Existence of Financial Equilibria in Continuous Time with Potentially Complete Markets

Frank Riedel Frederik Herzberg

1Institute for Mathematical Economics
Bielefeld University

European Workshop on General Equilibrium Theory, Vigo 2011
Outline

1. Introduction

2. The Analytic Continuous–Time Markov Economy

3. Analytic Transition Densities and Existence of Radner Equilibrium
Existence with Potentially Complete Markets

Existence of Equilibria in Financial Models: Discrete Time

- With (dynamically) complete markets, Arrow–Debreu equilibria can be implemented as financial (Radner) equilibria.
- With nominal assets that span the market, existence of (efficient) equilibria.
- With assets pay dividends in physical goods (real assets), the spanning condition becomes endogenous.
- Magill–Shafer 85: when asset markets are potentially complete, one has generically existence of efficient equilibria.
- Anderson and Raimondo 2008 go a first step to extend Magill–Shafer to continuous time.
Existence with Potentially Complete Markets

Existence of Equilibria in Financial Models: Discrete Time

- With (dynamically) complete markets, Arrow–Debreu equilibria can be implemented as financial (Radner) equilibria.
- With nominal assets that span the market, existence of (efficient) equilibria.
- With assets pay dividends in physical goods (real assets), the spanning condition becomes endogenous.
- Magill–Shafer 85: when asset markets are potentially complete, one has generically existence of efficient equilibria.
- Anderson and Raimondo 2008 go a first step to extend Magill–Shafer to continuous time.
Existence with Potentially Complete Markets

Existence of Equilibria in Financial Models: Discrete Time

- With (dynamically) complete markets, Arrow–Debreu equilibria can be implemented as financial (Radner) equilibria.
- With nominal assets that span the market, existence of (efficient) equilibria.
- With assets pay dividends in physical goods (real assets), the spanning condition becomes endogenous.
- Magill–Shafer 85: when asset markets are potentially complete, one has generically existence of efficient equilibria.
- Anderson and Raimondo 2008 go a first step to extend Magill–Shafer to continuous time.
Existence with Potentially Complete Markets

Existence of Equilibria in Financial Models: Discrete Time

- With (dynamically) complete markets, Arrow–Debreu equilibria can be implemented as financial (Radner) equilibria.
- With nominal assets that span the market, existence of (efficient) equilibria.
- With assets pay dividends in physical goods (real assets), the spanning condition becomes endogenous.
- Magill–Shafer 85: when asset markets are potentially complete, one has generically existence of efficient equilibria.
- Anderson and Raimondo 2008 go a first step to extend Magill–Shafer to continuous time.
Introduction

Analytic Economy

Existence with Potentially Complete Markets

Existence of Equilibria in Financial Models: Discrete Time

- With (dynamically) complete markets, Arrow–Debreu equilibria can be implemented as financial (Radner) equilibria.
- With nominal assets that span the market, existence of (efficient) equilibria.
- With assets pay dividends in physical goods (real assets), the spanning condition becomes endogenous.
- Magill–Shafer 85: when asset markets are potentially complete, one has generically existence of efficient equilibria.
- Anderson and Raimondo 2008 go a first step to extend Magill–Shafer to continuous time.
Existence with Potentially Complete Markets

Existence of Equilibria in Financial Models: Discrete Time

- With (dynamically) complete markets, Arrow–Debreu equilibria can be implemented as financial (Radner) equilibria.
- With nominal assets that span the market, existence of (efficient) equilibria.
- With assets pay dividends in physical goods (real assets), the spanning condition becomes endogenous.
- Magill–Shafer 85: when asset markets are *potentially complete*, one has *generically* existence of efficient equilibria.
- Anderson and Raimondo 2008 go a first step to extend Magill–Shafer to continuous time.
Anderson–Raimondo Approach

Analytic Markov Economy and Non–Standard Analysis

- Information generated by a Brownian motion W_t
- All dividends, endowments are real analytic functions of W_t
- Bernoulli utilities are real analytic and “nice”
- Financial markets are potentially complete: as many risky assets as dimension of W_t
- Asset dividends are linearly independent at maturity T
- Main point: asset prices are analytic, and hence, the linear independence carries over from terminal payoffs to prices \rightarrow dynamically complete market
- Method of proof: nonstandard analysis (discrete approximation)
Anderson–Raimondo Approach

Analytic Markov Economy and Non–Standard Analysis

- Information generated by a Brownian motion W_t
- All dividends, endowments are real analytic functions of W_t
- Bernoulli utilities are real analytic and “nice”
- Financial markets are potentially complete: as many risky assets as dimension of W_t
- Asset dividends are linearly independent at maturity T
- Main point: asset prices are analytic, and hence, the linear independence carries over from terminal payoffs to prices \rightarrow dynamically complete market
- Method of proof: nonstandard analysis (discrete approximation)
Anderson–Raimondo Approach

Analytic Markov Economy and Non–Standard Analysis

- Information generated by a Brownian motion W_t
- All dividends, endowments are real analytic functions of W_t
- Bernoulli utilities are real analytic and “nice”
- Financial markets are potentially complete: as many risky assets as dimension of W_t
- Asset dividends are linearly independent at maturity T
- main point: asset prices are analytic, and hence, the linear independence carries over from terminal payoffs to prices \rightarrow dynamically complete market
- method of proof: nonstandard analysis (discrete approximation)
Anderson–Raimondo Approach

Analytic Markov Economy and Non–Standard Analysis

- Information generated by a Brownian motion W_t
- All dividends, endowments are real analytic functions of W_t
- Bernoulli utilities are real analytic and “nice”
- Financial markets are potentially complete: as many risky assets as dimension of W_t
- Asset dividends are linearly independent at maturity T
- Main point: asset prices are analytic, and hence, the linear independence carries over from terminal payoffs to prices in a dynamically complete market
- Method of proof: nonstandard analysis (discrete approximation)
Anderson–Raimondo Approach

Analytic Markov Economy and Non–Standard Analysis

- Information generated by a Brownian motion W_t
- All dividends, endowments are real analytic functions of W_t
- Bernoulli utilities are real analytic and “nice”
- Financial markets are potentially complete: as many risky assets as dimension of W_t
- Asset dividends are linearly independent at maturity T
- main point: asset prices are analytic, and hence, the linear independence carries over from terminal payoffs to prices \rightarrow dynamically complete market
- method of proof: nonstandard analysis (discrete approximation)
Anderson–Raimondo Approach

Analytic Markov Economy and Non–Standard Analysis

- Information generated by a Brownian motion W_t
- All dividends, endowments are real analytic functions of W_t
- Bernoulli utilities are real analytic and “nice”
- Financial markets are potentially complete: as many risky assets as dimension of W_t
- Asset dividends are linearly independent at maturity T
- Main point: asset prices are analytic, and hence, the linear independence carries over from terminal payoffs to prices \(\rightarrow \) dynamically complete market
- Method of proof: nonstandard analysis (discrete approximation)
Anderson–Raimondo Approach

Analytic Markov Economy and Non–Standard Analysis

- Information generated by a Brownian motion W_t
- All dividends, endowments are real analytic functions of W_t
- Bernoulli utilities are real analytic and “nice”
- Financial markets are potentially complete: as many risky assets as dimension of W_t
- Asset dividends are linearly independent at maturity T
- main point: asset prices are analytic, and hence, the linear independence carries over from terminal payoffs to prices dynamically complete market

- method of proof: nonstandard analysis (discrete approximation)
Anderson–Raimondo Approach

Analytic Markov Economy and Non–Standard Analysis

- Information generated by a Brownian motion W_t
- All dividends, endowments are real analytic functions of W_t
- Bernoulli utilities are real analytic and “nice”
- Financial markets are potentially complete: as many risky assets as dimension of W_t
- Asset dividends are linearly independent at maturity T
- main point: asset prices are analytic, and hence, the linear independence carries over from terminal payoffs to prices dynamical complete market
- method of proof: nonstandard analysis (discrete approximation)
This Paper

AR leads to two questions

- Many finance applications need more complex dynamics than functions of Brownian motion
 - affine term structure models (Vasiček, Cox–Ingersoll–Ross)
 - stochastic volatility (Heston, Derman–Kani, Dupire)
 - "predictable" returns (Barberis)

Can one extend to general diffusions?

- Can we have a simpler, standard proof of the result?
This Paper

AR leads to two questions

- Many finance applications need more complex dynamics than functions of Brownian motion
 - affine term structure models (Vasiček, Cox–Ingersoll–Ross)
 - stochastic volatility (Heston, Derman–Kani, Dupire)
 - “predictable” returns (Barberis)

Can one extend to general diffusions?

- Can we have a simpler, standard proof of the result?
This Paper

AR leads to two questions

- Many finance applications need more complex dynamics than functions of Brownian motion
 - affine term structure models (Vasicek, Cox–Ingersoll–Ross)
 - stochastic volatility (Heston, Derman–Kani, Dupire)
 - “predictable” returns (Barberis)

Can one extend to general diffusions?

- Can we have a simpler, standard proof of the result?
AR leads to two questions

- Many finance applications need more complex dynamics than functions of Brownian motion
 - affine term structure models (Vasiček, Cox–Ingersoll–Ross)
 - stochastic volatility (Heston, Derman–Kani, Dupire)
 - “predictable” returns (Barberis)

Can one extend to general diffusions?

- Can we have a simpler, standard proof of the result?
This Paper

AR leads to two questions

- Many finance applications need more complex dynamics than functions of Brownian motion
 - affine term structure models (Vasiček, Cox–Ingersoll–Ross)
 - stochastic volatility (Heston, Derman–Kani, Dupire)
 - “predictable” returns (Barberis)

Can one extend to general diffusions?

- Can we have a simpler, standard proof of the result?
This Paper

AR leads to two questions

- Many finance applications need more complex dynamics than functions of Brownian motion
 - affine term structure models (Vasiček, Cox–Ingersoll–Ross)
 - stochastic volatility (Heston, Derman–Kani, Dupire)
 - “predictable” returns (Barberis)

 Can one extend to general diffusions?

- Can we have a simpler, standard proof of the result?
Method and Main Results

- State variable general diffusion process X_t
- Analytic Markov economy as in Anderson–Raimondo
- Extend Dana 92 to prove existence of an analytic Arrow–Debreu equilibrium
- Give sufficient conditions to show that security prices are analytic functions of X_t
- Use analyticity to show dynamic completeness
- Implement Arrow–Debreu as a Radner equilibrium
Method and Main Results

- State variable general diffusion process X_t
- Analytic Markov economy as in Anderson–Raimondo
 - extend Dana 92 to prove existence of an analytic Arrow–Debreu equilibrium
 - give sufficient conditions to show that security prices are analytic functions of X_t
 - uses analyticity to show dynamic completeness
 - implement Arrow–Debreu as a Radner equilibrium
Method and Main Results

- State variable general diffusion process X_t
- Analytic Markov economy as in Anderson–Raimondo
- Extend Dana 92 to prove existence of an analytic Arrow–Debreu equilibrium
- Give sufficient conditions to show that security prices are analytic functions of X_t
- Uses analyticity to show dynamic completeness
- Implement Arrow–Debreu as a Radner equilibrium
Method and Main Results

- State variable general diffusion process X_t
- Analytic Markov economy as in Anderson–Raimondo
- Extend Dana 92 to prove existence of an analytic Arrow–Debreu equilibrium
- Give sufficient conditions to show that security prices are analytic functions of X_t
- Use analyticity to show dynamic completeness
- Implement Arrow–Debreu as a Radner equilibrium
Method and Main Results

- State variable general diffusion process X_t
- Analytic Markov economy as in Anderson–Raimondo
- Extend Dana 92 to prove existence of an analytic Arrow–Debreu equilibrium
- Give sufficient conditions to show that security prices are analytic functions of X_t
- Use analyticity to show dynamic completeness
- Implement Arrow–Debreu as a Radner equilibrium
Method and Main Results

- State variable general diffusion process X_t
- Analytic Markov economy as in Anderson–Raimondo
- Extend Dana 92 to prove existence of an analytic Arrow–Debreu equilibrium
- Give sufficient conditions to show that security prices are analytic functions of X_t
- Uses analyticity to show dynamic completeness
- Implement Arrow–Debreu as a Radner equilibrium
Time and Information

- time is continuous $t \in [0, T]$
- the state variable is a diffusion X_t with values in \mathbb{R}^K driven by a K-dimensional Brownian motion W:
 \[
 X_0 = x, \quad dX_t = b(X_t)dt + \sigma(X_t)dW_t,
 \]
- for Lipschitz continuous functions
 \[
 b : \mathbb{R}^K \rightarrow \mathbb{R}^K
 \]
 and
 \[
 \sigma : \mathbb{R}^K \rightarrow \mathbb{R}^{K \times K}
 \]
 that are called the drift and dispersion function, resp. We let
 \[
 a(x) := \sigma(x)\sigma(x)^T
 \]
 be the diffusion matrix.
- The diffusion matrix satisfies the uniform ellipticity condition
 \[
 \|x \cdot a(x)x\| \geq \varepsilon \|x\|^2
 \]
Time and Information

- time is continuous $t \in [0, T]$
- the state variable is a diffusion X_t with values in \mathbb{R}^K driven by a K–dimensional Brownian motion \mathcal{W}:
 \[
 X_0 = x, \quad dX_t = b(X_t)dt + \sigma(X_t)d\mathcal{W}_t,
 \]
- for Lipschitz continuous functions
 \[
 b : \mathbb{R}^K \to \mathbb{R}^K
 \]
 and
 \[
 \sigma : \mathbb{R}^K \to \mathbb{R}^{K \times K}
 \]
 that are called the drift and dispersion function, resp. We let
 \[
 a(x) := \sigma(x)\sigma(x)^T
 \]
 be the diffusion matrix.
- The diffusion matrix satisfies the uniform ellipticity condition
 \[
 \|x \cdot a(x)x\| \geq \varepsilon \|x\|^2
 \]
Time and Information

- time is continuous $t \in [0, T]$
- the state variable is a diffusion X_t with values in \mathbb{R}^K driven by a K–dimensional Brownian motion W:

$$X_0 = x, \quad dX_t = b(X_t)dt + \sigma(X_t)dW_t,$$

- for Lipschitz continuous functions

$$b : \mathbb{R}^K \to \mathbb{R}^K$$

and

$$\sigma : \mathbb{R}^K \to \mathbb{R}^{K \times K}$$

that are called the drift and dispersion function, resp. We let

$$a(x) := \sigma(x)\sigma(x)^T$$

be the diffusion matrix.

- The diffusion matrix satisfies the uniform ellipticity condition

$$\|x \cdot a(x)x\| \geq \varepsilon \|x\|^2$$
time is continuous \(t \in [0, T] \)

the state variable is a diffusion \(X_t \) with values in \(\mathbb{R}^K \) driven by a \(K \)-dimensional Brownian motion \(\mathcal{W} \):

\[
X_0 = x, \quad dX_t = b(X_t)dt + \sigma(X_t)d\mathcal{W}_t,
\]

for Lipschitz continuous functions

\[
b : \mathbb{R}^K \to \mathbb{R}^K
\]

and

\[
\sigma : \mathbb{R}^K \to \mathbb{R}^{K \times K}
\]

that are called the drift and dispersion function, resp. We let

\[
a(x) := \sigma(x)\sigma(x)^T
\]

be the diffusion matrix.

The diffusion matrix satisfies the uniform ellipticity condition

\[
\|x \cdot a(x)x\| \geq \varepsilon \|x\|^2
\]
Introduction

Analytic Economy

Existence

Agents and Commodities

- one physical commodity (no problem to generalize to $D > 1$)
- I agents consuming a flow (c_t) on $[0, T)$ and a terminal consumption c_T; write $\nu = dt \otimes \delta_T$
- consumption space $\mathcal{X} = L^p(\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$, \mathcal{O} optional σ–field, $p \geq 1$
- price space (Arrow–Debreu) $\Psi = \mathcal{X}^* = L^q(\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$
- $U^i(c) = \mathbb{E} \int_0^T u^i(t, c_t) \nu(dt)$
- The period utility functions u^i are nice and analytic on $(0, T) \times \mathbb{R}_{++}$
- agents’ endowment $e^i_t = e^i(t, X_t)$ is an analytic function of time and state
Agents and Commodities

- one physical commodity (no problem to generalize to \(D > 1 \))
- \(I \) agents consuming a flow \((c_t)\) on \([0, T]\) and a terminal consumption \(c_T\); write \(\nu = dt \otimes \delta_T \)
- consumption space \(\mathcal{X} = L^p (\Omega \times [0, T], \mathcal{O}, P \otimes \nu), \mathcal{O} \)
 optional \(\sigma \)-field, \(p \geq 1 \)
- price space (Arrow–Debreu)
 \(\Psi = \mathcal{X}^* = L^q (\Omega \times [0, T], \mathcal{O}, P \otimes \nu) \)
- \(U^i(c) = \mathbb{E} \int_0^T u^i(t, c_t) \nu(dt) \)
- The period utility functions \(u^i \) are nice and analytic on \((0, T) \times \mathbb{R}_{++}\).
- agents’ endowment \(e^i_t = e^i(t, X_t) \) is an analytic function of time and state.
Agents and Commodities

- one physical commodity (no problem to generalize to $D > 1$)
- I agents consuming a flow (c_t) on $[0, T)$ and a terminal consumption c_T; write $\nu = dt \otimes \delta_T$
- consumption space $\mathcal{X} = L^p (\Omega \times [0, T], \mathcal{O}, P \otimes \nu), \mathcal{O}$ optional σ–field, $p \geq 1$
- price space (Arrow–Debreu) $\Psi = \mathcal{X}^\star = L^q (\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$
- $U^i(c) = \mathbb{E} \int_0^T u^i(t, c_t) \nu(dt)$
- The period utility functions u^i are nice and analytic on $(0, T) \times \mathbb{R}_{++}$.
- agents’ endowment $e^i_t = e^i(t, X_t)$ is an analytic function of time and state
Agents and Commodities

- one physical commodity (no problem to generalize to $D > 1$)
- l agents consuming a flow (c_t) on $[0, T)$ and a terminal consumption c_T; write $\nu = dt \otimes \delta_T$
- consumption space $\mathcal{X} = L^p(\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$, optional σ–field, $p \geq 1$
- price space (Arrow–Debreu) $\Psi = \mathcal{X}^* = L^q(\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$
- $U^i(c) = \mathbb{E} \int_0^T u^i(t, c_t) \nu(dt)$
- The period utility functions u^i are nice and analytic on $(0, T) \times \mathbb{R}_{++}$.
- agents’ endowment $e^i_t = e^i(t, X_t)$ is an analytic function of time and state
Agents and Commodities

- one physical commodity (no problem to generalize to $D > 1$)
- I agents consuming a flow (c_t) on $[0, T)$ and a terminal consumption c_T; write $\nu = dt \otimes \delta_T$
- consumption space $X = L^p(\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$, optional σ–field, $p \geq 1$
- price space (Arrow–Debreu) $\Psi = X^* = L^q(\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$
- $U^i(c) = \mathbb{E} \int_0^T u^i(t, c_t) \nu(dt)$
- The period utility functions u^i are nice and analytic on $(0, T) \times \mathbb{R}_{++}$.
- agents’ endowment $e^i_t = e^i(t, X_t)$ is an analytic function of time and state
Agents and Commodities

- one physical commodity (no problem to generalize to $D > 1$)
- l agents consuming a flow (c_t) on $[0, T)$ and a terminal consumption c_T; write $\nu = dt \otimes \delta_T$
- consumption space $X = L^p (\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$, optional σ–field, $p \geq 1$
- price space (Arrow–Debreu) $\Psi = X^* = L^q (\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$
- $U^i (c) = \mathbb{E} \int_0^T u^i (t, c_t) \nu(dt)$
- The period utility functions u^i are nice and analytic on $(0, T) \times \mathbb{R}_+$.
- agents’ endowment $e^i_t = e^i (t, X_t)$ is an analytic function of time and state.
Agents and Commodities

- one physical commodity (no problem to generalize to $D > 1$)
- I agents consuming a flow (c_t) on $[0, T)$ and a terminal consumption c_T; write $\nu = dt \otimes \delta_T$
- consumption space $\mathcal{X} = L^p(\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$, \mathcal{O} optional σ–field, $p \geq 1$
- price space (Arrow–Debreu) $\Psi = \mathcal{X}^* = L^q(\Omega \times [0, T], \mathcal{O}, P \otimes \nu)$
- $U^i(c) = \mathbb{E} \int_0^T u^i(t, c_t) \nu(dt)$
- The period utility functions u^i are nice and analytic on $(0, T) \times \mathbb{R}_{++}$.
- agents’ endowment $e^i_t = e^i(t, X_t)$ is an analytic function of time and state
The period utility functions u^i are continuous on $[0, T] \times \mathbb{R}_+$, differentiably strictly increasing and differentiably strictly concave in consumption on $[0, T] \times \mathbb{R}_{++}$, i.e.

$$\frac{\partial u^i}{\partial c}(t, c) > 0, \quad \frac{\partial^2 u^i}{\partial c^2}(t, c) > 0.$$

They satisfy the Inada conditions

$$\lim_{c \downarrow 0} \frac{\partial u^i}{\partial c}(t, c) = \infty$$

and

$$\lim_{c \to \infty} \frac{\partial u^i}{\partial c}(t, c) = 0$$

uniformly in $t \in [0, T]$.
There are \(K + 1 \) financial assets (Potentially Complete Markets)

- real assets
- dividends

\[A_t^k = g^k(t, X_t), \quad t \in [0, T] \]

- dividends belong to the consumption set, \(A^k \in \mathcal{X}_+ \).
- \(g^k \) analytic on \((0, T) \times \mathbb{R}^K\).

- Asset 0 is a real zero–coupon bond with maturity \(T \), \(A_T = 1 \),
Financial Market

- There are $K + 1$ financial assets (Potentially Complete Markets)
- real assets
- dividends

\[A_t^k = g^k(t, X_t), t \in [0, T] \]

- dividends belong to the consumption set, $A^k \in \mathcal{X}_+$.
- g^k analytic on $(0, T) \times \mathbb{R}^K$.
- Asset 0 is a real zero–coupon bond with maturity T, $A_T = 1$.
Financial Market

- There are $K + 1$ financial assets (Potentially Complete Markets)
- real assets
- dividends

\[A^k_t = g^k(t, X_t), \quad t \in [0, T] \]

- dividends belong to the consumption set, $A^k \in \mathcal{K}_+.$
- g^k analytic on $(0, T) \times \mathbb{R}^K$.
- Asset 0 is a real zero-coupon bond with maturity T, $A_T = 1,$
There are $K + 1$ financial assets (Potentially Complete Markets)

- real assets
- dividends

\[A^k_t = g^k(t, X_t), \quad t \in [0, T] \]

- dividends belong to the consumption set, $A^k \in \mathcal{X}_+$.
- g^k analytic on $(0, T) \times \mathbb{R}^K$.

- Asset 0 is a real zero-coupon bond with maturity T, $A_T = 1$, \quad (Potentially Complete Markets)
There are $K + 1$ financial assets (Potentially Complete Markets)

- real assets
- dividends

$$A^k_t = g^k(t, X_t), t \in [0, T]$$

- dividends belong to the consumption set, $A^k \in \mathcal{X}_+$.
- g^k analytic on $(0, T) \times \mathbb{R}^K$.

Asset 0 is a real zero–coupon bond with maturity T, $A_T = 1,$
There are $K + 1$ financial assets (Potentially Complete Markets)
- real assets
- dividends

\[A_t^k = g^k(t, X_t), \ t \in [0, T] \]

- dividends belong to the consumption set, $A^k \in \mathcal{X}_+$.
- g^k analytic on $(0, T) \times \mathbb{R}^K$.
- Asset 0 is a real zero-coupon bond with maturity T, $A_T = 1$.
Financial Market, ctd.

- Agent \(i \) owns initially \(n^i_k \geq 0 \) shares of asset \(k \)
- A consumption price process is a positive Itô process \(\psi \).
- A (cum–dividend) security price for asset \(k \) is a nonnegative Itô process \(S^k = (S^k_t)_{0 \leq t \leq T} \). We interpret \(S^k \) as the nominal price of the asset \(k \).
- We denote by
 \[
 G^k_t = S^k_t + \int_{[0,t)} A^k_s \psi_s \nu(ds), \quad (0 \leq t \leq T)
 \]
 the (nominal) gain process for asset \(k \).
- A portfolio process is a predictable process \(\theta \) with values in \(\mathbb{R}^{K+1} \) that is \(G \)-integrable.
- A portfolio is admissible for agent \(i \) if its present value plus the present value of the agent's endowment is nonnegative, or
 \[
 V_t + \mathbb{E} \left[\int_{t+}^T e^i_s \psi_s \nu(ds) \bigg| \mathcal{F}_t \right] \geq 0.
 \]
Financial Market, ctd.

- Agent i owns initially $n^i_k \geq 0$ shares of asset k
- A consumption price process is a positive Itô process ψ.
- A (cum–dividend) security price for asset k is a nonnegative Itô process $S^k = (S^k_t)_{0 \leq t \leq T}$. We interpret S^k as the nominal price of the asset k.
- We denote by
 \[G^k_t = S^k_t + \int_{[0,t]} A^k_s \psi_s \nu(ds), \quad (0 \leq t \leq T) \]
 the (nominal) gain process for asset k.
- A portfolio process is a predictable process θ with values in \mathbb{R}^{K+1} that is G–integrable.
- A portfolio is admissible for agent i if its present value plus the present value of the agent's endowment is nonnegative, or
 \[V_t + \mathbb{E} \left[\int_{t+}^T e^i_s \psi_s \nu(ds) \bigg| \mathcal{F}_t \right] \geq 0. \]
Financial Market, ctd.

- Agent i owns initially $n^i_k \geq 0$ shares of asset k
- A consumption price process is a positive Itô process ψ.
- A (cum–dividend) security price for asset k is a nonnegative Itô process $S^k = \left(S^k_t \right)_{0 \leq t \leq T}$. We interpret S^k as the nominal price of the asset k.
- We denote by

 $$G^k_t = S^k_t + \int_{[0,t)} A^k_s \psi_s \nu(ds), \quad (0 \leq t \leq T)$$

 the (nominal) gain process for asset k.
- A portfolio process is a predictable process θ with values in \mathbb{R}^{K+1} that is G–integrable
- A portfolio is admissible for agent i if its present value plus the present value of the agent’s endowment is nonnegative, or

 $$V_t + \mathbb{E} \left[\int_{t^+}^T e^i_s \psi_s \nu(ds) \bigg| \mathcal{F}_t \right] \geq 0.$$
Financial Market, ctd.

- Agent i owns initially $n^i_k \geq 0$ shares of asset k.
- A consumption price process is a positive Itô process ψ.
- A (cum–dividend) security price for asset k is a nonnegative Itô process $S^k = (S^k_t)_{0 \leq t \leq T}$. We interpret S^k as the nominal price of the asset k.
- We denote by
 \[G^k_t = S^k_t + \int_{[0,t]} A^k_s \psi(s) \nu(ds), \quad (0 \leq t \leq T) \]
 the (nominal) gain process for asset k.
- A portfolio process is a predictable process θ with values in \mathbb{R}^{K+1} that is G–integrable.
- A portfolio is admissible for agent i if its present value plus the present value of the agent’s endowment is nonnegative, or
 \[V_t + \mathbb{E} \left[\int_{t^+}^T e^i_s \psi(s) \nu(ds) \Bigg| \mathcal{F}_t \right] \geq 0. \]
Financial Market, ctd.

- Agent i owns initially $n^i_k \geq 0$ shares of asset k.
- A consumption price process is a positive Itô process ψ.
- A (cum–dividend) security price for asset k is a nonnegative Itô process $S^k = (S^k_t)_{0 \leq t \leq T}$. We interpret S^k as the nominal price of the asset k.
- We denote by
 \[G^k_t = S^k_t + \int_{[0,t]} A^k_s \psi_s \nu(ds), \quad (0 \leq t \leq T) \]
 the (nominal) gain process for asset k.
- A portfolio process is a predictable process θ with values in \mathbb{R}^{K+1} that is G–integrable.
- A portfolio is admissible for agent i if its present value plus the present value of the agent’s endowment is nonnegative, or
 \[V_t + \mathbb{E} \left[\int_{t^+}^T e^i_s \psi_s \nu(ds) \bigg| \mathcal{F}_t \right] \geq 0. \]
Agent i owns initially $n^i_k \geq 0$ shares of asset k.

A consumption price process is a positive Itô process ψ.

A (cum–dividend) security price for asset k is a nonnegative Itô process $S^k = (S^k_t)_{0 \leq t \leq T}$. We interpret S^k as the nominal price of the asset k.

We denote by

$$G^k_t = S^k_t + \int_{[0,t)} A^k_s \psi_s \nu(ds), \quad (0 \leq t \leq T)$$

the (nominal) gain process for asset k.

A portfolio process is a predictable process θ with values in \mathbb{R}^{K+1} that is G–integrable.

A portfolio is admissible for agent i if its present value plus the present value of the agent’s endowment is nonnegative, or

$$V_t + \mathbb{E} \left[\int_{t+}^T e^i_s \psi_s \nu(ds) \bigg| \mathcal{F}_t \right] \geq 0.$$
Radner Equilibrium

- A portfolio θ finances a consumption plan $c \in X_+$ for agent i if θ is admissible for agent i and the intertemporal budget constraint is satisfied for the associated value process V:

$$V_t = n^i \cdot S_0 + \int_0^t \theta_u dG_u + \int_0^t (e^i_u - c_u) \psi_u \nu(du).$$

- A Radner equilibrium consists of asset prices S, a consumption price ψ, portfolios θ^i and consumption plans $c^i \in X_+$ for each agent i such that θ^i is admissible for agent i and finances c^i, c^i maximizes agent i’s utility over all such i–feasible portfolio/consumption pairs, and markets clear, i.e. $\sum_{i=1}^I c^i = e$ and $\sum_{i=1}^I \theta^i = N$.
Radner Equilibrium

A portfolio θ finances a consumption plan $c \in \mathcal{X}_+$ for agent i if θ is admissible for agent i and the intertemporal budget constraint is satisfied for the associated value process V:

$$V_t = n^i \cdot S_0 + \int_0^t \theta_u dG_u + \int_0^t (e^i_u - c_u) \psi_u \nu(du).$$

A Radner equilibrium consists of asset prices S, a consumption price ψ, portfolios θ^i and consumption plans $c^i \in \mathcal{X}_+$ for each agent i such that θ^i is admissible for agent i and finances c^i, c^i maximizes agent i’s utility over all such i–feasible portfolio/consumption pairs, and markets clear, i.e. $\sum_{i=1}^l c^i = e$ and $\sum_{i=1}^l \theta^i = N$.
Main Theorem

There exists a Radner equilibrium \(\left(S, \psi, (\theta^i, c^i)_{i=1,\ldots,l} \right) \) with a dynamically complete market \((S, A, \psi) \); the prices and dividends are linked by the present value relation

\[
S^k_t = \mathbb{E} \left[\int_t^T A^k_s \psi_s \nu(ds) \right| \mathcal{F}_t].
\]
Step 1: Arrow–Debreu Equilibrium

Assumption

*For each agent, the marginal utility of his endowment belongs to the price space Ψ:

$$\frac{\partial}{\partial c} u^i(t, \varepsilon^i_t) \in \Psi.$$*

Theorem

*There exists an Arrow–Debreu equilibrium $\left(\psi, (c^i)_{i=1,\ldots,I} \right)$ such that

$$\psi_t = \psi(t, X_t), c^i_t = c^i(t, X_t)$$

for continuous functions ψ, c^i that are analytic on $(0, T) \times \mathbb{R}^K$.***
Step 1: Arrow–Debreu Equilibrium

Assumption

For each agent, the marginal utility of his endowment belongs to the price space \(\Psi \):

\[
\frac{\partial}{\partial c} u^i(t, \varepsilon^i_t) \in \Psi.
\]

Theorem

There exists an Arrow–Debreu equilibrium \((\psi, (c^i)_{i=1,...,I}) \) such that

\[
\psi_t = \psi(t, X_t), c^i_t = c^i(t, X_t)
\]

for continuous functions \(\psi, c^i \) that are analytic on \((0, T) \times \mathbb{R}^K\).
Step 2: Analytic Prices and Completeness

Assumption

The Markov process X has a transition density $P[X_{s+t} \in dy | X_s = x] = p(t, x, y) dy$ for a continuous function $p : (0, T] \times \mathbb{R}^K \times \mathbb{R}^K \to \mathbb{R}_+$ that is analytic on $(0, T) \times \mathbb{R}^K \times \mathbb{R}^K$. Moreover, the transition density p is bounded on $(\eta, T] \times \mathbb{R}^K \times \mathbb{R}^K$ for all $\eta > 0$.

- directly to check for Brownian motion, mean–reverting, Heston etc.
- If b and σ as well as its derivatives are bounded, Hölder–continuous, and analytic functions, then the assumption is satisfied.
Step 2: Analytic Prices and Completeness

Assumption

The Markov process X has a transition density

$$P[X_{s+t} \in dy | X_s = x] = p(t, x, y) \, dy$$

for a continuous function

$$p : (0, T] \times \mathbb{R}^K \times \mathbb{R}^K \to \mathbb{R}_+$$

that is analytic on $(0, T] \times \mathbb{R}^K \times \mathbb{R}^K$. Moreover, the transition density p is bounded on $(\eta, T] \times \mathbb{R}^K \times \mathbb{R}^K$ for all $\eta > 0$.

- Directly to check for Brownian motion, mean-reverting, Heston etc.
- If b and σ as well as its derivatives are bounded, Hölder-continuous, and analytic functions, then the assumption is satisfied.
Step 2: Analytic Prices and Completeness

Assumption

The Markov process X has a transition density $P[X_{s+t} \in dy|X_s = x] = p(t, x, y) dy$ for a continuous function

$$p : (0, T] \times \mathbb{R}^K \times \mathbb{R}^K \rightarrow \mathbb{R}_+$$

that is analytic on $(0, T] \times \mathbb{R}^K \times \mathbb{R}^K$. Moreover, the transition density p is bounded on $(\eta, T] \times \mathbb{R}^K \times \mathbb{R}^K$ for all $\eta > 0$.

- directly to check for Brownian motion, mean–reverting, Heston etc.
- If b and σ as well as its derivatives are bounded, Hölder–continuous, and analytic functions, then the assumption is satisfied.
Step 2: Analytic Prices and Completeness

Theorem

Define $S_t^k = \mathbb{E} \left[\int_t^T A_s^k \psi_s \nu(ds) \big| \mathcal{F}_t \right]$. There exist continuous functions $s : [0, T] \times \mathbb{R}^K \rightarrow \mathbb{R}_+$ that are analytic on $(0, T) \times \mathbb{R}^K$ and

$$S_t = s(t, X_t).$$

The first derivatives with respect to x, $\frac{\partial s}{\partial x_l}$ are continuous on $[0, T] \times \mathbb{R}^K$ and we have

$$\lim_{t \uparrow T} \frac{\partial s}{\partial x_l}(t, x) = \frac{\partial s}{\partial x_l}(T, x) = \frac{\partial g}{\partial x_l}(T, x).$$
Step 2: Completeness

Theorem

The market \((S, A, \psi)\) is dynamically complete.

- The market is dynamically complete if the volatility matrix is invertible.
- By Itô’s lemma, the volatility matrix is related to the derivatives of the analytic functions \(s\).
- By continuity, they converge to the linearly independent dividends at maturity.
- By analyticity, the volatility matrix cannot vanish.
Step 2: Completeness

Theorem

The market \((S, A, \psi)\) is dynamically complete.

- The market is dynamically complete if the volatility matrix is invertible.
- By Itô’s lemma, the volatility matrix is related to the derivatives of the analytic functions \(s\).
- By continuity, they converge to the linearly independent dividends at maturity.
- By analyticity, the volatility matrix cannot vanish.
Step 2: Completeness

Theorem

The market \((S, A, \psi)\) is dynamically complete.

- the market is dynamically complete if the volatility matrix is invertible.
- By Itô’s lemma, the volatility matrix is related to the derivatives of the analytic functions \(s\).
- By continuity, they converge to the linearly independent dividends at maturity.
- By analyticity, the volatility matrix cannot vanish.
Step 2: Completeness

Theorem

The market \((S, A, \psi)\) is dynamically complete.

- the market is dynamically complete if the volatility matrix is invertible
- By Itô’s lemma, the volatility matrix is related to the derivatives of the analytic functions \(s\)
- by continuity, they converge to the linearly independent dividends at maturity
- by analyticity, the volatility matrix cannot vanish
Step 2: Completeness

Theorem

The market \((S, A, \psi)\) is dynamically complete.

- the market is dynamically complete if the volatility matrix is invertible
- By Itô’s lemma, the volatility matrix is related to the derivatives of the analytic functions \(s\)
- by continuity, they converge to the linearly independent dividends at maturity
- by analyticity, the volatility matrix cannot vanish