
The Continuous Logit Dynamic and Price Dispersion

Ratul Lahkar∗ and Frank Riedel†

August 5, 2014

Abstract

We define the logit dynamic for games with continuous strategy spaces and establish its

fundamental properties , i.e. the existence, uniqueness and continuity of solutions. We apply the

dynamic to the analysis of the Burdett and Judd (1983) model of price dispersion. Our objective

is to assess the stability of the logit equilibrium corresponding to the unique Nash equilibrium of

this model. Although a direct analysis of local stability is difficult due to technical difficulties,

an appeal to finite approximation techniques suggest that the logit equilibrium is unstable.

Price dispersion, instead of being an equilibrium phenomenon, is a cyclical phenomenon. We

also establish a result on the Lyapunov stability of logit equilibria in negative definite games.
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1 Introduction

Evolutionary game theory seeks to provide dynamic foundations to equilibrium behavior. The two

most well known evolutionary dynamics are the replicator dynamic (Taylor and Jonker, 1978) and

the logit dynamic (Fudenberg and Levine, 1998; Hofbauer and Sandholm, 2002, 2007). The more

usual approach in this field of research is to consider games with a finite number of strategies

and assess whether dynamics converge to Nash equilibria in such games. Alongside this approach,

however, there has also emerged a significant literature that seeks to extend such evolutionary

dynamics to games with continuous strategy sets. For example, the continuous strategy version of

the replicator dynamic has been studied by Bomze (1990, 1991), Oechssler and Riedel (2001,2002),

Cressman (2005), Cressman and Hofbauer (2005), and Cressman, Hofbauer and Riedel (2006).

Hofbauer et al. (2009) develop the infinite dimensional extension of the Brown-von Neumann-Nash

(BNN) dynamic. There has, however, been a significant gap in this literature on infinite dimensional

dynamics. The continuous strategy version of the logit dynamic has remained relatively unexplored.

This paper seeks to address this lacuna and provide foundations to the logit dynamic for games

with continuous strategy sets.

The interest in the logit dynamic in the evolutionary literature emerges from the fact that it

preserves a close approximation of the canonical game theoretic best response behavioral model

while still being amenable to analysis using standard ODE techniques. Since the finite dimensional

logit dynamic has been extensively studied, we believe it is a worthwhile exercise to establish its

continuous strategy version. Our more general interest in infinite dimensional evolutionary dynam-

ics is due to two reasons. First, these dynamics are not straightforward extensions of their finite

dimensional counterparts. Instead, their analysis requires us to address certain subtle mathemat-

ical and technical issues whose resolution offers further insight into how these dynamics behave.

For example, since the state space of continuous strategy evolutionary dynamics is the space of

probability measures, defining these dynamics require us to make a non–trivial choice of topology

with which to define neighborhoods in this space. As Oechssler and Riedel (2002) show, this has

implications on important issues like the choice of stability criterion to assess convergence of so-

lution trajectories to equilibria. Second, economic problems are usually modeled as games with

continuous strategy sets. It is to be hoped, therefore, that the development of a theory of infi-

nite dimensional evolutionary dynamics will make evolutionary game theory more amenable for

application to economic problems.

In fact, the second major objective of this paper is to apply the infinite dimensional logit dy-

namic to a problem of economic interest. This is the problem of price dispersion which refers to

the phenomenon of different sellers selling the same homogeneous commodity at different prices.

Various theoretical models explain price dispersion as a mixed strategy Nash equilibrium, called

a dispersed price equilibrium. The mixed equilibrium emerges due to the presence of some imper-

fection in the market; for example, the lack of information or the presence of search costs which
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prevent consumers from knowing about the lowest prevailing price.1 Therefore, sellers can earn

more by simply selling to the fraction of consumers who are willing to pay a higher price instead

of undercutting each other to marginal cost as in Bertrand competition.

In this paper, we consider specifically the Burdett and Judd (1983) model of price dispersion.

There are two types of consumers in this model, one more informed and the other less informed.

The proportion of each type is exogenously fixed.2 Sellers choose prices from a continuous set. Since

the first type of consumer does not search for a lower price, the model does not admit a Bertrand

equilibrium. Instead, there exists a dispersed price equilibrium that specifies the proportion of

sellers choosing any specific subset of prices.

The interpretation of price dispersion as a mixed equilibrium is a static explanation requiring

instantaneous coordination on that equilibrium. It is, however, reasonable to seek a dynamic

explanation of this phenomenon as it is not immediately clear how a large population of sellers

will be able to achieve such coordination on a probability distribution. It is precisely with this

motivation that Lahkar (2011), building on previous work by Hopkins and Seymour (2002), seeks

an evolutionary explanation of price dispersion. Using the logit dynamic, Lahkar (2011) shows that

the distribution of prices in the population of sellers in the Burdett and Judd (1983) model converges

not to a mixed equilibrium, but to a limit cycle. Hence, while there is persistent price dispersion,

that paper suggests that price dispersion is a cyclical rather than an equilibrium phenomenon. This

conclusion is consistent with empirical and experimental evidence on price dispersion as discovered

by, for example, Lach (2002) and Cason et. al (2005).3

However, due to the technical apparatus of the continuous logit dynamic not being available,

Lahkar (2012) uses the logit dynamic for games with a finite strategy set. This, in turn, required

the analysis in that paper to be based not on the original Burdett and Judd (1983) model but

on a finite approximation of that model. This approach does provide some significant insights

into the dynamic behaviour of price dispersion. However, in certain respects, this approach is

unsatisfactory. First, as Lahkar (2011) shows, in the finite dimensional version of the Burdett and

Judd (1983) model, we encounter multiple mixed equilibria and, thereby, lose the elegance of the

unique equilibrium prediction of the original model. Second, the finite dimensional evolutionary

approach does not actually explain the dynamic nature of price dispersion in the original continuous

strategy set Burdett and Judd (1983) model. Intuitively, it is plausible that the instability result

of this approach extends to the continuous model. But to establish this conclusion rigorously, one

needs to conduct an evolutionary analysis directly in the setting of the original model. We seek to

complete this exercise in this paper using the continuous logit dynamic. Not only does it remedy

a technical drawback in the analysis in Lahkar (2012), but it also establishes a framework for the

1See Lahkar (2011) for a more comprehensive review of the literature on price dispersion.
2Burdett and Judd (1983) use this simple case of exogenously fixed consumer types as a means to prove their more

general dispersed price equilibrium in which the two types of buyers and their proportions emerge endogenously as
an equilibrium condition. We focus on this simpler version for reasons of tractability.

3The choice of the logit dynamic in Lahkar (2011) is motivated by the experimental findings of Cason et. al (2005)
that this dynamic provides a better explanation of divergence from mixed equilibria than the replicator dynamic,
which was used in Hopkins and Seymour (2002).
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application of this dynamic to other economic models with continuous strategy sets; for example,

the model of congestion studied in Hu (2011), which we elaborate upon further later in this section.

Our first task in this paper, therefore, is to rigorously define the logit dynamic for games

with continuous strategy spaces. In such games, a population state is a probability measure that

specifies the distribution of the use of the various strategies in the population. The logit dynamic

for such games is based on the logit choice measure which is a probability measure that maximizes

a perturbed version of the players’ payoffs, where the perturbation arises from the entropy of

the strategy the agent uses (Mattsson and Weibull, 2002). The logit dynamic moves the current

population state towards the logit choice. Rest points of this dynamic are fixed points of the logit

choice measure. We call such a fixed point a logit equilibrium. We note that the basic definition of

the continuous logit dynamic has already been provided in Lahkar (2007). That work is, however,

of a preliminary nature since it did not contain a very rigorous analysis of the properties of the

dynamic. This paper rectifies this problem and establishes a set of technical results that provides

precise foundations to the dynamic; namely, the existence of a logit equilibrium, its convergence

to a Nash equilibrium as the perturbation factor becomes small, and the the existence, uniqueness

and continuity of solution trajectories of the logit dynamic. Given the abstract nature of the state

space, showing these properties require us to make appropriate choice of topologies in the space

of probability measures. Following earlier work such as Oechssler and Riedel (2001, 2002) and

Hofbauer et al. (2009), we choose between the strong and weak topologies in the set of signed

measures for establishing these results.

We then apply the dynamic to negative definite games with continuous strategy sets. We extend

the Lyapunov function used in Hobauer and Sandholm (2007) for finite strategy games to our setting

and establish the Lyapunov stability of the unique logit equilibrium in such games. Once again,

this result hinges on the appropriate choice between the strong and weak topologies in the state

space. Apart from being of theoretical interest, this result is also applicable to some existing work

by Hu (2011) who applies the logit dynamic, as defined in Lahkar (2007), to a continuous strategy

model of congestion. This model satisfies negative definiteness and anticipates some of our methods

since it applies the same Lyapunov function that we use. It concludes that logit equilibrium in the

model is asymptotically stable, but does so without exploring the technical issues related to the

definition of the dynamic or the notion of stability used. By establishing the technical foundations

of the dynamic, this paper puts Hu’s (2011) application on a sounder footing.

The Burdett and Judd (1983) model is, however, not a negative definite but a positive definite

game. Intuition derived from known results in finite strategy positive definite games suggest that

the mixed equilibrium in this game should be evolutionarily unstable. It is, however, an extremely

challenging task to prove this rigorously for continuous strategy games, and one that we have

been able to complete only partially. In finite dimensional evolutionary analysis, the standard

way to establish instability of an equilibrium is to linearize the dynamic at that equilibrium and

check if any eigenvalue has a positive real part. Unfortunately, as far as we know, there is no

such clearly defined theory of spectral analysis that can be applied to to a dynamic defined in a
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measure theoretic setting. Nor have we been able to develop such a theory. Instead, we follow

an alternative strategy where we show that the solution trajectories of the logit dynamic in the

continuous strategy Burdett and Judd (1983) model can be arbitrarily well approximated by the

solution trajectories of the dynamic in the finite analogue of this model. We know from Lahkar

(2012) that mixed equilibria are unstable in the finite strategy model. The approximation result

then suggests that the same is true in the continuous strategy model.

We need to note that our conclusion only suggests instability of the dispersed price equilibrium

and is not conclusive proof of its instability. This also raises the question of whether attempts to

develop the continuous logit dynamic has been redundant since in our primary application, we have

had to rely on a finite approximation to arrive at our conclusions. We argue that this is not so. For

the finite approximation technique to be meaningful, it is necessary that a continuous strategy dy-

namic exists as a limiting case for the finite approximations. Hence, providing rigorous foundations

to the continuous strategy version of the logit dynamic is a necessary prelude to applying any finite

approximation method. In fact, the very question of whether any logit equilibrium, including the

one in the Burdett and Judd (1983) model, is stable or not acquires substance only after we have

able to establish the fundamental properties of the continuous logit dynamic. Our approach also

suggests that pending the development of a complete theory of the spectral analysis of such measure

theoretic dynamics, this is perhaps the only feasible way of establishing instability in continuous

strategy models. We leave the spectral analysis question as a topic for further research.

Finally, we note that this paper is most closely related to Perkins and Leslie (2014). The

authors, in work done simultaneously but independently from our paper, consider a model of

stochastic fictitious play in a finite player game with a continuous strategy set. They show that the

evolution of mixed strategies of the players in this framework is determined by the logit dynamic.

While the two papers have different motivations, they are also complementary in certain respects.

First, they combine our dynamical systems results with stochastic approximation theory to develop

the learning variant of the logit dynamic. Hence, their approach provides another way to provide

microfoundations to the dynamic. Second, they extend our single population logit dynamic to a

multi-player game or, equivalently, to a multiple population game. Third, they extend our result on

Lyapunov stability of the logit equilibrium in a negative definite game to global asymptotic stability.

Perkins and Leslie (2014), therefore, extend our analysis of the logit dynamic in important directions

and establishes it more robustly as a dynamic for the analysis of games with continuous strategy

sets.

The rest of the paper is structured as follows. In Section 2, we introduce populations games with

continuous strategy spaces and illustrate such games using the Burdett and Judd (1983) model.

Section 3 introduces the logit dynamic in a measure theoretic setting. In Section 4, we establish the

existence of a logit equilibrium in a population game. Section 5 proves the existence, uniqueness

and continuity of the logit dynamic with respect to initial conditions. In Section 6, we discuss the

microfoundations of this dynamic using the idea of maximization of the perturbed payoff. Section

7 establishes the Lyapunov stability of logit equilibrium in negative definite games. In Section
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8, we apply the finite approximation technique to arrive at our conjecture on instability of logit

equilibrium in the Burdett and Judd (1983) model. Some proofs are in the Appendix.

2 Population Games

We consider a strategic situation in which a continuum of agents, called a population, play a game

with a strategy set S which is a compact subset of R. Let B be the Borel σ-algebra on S. We

identify a population state with a probability measure over the measurable space (S,B). We denote

the set of population states by ∆. The population state describes the distribution of agents over S.

For example, if P is a population state, then P (A), A ∈ B, denotes the proportion or mass of agents

who play strategies in A. If P is absolutely continuous with respect to the Lebesgue measure, we

denote by p its density function. In that case, P (A) =
∫
A p(x)dx.

We characterize the population game by the bounded measurable payoff function π : S×∆→ R

(where, as usual, ∆ is taken to be a subset of the Banach space of finite σ–additive measures on

the measurable space (S,B), see Section 4 for more details). The scalar π(x, P ) denotes the payoff

of an agent who plays strategy x given the population state P . A population state P ∗ is a Nash

equilibrium if for all x ∈ supportP ∗ and y ∈ S π(x, P ∗) ≥ π(y, P ∗)4.

2.1 The Burdett and Judd Model

We present the Burdett and Judd (1983) model of price dispersion as an example of an economic

problem that can be modeled as a population game. Each seller in a population sells one unit of

the same good at a given time t. Sellers choose a price independently from the set [0, 1] at which

to sell the product. We interpret 0 as the cost of production for the sellers and 1 as the common

reservation price of consumers which is known to the sellers. Consumers buy the product after

taking a sample of a certain number of prices that sellers are charging. We assume that there are

two types of consumers, the proportion of each type being exogenously fixed. A proportion q1,

0 < q1 < 1, samples just one price and buy the product at that price. The remaining proportion,

denoted q2 = 1− q1, pick out two buyers at random and buy from the one charging the lower price.

If both prices are equal, we assume they randomize equally between the two sellers.5

Let P represent the population state of sellers and let FP be its distribution function. Then,

given our assumptions, the expected payoff of a seller who charges price x is

π(x, P ) = x

(
q1 + 2q2

(
P ({x})

2
+ (1− FP (x))

))
. (1)

4We use this useful characterization (and slight abuse of terminology) of symmetric Nash equilibria (P ∗, P ∗) here
and in the sequel. Strictly speaking, a Nash equilibrium consists of a pair of strategies (P,Q) that satisfy the best
reply property, of course.

5In this paper, we focus on games with only one population. In this simple version of the Burdett and Judd model,
the relevant population is the population of sellers. However, in the more general version with endogenous consumer
behaviour (footnote 2), we would need to consider the dynamics of both the sellers’ and the buyers’ populations. See
Lahkar (2011) for the finite dimensional evolutionary analysis of both versions.
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The expected mass of consumers who sample the seller’s price is q1 + 2q2. If the consumer samples

only the price of this particular seller, he obtains a payoff of x. If the consumer samples two prices,

including this particular one, then
(
P ({x})

2 + (1− FP (x)
)

represents the probability that the seller

actually manages to sell to the consumer. This gives to the expected payoff in (1). If P is absolutely

continuous, (1) simplifies to

π(x, P ) = x (q1 + 2q2 (1− FP (x))) . (2)

Burdett and Judd (1983) show that this model has a unique mixed strategy equilibrium P ∗

with distribution function FP ∗ given by

FP ∗(x) =

{
1− q1(1−x)

2(1−q1)x , for x ∈ [ q1
2−q1 , 1]

0, for x ∈ [0, q1
2−q1 ]

. (3)

To verify that (3) is a Nash equilibrium, note that πx(P ∗) = q1 for x ∈ [ q1
2−q1 , 1] and πx(P ∗) < q1

for x ∈ [0, q1
2−q1 ]. For the proof of the uniqueness of equilibrium, see Burdett and Judd (1983).

For later application, we note that P ∗ is not a fully mixed equilibrium in that it does not have

full support on S. This feature, in turn, emerges from the fact that prices lower than q1
2−q1 , the

lowest price in the support of the equilibrium, are dominated by 1. To see this, note that the

maximum payoff from strategy 1 is q1, whereas the maximum payoff from any other strategy x is

x(q1 + 2q2) = x(2− q1).6

The Burdett and Judd (1983) model is a static model in which the mixed equilibrium (3)

provides the explanation of price dispersion. We seek to analyze this model from a dynamic

perspective. Let P (t) denote the population state of sellers at time t.7 We assume that sellers (or

agents in a more general game) undertake a strategy revision process (see Section 6) that generates

the logit dynamic which changes the population state P (t) over time. We show at the end of our

analysis in Sections 7 and 8 that P (t) diverges away from the equilibrium (3) rendering it unstable.

Therefore, this equilibrium cannot explain price dispersion in our dynamic model. Instead, we

argue that price dispersion manifests itself as a limit cycle.

3 The Logit Dynamic

Our objective is to define an evolutionary dynamic on ∆ for the population game π such that

from any initial population state P (0) ∈ ∆, we are able to trace the change in the population

6The equilibrium (3) holds for the case 0 < q1 < 1. If q1 = 0 so that all consumers sample two prices, the unique
equilibrium is the Bertrand equilibrium where all sellers charge the marginal cost zero. If all consumers sample just
one price, i.e. q1 = 1, then the unique equilibrium is the monopoly equilibrium where all sellers charge the reservation
price of one.

7For notational clarity, we note that we typically use t to denote time and x to denote any particular strategy in S.
Therefore, when we write P (t), we refer to the population state at time t whereas P ([x]) refers to the population mass
of strategy x under population state P . Throughout the paper, we occasionally refer to the initial population state
P (0). From the context, it should be clear that this refers to the population state at time 0 and not the population
mass of strategy 0.
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state over time. An evolutionary dynamic is a vector field that changes one probability measure

in ∆ into another probability measure in ∆. Therefore, the dynamic is a component of the linear

span of ∆, Me(S,B), which is the space of all finite and signed measures on (S,B).8 As in the

finite dimensional case, we can interpret a evolutionary dynamic as a differential equation system

Ṗ (A) = V (P )(A) for A ∈ B . If the current population state is P (t), then V (P )(A) gives the

direction and magnitude of the instantaneous change at time t of the mass of population using

strategies in A.9 If Ṗ is absolutely continuous with respect to the Lebesgue measure, then we

denote by ṗ its density function. In this case, Ṗ (A) =
∫
A ṗ(x)dx.

To be admissible as an evolutionary dynamic, we require that from every initial condition

P (0) ∈ ∆, the differential equation Ṗ = V (P ) admits a solution, preferably unique, {P (t)}t≥0 with

P (t) ∈ ∆, for all t ≥ 0. In the infinite dimensional context, the existence of unique solutions is a

technically demanding condition that we establish in Section 5. However, once we establish this

property, the second condition that P (t) ∈ ∆, for all t ≥ 0, follows readily if V (P )(S) ∈ T∆ where

T∆ = {µZ ∈Me(S,B) : µZ(S) = 0} (4)

is the tangent space of ∆. This property that V (P )(S) ∈ T∆ is called forward invariance and it

ensures that Pt is a probability measure at all time. Given µZ ∈ T∆, Z denotes its distribution

function. If µZ is absolutely continuous with respect to the Lebesgue measure, we denote its density

function by z.

We now define the logit dynamic for the population game π. Let P be the present population

state and let A ∈ B. Then, under the logit dynamic, the rate of change in the mass of P (A) is

given by

Ṗ (A) = Lη(P )(A)− P (A) , (5)

where Lη : ∆→ ∆ is the logit choice measure defined, given parameter η > 0, by

Lη(P )(A) =

∫
A

exp
(
η−1π(x, P )

)∫
S exp (η−1π(y, P )) dy

dx. (6)

Since both Lη(P ) and P are probability measures, Ṗ ∈ T∆.

We denote by ∆AC ⊂ ∆ the set of probability measures that are uniformly equivalent with

respect to the Lebesgue measure. These are measures that have a strictly positive, bounded, and

bounded away from zero density function. With our assumptions, Lη(P ) ∈ ∆AC with density

function (see also Mattsson and Weibull, 2002)

lη(P )(x) =
exp

(
η−1π(x, P )

)∫
S exp (η−1π(y, P )) dy

. (7)

8Recall that µ is a finite signed measure on (S,B) if there are two finite measures ν1 and ν2 such that for all
A ∈ B, µ(A) = ν1(A)− ν2(A).

9Strictly speaking, we should use the notation Vπ(P )(A) since the dynamic depends upon the payoff function π.
However, since the underlying game is usually clear from the context, we dispense with this extra piece of notation.
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We note that even if P does not have a density function, Lη(P ) admits this density function. If P

has density function p, then Ṗ also admits the density function

ṗ(x) = lη(P )(x)− p(x). (8)

Since lη(P )(x) takes positive value over all x ∈ S, all sets of positive Lebesgue measure receive pos-

itive probability under the logit choice measure. This has a clear analogy in the finite dimensional

case where logit choice function puts positive probability on all strategies. Section 6 elaborates the

logit choice measure further by generating it through a process of perturbed optimizing behaviour

by individual agents.

We call a fixed point of Lη(P ) a logit equilibrium of the population game π. Clearly, the set of

rest points of the dynamic coincide with the set of fixed points of the logit choice measure.

In the finite dimensional case, the logit dynamic has some technical and behavioral features

that make it preferable to the best response dynamic. For example, the logit dynamic is a smooth

differential equation that makes it amenable to analysis by using standard techniques, whereas

the best response dynamic is a differential inclusion that is difficult to analyze. In the infinite

dimensional case, this advantage of the logit dynamic is even more striking: the logit choice measure

is always well defined whereas the proper best response may not even exist. For example, in the

Burdett and Judd model in Section 2.1, suppose P ([x]) = 1 for some x > q1
2−q1 . These strategies

are not dominated by strategy 1. There is no best response to this population state although

any strategy sufficiently close to x is a better response. However, the logit choice measure is well

defined since the density function exists at all points in S. Moreover, it also manages to capture

the intuition of the best response. For η sufficiently small, the logit choice measure assigns most of

the probability mass on a small interval immediately to the left of x.

4 Existence of Logit Equilibrium

Before applying the logit dynamic to any problem of interest, we need to address a set of important

technical questions. The first is whether a logit equilibrium exists in any population game. The

second is the existence of, preferably unique and continuous, solution trajectories for the logit

dynamic. We analyze the first question in this section while deferring the second to the next.

The resolution of these questions depends upon the choice of topology in ∆. In the finite

dimensional case, the choice of topology is not of much consequence since all norms are equiva-

lent. However, in the infinite dimensional case, this choice is important since the structure of the

neighborhood of a probability measure can depend upon the topology we choose.

We use three topologies in this paper. The first is the strong topology or the variational topology.

This is the topology induced by the variational norm on Me(S,B), given by ‖µ‖ = supg |
∫
S gdµ|

where g is a measurable function g : S → R such that supx∈S |g(s)| ≤ 1. If P,Q are two probability
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measures, then the distance between them under this norm is (Shiryaev, 1995)

‖P −Q‖ = 2 sup
A∈B
|P (A)−Q (A)| .

The strong topology turns the vector space of all signed finite measures into a Banach space.

This allows us to consider ordinary differential equations is such a measure space and establish some

fundamental properties of such a dynamic, for example the existence and uniqueness of solution

trajectories. This topology finds application in Oechssler and Riedel (2001) in the analysis of the

replicator dynamic, and in Hofbauer et al. (2009) in the analysis of the BNN dynamic.

The second topology we use is the weak topology or the topology induced by convergence in

distribution. Intuitively, under this topology, two probability measures are close to each other if

their distribution functions are close to each other. The weak topology has the advantage that

certain sets which are not compact under the strong topology become so under this topology.

For example, the set ∆ itself is not compact under the strong topology but is so under the weak

topology. This topology, therefore, is useful in applications that require compactness, for example,

the existence of equilibria. The weak topology also induces a richer structure to a neighborhood

of a probability measure. States which are not close to one another under the strong topology,

for example two Dirac measures δx and δ(x+ε), x ∈ S ⊆ R and ε small, are close under the weak

topology. It can, therefore, be a more appropriate topology when one considers stability issues of a

dynamic; although, as we shall see, we cannot apply it to the stability analysis of the logit dynamic

in the Burdett and Judd (1983) model.

On the whole vector space Me(S,B), there is no norm that metrizes the weak topology (see,

for example, Billingsley, 1999). Therefore, Me(S,B) is not a Banach space under this topology.

So this topology cannot be applied, for example, to define an evolutionary dynamic on Me(S,B).

On the other hand, for positive measures, and on ∆ in particular, several norms lead to the same

topology as the weak one. One such norm is the Levy–Prohorov norm under which the distance

between P,Q ∈ ∆ is

ρL (P,Q) = inf{ε > 0, QF (x− ε)− ε ≤ PF (x) ≤ QF (x+ ε) + ε, for all x ∈ S}.

Another norm that metrizes the weak topology on ∆ is the Bounded Lipschitz (BL) norm. We refer

the reader to, for example, Oechssler and Riedel (2002) and Hofbauer et al. (2009) for applications

of this norm.

The final notion of distance in ∆ that we use is the Kolmogorov (or uniform) metric for prob-

ability measures. Under the Kolmogorov metric, the distance between two probability measures

P,Q is

ρK(P,Q) = sup
x∈S
|FP (x)− FQ(x)|. (9)

The Kolmogorov metric does not metrize the weak topology. However, for certain applications like

the Burdett and Judd (1983) model in which distribution functions play a prominent role, this
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norm is analytically much more convenient than norms that metrize the weak topology on ∆ (see

Section 8). Moreover, it is known that ρL(P,Q) ≤ ρK(P,Q). Therefore, convergence under the

Kolmogorov metric implies convergence under the weak topology.10

Using the Schauder fixed point theorem, we now establish the existence of a logit equilibrium in

∆. This theorem is an extension of Brouwer’s fixed point theorem to infinite dimensional settings.

The Schauder fixed point theorem requires ∆ to be a compact set. Therefore, we need to impose

the weak topology on ∆ to establish this theorem. Let LE (π, η) be the set of logit equilibria of

the population game π, given parameter η > 0.

Theorem 4.1 Consider a population game π. If the mapping P 7→ Lη(P ) is continuous with

respect to the weak topology, then the set LE (π, η) is non-empty.

Proof. Under the weak topology, Me(S,B) is a locally convex, Hausdorff, topological vector

space (Billingsley, 1999) and ∆ is a compact, nonempty, and convex subset of Me(S,B). The

existence of a logit equilibrium then follows from the Schauder fixed point theorem. �

We denote a logit equilibrium as P̃η and note that it has has full support since lη(P )(x) > 0

for all x ∈ S. The following theorem shows that if a family of logic equilibria converges, then

it converges to a Nash equilibrium. Therefore, the stability analysis of logit equilibria provides a

strong assessment of the dynamic properties of the corresponding Nash equilibrium, at least for η

sufficiently small. The proof of the theorem is in Appendix A.1.

Theorem 4.2 Let {P̃η}η>0 be a family of logit equilibria in the population game π. Let π(x, P ) be

continuous in the Euclidean norm for x and in the weak topology for P .

The family has accumulation points with respect to the weak topology. Each accumulation point

P ∗ is a Nash equilibrium.

We now apply Theorem 4.1 to the Burdett and Judd (1983) model defined by the payoff function

(1). While doing so, we need to note that (1) is not continuous with respect to the weak topology.

This is due the presence of the term P ([{x}]) in the expression of π(x, P ) in case the distribution

function FP is discontinuous at the strategy x ∈ [0, 1]. However, the discontinuity of the payoff

function does not affect the continuity of the mapping P 7→ Lη(P ) with respect to the weak topology.

A distribution function can be discontinuous at at most a countable number of points. Such a set

of points is of measure zero and measure zero sets do not affect the logit choice measure. We,

therefore, have the following proposition. The proof of the proposition, in Appendix A.1, involves

working with an auxiliary payoff function φ(x, P ) = x(q1 + 2q2(1 − FP (x))) which is identical to

(1) everywhere except a set of measure zero.

Proposition 4.3 In the Burdett and Judd model, the mapping P 7→ Lη(P ) is continuous with

respect to the weak topology. Thus there exists a logit equilibrium in the Burdett and Judd model

10For more on the relation between various metrics on the space of probability measures, see, for example, Gibbs
and Su (2002).
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with payoff function (1). Moreover, if {P̃η}η>0 is a sequence of logit equilibria in this model, then

limη→0 P̃η = P ∗, where P ∗ is its unique Nash equilibrium (3).

We note that the final claim of this proposition about the convergence of the sequence of logit

equilibria to the Nash equilibrium is an implication of Theorem 4.2. In principle, a family of logit

equilibria need not converge. But if there is a unique Nash equilibrium, as in the Burdett and Judd

(1983) model, then one also obtains convergence because there is only one possible accumulation

point.

5 Logit Dynamic: Existence, Uniqueness and Continuity of Solu-

tion

For the logit dynamic to be a meaningful description of population behavior, it is necessary that

a forward invariant solution exists for the dynamic from every initial population state in ∆. To

enable a precise prediction of the path of social evolution, each initial point should generate a unique

solution trajectory. Since a initial state can be feasibly known only with approximate accuracy, it

is also desirable that solution trajectories are continuous with respect to initial conditions.

In this section, we establish these fundamental properties for the logit dynamic. We first extend

the logit dynamic to the entire vector spaceMe(S,B) and prove the existence of a unique solution

from every initial state in this space. We then appeal to forward invariance to conclude that

solution trajectories that start in ∆ remain in ∆ forever. Our approach, in turn, requires a norm

onMe(S,B). We, therefore, use the strong topology onMe(S,B). We condition this result on the

Lipschitz continuity of the payoff function π. We extend π to the set

M2 = {P ∈Me (S,B) : ‖P‖ ≤ 2} , (10)

and define Lipschitz continuity on M2 with respect to the variational norm as follows.

Definition 5.1 The extended payoff function π : S×M2 → R is Lipschitz continuous onM2 with

respect to the variational norm if there exists a constant K such that

|π(x, P )− π(x,Q)| ≤ K‖P −Q‖, (11)

for all P,Q ∈M2, all x ∈ S.

We also define the semiflow of the logit dynamic ξ : ∆×[0,∞]→ ∆, where ξ(P, t) = P (t) denotes

the population at time t when logit dynamic starts from P = P (0). The continuity of the semiflow

with respect to P (0) implies that solutions to the dynamic are continuous in initial conditions.

With this definition, we can now state the following theorem on the fundamental properties of the

logit dynamic. The second part of the theorem applies these properties to the Burdett and Judd

(1983) model (1). The proof of the theorem is in Appendix A.2.
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Theorem 5.2 Let the extended payoff function π : S × M2 → R be measurable, bounded and

Lipschitz continuous on M2 with respect to the variational norm on Me(S,B). Then, from each

initial condition P = P (0) ∈ ∆, there exists a unique solution P (t) ∈ ∆ of the logit dynamic defined

by the ordinary differential equation (5) for t ∈ [0,∞). Further, the semiflow ξ is continuous with

respect to the variational norm.

The following corollary applies Theorem 5.2 to the Burdett and Judd (1983) model.

Corollary 5.3 In the Burdett and Judd (1983) model characterized by payoff function (1), the logit

dynamic admits a unique solution from every initial condition P (0) ∈ ∆. Moreover, the semiflow

of the dynamic is continuous with respect to the variational norm.

We have noted earlier that if the population state P has a density function p, then the logit

dynamic can be written in its density function form ṗ(x) given by (8). Together with Theorem 5.2,

this allows us to conclude that the logit dynamic is invariant on ∆AC . Therefore, instead of the

sequence of probability measures {P (t)}t≥0, we can equivalently express the solution trajectory in

terms of the sequence of density functions {p(t)}t≥0. We formalize this conclusion in the following

corollary.

Corollary 5.4 Let the initial population state P (0) be absolutely continuous with density function

p(0). Let {P (t)}t≥0 be the solution trajectory of logit dynamic in the population game π. Then, for

all t > 0, P (t) admits a density function p(t). Further, we can describe the evolution of p(t) with

the differential equation ṗ(x) = lη(P )(x)− p(x) where lη(P )(x) =
exp(η−1π(x,P ))∫
S exp(η−1πy(P ))dy

.

6 Microfoundations of the Logit Dynamic

Cheung (2014) provides a general derivation of evolutionary dynamics in population games with

continuous strategy space by using the notion of a mean dynamic. Let B = B(S,B) be the vector

space of bounded measurable functions. We write π(P ) for the bounded measurable function from

S to the reals with π(P )(x) = π(x, P ). Note that π(P ) ∈ B. We now define the conditional switch

rate ρ as the bounded measurable function

ρ : B ×∆× S × S → R+

such that for a given population state P , ρ(π(P ), P, x, y) is proportional to the probability with

which an agent who is currently playing strategy x ∈ S switches to another strategy in y ∈ S.

Let µ ∈ Me(S,B) be the rate at which a revising agent chooses the various candidate strategies.

Together, the conditional switch rate ρ and the measure µ describe the revision protocol that players

use to revise strategies. Cheung (2013) then defines the mean dynamic as the following differential

equation on Me(S,B):

Ṗ (A) =

∫
S

∫
A
ρ (π(P ), P, y, x)µ(dx)P (dy)−

∫
S

∫
A
ρ (π(P ), P, x, y)P (dx)µ(dy), (12)
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for all A ∈ B. The first expression on the right hand side of this equation rate of inflow of mass into

A. The second expression gives the gross outflow from A. The difference represents the change in

the mass of A. By specifying the conditional switch rate ρ and the measure µ, we may then obtain

different evolutionary dynamics. As examples, we first present the replicator dynamic and then,

the logit dynamic.

Example 6.1 Let ρ (π(P ), P, y, x) = (K − π(y, P )), where K > maxy∈S,P∈∆ π(y, P ), and µ(dx) =

P (dx). This revision protocol is the extension of Björnerstedt and Weibull’s (1996) pure imitation

driven by dissatisfaction protocol to games with continuous strategy space. We may interpret K

as an aspiration parameter, with the difference K − π(y, P ) measuring the agent’s dissatisfaction

from playing y given population state P . The agent then randomly chooses another member of the

population and imitates that member’s strategy. Applying this revision protocol in (12), we obtain

Ṗ (A) =

∫
S

∫
A

(K − π(y, P ))P (dx)P (dy)−
∫
S

∫
A

(K − π(x, P ))P (dx)P (dy)

= P (A)

∫
S

(K − π(y, P ))P (dy)−
∫
S

(
KP (A)−

∫
A
π(x, P )P (dx)

)
P (dy)

= KP (A)− P (A)

∫
S
π(y, P )P (dy)−KP (A) +

∫
A
π(x, P )P (dx)

=

∫
A

(π(x, P )− π̄(P ))P (dx), (13)

where π̄(P ) =
∫
S π(y, P )P (dy) is the average payoff under population state P . Equation (13) is the

replicator dynamic for games with continuous strategy spaces analyzed, for example, in Oechssler

and Riedel (2001,2002).

Example 6.2 To generate the logit dynamic, we specify ρ (π(P ), P, y, x) =
exp(η−1π(x,P ))∫

S exp(η−1π(w,P ))dw
and

µ(dx) = dx. Therefore, from (12),

Ṗ (A) =

∫
S

∫
A

exp
(
η−1π(x, P )

)∫
S exp (η−1π(w,P )) dw

dxP (dy)−
∫
S

∫
A

exp
(
η−1π(y, P )

)∫
S exp (η−1π(w,P )) dw

P (dx)dy

=

∫
A

exp
(
η−1π(x, P )

)∫
S exp (η−1π(w,P )) dw

dx

∫
S
P (dy)−

∫
S

exp
(
η−1π(y, P )

)∫
S exp (η−1π(w,P )) dw

dy

∫
A
P (dx)

=

∫
A

exp
(
η−1π(x, P )

)∫
S exp (η−1π(w,P )) dw

dx− P (A),

since
∫
S

exp(η−1π(y,P ))∫
S exp(η−1π(w,P ))dw

dy =
∫
S P (dy) = 1.

To complete the microfoundations of the logit dynamic, we need to identify a process through

which individual behaviour generates the logit choice measure. Mattsson and Weibull (2002) gen-

erates the logit choice through a deterministic perturbation of the expected payoff of a strategy by

the entropy of that strategy. Let q(x) be the density function of a probability measure Q ∈ ∆AC ,

the set of absolutely continuous probability measures. Consider the entropy of Q ∈ ∆AC defined as
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v(Q) = η

∫
S

log q(x)q(x)dx. (14)

Clearly, v(Q) is only defined for such Q whose density q(x) > 0 for all x ∈ S. We then define the

agent’s perturbed payoff
∫
S π(x, P )Q(dx)− v(Q) from playing Q. The entropy function, therefore,

represents a perturbation of the agent’s true payoff. As η → 0, v(Q) → 0 and, therefore, the

perturbed payoff approaches the true payoff. Mattsson and Weibull (2002) show that the logit

choice measure is the probability measure in ∆AC that maximizes the perturbed payoff. Therefore,

Lη(P ) = argmax
Q∈∆AC

∫
S
π(x, P )Q(dx)− v(Q). (15)

This approach restricts our search for the logit choice measure to ∆AC . The obvious reason for

this is that the entropy function, and hence the perturbed payoff, is defined only on ∆AC . However,

to complete our microfoundations, we need to extend these definitions to all of ∆, and ascertain

that the perturbed payoff maximizer is not a member of ∆\∆AC . A standard procedure is to equate

the entropy function to infinity on ∆ \∆AC (see, for example, Definition 3.20, Föllmer and Schied,

2010). Therefore, v(Q̂) = ∞ if Q̂ ∈ ∆ \ ∆AC . We may provide an intuitive explanation of this

definition as follows. Let us approximate Q̂ with a sequence of absolutely continuous probability

measures Qn → Q̂ under the weak topology. Let qn be the density function of Qn. We define the

entropy function for Q̂ as

v(Q̂) = η lim
n→∞

∫
S

log qn(x)qndx.

We note that if qn(x)→∞ over a set of positive Qn−measure, then
∫
S log qn(x)qndx→∞. Since

Q̂ is not absolutely continuous, there exists at least one point x where its distribution function is

discontinuous. In the neighborhood of that x which has positive measure under Qn, qn → ∞ as

n→∞. Hence, v(Q̂)→∞.

In any case, this definition makes it clear that no Q̂ ∈ ∆ \ ∆AC can be a maximizer of the

perturbed payoff. The perturbed payoff is −∞ on ∆ \ ∆AC . Therefore, it is justified that we

restrict ourselves to ∆AC as in (15) in maximizing the perturbed payoff to find the logit choice

measure.

7 Negative and Positive Definite Games

Negative and positive definite games have been extensively analyzed in the literature on finite

dimensional evolutionary dynamics. All standard evolutionary dynamics converge to the unique

equilibrium in negative definite games (Hofbauer and Sandholm, 2009). In contrast, in positive

definite games, dynamics diverge away from mixed equilibria (Benaim et. al, 2009). In this section,

we extend these results for the logit dynamic to games with continuous strategy sets. We then

apply these results to the Burdett and Judd (1983) model. Hopkins and Seymour (2002) and

Lahkar (2011) show that the finite analogue of the Burdett and Judd (1983) model satisfies positive
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definiteness. They use this result to conclude instability of dispersed price equilibrium in the finite

dimensional model. We expect a similar result to hold for the infinite dimensional case.

We first define negative and positive definite games in the infinite dimensional setting.

Definition 7.1 The population game π is negative definite if∫
S

(π(x,Q)− π(x, P ))(Q− P )(dx) < 0, (16)

for all Q,P ∈ ∆. If the inequality is reversed, then the game is positive definite. If (16) holds

weakly, then the game is negative semi-definite.

We use this definition to establish that the Burdett and Judd model (1983) in Section 2.1 is a

positive definite game.11 We state the result formally in the following proposition. The proof is in

Appendix A.3.

Proposition 7.2 The population game π defined by the Burdett and Judd (1983) payoff function

(1) is positive definite.

We can equivalently define negative or positive definiteness of a game by considering the Gateaux

derivative of the payoff function π(x, P ). The Gateaux derivative of π(x, P ) in the direction µZ ∈
T∆ is defined as

Dπ (x, P )µZ = lim
ε→0

π (x, P + εµZ)− π (x, P )

ε
. (17)

The Gateaux derivative extends the notion of the directional derivative in a finite dimensional space

to an infinite dimensional setting. It satisfies all the usual rules of calculating derivatives, including

the product rule and the chain rule.12 If this derivative is well defined, then the population game

π is negative definite if ∫
S
Dπ(x, P )µZµZ(dx) < 0 (18)

for all P ∈ ∆, µZ ∈ T∆, µZ 6= 0. If the inequality is reversed, then the game is positive definite.

To see that (18) is equivalent to (16), we can take Q = P + µZ , for µZ small, and apply Taylor’s

approximation. Hence, π(x,Q) ≈ π(x, P ) +Dπ(x, P )µZ so that∫
S

(π(x,Q)− π(x, P ))(Q− P )(dx) ≈
∫
S
Dπ(x, P )µZµZ(dx).

It is important, however, to note that the validity of the definition in (18) may depend upon the

topology under consideration. For example, in the Burdett and Judd (1983) model, the payoff

function (1) is not continuous under the weak topology. Hence, the derivative Dπ (x, P )µZ is not

11For examples of negative definite games like the “War of Attrition”, see Hofbauer et. al. (2009). Hu (2011) studies
a class of dynamic congestion games called departure–time choice games. These games satisfy negative definiteness
not on entire ∆, but on the subset of absolutely continuous probability measures. The details of the these games are
somewhat involved. Hence, we refer the interested reader to the original work by Hu.

12See, for example, Atkinson and Han (2009) for more a detailed analysis of the Gateaux derivative.
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defined under this topology. Under the strong topology, however, this derivative is well-defined,

and, therefore, (18) is valid.

Intuitively, µZ represents a mutation away from the current population state P . The derivative

Dπx (P )µz then represents the marginal change in the payoff of strategy x due to the mutation, and∫
S Dπ(x, P )µZµZ(dx) is the weighted average of these changes. If this integral is negative, then the

average change in the payoff of the mutant group in negative. This property, termed “self-defeating

externalities” by Hofbauer and Sandholm (2009), generalizes Maynard Smith’s (1982) notion of an

evolutionary stable strategy (ESS). As shown by Hofbauer et al. (2009), negative definite games

have a unique Nash equilibrium. Due to the property of “self-defeating externalities”, we expect this

unique equilibrium to be evolutionarily stable. In contrast, positive definite games are characterized

by “self-improving externalities” in that the mutant group’s average payoff changes in a positive

direction.

Hofbauer and Sandholm (2007) construct a Lyapunov function to prove stability of logit equi-

libria in negative definite games with finite strategy sets. We extend their methodology to seek

corresponding results in the infinite dimensional setting. First, we establish the uniqueness of logit

equilibrium in negative definite games with continuous strategy sets. The proof this lemma is in

Appendix A.3.

Lemma 7.3 If π is a negative definite or a negative semi-definite population game, then it has a

unique logit equilibrium.

We now define the measure theoretic analogue of Hofbauer and Sandholm’s (2007) Lyapunov

function, G : ∆AC → R, in the following lemma and characterize some of its obvious properties

without proof. The restriction of the domain of G to ∆AC is due to the fact that the entropy

function, which forms a part of the definition of G, is defined only on ∆AC .

Lemma 7.4 Given the population game π, define G : ∆AC → R as

G(P ) = sup
Q∈∆AC

[∫
S
π(x, P )Q(dx)− v(Q)

]
−
[∫

S
π(x, P )p(x)dx− v(P )

]
(19)

Clearly, G(P ) ≥ 0 for all P ∈ ∆AC and G(P ) = 0 if and only if P is a logit equilibrium.

Since the domain of G is restricted to ∆AC instead of all of ∆, any result that we obtain directly

from the analysis of this function can apply only to ∆AC . With this caveat, we establish a relatively

weak stability result for the unique logit equilibrium in negative definite games; if the population

starts close to the equilibrium in the strong topology, then it stays close to the equilibrium in the

weak topology. The proof of this theorem is in Appendix A.3.

Theorem 7.5 Let π be a negative definite or a negative semi-definite population game that is

Gâteaux differentiable with respect to the variational norm and continuous with respect to the weak

topology. Let P η be its unique logit equilibrium. Then, P η is stable in the following sense: for
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every ε > 0 there exists δ > 0 such that for initial populations P0 ∈ ∆AC with ‖P0 − P η‖ < δ, the

trajectory (P (t)) with P (0) = P0 satisfies ρL(P (t), P η) < ε.

The conclusion in this theorem is similar to a Lyapunov stability result, but involving the use

of two different topologies. Our candidate Lyapunov function G is not continuous with respect to

the weak topology. This, in turn, is due to the fact that the entropy function v is not continuous

with respect to this topology. This requires the use of the variational norm to evaluate Ġ(P ). The

state space ∆, however, is not compact under the strong topology. Therefore, once we establish

that Ġ(P ) < 0, we need the weak topology to define a compact ε− neighborhood around the logit

equilibrium. Since the Lyapunov function is lower semicontinuous with respect to the weak topology

(this follows from continuity of π with respect to the weak topology), it attains a minimum in this

neighborhood. This allows us to conclude that if a trajectory starts close to the logit equilibrium

(in terms of the variational norm), it remains in this weak ε− neighborhood.

We note that Hu (2011) uses the same Lyapunov function in the stability analysis of a dynamic

model of congestion, although without clarifying the technical issues related to its application. We

also note that Perkins and Leslie (2014) have extended this result to show convergence of the logit

equilibrium in two player zero sum games. Their key innovation is to show that although ∆ is not

compact under the strong topology, a bounded subset of absolutely continuous probability measures

(i.e. a subset of ∆AC) is indeed compact. Using the same Lyapunov function that we are using, they

then show convergence under the variational norm to the logit equilibria from initial states in this

subset. They then extend this result to all of ∆ by showing that from any arbitrary initial state, the

logit trajectory comes close to this bounded subset of probability density functions. By appealing

to continuity of solutions with respect to initial conditions, they conclude global convergence to the

logit equilibrium. While their proof is for two player zero sum games, the method, as they note,

can be extended to a more general negative definite or semi–definite game.13

The Burdett and Judd (1983) model is, however, as shown in Proposition 7.2, a positive definite

game. We cannot use the Lyapunov function to arrive at any definite conclusion about whether a

logit equilibrium is stable or not in such games. To get a glimpse of why this is difficult, consider

(33) in Appendix A.3. This provides an expression for Ġ(P ) which is negative for negative definite

and semi–definite games. However, for positive definite games, the sign of Ġ(P ) would depend very

subtly on the value of η. Hence, using a Lyapunov function argument, it may not be possible to

conclude whether solution trajectories stay near or move away from the logit equilibrium in the

Burdett and Judd (1983). Unlike in finite dimensional dynamics, it is also not possible to conduct

a local stability analysis of the logit equilibria in the absence of a well developed mathematical

theory of spectral analysis of measure theoretic dynamics. Therefore, in the absence of any feasible

method of rigorous stability analysis, we consider an approximation of the solution trajectories of

13We also refer the reader to Anderson et al. (2004) for an application of the Lyapunov function method to the
stability analysis of a logit equilibrium in a potential game. Anderson et al. (2004) derive the logit equilibrium as
the rest point of an evolutionary process in which, subject to a normal error, agents revise their strategies in the
direction of increasing payoffs. They show that the resulting dynamic process follows the Focker–Planck equation, in
which the logit equilibrium is a steady state.
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the logit dynamic in the Burdett and Judd (1983) with those in a finite approximation of the model.

An appeal to the results in Lahkar (2012) then suggests that the logit equilibrium corresponding

to the unique Nash equilibrium in this model is unstable.

8 Price Dispersion as a Limit Cycle

Lahkar (2011) approximates of the continuous strategy set S = [0, 1] of the Burdett and Judd

(1983) model with the discrete set

Sn =

{
0,

1

n
,

2

n
, · · · , n− 1

n
, 1

}
.

of (n+ 1) prices. Let xni = i
n , i ∈ {0, 1, · · · , n} be the (i+ 1)−th price in Sn and

∆n =

{
pn ∈ Rn+1

+ :

n∑
i=0

pni = 1

}

be the set of probability distributions on Sn. Then, the payoff function of this discrete model

πni
(

pn
)

= xni

q1 + 2q2

pni
2

+
∑
j>i

pnj

 (20)

represents the finite dimensional analogue of the Burdett and Judd (1983) payoff function (1).

Using the fact that (20) represents a positive definite game, Lahkar (2011) shows that for all

η sufficiently low, logit equilibria corresponding to the dispersed price equilibria in this discrete

model are unstable under the logit dynamic. This conclusion of course relates to the instability of

logit equilibria and not the dispersed price equilibria (mixed Nash equilibria) in the model. But

since a logit equilibrium converges to a Nash equilibrium as η → 0, this result suffices, at least

qualitatively, to imply that the population state moves away the dispersed price equilibria. Hence,

price dispersion in the finite strategy Burdett and Judd (1983) is not an equilibrium phenomenon.

Instead, it seems to be a cyclical phenomenon as simulations in Lahkar (2011) show that the

trajectories of the logit dynamic converge to a limit cycle in ∆n. The cyclical steady states persist

even in simulations with reasonably large values of n, for example, n = 100. This suggests that

price dispersion in the discrete model is cyclical for all n, howsoever large. It therefore, seems,

reasonable to expect a similar cyclical pattern even in the infinite dimensional model. Solution

trajectories starting near the dispersed price equilibria converges to a limit cycle. Formally, in the

measure theoretic context, a limit cycle of the logit dynamic is a solution trajectory {P (t)}t≥0 ∈ ∆

of dynamic with the property that for every t, there exist τ > 0 such that P (t + τ) = P (t). A

trajectory Q(t) converges to the limit cycle P (t) if, as t→∞, Q(t)→ P (t) with respect to a given

norm.

To provide formal support to this hypothesis, we show that solution trajectories of the logit
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dynamic in ∆ may be approximated with the trajectories of the finite dimensional logit dynamic

in ∆n. We use the Kolmogorov norm for this purpose and our approach broadly follows Oechssler

and Riedel’s (2002) finite approximation of the infinite dimensional replicator dynamic under the

strong and weak topologies.

We begin with the approximation of any arbitrary probability measure P with an appropriate

finite dimensional probability distribution. A natural approximation is the distribution pn ∈ ∆n

such that

pni = P

([
i

n
,
i+ 1

n

))
for i = 0, 1, · · · , n− 2,

pnn−1 = P

([
n− 1

n
, 1

])
and pnn = 0. (21)

We note that under this approximation, as n increases, pn approaches P under the Kolmogorov

norm, i.e. ρK(P, pn)→ 0 as n→∞.

Let P (0) be an initial population state in ∆ and let P (t) be the solution trajectory of the logit

dynamic from P (0) in the infinite dimensional Burdett and Judd model (1). We also consider an

additional trajectory that starts from pn(0), where pn(0) is the approximation of P (0) as defined

in (21). This trajectory is determined by the finite dimensional logit dynamic

ṗni = Lη,i(pn)− pni , (22)

where

Lη,i(pn) =
exp(η−1)πni

(
pn
)∑

Sn exp(η−1)πnj
(

pn
)

is the i−th component of the finite dimensional logit best response function Lη(pn) ∈ ∆n defined

with respect to the finite dimensional Burdett and Judd payoff function (20).

Strictly speaking, the finite distribution pn is a component of ∆n. However, we may also regard

it as probability measure on ∆, one that puts positive mass only on the subset Sn of S. Similarly,

we may also regard Lη(pn) as a probability measure on ∆ such that Lη(pn)(A) =
∑

i∈A Lη,i(pn).

This measure differs from the logit choice measure Lη(pn).14 However, if pn is an approximation of

P , then, given our definitions of the finite and infinite dimensional logit dynamics, it is clear that

as n → ∞, Lη(pn)(A) → Lη(P )(A). Intuitively, this suggests that if n is sufficiently large and if

pn(0) is an approximation of P (0), then the two trajectories {pn(t)}t≥0 and {P (t)}t≥0 generated

by the finite and infinite dimensional logit dynamics are also close to each other. We formalize this

intuition in the following proposition. The proof is in Appendix A.4.

Proposition 8.1 Let {P (t)}t≥0 be the solution trajectory of the logit dynamic from initial state

P (0) in the infinite dimensional Burdett and Judd (1983) model defined by payoff function (1). Let

pn(0) be the finite dimensional approximation of P (0), where the approximation is as defined in

14To see this, note that Lη(pn)(A) > 0 for all A ∈ B whereas Lη,i(pn) = 0 for all i /∈ Sn.
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(21). Let {pn(t)}t≥0 be the solution trajectory of the finite dimensional logit dynamic (22) defined

with respect to the finite dimensional Burdett and Judd (1983) model defined by payoff function

(20). Then for any T > 0 and any t ∈ [0, T ],

ρK(P (t), pn(t))→ 0

as n→∞.

Proposition 8.1 leads to the following conjecture. For η sufficiently small, let P̃η be the logit

equilibrium corresponding to the unique Nash equilibrium P ∗ of the continuous strategy Burdett

and Judd (1983) model as defined in (1). Consider an initial state P (0) ∈ ∆ close to P ∗ and

approximate it with pn(0) ∈ ∆ under the Komogorov norm. Typically, for n large and η small,

pn(0) will not be a logit equilibrium of (20). Therefore, as the results and simulations in Lahkar

(2011) imply, pn(t) converges to a limit cycle in ∆n ⊂ ∆. This is true for all large n. But

Proposition 8.1 shows that the logit trajectory from P (0), P (t), is arbitrarily close to pn(t) under

the Kolmogorov norm, for n sufficiently large. Hence, for low values of η, P (t) should also converge

to a limit cycle in ∆.

We should note, however, this is a conjecture. Proposition 8.1 does not rigorously prove that the

dispersed price equilibrium in the infinite dimensional Burdett and Judd (1983) model is unstable.

It is possible that as n becomes large, the extent to which a trajectory deviates from the equilibrium

becomes progressively less so that in the limiting continuous case, there is no deviation at all and

the equilibrium is stable. This is, however, unlikely, because simulations in Lahkar (2011) suggest

that once n becomes sufficiently large, the probability measure P (t) on ∆ induced by the limit cycle

on ∆n remains largely unchanged.15 Hence, it is reasonable to conclude that even in the original

Burdett and Judd (1983) model, price dispersion manifests itself as a cyclical phenomenon.

9 Conclusion

In this paper, we have introduced the logit dynamic for such population games with continuous

strategy sets. We have established the fundamental properties of the logit dynamic of existence,

uniqueness and continuity of solutions to the dynamic with respect to initial conditions. We have

shown that the logit equilibrium in a negative definite game with a continuous strategy set is

Lyapunov stable under the logit dynamic.

We have also applied the logit dynamic to the Burdett and Judd (1983) model with exogenous

consumer behaviour in its original setting of sellers choosing prices from a continuous set. We have

established that the dynamic is well defined in this model. We have shown that this model is a

positive definite game which gives rise to the conjecture that the dispersed price equilibrium in the

15This is in the following sense. Lahkar (2011) suggests that for n large, all solution trajectories converge to a
unique limit cycle in ∆n. Let {pn(t)}t≥0 be this limit cycle. Let P (t) be the probability measure induced by this
limit cycle in ∆ at time t. Hence, for A ∈ S, P (t)(A) =

∑
i∈A p

n
i (t). Once n exceeds a certain value, P (t) remains

largely unchanged.
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model is unstable. We have not been able to rigourously establish this instability result. But we

show that the solution trajectories of the logit dynamic in the continuous strategy Burdett and

Judd (1983) model can be well approximated with the trajectories in the finite analogue of the

model. An appeal to the results in Lahkar (2011) then lends support to our conjecture that the

dispersed price equilibria in the continuous strategy Burdett and Judd (1983) model is unstable.

Instead, solution trajectories converge to a limit cycle.

The paper immediately suggests an important research question for the future. This is the

development of a theory of the spectral analysis of ODE systems defined in a measure space. Once

such a theory is developed, it should be possible to apply it to economic problems like the Burdett

and Judd (1983) model for a more rigorous assessment of local stability of equilibria in such models.

A Appendix

A.1 Proofs of Section 4

Proof of Theorem 4.2. By compactness, accumulation points exist. Let P ∗ be such an accumulation

point. Take a sequence of positive numbers ηn ↓ 0 and let Pn be a logit equilibrium for ηn such

that Pn → P ∗ in the weak topology. Let A ∈ B be the support of P ∗.

Suppose P ∗ is not a Nash equilibrium. Then, there exist y ∈ S and x ∈ A such that π(y, P ∗) >

π(x, P ∗) = for all x ∈ A. By continuity of π in the first variable, there exist open intervals Bx, By

around x and y and an ε > 0 such that

inf
z∈By

π(z, P ∗) ≥ 2ε+ sup
z∈By

π(z, P ∗) .

By continuity of π in the second variable, we then have for sufficiently large n ≥ N ∈ N

inf
z∈By

π(z, Pn) ≥ ε+ sup
z∈By

π(z, Pn) .

As Pn are logit equilibria (Pn = L(Pn)), it follows that

Pn(By)

Pn(Bx)
=

∫
By

exp (π (z, Pn) /ηn) dz∫
Bx

exp (π (z, Pn) /ηn) dz
≥

exp
(
infz∈By π (z, Pn) /ηn

)
λ(By)

exp
(
supz∈Bx π (z, Pn) /ηn

)
λ(By)

≥ exp(ε/ηn)
λ(By)

λ(Bx)
.

As open intervals have positive Lebesgue mass and ηn ↓ 0, the last term converges to infinity. It

follows that Pn(Bx)→ 0.

As Pn converges weakly to P ∗, the Portemanteau theorem implies that P ∗(Bx) = 0. But this

contradicts x ∈ A. (As x is in the support of P ∗, and Bx is open, we must have P ∗(Bx) > 0.) �

Proof of Proposition 4.3. For strategy x ∈ S = [0, 1], define φ(x, P ) = x(q1 + 2q2(1 − FP (x))).

If P ([x]) = 0, φ(x, P ) = π(x, P ), where π(x, P ) is given by (1). The set of x ∈ S with P ({x}) > 0
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is countable, thus of Lebesgue measure zero. Therefore, for A ∈ B,

Lη(P )(A) = Kη(P )(A) :=

∫
A

exp
(
η−1φ(x, P )

)∫ 1
0 exp (η−1φy(P )) dy

dx.

Therefore, to establish the continuity of Lη(P ), it is enough to show that Kη(P ) is continuous with

respect to the weak topology.

Let (Pn) be a sequence of probability measures that converges weakly to a probability measure

P . We have to show that the induced measures Kη(Pn) converge weakly to the measure Kη(P ).

For every point x ∈ S of continuity of P (or its distribution function FP , i.e. with P ({x}) = 0), we

have

FPn(x)→ FP (x) .

Again, as the set of discontinuities of FP is countable, it follows that

FPn(x)→ FP (x) for almost every x ∈ S .

Now fix z ∈ S. The distribution function of Kη(Pn) is the ratio of∫ z

0
exp(η−1φ(x, Pn))dx

and ∫ 1

0
exp(η−1φ(x, Pn))dx .

By Lebesgue’s dominated convergence theorem, the definition of φ, and our above argument, both

terms converge for n→∞ towards ∫ z

0
exp(η−1φ(x, P ))dx

and ∫ 1

0
exp(η−1φ(x, P ))dx .

As the last term is strictly positive, the ratio also converges. This establishes the continuity

of Kη(P ), and, therefore, Kη(P ) with respect to the weak topology. The existence of a logit

equilibrium follows from Theorem 4.1.

For the second part, note that if {P̃η}η>0 is a sequence of logit equilibria, then this sequence has

accumulation points (by Theorem 4.2). Moreover, each accumulation point is a Nash equilibrium.

Since there is one Nash equilibrium in the Burdett and Judd model, we have convergence. �
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A.2 Proofs of Section 5

Proof of Theorem 5.2. Given P ∈Me (S,B), we define the auxiliary function

Ṽ (P ) = (2− ‖P‖)+V (P ),

where ‖ · ‖ is the variational norm. We note that Ṽ coincides with V on ∆. We show that

the function Ṽ (P ) is Lipschitz continuous on Me (S,B). Formally, we want to show that for all

P,Q ∈Me (S,B), there exists K > 0 such that

‖Ṽ (P )− Ṽ (Q)‖ ≤ K‖P −Q‖. (23)

To show (23), we need to distinguish between three cases. First, if both ‖P‖, ‖Q‖ ≥ 2, then

Ṽ (P ) = 0 and there is nothing to show. Next, we consider ‖P‖ ≥ 2 > ‖Q‖. Hence, Ṽ (P ) = 0 and

the left hand side of (23) is therefore

‖Ṽ (Q)‖ = (2− ‖Q‖)‖V (Q)‖.

Given any Q ∈ Me (S,B), the logit best response function to it is a probability measure; i.e.

‖L(Q)‖ = 1. Hence,

‖V (Q)‖ = 1 + ‖Q‖ ≤ 3.

We therefore have

‖Ṽ (P )− Ṽ (Q)‖ = ‖Ṽ (Q)‖ ≤ 3(2− ‖Q‖) ≤ 3[‖P‖ − ‖Q‖] ≤ 3‖P −Q‖.

Finally, we consider the case where both ‖P‖, ‖Q‖ ≤ 2. Continuing from (23), we can write

‖Ṽ (P )− Ṽ (Q)‖ = ‖(2− ‖P‖)V (P )− (2− ‖Q‖)V (Q)‖

≤ (2− ‖P‖)‖V (P )− V (Q)‖+ ‖V (Q)‖ (|‖P‖ − ‖Q‖|)

≤ (2− ‖P‖)‖V (P )− V (Q)‖+ 3‖P −Q‖

≤ 2‖V (P )− V (Q)‖+ 3‖P −Q‖.

The proof is complete if we show that V (P ) is Lipschitz continuous for both ‖P‖, ‖Q‖ ≤ 2. To

show this, it is sufficient to show that the logit best response function L(P ) is Lipschitz continuous

on M2. Since L(P ) is a probability measure, ‖L(P ) − L(Q)‖ = 2 supA∈B |P (A) − Q(A)|. It is,

therefore, sufficient to show that for all x ∈ S,∣∣∣∣ exp (π(x, P )) dx∫
S exp (π(x, P )) dx

− expπ(x,Q)dx∫
S expπ(x,Q)dx

∣∣∣∣ ≤ K1‖P −Q‖,

for some K1 independent of P,Q. Here, without loss of generality, we have taken η = 1.

By the Lipschitz continuity of πx and the fact that S is bounded, eπ(x,P ) is Lipschitz continuous.
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Since payoffs are bounded on the bounded set S, the denominator
∫
S e

π(x,P )dx Lipschitz contin-

uous and bounded away from zero. The ratio of two Lipschitz continuous functions is Lipschitz

continuous as long as the denominator stays away from zero. Therefore, the Lipschitz continuity

of πx implies the Lipschitz continuity of L(P ).

The Lipschitz continuity of Ṽ , therefore, implies that the differential equation Ṗ = Ṽ (P ) has a

unique solution in Me (S,B). Since Ṽ coincides with V on ∆, there also exists a unique solution

P (t) from every initial point P (0) ∈ ∆. Finally, the facts that Ṗ (S) = 0, Ṗ (A) > 0 if P (A) = 0

and Ṗ (A) < 0 if P (A) = 1 imply that if P (0) ∈ ∆, P (t) ∈ ∆ for all t > 0.

Since the logit dynamic is Lipschitz continuous with respect to the variational norm, the semiflow

ξ is continuous with respect to initial conditions under the same norm. This follows from the

application of Gronwall’s lemma (see Zeidler (1986), Propositions 3.10 and 3.11). By Gronwall’s

lemma, if P (t) and Q(t) are solutions to the logit dynamic from initial points P (0) and Q(0)

respectively, then then there exists a constant K2 > 0 such that

‖P (t)−Q(t)‖ ≤ eK2t‖P (0)−Q(0)‖.

This establishes continuity of solution trajectories P (t) and Q(t) with respect to initial conditions

P (0) and Q(0). �

Proof of Corollary 5.3. Note that (1) is measurable and bounded onM2. We show the Lipschitz

continuity of (1) under the variational norm.

Consider the strategy set S = [0, 1] and let 1(x,1] denote the identity function on (x, 1]. We note

that 1(x,1] is a measurable function with supy∈S |1(x,1](y)| = 1. Then,

|π(x, P )− π(x,Q)| = 2q2x

∣∣∣∣(P ([x])

2
+ P (x, 1]

)
−
(
Q(x)

2
+Q(x, 1]

)∣∣∣∣
≤ 2

(
|P (x, 1]−Q(x, 1]|+

∣∣∣∣P ([x])

2
− Q(x)

2

∣∣∣∣) .
Let 1(x,1] denote the identity function on (x, 1]. Then

|P (x, 1]−Q(x, 1]| =
∣∣∣∣∫
S

1(x,1]d(P −Q)

∣∣∣∣
≤
∣∣∣∣sup

∫
gd(P −Q)

∣∣∣∣ , such that ‖g‖ ≤ 1

≤ sup

∣∣∣∣∫ gd(P −Q)

∣∣∣∣
= ‖P −Q‖.
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Similarly,
∣∣∣P ([x])

2 − Q(x)
2

∣∣∣ ≤ ‖P −Q‖. Hence,

|π(x, P )− π(x,Q)| ≤ 4‖P −Q‖. �

A.3 Proofs of Section 7

Proof of Proposition 7.2. Given the Burdett-Judd payoff function π(x, P ) in (1), we need to show

that for all P,Q ∈ ∆, ∫
S

(π(x,Q)− π(x, P ))(Q− P )(dx) > 0.

Denote Q− P = µZ . Hence, the difference of the distribution functions is FQ(x)− FP (x) = Z(x).

Therefore,

π(x,Q)− π(x, P ) = 2xq2

(
µZ(x)

2
− Z(x)

)
.

Hence, ∫
S

(π(x,Q)− π(x, P ))(Q− P )(dx) =

∫
S

(π(x,Q)− π(x, P ))dZ(x)

= 2q2

∫
S

x

(
µZ(x)

2
− Z(x)

)
dZ(x)

= −q2

∫
S

xdZ2(x),

where we apply integration by parts for the Stieltjes integral to obtain

Z(x)dZ(x) =
1

2
dZ2(x) +

µZ(x)dZ(x)

2
.

Then, by using integration by parts for the Stieltjes integral and the fact that Z(0) = Z(1) = 0,

we have ∫
S

(π(x,Q)− π(x, P ))(Q− P )(dx) = q2

∫
S

Z2(x)dx > 0. �

Proof of Lemma 7.3: The proof follows the method established by Hofbauer and Sandholm

(2007, Theorem 3.1). Clearly, it suffices to show uniqueness on ∆AC . Consider P,Q ∈ ∆AC and

let p, q be their density functions. Define the virtual payoff

π̂(x, P ) = π(x, P )− η(1 + log p(x)),

Let z(x) = p(x)− q(x) and denote by µZ the associated signed measure. Define

ϕ(P, µZ , t) =

∫
S
π̂(x, P + tµZ)µZ(dx),

25



where the scalar t > 0 is such that p(x)+tz(x) > 0 for all x ∈ S. This is possible since z is bounded

and bounded away from zero. Using the properties of the Gateaux derivative, we compute

∂ϕ(P, µZ , t)

∂t
=

∫
S
Dπ̂(x, P + tµZ)µZµZ(dx)

=

∫
S
Dπ(x, P + tµZ)µZµZ(dx)−

∫
S

z2(x)

p(x) + tz(x)
dx < 0, (24)

by the negative semi-definiteness of π. Hence, for all P ∈ ∆ and µZ ∈ T∆, ϕ(P, µZ , t) is declining

in t.

Let P̃η be a logit equilibrium. Then, π̂(x, P̃η) = η
(

log
∫
S exp

(
π(y, P̃η)

)
dy − 1

)
, so that

ϕ(P̃η, µZ , 0) =
∫
S π̂(x, P̃η)µZ(dx) = 0, for all µZ ∈ TX. Now, let Q = P̃η + tµZ for some

non-zero µZ ∈ T∆ such that Q ∈ int ∆ is distinct from P̃η. By definition,
∫
S π̂(x,Q)µZ(dx) =

ϕ(P̃η, µZ , t), and if ϕ(P̃η, µZ , 0) = 0, then from (24), we conclude that ϕ(P̃η, µZ , t) < 0. Hence,∫
S π̂(x,Q)µZ(dx) < 0, and so, Q cannot be a logit equilibrium. �

Proof of Theorem 7.5: Let P ∈ ∆AC . Consider the candidate Lyapunov function G(P ) in (19)

and note that it is equivalent to

G(P ) =

[∫
S
π(x, P )lη(P )(x)dx− v(lη(P ))

]
−
[∫

S
π(x, P )p(x)dx− v(P )

]
.

Recall from Lemma 7.4 that G(P ) ≥ 0 for all P ∈ ∆AC , with equality only at a logit equilibrium

P̃η. Moreover,

v (Lη(P )) = η

∫
S

log(Lη(P )(x))lη(P )(x)dx

=

∫
S
π(x, P )lη(P )(x)dx− η log

[∫
S

exp
(
η−1π(x, P )

)
dx

]
.

Therefore, G(P ) reduces to

G(P ) = η log

[∫
S

exp
(
η−1π(x, P )

)
dx

]
−
[∫

S
π(x, P )p(x)dx− v(P )

]
. (25)

G is continuous in the variational norm on ∆AC and lower semicontinuous with respect to

the weak topology. The latter fact follows from the variational characterization of entropy as a

supremum of continuous linear functionals.

We apply the definition of the Gateaux derivative (17) to compute Ġ(P ). Therefore,

Ġ(P ) = DG(P )Ṗ

= ηD log

[∫
S

exp
(
η−1π(x, P )

)
dx

]
Ṗ −

[
D

(∫
S
π(x, P )p(x)dx

)
Ṗ −Dv(P )Ṗ

]
. (26)
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We calculate each part of (26) separately. Applying the chain rule to the first part, we have

ηD log

[∫
S

exp
(
η−1π(x, P )

)
dx

]
Ṗ

=
η∫

S exp (η−1π(y, P )) dy

[∫
S

exp
(
η−1π(x, P )

)
η−1Dπ(x, P )Ṗ dx

]
=

∫
S
Dπ(x, P )Ṗ

exp
(
η−1π(x, P )

)∫
S exp (η−1π(y, P )) dy

dx

=

∫
S
Dπ(x, P )Ṗ lη(P )(x)dx. (27)

Through the product rule, the second part of (26) is

D

(∫
S
π(x, P )p(x)dx

)
Ṗ =

∫
S
Dπ(x, P )Ṗ p(x)dx+

∫
S
Dp(x)Ṗ π(x, P )dx

=

∫
S
Dπ(x, P )Ṗ p(x)dx+

∫
S
π(x, P )ṗ(x)dx, (28)

since Dp(x)Ṗ = ṗ(x). Again applying the product rule, the third part of (26) is

Dv(P )Ṗ = ηD

(∫
S

log p(x)p(x)dx

)
Ṗ

= η

∫
S
D log p(x)Ṗ p(x)dx+

∫
S

log p(x)Dp(x)Ṗ p(x)dx

= η

∫
S

1

p(x)
Dp(x)Ṗ p(x)dx+

∫
S

log p(x)ṗ(x)dx

= η

∫
S
ṗ(x)dx+

∫
S

log p(x)ṗ(x)dx

= η

∫
S

log p(x)ṗ(x)dx, (29)

since Dp(x)Ṗ = ṗ(x) and
∫
S ṗ(x)dx = 0. Using (27), (28) and (29) in (26), we obtain

Ġ(P ) =

∫
S
Dπ(x, P )Ṗ lη(P )(x)dx−

∫
S
Dπ(x, P )Ṗ p(x)dx−

∫
S

(π(x, P )− η log p(x)) ṗ(x)dx

=

∫
S
Dπ(x, P )Ṗ (lη(P )(x)− p(x)) dx−

∫
S

(π(x, P )− η log p(x)) ṗ(x)dx

=

∫
S
Dπ(x, P )Ṗ Ṗ (dx)−

∫
S

(π(x, P )− η log p(x)) ṗ(x)dx. (30)

Using the definition of lη(P ), we can write

π(x, P ) = η log lη(P )(x) + η

(
log

(∫
S

exp(η−1π(y, P ))dy

))
. (31)
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Therefore, ∫
S

(π(x, P )− η log p(x)) ṗ(x)dx

=

∫
S

(
η log lη(P )(x) + η

(
log

(∫
S

exp(η−1π(y, P ))dy

))
− η log p(x)

)
ṗ(x)dx

=η

∫
S

(log lη(P )(x)− log p(x)) ṗ(x)dx. (32)

Using (32) in (30), we obtain

Ġ(P ) =

∫
S
Dπ(x, P )Ṗ Ṗ (dx)− η

∫
S

(log lη(P )(x)− log p(x)) ṗ(x)dx

=

∫
S
Dπ(x, P )Ṗ Ṗ (dx)− η

∫
S

(log lη(P )(x)− log p(x)) (lη(P )(x)− p(x)) dx. (33)

As π is negative-semidefinite, the first term is nonnegative. The second term is zero for a

logit equilibrium and positive else since the log function is an increasing function. Hence, for any

negative semi-definite game, Ġ(P ) ≤ 0, with equality only a rest point of the logit dynamic, or a

logit equilibrium.

Now take ε > 0. The function G assumes its minimum on the weakly compact sphere

S = {P ∈ ∆ : ρ(P, P η) = ε}

because it is lower semicontinuous with respect to the weak topology. Thus,

m = min
P∈S

G(P ) > 0 .

As G is continuous in the strong topology and G(P η) = 0, there exists δ > 0 such that for all Q ∈ ∆

with ‖Q−P η‖ < δ we have G(Q) < m. When we thus start in such a population state Q, we have,

by the above, G(P (t)) < m for the whole trajectory (P (t)). As the trajectory is continuous in time

in the strong, and then in the weak topology, it can never leave the weak ε-ball around P η. �

A.4 Proofs of Section 8

In order to prove Proposition 8.1, we need to establish the following lemma.

Lemma A.1 Let P,Q ∈ ∆. Then, there exists a constant K > 0 such that ρK (Lη(P ), Lη(Q)) ≤
KρK(P,Q).

Proof. As in the proof of Proposition 4.3, define φ(x, P ) = x(q1 + 2q2(1 − FP (x))), for all

x ∈ S. Note that φ(x, P ) = π(x, P ) a.e. We show that φ(x, P ) is Lipschitz continuous with respect

to Kolmogorov norm. We need to show that for every x ∈ S, P,Q ∈ ∆, |φ(x, P ) − φ(x,Q)| <
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K1ρK(P,Q), for some constant K1. But

|φ(x, P )− φ(x,Q)| = 2xq2|FP (x)− FQ(x)| < 2ρK(P,Q).

By an argument akin to the proof of Theorem 5.2, Lipschitz continuity of the payoff function φ

implies the Lipschitz continuity of the logit choice measure defined for φ. But the logit choice

measure defined for φ is the same as that defined for π. This establishes the result. �

Proof of Proposition 8.1. Let FP (t) and Fpn(t) be the distribution functions of P (t) and pn(t)

respectively. Interpret pn(t) as a probability measure in ∆ that puts zero mass on S \ Sn. For any

x ∈ S, we then obtain∣∣∣FP (t)(x)− Fpn(t)(x)
∣∣∣

=

∣∣∣∣∫ x

0
dP (t)−

∫ x

0
dpn(t)

∣∣∣∣
=

∣∣∣∣FP (0)(x)− Fpn(0)(x) +

∫ t

0

(∫ x

0
dṖ (s)−

∫ x

0
dṗn(s)

)
ds

∣∣∣∣
=

∣∣∣∣ε1(n) +

∫ t

0

(∫ x

0
d (Lη(P (s))− P (s))−

∫ x

0
d
(

Lη(pn(s))− pn(s)
))

ds

∣∣∣∣
≤ |ε1(n)|+

∫ t

0

∣∣∣∣∫ x

0
dLη(P (s))−

∫ x

0
dLη(pn(s))

∣∣∣∣ ds+

∫ t

0

∣∣∣∣∫ x

0
dP (s)−

∫ x

0
dpn(s)

∣∣∣∣ ds
= |ε1(n)|+

∫ t

0

∣∣∣∣∫ x

0
d
(
Lη(P (s))− Lη(pn(s))

)
+

∫ x

0
d
(
Lη(pn(s))− Lη(pn(s))

)∣∣∣∣ ds
+

∫ t

0

∣∣∣∣∫ x

0
dP (s)−

∫ x

0
dpn(s)

∣∣∣∣ ds
≤ |ε1(n)|+

∫ t

0

∣∣∣∣∫ x

0
d
(
Lη(P (s))− Lη(pn(s))

)∣∣∣∣ ds+

∫ t

0

∣∣∣∣∫ x

0
d
(
Lη(pn(s))− Lη(pn(s))

)∣∣∣∣ ds
+

∫ t

0

∣∣∣∣∫ x

0
dP (s)−

∫ x

0
dpn(s)

∣∣∣∣ ds. (34)

The first term on the right hand of (34), |ε1(n)| → 0 as n → ∞. The second term is of the order

of ρK(P (s), pn(s)) (by Lemma A.1). The third term is ρK(P (s), pn(s)). Let us denote the second

term as ε2(n). As n→∞, Lη(pn(s))(A)→ Lη(pn(s)). Hence, ε2(n)→ 0 as n→∞.

From (34), we, therefore, obtain

∣∣∣FP (t)(x)− Fpn(t)(x)
∣∣∣ ≤ |ε1(n)|+

∫ t

0
|ε2(n)|+K

∫ t

0

(
ρK(P (s), pn(s))

)
ds,

for some constant K > 0. Let |ε1(n)| +
∫ T

0 |ε2(n)| = ε(n) → 0 as n → ∞. Clearly, |ε1(n)| +∫ t
0 |ε2(n)| ≤ ε(n) for all t ∈ [0, T ]. Hence, for every x,

∣∣∣FP (t)(x)− Fpn(t)(x)
∣∣∣ ≤ ε(n) +K

∫ t

0

(
ρK(P (s), pn(s))

)
ds.
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The same holds true at the particular x at which
∣∣∣FP (t)(x)− Fpn(t)(x)

∣∣∣ is maximized so that

ρK
(
P (t), pn(t)

)
≤ ε(n) +K

∫ t

0

(
ρK(P (s), pn(s))

)
ds.

The result then follows from from an application of Gronwall’s lemma. �
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