$$\lim \mathbb{E}\phi^{\tau_n} = \lim \mathbb{E}\psi(1\{t \geq \tau_n\}) \rightarrow \psi \text{ continuous on } \mathcal{B}_+ \mathbb{E}\phi^\tau.$$
Now we have a bounded r.v. ϕ^τ for every stopping time τ. Can one find an optional process ψ such that

$$\psi_\tau = \phi^\tau \text{ a.s. ?}$$

First condition: the \mathcal{F}–system must be consistent

$(\phi^\tau = \phi^\sigma$ on $\{\tau = \sigma\}$, ok here)

Dellacherie/Lenglart, *Sur des Problèmes de Régularisation, de Recollement et d’Interpolation* . . . , Sém. de Prob. 1980: (right)continuity in expectation is enough! Let $\tau_n \downarrow \tau$. Then

$$\lim E\phi^{\tau_n} = \lim \psi(1_{\{t \geq \tau_n\}}) \to \psi \text{ continuous on } \mathcal{X}_+ \psi(1_{\{t \geq \tau\}}) = E\phi^\tau.$$
Now we have a bounded r.v. ϕ^τ for every stopping time τ. Can one find an optional process ψ such that

$$\psi_{\tau} = \phi^\tau \text{ a.s. ?}$$

First condition: the \mathcal{F}–system must be consistent

$(\phi^\tau = \phi^\sigma$ on $\{\tau = \sigma\}$, ok here)

Dellacherie/Lenglart, *Sur des Problèmes de Régularisation, de Recollement et d’Interpolation* . . ., Sém. de Prob. 1980:

(right)continuity in expectation is enough! Let $\tau_n \downarrow \tau$. Then

$$\lim \mathbb{E}\phi^{\tau_n} = \lim \psi(1_{\{t \geq \tau_n\}}) \rightarrow \psi \text{ continuous on } \mathcal{F}_+ \quad \psi(1_{\{t \geq \tau\}}) = \mathbb{E}\phi^\tau.$$
Aggregation of the \mathcal{F}–system

Now we have a bounded r.v. ϕ^τ for every stopping time τ. Can one find an optional process ψ such that

$$\psi_\tau = \phi^\tau \text{ a.s.?}$$

First condition: the \mathcal{F}–system must be consistent

($\phi^\tau = \phi^\sigma$ on $\{\tau = \sigma\}$, ok here)

Dellacherie/Lenglart, *Sur des Problèmes de Régularisation, de Recollement et d’Interpolation* . . ., Sém. de Prob. 1980: (right)continuity in expectation is enough! Let $\tau_n \downarrow \tau$. Then

$$\lim \mathbb{E}\phi^{\tau_n} = \lim \psi(1_{\{t \geq \tau_n\}}) \rightarrow \psi \text{ continuous on } \mathcal{X}_+ \quad \psi(1_{\{t \geq \tau\}}) = \mathbb{E}\phi^\tau.$$
The continuity of Ψ on \mathcal{K}_+ implies that ψ is continuous in expectation.

Consequently, it is cadlag and regular ($P\psi = \psi_-$).

Moreover, of class (D)

Bismut, *Régularité et Continuité des Processus*, 1978: every such process is the optional projection of a raw continuous process ζ with $\mathbb{E}\sup_{0 \leq t \leq T} |\zeta_t| < \infty$.

The continuity of Ψ on \mathcal{X}_+ implies that ψ is continuous in expectation.

Consequently, it is cadlag and regular ($\mathcal{P}\psi = \psi_-$).

Moreover, of class (D)

Bismut, *Régularité et Continuité des Processus*, 1978: every such process is the optional projection of a raw continuous process ζ with $\mathbb{E} \sup_{0 \leq t \leq T} |\zeta_t| < \infty$.
The continuity of Ψ on X_+ implies that ψ is continuous in expectation.

Consequently, it is cadlag and regular ($P\psi = \psi_-$).

Moreover, of class (D)

Bismut, *Régularité et Continuité des Processus*, 1978: every such process is the optional projection of a raw continuous process ζ with $E\sup_{0\leq t\leq T} |\zeta_t| < \infty$.
Finding the Raw Continuous Preimage

- The continuity of ψ on \mathcal{K}_+ implies that ψ is continuous in expectation.
- Consequently, it is cadlag and regular ($\mathbb{P}\psi = \psi_-$).
- Moreover, of class (D)
- **Bismut**, *Régularité et Continuité des Processus*, 1978: every such process is the optional projection of a raw continuous process ζ with $\mathbb{E} \sup_{0 \leq t \leq T} |\zeta_t| < \infty$.
Final Steps

- We have $\psi(H1_{\{t \geq \tau\}}) = \mathbb{E}\psi_\tau H = \mathbb{E}\int \psi \, d(H1_{\{t \geq \tau\}})$ for $H \geq 0$.

- Then $\psi(C) = \mathbb{E}\int \psi \, dC$ for simple optional random measures.

- By Fatou’s lemma, density of simple random optional measures in \mathcal{H}^+, and continuity of ψ on \mathcal{H}^+, $\psi(C) = \mathbb{E}\int \psi \, dC$ for all $C \in \mathcal{H}^+$ follows.

- One can then even show that ψ is bounded.
We have $\psi(H_1_{\{t \geq \tau\}}) = E\psi_\tau H = E \int \psi d(H_1_{\{t \geq \tau\}})$ for $H \geq 0$.

Then $\psi(C) = E \int \psi dC$ for simple optional random measures.

By Fatou’s lemma, density of simple random optional measures in \mathcal{X}_+, and continuity of ψ on \mathcal{X}_+ $\psi(C) = E \int \psi dC$ for all $C \in \mathcal{X}_+$ follows.

One can then even show that ψ is bounded.
Final Steps

- We have $\Psi(H1_{\{t \geq \tau\}}) = \mathbb{E}\psi_\tau H = \mathbb{E}\int \psi d(H1_{\{t \geq \tau\}})$ for $H \geq 0$.
- Then $\Psi(C) = \mathbb{E}\int \psi dC$ for simple optional random measures.
- By Fatou’s lemma, density of simple random optional measures in \mathcal{X}_+, and continuity of Ψ on \mathcal{X}_+ $\Psi(C) = \mathbb{E}\int \psi dC$ for all $C \in \mathcal{X}_+$ follows.
- One can then even show that ψ is bounded.
Final Steps

- We have \(\psi(H1_{\{t \geq \tau\}}) = \mathbb{E}\psi_{\tau}H = \mathbb{E}\int \psi d(H1_{\{t \geq \tau\}}) \) for \(H \geq 0 \).
- Then \(\psi(C) = \mathbb{E}\int \psi dC \) for simple optional random measures.
- By Fatou’s lemma, density of simple random optional measures in \(\mathcal{X}_+ \), and continuity of \(\psi \) on \(\mathcal{X}_+ \)
 \(\psi(C) = \mathbb{E}\int \psi dC \) for all \(C \in \mathcal{X}_+ \) follows.
- One can then even show that \(\psi \) is bounded.
Summary

- General Equilibrium Foundations of Finance
- Characterization of Nice Price Functionals
- Next Step: Equilibrium Existence With These Prices
- Equilibrium Asset Prices
- ...
Summary

- General Equilibrium Foundations of Finance
- Characterization of Nice Price Functionals
- Next Step: Equilibrium Existence With These Prices
- Equilibrium Asset Prices
- ...
Summary

- General Equilibrium Foundations of Finance
- Characterization of Nice Price Functionals
- Next Step: Equilibrium Existence With These Prices
- Equilibrium Asset Prices
- ...
Summary

- General Equilibrium Foundations of Finance
- Characterization of Nice Price Functionals
- Next Step: Equilibrium Existence With These Prices
- Equilibrium Asset Prices

...
Summary

- General Equilibrium Foundations of Finance
- Characterization of Nice Price Functionals
- Next Step: Equilibrium Existence With These Prices
- Equilibrium Asset Prices
- ...