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Mathematics and Economics: Big Successes in History
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Éléments d’économie politique pure 1874

Francis Edgeworth,
Mathematical Psychics, 1881

John von Neumann, Oskar Morgenstern,
Theory of Games and Economic Behavior, 1944

Paul Samuelson,
Foundations of Economic Analysis, 1947

Kenneth Arrow, Gérard Debreu,
Competitive Equilibrium 1954

John Nash 1950, Reinhard Selten, 1965,
Noncoperative Game Theory

Fischer Black, Myron Scholes, Robert Merton, 1973,
Mathematical Finance



Three Leading Questions

Mathematics and Economics: Big Successes in History
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Éléments d’économie politique pure 1874

Francis Edgeworth,
Mathematical Psychics, 1881

John von Neumann, Oskar Morgenstern,
Theory of Games and Economic Behavior, 1944

Paul Samuelson,
Foundations of Economic Analysis, 1947

Kenneth Arrow, Gérard Debreu,
Competitive Equilibrium 1954

John Nash 1950, Reinhard Selten, 1965,
Noncoperative Game Theory

Fischer Black, Myron Scholes, Robert Merton, 1973,
Mathematical Finance



Three Leading Questions

Mathematics and Economics: Big Successes in History
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1 Rationality ?
Isn’t it simply wrong to impose heroic foresight and

intellectual abilities to describe humans?

2 Egoism ?
Humans show altruism, envy, passions etc.

3 Probability ?
Doesn’t the crisis show that mathematics is useless, even

dangerous in markets?
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Three Leading Questions

Three Leading Questions: Details

Rationality ? Egoism ?

These assumptions are frequently justified

Aufklärung! . . . answers Kant’s “Was soll ich tun?”

design of institutions: good regulation must be robust against
rational, egoistic agents – (Basel II was not, e.g.)

Doubts remain . . .; Poincaré to Walras:

“Par exemple, en méchanique, on néglige souvent le
frottement et on regarde les corps comme infiniment polis.
Vous, vous regardez les hommes comme infiniment égoistes
et infiniment clairvoyants. La première hypothèse peut être
admise dans une première approximation, mais la deuxième
nécessiterait peut-être quelques réserves”
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nécessiterait peut-être quelques réserves”
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Three Leading Doubts: Details ctd.

Probability ?

Option Pricing based on probability theory assumptions is extremely
successful

some blame mathematicians for financial crisis – nonsense, but

does probability theory apply to single events like

“Greece is going bankrupt in 2012”
“SF Giants win the World Series”
“med–in–Form in Bielefeld wird profitabel”

Ellsberg experiments
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Economic Studies 2010

Empirical Evidence

Humans react on their environment

relative concerns, in particular with peers, are important

especially in situations with few players

not in anonymous situations

Fehr–Schmidt Other–regarding preferences matter in games, but not in
markets
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General Equilibrium is the general theory of free, competitive markets with
rational, self–interested agents

The Big Theorems

Existence

First Welfare Theorem: Equilibrium Allocations are efficient

. . . in the core, even

Second Welfare Theorem: efficient allocations can be implemented
via free markets and lump–sum transfers

Core–Equivalence: in large economies, the outcome of rational
cooperation (core) is close to market outcomes
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Egoism

Simple, yet Famous Models

Other–Regarding Utility functions used to explain experimental data

Fehr–Schmidt (Bolton–Ockenfels) introduce fairness and envy:
Ui = mi − αi

I−1

∑
k max{(mk −mi ), 0} − βi

I−1

∑
k max{(mi −mk), 0}

Charness–Rabin: mi + βi
I−1

[
δi min{m1, . . . ,mI}+ (1− δi )

∑I
j=1 mj

]
Edgeworth already has looked at mi + mj

Shaked: such ad hoc models are not science (and Poincaré would
agree)
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Egoism

Mathematical Formulation

in anonymous situations, an agent cannot debate prices or influence
what others consume

own consumption x ∈ RL
+, others’ consumption y ∈ RK , prices

p ∈ RL
+, income w > 0

utility u(x , y), strictly concave and smooth in x

when is the solution d(y , p,w) of

maximize u(x , y) subject to p · x = w

independent of y ?

Definition

We say that agent i behaves as if selfish if her demand function
di

(
p,w , x−i

)
does not depend on others’ consumption plans x−i .
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Egoism

As–If Selfish Demand — Examples

Clearly, standard ”egoistic” utility functions vi (xi ) = vi (xi1, . . . , viL)
lead to as-if selfish behavior

Additive social preferences: let Ui (xi , xj) = vi (xi ) + vj(xj). Then
marginal utilities are independent of xj ,

Product Preferences:
Ui (xi ) = vi (xi )vj(xj) = vi (xi1, . . . , viL)vj(xj1, . . . , vjL)

marginal utilities do depend on others’ consumption bundles
but marginal rates of substitution do not!
→ as–if selfish behavior
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As–If Selfish Preferences

Theorem

Agent i behaves as if selfish if and only if her preferences can be
represented by a separable utility function

Vi (mi (xi ), x−i )

where mi : Xi → R is the internal utility function, continuous, strictly

monotone, strictly quasiconcave, and Vi : D ⊆ R× R(I−1)L
+ → R is an

aggregator, increasing in own utility mi .

Technical Assumption

Preferences are smooth enough such that demand is continuously
differentiable. Needed for the “only if”.
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General Consequences

Free Markets are a good institution in the sense that they maximize
material efficiency (in terms of mi (xi ))

but not necessarily good as a social institution, i.e. in terms of real
utility ui (xi , x−i )
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Egoism

Inefficiency

Example

Take two agents, two commodities with the same internal utility and
Ui = m1 + m2. Take as endowment an internally efficient allocation close
to the edge of the box. Unique Walrasian equilibrium, but not efficient, as
the rich agent would like to give endowment to the poor. Markets cannot
make gifts!

Remark

Public goods are a way to make gifts. Heidhues/R. have an example in
which the rich agent uses a public good to transfer utility to the poor
agent (but still inefficient allocation).
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not true for more than 2 agents!
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Egoism

Second Welfare Theorem

Some (unplausible) preferences have to be ruled out:

Example

Hateful Society: Ui = mi − 2mj for two agents i 6= j . No consumption is
efficient.

Social Monotonicity

For z ∈ RL
+ \ {0} and any allocation x , there exists a redistribution (zi )

with
∑

zi = z such that

Ui (x + z) > Ui (x)
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Egoism

Second Welfare Theorem

Theorem

Under social monotonicity, the set of Pareto optima is included in the set
of internal Pareto optima.

Corollary

Second Welfare Theorem. The price system does not create inequality.
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Uncertainty and Probability

Uncertainty Theory as new Probability Theory

As “P” is not exactly known, work with a whole class of probability
measures P, (Huber, 1982, Robust Statistics)

Knightian Decision Making

Gilboa–Schmeidler: U(X ) = minP∈P i EPu(x)

Föllmer–Schied, Maccheroni, Marinacci, Rustichini generalize to
variational preferences

U(X ) = min
P

EPu(X ) + c(P)

for a cost function c

do not trust your model! be aware of sensitivities! do not believe in
your EXCEL sheet!
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Uncertainty and Probability Optimal Stopping

IMW Research on Optimal Stopping and Knightian
Uncertainty

Dynamic Coherent Risk Measures, Stochastic Processes and Their
Applications 2004

Optimal Stopping with Multiple Priors, Econometrica, 2009

Optimal Stopping under Ambiguity in Continuous Time (with Xue
Cheng), IMW Working Paper 2010

The Best Choice Problem under Ambiguity (with Tatjana
Chudjakow), IMW Working Paper 2009

Chudjakow, Vorbrink, Exercise Strategies for American Exotic Options
under Ambiguity, IMW Working Paper 2009

Vorbrink, Financial Markets with Volatility Uncertainty, IMW Working
Paper 2010

Jan–Henrik Steg, Irreversible Investment in Oligopoly, Finance and
Stochastics 2011



Uncertainty and Probability Optimal Stopping

Optimal Stopping Problems: Classical Version

Let
(

Ω,F ,P, (Ft)t=0,1,2,...

)
be a filtered probability space.

Given a sequence X0,X1, . . . ,XT of random variables

adapted to the filtration (Ft)

choose a stopping time τ ≤ T

that maximizes EXτ .

classic: Snell, Chow/Robbins/Siegmund: Great Expectations



Uncertainty and Probability Optimal Stopping

Optimal Stopping Problems: Solution, Discrete Finite
Time

based on R., Econometrica 2009

Solution

Define the Snell envelope U via backward induction:

UT = XT

Ut = max {Xt ,E [Ut+1|Ft ]} (t < T )

U is the smallest supermartingale ≥ X

An optimal stopping time is given by τ∗ = inf {t ≥ 0 : Xt = Ut}.
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Uncertainty and Probability Optimal Stopping

Two classics

The Parking Problem

You drive along a road towards a theatre

You want to park as close as possible to the theatre

Parking spaces are free iid with probability p > 0

When is the right time to stop? take the first free after 68%1/p
distance

Secretary Problem = When to Marry?

You see sequentially N applicants

maximize the probability to get the best one

rejected applicants do not come back

applicants come in random (uniform) order

optimal rule: take the first candidate (better than all previous) after
seeing 1/e of all applicants

probability of getting the best one approx. 1/e
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Uncertainty and Probability Optimal Stopping

Optimal Stopping with Multiple Priors: Discrete Time

We choose the following modeling approach

Let X0,X1, . . . ,XT be a (finite) sequence of random variables

adapted to a filtration (Ft)

on a measurable space (Ω,F ),

let P be a set of probability measures

choose a stopping time τ ≤ T

that maximizes
inf

P∈P
EPXτ
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Uncertainty and Probability Optimal Stopping

Assumptions

(Xt) bounded by a P–uniformly integrable random variable

there exists a reference measure P0: all P ∈P are equivalent to P0

(wlog, Tutsch, PhD 07)

agent knows all null sets,
Epstein/Marinacci 07

P weakly compact in L1
(
Ω,F ,P0

)
inf is always min,
Föllmer/Schied 04, Chateauneuf, Maccheroni, Marinacci, Tallon 05



Uncertainty and Probability Optimal Stopping

Extending the General Theory to Multiple Priors

Aims

Work as close as possible along the classical lines

Time Consistency

Multiple Prior Martingale Theory

Backward Induction



Uncertainty and Probability Optimal Stopping

Time Consistency

With general P, one runs easily into inconsistencies in dynamic
settings (Sarin/Wakker)

Time consistency ⇐⇒ law of iterated expectations:

min
Q∈P

EQ

[
ess inf
P∈P

EP [X |Ft ]

]
= min

P∈P
EPX

Literature on time consistency in decision theory /risk measure theory
Epstein/Schneider, R. , Artzner et al., Detlefsen/Scandolo, Peng,
Chen/Epstein
time consistency is equivalent to stability under pasting:

let P,Q ∈P and let (pt), (qt) be the density processes
fix a stopping time τ
define a new measure R via setting

rt =

{
pt if t ≤ τ

pτqt/qτ else

then R ∈P as well



Uncertainty and Probability Multiple Prior Martingale Theory

Multiple Prior Martingales

Definition

An adapted, bounded process (St) is called a multiple prior
supermartingale iff

St ≥ ess inf
P∈P

EP [St+1 |Ft ]

holds true for all t ≥ 0.
multiple prior martingale: =
multiple prior submartingale: ≤

Remark

Nonlinear notion of martingales.

Different from P–martingale (martingale for all P ∈P
simultaneously)
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Uncertainty and Probability Multiple Prior Martingale Theory

Characterization of Multiple Prior Martingales

Theorem

(St) is a multiple prior submartingale iff (St) is a P–submartingale.

(St) is a multiple prior supermartingale iff there exists a P ∈P such
that (St) is a P–supermartingale.

(Mt) is a multiple prior martingale iff (Mt) is a P–submartingale and
for some P ∈P a P–supermartingale.

Remark

For multiple prior supermartingales: ⇐ holds always true.⇒ needs
time–consistency.
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Uncertainty and Probability Multiple Prior Martingale Theory

Doob Decomposition

Theorem

Let (St) be a multiple prior supermartingale.
Then there exists a multiple prior martingale M and a predictable,
nondecreasing process A with A0 = 0 such that S = M − A. Such a
decomposition is unique.

Remark

Standard proof goes through.
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Uncertainty and Probability Multiple Prior Martingale Theory

Optional Sampling Theorem

Theorem

Let (St)0≤t≤T be a multiple prior supermartingale. Let σ ≤ τ ≤ T be
stopping times. Then

ess inf
P∈P

EP [Sτ |Fσ] ≤ Sσ .

Remark

Not true without time consistency.
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Uncertainty and Probability Optimal Stopping Rules

Optimal Stopping under Ambiguity

With the concepts developed, one can proceed as in the classical case!

Solution

Define the multiple prior Snell envelope U via backward induction:

UT = XT

Ut = max

{
Xt , ess inf

P∈P
EP [Ut+1|Ft ]

}
(t < T )

U is the smallest multiple prior supermartingale ≥ X

An optimal stopping time is given by τ∗ = inf {t ≥ 0 : Xt = Ut}.
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Uncertainty and Probability Optimal Stopping Rules

Minimax Theorem

Question: what is the relation between the Snell envelopes UP for fixed
P ∈P and the multiple prior Snell envelope U?

Theorem

U = ess inf
P∈P

UP .

Corollary

Under our assumptions, there exists a measure P∗ ∈P such that
U = UP∗

. The optimal stopping rule corresponds to the optimal stopping
rule under P∗.
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Uncertainty and Probability Optimal Stopping Rules

Monotonicity and Stochastic Dominance

Suppose that (Yt) are iid under P∗ ∈P and

for all P ∈P

P∗[Yt ≤ x ] ≥ P[Yt ≤ x ] (x ∈ R)

and suppose that the payoff Xt = g(t,Yt) for a function g that is
isotone in y ,

then P∗ is for all optimal stopping problems (Xt) the worst–case
measure,

i.e. the robust optimal stopping rule is the optimal stopping rule
under P∗.
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Uncertainty and Probability Optimal Stopping Rules

Easy Examples

Parking problem: choose the smallest p for open lots

House sale: presume the least favorable distribution of bids in the
sense of first–order stochastic dominance

American Put: just presume the most positive possible drift



Uncertainty and Probability Continuous Time: g–expectations

Diffusion Models

based on Cheng, R., IMW Working Paper 429
Framework now: Brownian motion W on a filtered probability space
(Ω,F ,P0, (Ft)) with the usual conditions

Typical Example: Ambiguous Drift µt(ω) ∈ [−κ, κ]

P = {P : W is Brownian motion with drift µt(ω) ∈ [−κ, κ]}
(for time–consistency: stochastic drift important!)

worst case: either +κ or −κ, depending on the state

Let EtX = minP∈P EP [X |Ft ]

we have the representation

−EtX = −κZtdt + ZtdWt

for some predictable process Z

Knightian expectations solve a backward stochastic differential
equation
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Uncertainty and Probability Continuous Time: g–expectations

Time–consistent multiple priors are g–expectations

g–expectations

Conditional g–expectation of an FT–measurable random variable X
at time t is Et(X ) := Yt

where (Y ,Z ) solves the backward stochastic differential equation

YT = X , ,−dYt = g(t,Yt ,Zt)− ZtdWt

the probability theory for g–expectations has been mainly developed
by Shige Peng

Theorem (Delbaen, Peng, Rosazza Giannin)

“All” time–consistent multiple prior expectations are g–expectations.
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Uncertainty and Probability Optimal Stopping under g–expectations: Theory

Optimal Stopping under g–expectations: Theory

Our Problem - recall

Let (Xt) be continuous, adapted, nonnegative process with
supt≤T |Xt | ∈ L2 (P0).
Let g = g(ω, t, z) be a standard concave driver (in particular,
Lipschitz–continuous).
Find a stopping time τ ≤ T that maximizes

E0(Xτ ) .



Uncertainty and Probability Optimal Stopping under g–expectations: Theory

Optimal Stopping under g–expectations: General Structure

Let
Vt = ess sup

τ≥t
Et(Xτ ) .

be the value function of our problem.

Theorem

1 (Vt) is the smallest right–continuous g–supermartingale dominating
(Xt);

2 τ∗ = inf {t ≥ 0 : Vt = Xt} is an optimal stopping time;

3 the value function stopped at τ∗, (Vt∧τ∗) is a g–martingale.

Proof.

Our proof uses the properties of g–expectations like regularity,
time–consistency, Fatou, etc. to mimic directly the classical proof (as, e.g.,
in Peskir,Shiryaev) with one additional topping: rightcontinous versions of
g–supermartingales
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Uncertainty and Probability Optimal Stopping under g–expectations: Theory

Worst–Case Priors

Drift ambiguity

V is a g–supermartingale

from the Doob–Meyer–Peng decomposition

−dVt = g(t,Zt)dt − ZtdWt + dAt

for some increasing process A

= −κ|Zt |dt − ZtdWt + dAt

Girsanov: = −ZtdW ∗
t + dAt with kernel κ sgn(Zt)

Theorem (Duality for κ–ambiguity)

There exists a probability measure P∗ ∈Pκ such that
Vt = ess supτ≥t Et (Xτ ) = ess supτ≥t E ∗ [Xτ |Ft ]. In particular:

max
τ

min
P∈Pκ

EP [Xτ |Ft ] = min
P∈Pκ

max
τ

EP [Xτ |Ft ]
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Uncertainty and Probability PDE Approach: Modified Hamilton–Jacobi–Bellman Equation

Markov Models

the state variable S solves a forward SDE, e.g.

dSt = µ(St)dt + σ(St)dWt , S0 = 1 .

Let

L = µ(x)
∂

∂x
+ σ2(x)

∂2

∂x2

be the infinitesimal generator of S .

By Itô’s formula, v(t, St) is a martingale if

vt(t, x) + L v(t, x) = 0 (1)

similarly, v(t,St) is a g–martingale if

vt(t, x) + L v(t, x) + g(t, vx(t, x)σ(x)) = 0 (2)
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Uncertainty and Probability PDE Approach: Modified Hamilton–Jacobi–Bellman Equation

PDE Approach: A Modified HJB Equation

Theorem (Verification Theorem)

Let v be a viscosity solution of the g–HJB equation

max {f (x)− v(t, x), vt(t, x) + L v(t, x) + g(t, vx(t, x)σ(x))} = 0 . (3)

Then Vt = v(t, St).

nonlinearity only in the first–order term

numeric analysis feasible

ambiguity introduces an additional nonlinear drift term
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Uncertainty and Probability Examples

More general problems

With monotonicity and stochastic dominance, worst–case prior easy
to identify

In general, the worst–case prior is path–dependent even in iid settings

Barrier Options

Shout Options

Secretary Problem
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Uncertainty and Probability Secretary Problem

Ambiguous secretaries (with Tatjana Chudjakow)

based on Chudjakow, R., IMW Working Paper 413

Call applicant j a candidate if she is better than all predecessors

We are interested in Xj = Prob[jbest|jcandidate]

Here, the payoff Xj is ambiguous — assume that this conditional
probability is minimal

If you compare this probability with the probability that later
candidates are best, you presume the maximal probability for them!
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Uncertainty and Probability Secretary Problem

Classic Secretary Problem

only interested in the best applicant

introduce Yn = 1 if applicant n beats all previous applicants, else 0

by uniform probability, the (Yn) are independent and
P[Yn = 1] = 1/n.

show that optimal rules must be simple, i.e. of the form

τr = inf {k ≥ r : Yk = 1}

success of rule τr is

r − 1

N

N∑
n=r

1

n − 1
≈ r − 1

N
log

N

r − 1

optimum in N
e + 1
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Uncertainty and Probability Secretary Problem

Ambiguous Secretary Problem

we need a time–consistent multiple prior version of the model

allow all priors with

P[Yn = 1|Y1, . . . ,Yn−1] ∈ [an, bn]

for numbers 0 ≤ an ≤ bn ≤ 1

model of independent, but ambiguous experiments

payoff Zn = 1 if Yn = 1,Yn+1 = . . . = YN = 0

maxτ infP EPZτ
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Uncertainty and Probability Secretary Problem

Ambiguous Secretary Problem

Reformulation in Adapted Payoffs

problem: X is not adapted

take Xn = minP∈P EP [Zn|Y1, . . . ,Yn]

by the law of iterated expectations and the optional sampling theorem

(both require time–consistency)

infP EPZτ = infP EPXτ for all stopping times τ
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Ambiguous Secretary Problem

Reduction to a Monotone Problem

Xn = Yn min
P

P[Yn+1 = 0, . . . ,YN = 0]

= Yn

N∏
k=n+1

(1− bk)

payoffs a linear in Yn and monotone in Bn =
∏N

k=n+1(1− bk)

the worst–case measure assigns probability an to {Yn = 1}
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Uncertainty and Probability Secretary Problem

Ambiguous Secretary Problem

Solution

the optimal stopping rule is simple

the payoff of simple rule r is recursively given by

φ(N) = aN

φ(r) = arBr + (1− ar )φ(r + 1)

explicit solution

φ(r) =
N∑

n=r

βn

n−1∏
k=r

αk

for

βn =
an

1− bn
, αn =

1− an
1− bn

r∗ = inf{r ≥ 1 : wr ≤ 1} for wr =
∑N

n=r βn
∏n−1

k=r αk is uniquely
determined
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Uncertainty and Probability American Straddle

American Straddle in the Bachelier Model for Drift
Ambiguity

Suppose we want to stop Xt = Wt under κ–ambiguity for an interest rate
r > 0, i.e.

max
τ

E (|Xτ |e−rτ ) .

Claim: under the worst–case measure P∗, the process X has dynamics

dXt = − sgn(Xt)dt + dW ∗
t

for the P∗–Brownian motion W ∗.



Uncertainty and Probability American Straddle

American Straddle in the Bachelier Model for Drift
Ambiguity

g–HJB equation: in the continuation set

vt +
1

2
vxx − κ|vx | = 0

Verification: solve the standard optimal stopping problem under P∗.
There, the HJB equation reads

vt +
1

2
vxx − κ sgn(x)vx = 0

Show sgn(vx) = sgn(x), then this equation becomes the g–HJB equation
and we are done.
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Ambiguity



Rationality

Evolution as Alternative to Rationality

The other end of the scale: no rationality at all
the forces of nature

overreproduction
selection
mutation

as powerful as a basis for a theory as rationality

Evolutionary Game Theory started with two biologists,
Maynard Smith, Price, 1973

Oechssler, R., Journal of Economic Theory 2002, Cressman,
Hofbauer, R., Journal of Theoretical Biology, 2006
develop evolutionary game theory as dynamic systems on the Banach
space of finite measures over metric spaces,

d

dt
Pt(A) =

∫
A
σ (x ,Pt) Pt(dx)

Louge, R., Auctions, IMW Working Paper 2010
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Rationality Evolution of Languages: Model

Evolution of Languages

based on Jäger, Metzger, R., SFB 673 Project 6

Language

sensation (Sinneseindruck) is complex: color, shape, size, location,
temperature . . .

only few words available

Job Market Signaling

skills are complex (verbal, mathematical, creative, social skills . . .)

signals=diploma levels are finite

Finance

Rating agencies use ’AAA’ to ’D’ to signal credit worthiness

underlying information much more comples



Rationality Evolution of Languages: Model

Evolution of Languages
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Rationality Evolution of Languages: Model

Verbal Description of the Model

cheap talk signaling game

types (’Sinneseindrücke’) are complex= from a continuum, s ∈ Rd

signals are simple = finitely many

common interest

hearer (receiver) interprets signal as a point in the type space

loss is measured by (some kind of) distance between signal and
interpretation in Rd
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Rationality Evolution of Languages: Model

Evolution of Languages: Formal Model

Communication in large population between two randomly matched players

two roles for each player: speaker, hearer

speaker gets a sensation (Sinneseindruck) s ∈ S ⊂ Rd , convex,
compact, nonempty interior

sensations come with frequency F (ds), atomless

speaker chooses a word from a finite language w ∈W = {w1, . . . ,wn}
hearer hears word wj (so far, no errors here)

hearer interprets (understands) the word wj as a sensation ij

both speakers aim to minimize the loss from misinterpretation

loss function l (‖s − ij‖), convex, increasing

benchmark example: l(x) = x2
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Efficient Languages

Cooperative approach

players use a meta–language to find the best language

minimize E l
(
‖s − iw(s)‖

)
=
∫
S l
(
‖s − iw(s)‖

)
F (ds) over measurable

functions w : S →W and i : W → S

Theorem

Efficient languages exist.

Remark

Proof requires analysis of optimal signaling systems w given some
interpretation i ; then essentially compactness and continuity . . .
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Best Choice of Words

Suppose the hearer interprets word wj as point ij

suppose sensation s is given

which word is the best?

choose the word wj such that the distance from interpretation ij to
sensation s is minimal

w∗ = arg min {‖s − ij‖ : j = 1, . . . , n}
this leads to a Voronoi tesselation
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Rationality Efficient Languages

Voronoi Tesselations

Definition

Given distinct points i1, . . . , in ∈ [0, 1]d , the Voronoi tesselation assigns to
(almost all) points s ∈ [0, 1]d the unique closest point ij to s. The convex
set

Cj =

{
s ∈ [0, 1]d : ‖s − ij‖ = min

k=1,...,n
‖s − ik‖

}
is called the Voronoi cell for ij
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Definition

A Voronoi language consists of a Voronoi tesselation for the speaker and a
best estimator interpretation for the hearer.

Theorem

Strict Nash equilibria are Voronoi languages with full vocabulary and vice
versa.
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Case Study: d = 1, quadratic loss, Two Words

Speaker can say w ∈ {left, right}
uniform distribution

Speaker chooses a threshold θ ∈ (0, 1)

says ”left” if s < θ, else ”right”, or vice versa

Hearer interprets ”left” as i1 = θ/2, ”right” as i2 = (1 + θ)/2

in equilibrium, i1, i2 must generate the Voronoi tesselation with
boundary θ

(x1 + x2)/2 = θ ⇔ θ = 1/2

unique strict Nash equilibrium

maximizes social welfare

evolutionarily stable
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only two with full vocabulary
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left and right triangle
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