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Problem

@ How an agent can tell, when facing various risky assets, which one is
better?

Problem
@ How an agent can evaluate, in a financial market, a contingent claim?
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Background and Motivation

In Economics for Problem 1:

Theorem (Expected utility Theory, von Neumman and Morgenstein:)
The Existence of Expected utility is equivalent to

@ Rational preference
@ Continuity Axiom
@ Independence Axiom: Lz L @ aL+ (1 —a)L z oL + (1 — )L

@ Allais’ Paradox
@ Linearity of Expectation
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Background and Motivation

Pricing in Financial Market:

@ Complete Market:
o Exact hedging portfolio
e Girsanov Transform,Equivalent martingale measure
o Linear BSDE

@ Incomplete Market:
o Not always possible to construct exact hedging portfolio
o More than one martingale measure
o Linear expectations seem not enough
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Background and Motivation

Example (Black-Scholes type)
Consider a security market that consists of 2 instruments

{ dP, = P,(bdt + cdB,),
P =p.
frictionless except that interests for borrowing and lending may not the
same...
If an agent plan to receive ¢ at T, then her wealth:
{ v, = [rV; + (b —1)Z; — (V; — Z)"(R - r)ldt + Z,odB,,

Vr = é&.
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Background and Motivation

Example (Black-Scholes type)
Consider a security market that consists of 2 instruments
@ Py(t) =e"
@ P(1) = pexpl(b — 02/2)t + oB;]
dP; = P,(bdt + odBy),
{ P = p.
frictionless except that interests for borrowing and lending may not the
same...

If an agent plan to receive ¢ at T, then her wealth:
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Background and Motivation

@ R =r Black-Scholes Model g(y,z) =ry+(b—r7)z
V, = Bf,[€] = Bgl¢], and Z, = &7,

Q R #r Nonlinear, V; = Ef [£], for L? integrable £.
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Some Basic Properties of BSDE and g-Expectations
Forward-Backward Stochastic Differential Equations

°
°
@ Reflected Backward Differential Equations
@ Feynman-Kac Formula

°

Sublinear Expectations: G-Expectation
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Some Basic Properties of BSDE and g-Expectations

o { dyt = _g(t9yl9zt)dt+ztdBl’ re [0’ T]
yr=§

o Pardoux, E., Peng, S., Adapted solution of a backward stochastic differential equation,
Systems Control Letters 14: 55-61, 1990.

o Peng, S., BSDE and related g-expectations, Backward Stochastic Differential Equations,
El Karoui, N. and Mazliak, L. eds., Paris, 1995-1996, Pitman Research Notes in
Mathematics Series, 364, 141-159, Longman, Harlow, 1997.
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Some Basic Properties of BSDE and g-Expectations

The Spaces

@ (Q, 7, P): acomplete probability space;

@ {B;,0 <t < T}: ad-dimensional standard Brownian motion;

@ {#;,0 <t < T}: the natural filtration of B;;

° L;(R’"): R™ valued ¥ progressively measurable stochastic process ¢,
with E[ [ |¢Pdr] < oo;

° D’;(Rm): R™ valued ¥ adapted RCLL stochastic process ¢, with
E[sup;<r [#1"] < oo

° S’;,(R’”): continuous stochastic processes in D’;(R"’);
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Some Basic Properties of BSDE and g-Expectations

Assumptions:
@ the terminal value ¢ € L*(¥7);

o for the generator g: [0,T] x R x R? x Q — R,

o (A1), g(-,x,y)is an adapted process with E[ fOT lg(2,0,0)2dt] < oo;

(A1),
o (A2), g(t,y1,21) — g(t,¥2,22)l < C(ly1 — y2l + |z1 — 22D);
° (AS)! g('9 0, O) = O, dt X dP - a.s.;
o (A4), for everyy € R, g(-,y,0) =0, dt xdP - a.s.;
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Some Basic Properties of BSDE and g-Expectations

Theorem (Existence and Uniqueness)
If the parameters of BSDE satisfy the terminal assumption and generator
assumption (A1), (A2), the equation has a unique pair of adapted L?

integrable solution (y;, ;)€ S>-(R) X L.
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Some Basic Properties of BSDE and g-Expectations

Theorem (Existence and Uniqueness)
If the parameters of BSDE satisfy the terminal assumption and generator
assumption (A1), (A2), the equation has a unique pair of adapted L?

integrable solution (y;, ;)€ S>-(R) X L.

@ We simply give the Stability of solutions in the following sense:
T
Elsupogr |V} = VPP + ELfy 12} - ZPds] < cEliE' - €71,
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Some Basic Properties of BSDE and g-Expectations

Definition (g-Evaluation and g-Expectation)

@ The so called g-evaluation can be defined as
E8:(y) =ys, 05 <t <T;

@ If furthermore, g satisfies assumption (A4), then g-expectation can be
defined as BS(&|F;) = y;.
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Some Basic Properties of BSDE and g-Expectations

Theorem (Comparison Theorem)

Suppose (&1, g1), (&2, g2) satisfy the conditions stated above, let
(Y',zY), (Y?,7%) be the solutions of the corresponding BSDEs, if

& 286, qut, Y Z]) > g2(t,Y, Z]),as.,ae.
Then we have
Yt] > Y,z,a.s.

And under the above conditions,

Yé = YO2 & & =& and gi(t, Ytz,th) = g(t, Y,z,th),a.s.,a.e.
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Theorem (Comparison Theorem)

Suppose (&1, g1), (&2, g2) satisfy the conditions stated above, let
(Y',zY), (Y?,7%) be the solutions of the corresponding BSDEs, if

& 286, qut, Y Z]) > g2(t,Y, Z]),as.,ae.
Then we have
Yt] > Y,z,a.s.

And under the above conditions,

Yé = Yg & & =& and gi(t, Ytz,th) = g(t, Y,z,th),a.s.,a.e.

@ This is a generalized version.

@ Itis One of the most important theorems about BSDE, it "plays the
same role that the maximum principle in PDE” (El Karoui).

@ It rules out "Arbitrage Opportunities” when using BSDE in pricing.
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Some Basic Properties of BSDE and g-Expectations

Theorem (Axiomatic Properties of g-Evaluation and g-Expectation )
(P1) (Monotonicity) B8, r[£] < EﬁT[n], ifé <n;

(P2) If¢ € L*(F,), then, B8, ,[£] = &, and for g-expectation, B8, 7[£] = &, a.s.
(P3) (Time Consistency) B8, B8, r[£]] = B8 r[€l,s < t;

(P4) ("Zero-One Law’) If g satisfies (A3), B8, r[Ia€] = IA\E8, 1[£],A € F+;
(P5)

P5) (Translation Invariance) For g-expectation with g independent of y,
ES[€ + 7] = BSEIF] + 1), a.s. where np € L*(F).
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Some Basic Properties of BSDE and g-Expectations

Theorem (pseudo-linearity)
ForO0<s<t<T,X, YelL*¥%) and A € F,, we have

B8 [Xla + Yiae] = B8 [X11a + B8 [Ylac
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Some Basic Properties of BSDE and g-Expectations

Theorem (Monotonic Limit Theorem)
Consider the following sequence of BSDEs:

T T
Y =yr + f 8(s, v, z)ds + (A7 — A}) — f Z,dB;
t t

where g satisfies(A1) and(A2), A’ is a continuous increasing process with
A}=0 and A%. € L*(F7). If y' converges monotonically up to a process y as
i — oo, and E[esssupogsﬂytlz] < 0. Then there exists stochastic
processes z and A, s.t.

T T
Ye=yr+ f 8(s,ys,25)ds + (At — Ap) — f ZsdBg
t t
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Some Basic Properties of BSDE and g-Expectations

Determine the generator by the evaluation value......

Chen, Z. C.R.Acad.Sci.Paris, Seriel 326(4): 483-488 (1998)

Briand, P., Coquet, F., Hu, Y., Memin, J., Peng, S.; Electon. Comm. Probab. 5: 101-117 (2000)
Coquet, F., Hu, Y., Memin, J., Peng, S.; C.R. Acad. Sci. Paris, Série | 333: 577-581 (2001)
Jiang, L. Statistics and Probability Letters,7(2), 173-183(2005)
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o (A1)(A2)¢' > g & BY,[£] > BY[£], forall £ and s, t;
o (A2)(A4), noy, g' > g% & EX'[£] > B¥'[£];
o (A2)(A4), g' = ¢* & E¥ [£] = B¥ [£];
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Some Basic Properties of BSDE and g-Expectations

Definition (Martingale under g-Evaluation)
An ¥ -progressively measurable real valued process y with

E(ess sup |y, < o,
0<t<T

is called a g-martingale(under g-evaluation) if for¥0 < s <t < T,

Egs,t()’t) = Ys,a.s.
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Some Basic Properties of BSDE and g-Expectations

Definition (Martingale under g-Evaluation)
An ¥ -progressively measurable real valued process y with

E(ess sup |y, < o,
0<t<T

is called a g-martingale(under g-evaluation) if for¥0 < s <t < T,

Egs,t()’t) = Ys,a.s.

@ We can also define analogously g-supermartingale and
g-submartingale
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Some Basic Properties of BSDE and g-Expectations

Theorem (Optional Stopping)

Assume the generater g satisfies (A1)(A2), and y is a

g-supermartingale(resp. submartingale). Then for every tow stopping
times o, v < T with o < 7, we have

Ef:(vr) < Yos a.s.
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Some Basic Properties of BSDE and g-Expectations

Theorem (Optional Stopping)

Assume the generater g satisfies (A1)(A2), and y is a
g-supermartingale(resp. submartingale). Then for every tow stopping
times o, v < T with o < T, we have

Eg(r,‘r(y‘r) < Yo, a.s.

Theorem (Doob-Meyer Type Decomposition Theorem)

Assume that g satisfies (A1)(A2).Let (y,) be a right continuous
g-supermartingale on [0, T]. Then there exists a unique RCLL increasing
process (A;) with E[A%] < o and Ag = 0, such that (y;) coincides with the
unique solution (y,) of the following BSDE.

T T
e = yr + f g(s,ys5,25)ds + (A7 — Ay) — f zedBg, t€[0,T].
t t

v
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Some Basic Properties of BSDE and g-Expectations

@ BSDE with non-Lipschits assumption
@ BSDE driven by general Levy process
@ BSDE on manifolds
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Forward-Backward Stochastic Differential Equations

dX; = b(t,X;, Y:, Z)dt + o(t, X, Yy, Z;)dB,

dY, = h(t,X,,Y,, Z,)dt — Z,dB,,

X(0) = x, Y(T) = g(Xy).
o Antonelli,F, Backward-Forward Stochastic Differential Equations, Ann. App. Prob.,
3(1998), 777-793;

o Ma,J and Yong,J, FBSDE and their applications, springer, 1999.

These equations closely connected with PDEs, thus have lead to interesting results:

@ Stochastic representations for PDEs; Generalizing Feynman-Kac formula...

In a financial market, think of a big investor......
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o Antonelli,F, Backward-Forward Stochastic Differential Equations, Ann. App. Prob.,
3(1998), 777-793;

o Ma,J and Yong,J, FBSDE and their applications, springer, 1999.

These equations closely connected with PDEs, thus have lead to interesting results:
@ Stochastic representations for PDEs; Generalizing Feynman-Kac formula...
@ Monte-Carlo numerical method; Jianfeng Zhang; V.Bally; G.Pages; Nizar Touzi

In a financial market, think of a big investor......
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Forward-Backward Stochastic Differential Equations

Theorem (Existence Theorem in Small "Time Durations”)
If the parameters for FBSDE, always denoted ¢, satisfy:

1), uniformly Lipschitz in (x,y,z);

2), given (x,y,z), is progressively measurable(b,h,o) or measurable in Fr
(for g)

3), ¢(1,0,w) € L

4), the Lipschitz constants of o and g, Ly, L: LiL; < 1

Then there exists a Ty > 0, s.t.for any T € (0, Ty] and initial value x, FBSDE
admits a unique adapted solution (X,Y,Z) € (S?F X SZT X L?F).

v
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Theorem (Existence Theorem in Small "Time Durations”)
If the parameters for FBSDE, always denoted ¢, satisfy:

1), uniformly Lipschitz in (x,y,z);

2), given (x,y,z), is progressively measurable(b,h,o) or measurable in Fr
(for g)

3), ¢(1,0,w) € L

4), the Lipschitz constants of o and g, Ly, L: LiL; < 1

Then there exists a Ty > 0, s.t.for any T € (0, Ty] and initial value x, FBSDE
admits a unique adapted solution (X,Y,Z) € (S?F X SZT X Lgr).

v

@ FBSDE for large time duration might unsolvable.

(Bielefeld) g-expectation January, 2008 23/47



Reflected Backward Stochastic Differential Equations

Reflected Backward Differential Equations (RBSDE) was first introduced in
1997:

El Karoui, N., Kapoudjian, C., Pardoux, E., Peng S. and Quenez, M.C., Reflected Solutions
of Backward SDE and Related Obstacle Problems for PDEs, Ann. Probab. 25, no2,
702-737, 1997.

A solution for RBSDE with (¢, g, L;), is a triple (Y, Z, K) satisfying

T T
=&+ f 8(s, Yy, Zg)ds + Kt — K; — f ZdB;
t t

and Y; > L;on [0, T].
(K;) is a nondecreasing continuous process, s.i.

T
f (Y, — Ly)dK; = 0
0
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Reflected Backward Stochastic Differential Equations

@ RBSDEs with one continuous barrier;

And the applications:
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And the applications:
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Reflected Backward Stochastic Differential Equations

@ RBSDEs with one continuous barrier;

@ RBSDEs with two continuous barriers;

@ RBSDESs with L? barriers;

@ RBSDEs with continuous barriers under non-Lipschitz condition.
And the applications:

@ The stochastic representation of solutions of PDE with obstacle(s);

@ Applications in Finance:

e Pricing American Options;
e Pricing Game Options.
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Reflected Backward Stochastic Differential Equations

x And for the RBSDEs with two continuous barriers;
A solution is a quadruple (Y, Z,K*, K™), which satisfies

T T
Y, =&+ f g(s, Y, Zg)ds + K; -K' - (Kr - K;)— f Z.dB;
t t

L <Y, <Uon|0,T].

(K;", K;) are non decreasing and continuous,

T T
f (Ys - Ls)dK: =0 and f (YS - Us)sz_ =0.
0 0
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Reflected Backward Stochastic Differential Equations

Let (Y,Z,K) be the solution of RBSDE, then

.
Y; = esssup E| f 8(s, Yy, Zs)ds + L liz<r) + Elz=1)|F+],
7Ty t

where T is the set of all stopping times valued in ¢, T].
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Reflected Backward Stochastic Differential Equations

Let (Y,Z,K) be the solution of RBSDE with 2 continuous barriers, then, for
any 0 <t < T and any stopping times t, o € T, consider

OAT
Ri(o,7) = f 8(s, Yy, Zy)ds + fl{a'/\‘r':T} + LTl{T<T,TSO'] + UO'1{0'<T}'
t

V, = ess inf ess sup E[R/(0, 7)|F:], V, = ess sup ess 1nf E[R:(o, 7)|F:]

oeTy €T, T, oe

Then Y[ :Vt :Zt
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Reflected Backward Stochastic Differential Equations

Application in Pricing American Options:

o El Karoui, N., Pardoux, E., and Quenez, M.C., Reflected Backward SDEs and American Options,

Numerical methods in finance, Newton Inst. Cambridge Univ. Press, Cambridge, 215-231, 1997.

”In some constraint cases,the strategy wealth portfolio (X;, ) ...satisfy the
following BSDE
_dX[ = b(t, X[, ﬂt)dt - ﬂ?O',th

Here b... convex with respect to x,z. ...suppose that the volatility is
invertible and that (o)! is uniformly bounded..”
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Reflected Backward Stochastic Differential Equations

Consider the payoff process:
Sy = Eljsery + Slis<r).

Fix € [0, 71,7 € 7;; then exists a unique strategy (X,(z, Sr), 7(x, S)), which
replicate S-, i.e. for some coefficient b

—dX; b(s,X;,m)ds — (n5)"dB;,0 < s < T,
Xi = S.

’
Then the price of the American contingent claim (Ey, 0<s<T)attmeTis
given by

X, = esssup X;(T,ET).
€T,

And under the convex assumption, it can be proved that:

.
X; = esssup E| f b(s, X5, m)ds + Seliz<ry + Elr=1)|F1],
€Ty t
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Reflected Backward Stochastic Differential Equations

Application in Pricing Game Options:

o Kifer, Y. Game option Finance Stochatic, 4, 442-463, 2000.
o Hamadene S. and Lepeltier, J.-P. Reflected BSDEs and mixed game problem, Stochastics Processes
Appl. 85, 177-188. 2000
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Reflected Backward Stochastic Differential Equations

@ A:can choose cancellation time o € 7

R(o,7) = Loljg<r) + Urliz<o
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Reflected Backward Stochastic Differential Equations

@ A: can choose cancellation time o € 7~
@ B: choose exercise time r € 7

@ Payoffs: o> L, > U, >0

@ Thus A pays B:

R(o,7) = Loljg<r) + Urliz<o
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Reflected Backward Stochastic Differential Equations

And the fair price?

Vi1 = ess inf ess sup E[e”"""\"R,(c, T)|F]
o€l 1e7,

= esssup ess inf E[e”"""R,(c, 7)|F7]
€T, €T,
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Feynman-Kac Formula

o Pardoux, E., Peng, S., Backward stochastic differential equations and quasilinear parabolic partial
differential equations. Lecture Notes in CIS, Vol. 176. Springer-Verlag, 200 - 217, 1992.

o Pardoux, E., Peng, S., Backward doubly stochastic differential equations and systems of quasilinear
parabolic SPDEs, Probab. Theory Rel. Fields 98, 209 - 227, 1994.

Consider the following coupled FBSDE:

{ Xy = b(XNds + o(X7)dWy, s € [t,T)
X =x.

{ —dY® = gX7 Yy, Zyhds — Z7'dWs, s € [t, T
Yy = o).
T T
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Feynman-Kac Formula

Assumptions:
(H1) b, o satisfies conditions s.t. the SDE has a unique strong solution;

(H2) g satisfies conditions s.t. the BSDE has a unique solution for every
(x,1) € R* x[0,T1;

(H3) b, o, g are deterministic functions.

Set u(x, 1) £ B4, p[OX)].
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Feynman-Kac Formula

Theorem

Assume (H1)(H2)(H3), then u is a deterministic function. And ifu € C>!,
then it satisfies:

Wt Lu+fQx,u,0"Vu) =0, (x,1) € R" x [0,T],
ux, T) = O(x),
2
where, L¢ = % ZZ}':O ai’j(x)% + Z?:l b,-(x)g—i, ajj = [O'O'T]iJ'.

Conversely, if the PDE has a C*'-solution, then the solution is unique and
is u.
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Feynman-Kac Formula

Theorem

If (H3) is not satisfied, then u is a ¥ -adapted process. And if u is smooth
enough, then it satisfies:

—du(t,x) = [Lu(t, x) + g(t, x,u, Duo + ¢) + Dooldt — (Duo + ¢)dWrt,
ulx,T) = O(x),

and conversely, if (u, ¢) is the solution of BSPDE, then (u(s, X\™"), (Duo+
®)(s, X)) is the solution of the related BSDE.
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Feynman-Kac Formula

Applications:

@ Monte-Carlo methods for PDE;
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Feynman-Kac Formula

Applications:

@ Monte-Carlo methods for PDE;

@ Using numerical methods of PDE in solving BSDE.

Example

Consider the Black-Scholes type example. Pricing a contingent claim with
a terminal value (P(T) — q)*, we can use the Feynman-Kac formula:

{ g—‘t‘ + Lu+gp,u, o'Vu) =0,
up,T) = (p - g+,

The fair price is just yo = u(P(0),0).
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Sublinear Expectations: G-Expectation

First let us look at two examples.

Example ("Premium Ambiguity”)

Suppose dV; = %+, and r = 0,

Vi=Vo+ fy aj(st + 6ds)
where 6 denotes the risk premium,

Q9 2 exp| f 6,dB; — = f 16,2,

Vo = Eg,[Vr],

let

then

for the uncertainty of premium, we can give the price to a stochastic asset
X as supg, Eg,[X],0; € O.

v
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Sublinear Expectations: G-Expectation

In fact, this can be write into g-expectation frame work:
Eg[X] = supEQH[X] = YO
Op

ES: L2(Q,F7r,P) > R

where the g-expectation is derived from a BSDE with generator:

g(t,z) = sup o-,_lelzl
0e®
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Sublinear Expectations: G-Expectation

Recall the generalized Feynman-Kac Formula (we might suppose that
o=1):

u(x, 1) = E[DX;],
then u(x, 1) is the solution of
ou
Fn = 7<l/t
u(0,x) = O(x).

where
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Sublinear Expectations: G-Expectation

Consider the following nonlinear parabolic PDE:

{%=a%>
u(0,x) = O(x).

where -
Gx)== sup (o2x).

o€lo, 7]

And define E[®] = u(1,0)
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Sublinear Expectations: G-Expectation

Consider the following nonlinear parabolic PDE:

{%=a%>
u(0,x) = O(x).

where -
Gx)== sup (o2x).

o€lo, 7]

And define E[®] = u(1,0)

@ Note that this kind of nonlinear expectation can not be described by
g-expectation, and models the so-called "volatility ambiguity”.
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Sublinear Expectations: G-Expectation

o Peng, S., G-Expectation, G - Brownian motion and related stochastic calculus of Ito’s
type, Preprint,(pdf-file available in arXiv:imath.PR/0601035v1 3 Jan 2006).

o Peng, S., Multi-dimensional G - Brownian motion and related stochastic calculus under
G - expectation, Preprint,(pdf-file available in arXiv:imath.PR/0601699 v1 28 Jan 2006).

o Peng, S., G - Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty,
Lecture notes in Mini-course of CSFI, Osaka University, 2007.

e (Q, F, P)--»(Q, H, E), with H a set of randem variables and E a
nonlinear expectation;
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Sublinear Expectations: G-Expectation

o Peng, S., G-Expectation, G - Brownian motion and related stochastic calculus of Ito’s
type, Preprint,(pdf-file available in arXiv:imath.PR/0601035v1 3 Jan 2006).

o Peng, S., Multi-dimensional G - Brownian motion and related stochastic calculus under
G - expectation, Preprint,(pdf-file available in arXiv:imath.PR/0601699 v1 28 Jan 2006).

o Peng, S., G - Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty,
Lecture notes in Mini-course of CSFI, Osaka University, 2007.

e (Q, F, P)--»(Q, H, E), with H a set of randem variables and E a
nonlinear expectation;

@ "Probability Language” --» "Expectation Language”
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Sublinear Expectations: G-Expectation

Examples of the changes:

@ Sets v.s. Random Variables
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Sublinear Expectations: G-Expectation

Examples of the changes:

@ Sets v.s. Random Variables
@ Measurable?

@ Distribution?

@ Almost surely equality?

(Bielefeld) g-expectation January, 2008 44/ 47



Sublinear Expectations: G-Expectation

Definition (G-Normal Distribution)

A random variable ¢ in a sub-expectation space (2, H, E) is called
G -normal distributed, denoted by & ~ N(0; [gz, 62]), for a given pair

0 <o <o, iffor each ¢ € Cy;;,(R), the following function defined by

u(t, x) = Blop(x + Vi&)], (t,x) € [0,00) X R

is the unique viscosity solution of the PDE in Example2.
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Sublinear Expectations: G-Expectation

@ Corresponding definition of G-Brownian motion;
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Sublinear Expectations: G-Expectation

@ Corresponding definition of G-Brownian motion;

@ Stochastic Calculus of 1to’s type...

@ Law of Large numbers and Central Limit Theorem...
@ d-Dimensional case...
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Thank you!
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