Intertemporal Equilibria with Knightian Uncertainty

Frank Riedel Rose–Anne Dana

1Institute for Mathematical Economics
Bielefeld University

2CEREMADE
Université Paris–Dauphine

Cologne May 2011
Outline

1. Uncertainty versus Risk
2. Model
3. Efficiency and Equilibria in Bewley Economies
4. Non-Insurance of Knightian Uncertainty: A Case Study
Uncertainty versus Risk

- Roulette versus Horse Races

- objective probability versus no probabilities, just uncertain outcomes

- (Ω, \mathcal{F}, P) probability space versus (S, \mathcal{I}) measurable space,
 $X : (S, \mathcal{I}) \to \mathbb{R}$

Savage, Anscombe–Aumann
Uncertainty versus Risk

- Roulette versus Horse Races
- objective probability versus no probabilities, just uncertain outcomes
- \((\Omega, \mathcal{F}, P)\) probability space versus \((S, \mathcal{I})\) measurable space, \(X : (S, \mathcal{I}) \rightarrow \mathbb{R}\)

Savage, Anscombe–Aumann

even under uncertainty, betting behavior allows to infer subjective probability measure \(P\)
Uncertainty versus Risk

- Roulette versus Horse Races
- objective probability versus no probabilities, just uncertain outcomes
- \((\Omega, \mathcal{F}, P)\) probability space versus \((S, \mathcal{I})\) measurable space, \(X : (S, \mathcal{I}) \to \mathbb{R}\)

Savage, Anscombe–Aumann

- even under uncertainty, betting behavior allows to infer subjective probability measure \(P\)
- events \(A, B \subset S\), \(1_A > 1_B \iff \text{"A" is more probable than "B"} \iff P(A) > P(B)\) for some subjective probability \(P\)
Uncertainty versus Risk

- Roulette versus Horse Races
- objective probability versus no probabilities, just uncertain outcomes
- \((\Omega, \mathcal{F}, P)\) probability space versus \((S, \mathcal{I})\) measurable space, \(X : (S, \mathcal{I}) \rightarrow \mathbb{R}\)

Savage, Anscombe–Aumann

- even under uncertainty, betting behavior allows to infer subjective probability measure \(P\)
- events \(A, B \subseteq S\),
 \(1_A \succ 1_B \iff \text{“A” is more probable than “B”} \iff P(A) > P(B)\) for some subjective probability \(P\)
Uncertainty versus Risk

- Roulette versus Horse Races
- Objective probability versus no probabilities, just uncertain outcomes
- \((\Omega, \mathcal{F}, P)\) probability space versus \((S, \mathcal{I})\) measurable space, \(X : (S, \mathcal{I}) \to \mathbb{R}\)

Savage, Anscombe–Aumann

- Even under uncertainty, betting behavior allows to infer subjective probability measure \(P\)
- Events \(A, B \subset S\),
 \(1_A \succ 1_B \iff \text{“}A\text{” is more probable than “}B\text{”} \iff P(A) > P(B)\) for some subjective probability \(P\)
Uncertainty versus Risk

- Roulette versus Horse Races
- objective probability versus no probabilities, just uncertain outcomes
- (Ω, \mathcal{F}, P) probability space versus (S, \mathcal{I}) measurable space, $X : (S, \mathcal{I}) \to \mathbb{R}$

Savage, Anscombe–Aumann

- even under uncertainty, betting behavior allows to infer
 subjective probability measure P
- events $A, B \subset S$,
 $1_A \succ 1_B \iff \text{“A” is more probable than “B”}$
 $\iff P(A) > P(B)$ for some *subjective* probability P
Uncertainty II: Ellsberg

Asking for exact subjective probabilities too demanding

Example

Imagine a Cologne soccer fan. He has the choice between two bets. Situation 1:

- SF Giants win the World Series
- Der 1. FC Köln wird Pokalsieger 2012.

Situation 2:

- SF Giants do not win the World Series
- Der 1. FC Köln wird nicht Pokalsieger 2012

It is perfectly rational to go for the second bet in both cases; but this would contradict the additivity of probability.
Knight (1921): many economic decisions are of a one–shot nature and one cannot presume probabilities

- Probability fairly well known for
 - Car Insurance
 - Life Insurance (Mortality Risk)
 - “IBM”

- Probability less clear for
 - market entry
 - patents
 - “Google”
 - Rating ‘A+’
Uncertainty III: Examples

Knight (1921): many economic decisions are of a one-shot nature and one cannot presume probabilities

- Probability fairly well known for
 - Car Insurance
 - Life Insurance (Mortality Risk)
 - “IBM”

- Probability less clear for
 - market entry
 - patents
 - “Google”
 - Rating ‘A+’
Uncertainty III: Examples

Knight (1921): many economic decisions are of a one–shot nature and one cannot presume probabilities

- Probability fairly well known for
 - Car Insurance
 - Life Insurance (Mortality Risk)
 - “IBM”

- Probability less clear for
 - market entry
 - patents
 - “Google”
 - Rating ‘A+’
Knight (1921): many economic decisions are of a one–shot nature and one cannot presume probabilities

- Probability fairly well known for
 - Car Insurance
 - Life Insurance (Mortality Risk)
 - "IBM"

- Probability less clear for
 - market entry
 - patents
 - "Google"
 - Rating ‘A+’
Knight (1921): many economic decisions are of a one-shot nature and one cannot presume probabilities.

- Probability fairly well known for
 - Car Insurance
 - Life Insurance (Mortality Risk)
 - "IBM"

- Probability less clear for
 - market entry
 - patents
 - "Google"
 - Rating ‘A+’
Uncertainty III: Examples

Knight (1921): many economic decisions are of a one–shot nature and one cannot presume probabilities.

- Probability fairly well known for
 - Car Insurance
 - Life Insurance (Mortality Risk)
 - “IBM”

- Probability less clear for
 - market entry
 - patents
 - “Google”
 - Rating ‘A+’
Knight (1921): many economic decisions are of a one-shot nature and one cannot presume probabilities

- Probability fairly well known for
 - Car Insurance
 - Life Insurance (Mortality Risk)
 - “IBM”

- Probability less clear for
 - market entry
 - patents
 - “Google”
 - Rating ‘A+’
Knight (1921): many economic decisions are of a one-shot nature and one cannot presume probabilities

- Probability fairly well known for
 - Car Insurance
 - Life Insurance (Mortality Risk)
 - “IBM”

- Probability less clear for
 - market entry
 - patents
 - “Google”
 - Rating ‘A+’
Knight (1921): many economic decisions are of a one-shot nature and one cannot presume probabilities

- Probability fairly well known for
 - Car Insurance
 - Life Insurance (Mortality Risk)
 - “IBM”
- Probability less clear for
 - market entry
 - patents
 - “Google”
 - Rating ‘A+’
Uncertainty IV: Two Formal Models

As “P” is not exactly known, work with a whole class of probability measures \(P \), (Huber, 1982, Robust Statistics)

Two Models

- **Pessimistic Multiple Priors (Gilboa–Schmeidler):**
 - complete preferences, pessimistic approach:
 \[U(X) = \min_{P \in \mathcal{P}} E_P u(x) \]
 - Föllmer–Schied, Maccheroni, Marinacci, Rustichini generalize to variational preferences
 \[U(X) = \min_{P} E_P u(X) + c(P) \]
 for a cost function \(c \)
 - special case: Hansen, Sargent, \(c(P) = E_P \log dP/dQ \) relative entropy with respect to a reference measure \(Q \)
 - uniform multiple prior approach (Bewley):

- **Uniform Multiple Priors (Bewley):**
 - incomplete expected utility plus inertia
 - agents move from status quo \(\omega_i \) to \(x_i \) iff
 \[E_P u(x_i) > E_P u(\omega_i) \]
 for all priors \(P \in \mathcal{P} \)
Uncertainty IV: Two Formal Models

As “P” is not exactly known, work with a whole class of probability measures \mathcal{P}, *(Huber, 1982, Robust Statistics)*

Two Models

- **Pessimistic Multiple Priors** *(Gilboa–Schmeidler)*:
 - complete preferences, pessimistic approach:
 \[U(X) = \min_{P \in \mathcal{P}} E^P u(x) \]
 - Föllmer–Schied, Maccheroni, Marinacci, Rustichini generalize to variational preferences
 \[U(X) = \min_P E^P u(X) + c(P) \]
 for a cost function c
 - special case: Hansen, Sargent, $c(P) = E^P \log \frac{dP}{dQ}$ relative entropy with respect to a reference measure Q
 - uniform multiple prior approach *(Bewley)*:
Uncertainty IV: Two Formal Models

As “P” is not exactly known, work with a whole class of probability measures \mathcal{P}, *(Huber, 1982, Robust Statistics)*

Two Models

- **Pessimistic Multiple Priors** *(Gilboa–Schmeidler)*:
 - complete preferences, pessimistic approach:
 \[U(X) = \min_{P \in \mathcal{P}} E^P u(x) \]
 - Föllmer–Schied, Maccheroni, Marinacci, Rustichini generalize to variational preferences \(U(X) = \min_P E^P u(X) + c(P) \) for a cost function \(c \)
 - special case: Hansen, Sargent, \(c(P) = E^P \log \frac{dP}{dQ} \) relative entropy with respect to a reference measure \(Q \)

- uniform multiple prior approach *(Bewley)*:
Uncertainty IV: Two Formal Models

As “P” is not exactly known, work with a whole class of probability measures \(\mathcal{P} \), (Huber, 1982, Robust Statistics)

Two Models

Pessimistic Multiple Priors (Gilboa–Schmeidler):
- complete preferences, pessimistic approach:
 \[
 U(X) = \min_{P \in \mathcal{P}} E^P u(x)
 \]
- Föllmer–Schied, Maccheroni, Marinacci, Rustichini generalize to variational preferences \(U(X) = \min_P E^P u(X) + c(P) \) for a cost function \(c \)
- special case: Hansen, Sargent, \(c(P) = E^P \log \frac{dP}{dQ} \) relative entropy with respect to a reference measure \(Q \)

uniform multiple prior approach (Bewley):
- incomplete expected utility plus inertia
- agents move from status quo \(\omega_i \) to \(x_i \) iff \(E^P u(x_i) > E^P u(\omega_i) \) for all priors \(P \in \mathcal{P} \)
Uncertainty IV: Two Formal Models

As “P” is not exactly known, work with a whole class of probability measures \mathcal{P}, (*Huber*, 1982, Robust Statistics)

Two Models

- **Pessimistic Multiple Priors** (*Gilboa–Schmeidler*):
 - complete preferences, pessimistic approach:
 \[
 U(X) = \min_{P \in \mathcal{P}} E^P u(x)
 \]
 - *Föllmer–Schied, Maccheroni, Marinacci, Rustichini* generalize to variational preferences
 \[
 U(X) = \min_{P \in \mathcal{P}} E^P u(X) + c(P)
 \]
 for a cost function c
 - special case: *Hansen, Sargent*, $c(P) = E^P \log \frac{dP}{dQ}$ relative entropy with respect to a reference measure Q

- **uniform multiple prior approach** (*Bewley*):
 - incomplete expected utility plus inertia
 - agents move from status quo ω^i to x^i iff $E^P u(x^i) > E^P u(\omega^i)$ for all priors $P \in \mathcal{P}$
Uncertainty IV: Two Formal Models

As “P” is not exactly known, work with a whole class of probability measures \mathcal{P}, (Huber, 1982, Robust Statistics)

Two Models

- **Pessimistic Multiple Priors** (*Gilboa–Schmeidler*):
 - complete preferences, pessimistic approach:
 $$ U(X) = \min_{P \in \mathcal{P}} E^P u(x) $$
 - *Föllmer–Schied, Maccheroni, Marinacci, Rustichini* generalize to variational preferences $U(X) = \min_{P} E^P u(X) + c(P)$ for a cost function c
 - special case: *Hansen, Sargent*, $c(P) = E^P \log \frac{dP}{dQ}$ relative entropy with respect to a reference measure Q

- **uniform multiple prior approach** (*Bewley*):
 - incomplete expected utility plus inertia
 - agents move from status quo ω^i to x^i iff $E^P u(x^i) > E^P u(\omega^i)$ for all priors $P \in \mathcal{P}^i$
Uncertainty IV: Two Formal Models

As “P” is not exactly known, work with a whole class of probability measures \mathcal{P}, (Huber, 1982, Robust Statistics)

Two Models

- **Pessimistic Multiple Priors** (*Gilboa–Schmeidler*):
 - complete preferences, pessimistic approach:
 $$ U(X) = \min_{P \in \mathcal{P}} E^P u(x) $$
 - *Föllmer–Schied, Maccheroni, Marinacci, Rustichini* generalize to variational preferences
 $$ U(X) = \min_{P} E^P u(X) + c(P) $$
 for a cost function c
 - special case: *Hansen, Sargent*, $c(P) = E^P \log \frac{dP}{dQ}$ relative entropy with respect to a reference measure Q

- **Uniform Multiple Prior Approach** (*Bewley*):
 - incomplete expected utility plus inertia
 - agents move from status quo ω_i to x_i iff $E^P u(x_i) > E^P u(\omega_i)$ for all priors $P \in \mathcal{P}$
Uncertainty IV: Two Formal Models

As “P” is not exactly known, work with a whole class of probability measures \mathcal{P}, *(Huber, 1982, Robust Statistics)*

Two Models

- **Pessimistic Multiple Priors** *(Gilboa–Schmeidler)*:
 - complete preferences, pessimistic approach:
 \[U(X) = \min_{P \in \mathcal{P}} E^P u(x) \]
 - *Föllmer–Schied, Maccheroni, Marinacci, Rustichini* generalize to variational preferences \[U(X) = \min_{P} E^P u(X) + c(P) \] for a cost function c
 - special case: *Hansen, Sargent*, $c(P) = E^P \log \frac{dP}{dQ}$ relative entropy with respect to a reference measure Q

- **uniform multiple prior approach** *(Bewley)*:
 - incomplete expected utility plus inertia
 - agents move from status quo ω^i to x^i iff $E^P u(x^i) > E^P u(\omega^i)$ for all priors $P \in \mathcal{P}^i$
<table>
<thead>
<tr>
<th>Our paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete General Equilibrium Analysis of Dynamic Economies with Incomplete Expected utility Preferences and Inertia</td>
</tr>
<tr>
<td>Case Study: Market Breakdown and Inertia</td>
</tr>
</tbody>
</table>
Our paper

- Complete General Equilibrium Analysis of Dynamic Economies with Incomplete Expected utility Preferences and Inertia
- Case Study: Market Breakdown and Inertia
Literature

- Bewley’s papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift
- Sargent, Robustness (textbook)
Literature

- Bewley’s papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift
- Sargent, Robustness (textbook)
Literature

- Bewley's papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift
- Sargent, Robustness (textbook)
Literature

- Bewley’s papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift

- Sargent, Robustness (textbook)
Literature

- Bewley's papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift
- Sargent, Robustness (textbook)
Literature

- Bewley's papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift
- Sargent, Robustness (textbook)
Literature

- Bewley's papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand's Festschrift
- Sargent, Robustness (textbook)
Literature

- Bewley's papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift
- Sargent, Robustness (textbook)
Literature

- Bewley's papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift
- Sargent, Robustness (textbook)
Literature

- Bewley's papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift
- Sargent, Robustness (textbook)
Literature

- Bewley's papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand’s Festschrift
- Sargent, Robustness (textbook)
Uncertainty versus Risk Model Efficiency Breakdown

Literature

- Bewley's papers on multiple priors
 - Cowles Discussion Papers 1986, 87, 89
 - Part II in Hildenbrand's Festschrift
- Sargent, Robustness (textbook)
Model: Bewley and Savage Economies

Definition

1. B–economy = Standard dynamic exchange economy under uncertainty, except for incomplete multiple–prior preferences given by a set of priors P^i for agent i

2. Fix priors $Q^i \in P^i$.
 S–economy with priors $Q = (Q^1, Q^2, \ldots, Q^I)$= complete preferences, and possibly heterogeneous priors $Q = (Q^1, Q^2, \ldots, Q^I)$

3. S for Savage, not a risk economy!
Model: Bewley and Savage Economies

Definition

1. B–economy = Standard dynamic exchange economy under uncertainty, except for incomplete multiple–prior preferences given by a set of priors \mathcal{P}^i for agent i

2. Fix priors $Q^i \in \mathcal{P}^i$.
 S–economy with priors $Q = (Q^1, Q^2, \ldots, Q^I) = $ complete preferences, and possibly heterogeneous priors $Q = (Q^1, Q^2, \ldots, Q^I)$

3. S for Savage, not a risk economy!
Definition

1. B–economy = Standard dynamic exchange economy under uncertainty, except for incomplete multiple–prior preferences given by a set of priors \mathcal{P}_i for agent i.

2. Fix priors $Q^i \in \mathcal{P}_i$.
 - S–economy with priors $Q = (Q^1, Q^2, \ldots, Q^I) = \text{complete preferences, and possibly heterogeneous priors}$
 - $Q = (Q^1, Q^2, \ldots, Q^I)$

3. S for Savage, not a risk economy!
Model: Bewley and Savage Economies

Definition

1. B–economy = Standard dynamic exchange economy under uncertainty, except for incomplete multiple–prior preferences given by a set of priors \mathcal{P}^i for agent i

2. Fix priors $Q^i \in \mathcal{P}^i$.
 S–economy with priors $Q = (Q^1, Q^2, \ldots, Q^I)$ = complete preferences, and possibly heterogeneous priors $Q = (Q^1, Q^2, \ldots, Q^I)$

3. S for Savage, not a risk economy!
I agents with multiple priors \mathcal{P}^i

- Priors admit densities with respect to a reference measure P^0
- Agents agree on null sets
- For $Q^i \in \mathcal{P}^i$, we denote the density process by q^i_t

Consumption plans $c^i = (c^i_t(\omega))$ for $t = 0, 1, \ldots, T$

Agent i weakly prefers c^i over d^i iff

$$E^Q \sum_{t=0}^{T} u^i(t, c^i_t) \geq E^Q \sum_{t=0}^{T} u^i(t, d^i_t)$$

- u^i nice period utility function
- Endowments $\omega^i = (\omega^i_t(\omega))$ are strictly positive
- Focus on interior allocations
Model ctd.

- I agents with multiple priors \mathcal{P}^i
 - priors admit densities with respect to a reference measure P^0
 - agents agree on null sets
 - for $Q^i \in \mathcal{P}^i$, we denote the density process by q^i_t
- Consumption plans $c^i = (c^i_t(\omega))$ for $t = 0, 1, \ldots, T$
- agent i weakly prefers c^i over d^i iff

$$E^Q \sum_{t=0}^{T} u^i(t, c^i_t) \geq E^Q \sum_{t=0}^{T} u^i(t, d^i_t)$$

- u^i nice period utility function
- endowments $\omega^i = (\omega^i_t(\omega))$ are strictly positive
- focus on interior allocations
Model ctd.

- I agents with multiple priors \mathcal{P}^i
 - priors admit densities with respect to a reference measure P^0
 - agents agree on null sets
 - for $Q^i \in \mathcal{P}^i$, we denote the density process by q^i_t
- Consumption plans $c^i = (c^i_t(\omega))$ for $t = 0, 1, \ldots, T$
- agent i weakly prefers c^i over d^i iff

 $$
 \text{for all priors } Q \in \mathcal{P}^i \quad E^Q \sum_{t=0}^{T} u^i(t, c^i_t) \geq E^Q \sum_{t=0}^{T} u^i(t, d^i_t)
 $$

- u^i nice period utility function
- endowments $\omega^i = (\omega^i_t(\omega))$ are strictly positive
- focus on interior allocations
Model ctd.

- I agents with multiple priors \mathcal{P}^i
 - priors admit densities with respect to a reference measure P^0
 - agents agree on null sets
 - for $Q^i \in \mathcal{P}^i$, we denote the density process by q_t^i

- Consumption plans $c^i = (c_t^i(\omega))$ for $t = 0, 1, \ldots, T$
- agent i weakly prefers c^i over d^i iff

$$E^Q \sum_{t=0}^{T} u^i(t, c_t^i) \geq E^Q \sum_{t=0}^{T} u^i(t, d_t^i)$$

- u^i nice period utility function
- endowments $\omega^i = (\omega_t^i(\omega))$ are strictly positive
- focus on interior allocations
Model ctd.

- I agents with multiple priors \mathcal{P}^i
 - priors admit densities with respect to a reference measure P^0
 - agents agree on null sets
 - for $Q^i \in \mathcal{P}^i$, we denote the density process by q^i_t

- Consumption plans $c^i = (c^i_t(\omega))$ for $t = 0, 1, \ldots, T$

- agent i weakly prefers c^i over d^i iff

 $$\text{for all priors } Q \in \mathcal{P}^i \quad E^Q \sum_{t=0}^{T} u^i(t, c^i_t) \geq E^Q \sum_{t=0}^{T} u^i(t, d^i_t)$$

- u^i nice period utility function

- endowments $\omega^i = (\omega^i_t(\omega))$ are strictly positive

- focus on interior allocations
Model ctd.

- I agents with multiple priors \mathcal{P}^i
 - priors admit densities with respect to a reference measure P^0
 - agents agree on null sets
 - for $Q^i \in \mathcal{P}^i$, we denote the density process by q^i_t

- Consumption plans $c^i = (c^i_t(\omega))$ for $t = 0, 1, \ldots, T$

- agent i weakly prefers c^i over d^i iff

 $$\text{for all priors } Q \in \mathcal{P}^i \quad E^Q \sum_{t=0}^T u^i(t, c^i_t) \geq E^Q \sum_{t=0}^T u^i(t, d^i_t)$$

- u^i nice period utility function

- endowments $\omega^i = (\omega^i_t(\omega))$ are strictly positive

- focus on interior allocations
Model ctd.

- I agents with multiple priors \mathcal{P}^i
 - priors admit densities with respect to a reference measure P^0
 - agents agree on null sets
 - for $Q^i \in \mathcal{P}^i$, we denote the density process by q^i_t
- Consumption plans $c^i = (c^i_t(\omega))$ for $t = 0, 1, \ldots, T$
- agent i weakly prefers c^i over d^i iff

$$\text{for all priors } Q \in \mathcal{P}^i \quad E^Q \sum_{t=0}^{T} u^i(t, c^i_t) \geq E^Q \sum_{t=0}^{T} u^i(t, d^i_t)$$

- u^i nice period utility function
- endowments $\omega^i = (\omega^i_t(\omega))$ are strictly positive
- focus on interior allocations
Model ctd.

- I agents with multiple priors \mathcal{P}_i
 - priors admit densities with respect to a reference measure P^0
 - agents agree on null sets
 - for $Q^i \in \mathcal{P}_i$, we denote the density process by q^i_t
- Consumption plans $c^i = (c^i_t(\omega))$ for $t = 0, 1, \ldots, T$
- agent i weakly prefers c^i over d^i iff
 \[
 \text{for all priors } Q \in \mathcal{P}_i \quad E^Q \sum_{t=0}^{T} u^i(t, c^i_t) \geq E^Q \sum_{t=0}^{T} u^i(t, d^i_t)
 \]
- u^i nice period utility function
- endowments $\omega^i = (\omega^i_t(\omega))$ are strictly positive
- focus on interior allocations
Model ctd.

- \(\mathcal{P}^i \) agents with multiple priors
 - priors admit densities with respect to a reference measure \(P^0 \)
 - agents agree on null sets
 - for \(Q^i \in \mathcal{P}^i \), we denote the density process by \(q^i_t \)
- Consumption plans \(c^i = (c^i_t(\omega)) \) for \(t = 0, 1, \ldots, T \)
- agent \(i \) weakly prefers \(c^i \) over \(d^i \) iff

\[
\text{for all priors } Q \in \mathcal{P}^i \quad E^Q \sum_{t=0}^{T} u^i(t, c^i_t) \geq E^Q \sum_{t=0}^{T} u^i(t, d^i_t)
\]

- \(u^i \) nice period utility function
- endowments \(\omega^i = (\omega^i_t(\omega)) \) are strictly positive
- focus on interior allocations
Efficiency in Savage Economies

- Fix priors $Q = (Q^1, Q^2, \ldots, Q^I)$
- A feasible interior allocation $c = (c^1, c^2, \ldots, c^I)$ is efficient in the S–economy with priors $Q = (Q^1, Q^2, \ldots, Q^I)$ iff the marginal rates of substitution of all agents coincide, i.e.

$$MRS^i_t = \frac{u^i_c(t, c^i_t)q^i_t}{u^i_c(c^i_0)} = \frac{u^j_c(t, c^j_t)q^j_t}{u^j_c(c^j_0)} = MRS^j_t$$
Efficiency in Savage Economies

Fix priors $Q = (Q^1, Q^2, \ldots, Q^I)$

A feasible interior allocation $c = (c^1, c^2, \ldots, c^I)$ is efficient in the S–economy with priors $Q = (Q^1, Q^2, \ldots, Q^I)$ iff the marginal rates of substitution of all agents coincide, i.e.

$$MRS^i_t = \frac{u^i_c(t, c^i_t)q^i_t}{u^i_c(c^i_0)} = \frac{u^j_c(t, c^j_t)q^j_t}{u^j_c(c^j_0)} = MRS^j_t$$
Efficiency in Savage Economies

- Fix priors $Q = (Q^1, Q^2, \ldots, Q^I)$
- A feasible interior allocation $c = (c^1, c^2, \ldots, c^I)$ is efficient in the S–economy with priors $Q = (Q^1, Q^2, \ldots, Q^I)$ iff the marginal rates of substitution of all agents coincide, i.e.

$$MRS^i_t = \frac{u^i_c(t, c^i_t)q^i_t}{u^i_c(c^i_0)} = \frac{u^j_c(t, c^j_t)q^j_t}{u^j_c(c^j_0)} = MRS^j_t$$
Efficiency in Bewley economies

More or less trivial:

Lemma

If c is efficient in some S–economy with priors Q, then c is efficient in the B–economy.

Challenge: the converse!
More or less trivial:

Lemma

if c is efficient in some S–economy with priors Q, then c is efficient in the B–economy.

Challenge: the converse!
Efficiency in Bewley economies

More or less trivial:

Lemma

if c *is efficient in some* S–*economy with priors* Q, *then* c *is efficient in the* B–*economy.*

Challenge: the converse!
Efficiency in Bewley economies

More or less trivial:

Lemma

if c is efficient in some S–economy with priors Q, then c is efficient in the B–economy.

- **Choice with Incomplete Preferences**
- **Efficiency**

- **Challenge:** the converse!
Efficiency in Bewley economies

More or less trivial:

Lemma

If c is efficient in some S–economy with priors Q, then c is efficient in the B–economy.

- **Challenge**: the converse!
Efficiency in Bewley economies

MRS=Risk–Adjusted Prior + Subjective Interest Rate

- Every MRS can be written as

\[MRS_t^i = \frac{u^i_c(t, c_t^i)q_t^i}{u^i(c_0^i)} = M_t^i \exp \left(-\sum_{s=1}^{t} r_s^i \right) \]

for a martingale \(M^i \) with expectation 1 and a subjective interest rate \(r^i \)

- Interest rate is predictable
- Decomposition is unique (Multiplicative Doob Decomposition)
- \(M^i \) density process of a new measure, the risk–adjusted prior or equivalent martingale measure
Efficiency in Bewley economies

MRS = Risk–Adjusted Prior + Subjective Interest Rate

- Every MRS can be written as

\[
MRS_t^i = \frac{u_c^i(t, c_t^i)q_t^i}{u(c_0^i)} = M_t^i \exp \left(- \sum_{s=1}^{t} r_s^i \right)
\]

for a martingale \(M_t^i \) with expectation 1 and a subjective interest rate \(r^i \)

- Interest rate is predictable
- Decomposition is unique (Multiplicative Doob Decomposition)
- \(M_t^i \) density process of a new measure, the risk–adjusted prior or equivalent martingale measure
Efficiency in Bewley economies

<table>
<thead>
<tr>
<th>MRS=Risk–Adjusted Prior + Subjective Interest Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every MRS can be written as</td>
</tr>
</tbody>
</table>

\[
MRS_t^i = \frac{u_c'(t, c_t^i)q_t^i}{u_i^i(c_0^i)} = M_t^i \exp \left(- \sum_{s=1}^{t} r_s^i \right)
\]

for a martingale \(M_t^i \) with expectation 1 and a subjective interest rate \(r_i^i \)

- Interest rate is predictable
- Decomposition is unique (Multiplicative Doob Decomposition)
- \(M_t^i \) density process of a new measure, the risk–adjusted prior or equivalent martingale measure
Efficiency in Bewley economies

MRS = Risk-Adjusted Prior + Subjective Interest Rate

- Every MRS can be written as
 \[MRS_t^i = \frac{u'_c(t, c_t^i)q_t^i}{u'(c_0^i)} = M_t^i \exp \left(- \sum_{s=1}^{t} r_s^i \right) \]
 for a martingale \(M_t^i \) with expectation 1 and a subjective interest rate \(r^i \).

- Interest rate is predictable

- Decomposition is unique (Multiplicative Doob Decomposition)

- \(M_t^i \) density process of a new measure, the risk-adjusted prior or equivalent martingale measure
Efficiency in Bewley economies

MRS = Risk–Adjusted Prior + Subjective Interest Rate

- Every MRS can be written as

\[MRS_t^i = \frac{u'_c(t, c_t^i)q_t^i}{u^i(c_0^i)} = M_t^i \exp \left(-\sum_{s=1}^{t} r_s^i \right) \]

for a martingale \(M_t^i \) with expectation 1 and a subjective interest rate \(r_t^i \)

- Interest rate is predictable

- Decomposition is unique (Multiplicative Doob Decomposition)

- \(M_t^i \) density process of a new measure, the risk–adjusted prior or equivalent martingale measure
Theorem

An interior allocation c is efficient in the Bewley economy if and only if one of the following conditions holds true:

1. the agents’ share a common marginal rate of substitution,
2. the agents share a risk–adjusted prior and for a common risk–adjusted prior Q all individual interest rates are equal, i.e.
 \[r^i(Q, c^i)_t = r^j(Q, c^j)_t \]
 for all $i, j = 1, \ldots, l$ and $t = 0, \ldots, T$,
3. for some selection of priors $Q^i \in \mathcal{P}^i, i = 1, \ldots, l$, c is efficient in the Savage economy with priors $Q = (Q^1, \ldots, Q^l)$.
Efficiency in Bewley economies

Theorem

An interior allocation \(c \) is efficient in the Bewley economy if and only if one of the following conditions holds true:

1. the agents’ share a common marginal rate of substitution,

2. the agents share a risk–adjusted prior and for a common risk–adjusted prior \(Q \) all individual interest rates are equal, i.e.

\[
 r^i(Q, c^i)_t = r^j(Q, c^j)_t
\]

for all \(i, j = 1, \ldots, I \) and \(t = 0, \ldots, T \),

3. for some selection of priors \(Q^i \in \mathcal{P}^i, i = 1, \ldots, I \), \(c \) is efficient in the Savage economy with priors \(Q = (Q^1, \ldots, Q^I) \).
Theorem

An interior allocation c is efficient in the Bewley economy if and only if one of the following conditions holds true:

1. the agents’ share a common marginal rate of substitution,
2. the agents share a risk–adjusted prior and for a common risk–adjusted prior Q all individual interest rates are equal, i.e.

$$r^i(Q, c^i)_t = r^j(Q, c^j)_t$$

for all $i, j = 1, \ldots, I$ and $t = 0, \ldots, T$,

3. for some selection of priors $Q^i \in \mathcal{P}^i, i = 1, \ldots, I$, c is efficient in the Savage economy with priors $Q = (Q^1, \ldots, Q^I)$.
Efficiency in Bewley economies

Theorem

An interior allocation c is efficient in the Bewley economy if and only if one of the following conditions holds true:

1. the agents’ share a common marginal rate of substitution,
2. the agents share a risk–adjusted prior and for a common risk–adjusted prior Q all individual interest rates are equal, i.e.
 $$r^i(Q, c^i)_t = r^j(Q, c^j)_t$$
 for all $i, j = 1, \ldots, I$ and $t = 0, \ldots, T$,
3. for some selection of priors $Q^i \in \mathcal{P}^i, i = 1, \ldots, I$, c is efficient in the Savage economy with priors $Q = (Q^1, \ldots, Q^I)$.
Samet’s Theorem

Theorem (Samet, Games and Economic Behavior, 1998)

Let K_1, \ldots, K_n be convex, closed, nonempty subsets of Δ^m (the simplex in \mathbb{R}^m).

$\bigcap K_i = \emptyset$ iff there are $f_1, \ldots, f_n \in \mathbb{R}^m$ such that $\sum f_i = 0$, and $f_i \cdot x_i > 0$ for each $x_i \in K_i, i = 1, \ldots, n$.
Samet’s Theorem for L^∞

Theorem

Let (S, \mathcal{I}, P) be a probability space. Let $(K_i)_{i=1,...,n}$ be nonempty, convex, and $\sigma(L^1(S, \mathcal{I}, P), L^\infty(S, \mathcal{I}, P))$-compact subsets of $\Delta = \{ D \in L^1_+(S, \mathcal{I}, P) : E D = 1 \}$. Then $\bigcap K_i = \emptyset$ if and only if there exists $g_i \in L^\infty(S, \mathcal{I}, P)$ with $\sum g_i = 0$ such that $\int g_i x_i dP > 0$ for all $x_i \in K_i$, $i = 1, \ldots, n$.
Corollary

Any interior equilibrium \((p^*, c^*)\) of the Bewley economy is an interior equilibrium for some Savage economy with priors \(Q^i \in \mathcal{P}^i, i = 1, \ldots, I\) and vice versa.

Remark

- Huge number of equilibria if uncertainty is nontrivial
- Indeterminacy (compare Rigotti–Shannon)
Equilibria in Bewley economies

Corollary

Any interior equilibrium (p^*, c^*) of the Bewley economy is an interior equilibrium for some Savage economy with priors $Q_i \in P_i, i = 1, \ldots, I$ and vice versa.

Remark

- Huge number of equilibria if uncertainty is nontrivial
- Indeterminacy (compare Rigotti–Shannon)
- in many equilibria, agents consume plans they cannot compare to their endowment: implausible!
Corollary

Any interior equilibrium \((p^*, c^*)\) of the Bewley economy is an interior equilibrium for some Savage economy with priors \(Q^i \in \mathcal{P}^i, i = 1, \ldots, I\) and vice versa.

Remark

- Huge number of equilibria if uncertainty is nontrivial
- Indeterminacy (compare Rigotti–Shannon)
- in many equilibria, agents consume plans they cannot compare to their endowment: implausible!
Corollary

Any interior equilibrium \((p^*, c^*)\) of the Bewley economy is an interior equilibrium for some Savage economy with priors \(Q^i \in \mathcal{P}^i, i = 1, \ldots, I\) and vice versa.

Remark

- Huge number of equilibria if uncertainty is nontrivial
- Indeterminacy (compare Rigotti–Shannon)
 - in many equilibria, agents consume plans they cannot compare to their endowment: implausible!
Corollary

Any interior equilibrium \((p^*, c^*)\) of the Bewley economy is an interior equilibrium for some Savage economy with priors \(Q^i \in \mathcal{P}^i, i = 1, \ldots, I\) and vice versa.

Remark

- Huge number of equilibria if uncertainty is nontrivial
- Indeterminacy (compare Rigotti–Shannon)
- In many equilibria, agents consume plans they cannot compare to their endowment: implausible!
Equilibria with Inertia: Existence and Variational Preferences

- Inertia: agents choose $c^i \neq \omega^i$ only if they strictly prefer c^i over ω^i under all $P \in \mathcal{P}^i$
- Big reduction of number of equilibria
- New Idea: introduce a certain class of variational preferences (Maccheroni, Marinacci, Rustichini) with reference level ω^i

$$V^i(x) = \min_{Q \in \mathcal{P}^i} E^Q \left((U^i(x) - U^i(\omega^i)) \right)$$

Theorem

Any equilibrium of an economy with complete variational preferences (1) is an equilibrium with inertia (in the B–economy). In particular, equilibria with inertia exist.

Technical Remark

Such variational preferences are Mackey–continuous.
Equilibria with Inertia: Existence and Variational Preferences

- **Inertia**: agents choose $c^i \neq \omega^i$ only if they strictly prefer c^i over ω^i under all $P \in \mathcal{D}^i$
- **Big reduction of number of equilibria**
- **New Idea**: introduce a certain class of variational preferences ($Maccheroni, Marinacci, Rustichini$) with reference level ω^i

$$V^i(x) = \min_{Q \in \mathcal{D}^i} E^Q ((U^i(x) - U^i(\omega^i))) \quad (1)$$

Theorem

Any equilibrium of an economy with complete variational preferences (1) is an equilibrium with inertia (in the B–economy).

In particular, equilibria with inertia exist.

Technical Remark

Such variational preferences are Mackey–continuous.
Equilibria with Inertia: Existence and Variational Preferences

- Inertia: agents choose $c^i \neq \omega^i$ only if they strictly prefer c^i over ω^i under all $P \in \mathcal{P}^i$
- Big reduction of number of equilibria
- New Idea: introduce a certain class of variational preferences (Maccheroni, Marinacci, Rustichini) with reference level ω^i

$$V^i(x) = \min_{Q \in \mathcal{P}^i} E^Q \left((U^i(x) - U^i(\omega^i)) \right)$$ \hspace{1cm} (1)

Theorem

Any equilibrium of an economy with complete variational preferences (1) is an equilibrium with inertia (in the B–economy). In particular, equilibria with inertia exist.

Technical Remark

Such variational preferences are Mackey–continuous.
Equilibria with Inertia: Existence and Variational Preferences

- Inertia: agents choose $c^i \neq \omega^i$ only if they strictly prefer c^i over ω^i under all $P \in \mathcal{P}^i$
- Big reduction of number of equilibria
- New Idea: introduce a certain class of variational preferences (Maccheroni, Marinacci, Rustichini) with reference level ω^i

$$V^i(x) = \min_{Q \in \mathcal{P}^i} E^Q \left((U^i(x) - U^i(\omega^i)) \right) \quad (1)$$

Theorem

Any equilibrium of an economy with complete variational preferences (1) is an equilibrium with inertia (in the B–economy). In particular, equilibria with inertia exist.

Technical Remark

Such variational preferences are Mackey–continuous.
Uncertainty versus Risk Model Efficiency Breakdown

Equilibria with Inertia: Existence and Variational Preferences

- Inertia: agents choose $c_i \neq \omega_i$ only if they strictly prefer c_i over ω_i under all $P \in \mathcal{P}_i$
- Big reduction of number of equilibria
- New Idea: introduce a certain class of variational preferences (Maccheroni, Marinacci, Rustichini) with reference level ω_i

$$V^i(x) = \min_{Q \in \mathcal{P}_i} E^Q \left((U^i(x) - U^i(\omega^i)) \right)$$ (1)

Theorem

Any equilibrium of an economy with complete variational preferences (1) is an equilibrium with inertia (in the B–economy). In particular, equilibria with inertia exist.

Technical Remark

Such variational preferences are Mackey–continuous.
Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Equilibrium in the corresponding Gilboa–Schmeidler economy
Uncertainty versus Risk Model Efficiency Breakdown

Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Equilibrium in the corresponding Gilboa–Schmeidler economy
Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Risk is completely insured
 - Uncertainty is not traded at all (market breakdown, liquidity effect)
- Intuition: inertia and incomplete preferences avoid trade under some (quite optimistic) prior, uncertainty is better than full insurance
- Equilibrium in the corresponding Gilboa–Schmeidler economy
Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent

Equilibrium with inertia:
- Risk is completely insured
- Uncertainty is not traded at all (market breakdown, liquidity crisis)

Intuition: inertia and incomplete preferences avoid trade under some (quite optimistic) prior, uncertainty is better than full insurance.

Equilibrium in the corresponding Gilboa–Schmeidler economy.
Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Risk is completely insured
 - Uncertainty is not traded at all (market breakdown, liquidity crisis)
 - Intuition: inertia and incomplete preferences avoid trade
 - Under some (quite optimistic) prior, uncertainty is better than full insurance
 - Equilibrium in the corresponding Gilboa–Schmeidler economy
Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Risk is completely insured
 - Uncertainty is not traded at all (market breakdown, liquidity crisis)
 - Intuition: inertia and incomplete preferences avoid trade
 - Under some (quite optimistic) prior, uncertainty is better than full insurance
 - Equilibrium in the corresponding Gilboa–Schmeidler economy
Uncertainty versus Risk Model Efficiency Breakdown

Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Risk is completely insured
 - Uncertainty is not traded at all (market breakdown, liquidity crisis)
 - Intuition: inertia and incomplete preferences avoid trade
 - Under some (quite optimistic) prior, uncertainty is better than full insurance
- Equilibrium in the corresponding Gilboa–Schmeidler economy
Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Risk is completely insured
 - Uncertainty is not traded at all (market breakdown, liquidity crisis)
 - Intuition: inertia and incomplete preferences avoid trade
 - Under some (quite optimistic) prior, uncertainty is better than full insurance
- Equilibrium in the corresponding Gilboa–Schmeidler economy
Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Risk is completely insured
 - Uncertainty is not traded at all (market breakdown, liquidity crisis)
 - Intuition: inertia and incomplete preferences avoid trade
 - Under some (quite optimistic) prior, uncertainty is better than full insurance
- Equilibrium in the corresponding Gilboa–Schmeidler economy
 - Both risk and uncertainty are fully insured
 - Intuition: for a pessimist, full insurance is better than uncertainty
Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Risk is completely insured
 - Uncertainty is not traded at all (market breakdown, liquidity crisis)
 - Intuition: Inertia and incomplete preferences avoid trade
 - Under some (quite optimistic) prior, uncertainty is better than full insurance
- Equilibrium in the corresponding Gilboa–Schmeidler economy
 - Both risk and uncertainty are fully insured
 - Intuition: For a pessimist, full insurance is better than uncertainty
Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Risk is completely insured
 - Uncertainty is not traded at all (market breakdown, liquidity crisis)
 - Intuition: inertia and incomplete preferences avoid trade
 - Under some (quite optimistic) prior, uncertainty is better than full insurance
- Equilibrium in the corresponding Gilboa–Schmeidler economy
 - Both risk and uncertainty are fully insured
 - Intuition: for a pessimist, full insurance is better than uncertainty
Market Breakdown (No Trade Equilibria): A Case Study

Story in a Nutshell

- No aggregate uncertainty
- Individual endowments depend on risky source (distribution known) and uncertain source (distribution unknown)
- Agents agree that risk and uncertainty are independent
- Equilibrium with inertia:
 - Risk is completely insured
 - Uncertainty is not traded at all (market breakdown, liquidity crisis)
 - Intuition: inertia and incomplete preferences avoid trade
 - Under some (quite optimistic) prior, uncertainty is better than full insurance
- Equilibrium in the corresponding Gilboa–Schmeidler economy
 - Both risk and uncertainty are fully insured
 - Intuition: for a pessimist, full insurance is better than uncertainty
Case Study: Details

- two agents with CARA utility, \(u^i(x) = -\exp(-x) \)
- aggregate endowment is zero
- agent 1 has endowment \(\omega_t^1 = R_t + U_t \)
- \(R \) is risky and \(U \) is uncertain
- \(R_t = \sum_{s=1}^{t} \varepsilon_s, \quad \varepsilon_s \sim N(0,1), \text{ i.i.d.} \)
- \(U_t = \sum_{s=1}^{t} \nu_s, \) (\(\nu_t \)) independent experiments with identical ambiguity
- time–consistent dynamic model of multiple priors

\[
q_t = \exp \left(\sum_{s=1}^{t} \left(\alpha_s \nu_s - \frac{1}{2} \alpha_s^2 \right) \right)
\]

for some \(U \)–predictable process \((\alpha_s) \) with values in \([-\kappa, \kappa]\)
- why only \(U \)–predictable? Agents agree on independence of \(R \) and \(U \) under all priors!
Case Study: Details

- two agents with CARA utility, $u^i(x) = -\exp(-x)$
- aggregate endowment is zero
 - agent 1 has endowment $\omega_1^t = R_t + U_t$
- R is risky and U is uncertain
- $R_t = \sum_{s=1}^{t} \epsilon_s$, $\epsilon_s \sim N(0,1)$, i.i.d.
- $U_t = \sum_{s=1}^{t} \nu_s$, (ν_t) independent experiments with identical ambiguity
- time–consistent dynamic model of multiple priors

$$q_t = \exp \left(\sum_{s=1}^{t} \left(\alpha_s \nu_s - \frac{1}{2} \alpha_s^2 \right) \right)$$

for some U–predictable process (α_s) with values in $[-\kappa, \kappa]$

- why only U–predictable? Agents agree on independence of R and U under all priors!
Case Study: Details

- Two agents with CARA utility, $u^i(x) = -\exp(-x)$
- Aggregate endowment is zero
- Agent 1 has endowment $\omega^1_t = R_t + U_t$
- R is risky and U is uncertain
- $R_t = \sum_{s=1}^{t} \varepsilon_s$, $\varepsilon_s \sim N(0, 1)$, i.i.d.
- $U_t = \sum_{s=1}^{t} \nu_s$, (ν_t) independent experiments with identical ambiguity
- Time-consistent dynamic model of multiple priors

$$q_t = \exp \left(\sum_{s=1}^{t} \left(\alpha_s \nu_s - \frac{1}{2} \alpha_s^2 \right) \right)$$

For some U-predictable process (α_s) with values in $[-\kappa, \kappa]$

- Why only U-predictable? Agents agree on independence of R and U under all priors!
two agents with CARA utility, $u^i(x) = -\exp(-x)$
aggregate endowment is zero
agent 1 has endowment $\omega^1_t = R_t + U_t$
R is risky and U is uncertain
$R_t = \sum_{s=1}^{t} \varepsilon_s$, $\varepsilon_s \sim N(0, 1)$, i.i.d.
$U_t = \sum_{s=1}^{t} \nu_s$, (ν_t) independent experiments with identical ambiguity
time–consistent dynamic model of multiple priors
\[
q_t = \exp \left(\sum_{s=1}^{t} \left(\alpha_s \nu_s - \frac{1}{2} \alpha_s^2 \right) \right)
\]
for some U–predictable process (α_s) with values in $[-\kappa, \kappa]$
why only U–predictable? Agents agree on independence of R and U under all priors!
Case Study: Details

- two agents with CARA utility, $u^i(x) = -\exp(-x)$
- aggregate endowment is zero
- agent 1 has endowment $\omega_1^t = R_t + U_t$
- R is risky and U is uncertain
- $R_t = \sum_{s=1}^{t} \varepsilon_s$, $\varepsilon_s \sim N(0,1)$, i.i.d.
- $U_t = \sum_{s=1}^{t} \nu_s$, (ν_t) independent experiments with identical ambiguity
- time–consistent dynamic model of multiple priors

$$q_t = \exp \left(\sum_{s=1}^{t} \left(\alpha_s \nu_s - \frac{1}{2} \alpha_s^2 \right) \right)$$

for some U–predictable process (α_s) with values in $[-\kappa, \kappa]$

- why only U–predictable? Agents agree on independence of R and U under all priors!
Case Study: Details

- two agents with CARA utility, $u^i(x) = -\exp(-x)$
- aggregate endowment is zero
- agent 1 has endowment $\omega^1_t = R_t + U_t$
- R is risky and U is uncertain
- $R_t = \sum_{s=1}^{t} \varepsilon_s$, $\varepsilon_s \sim N(0, 1)$, i.i.d.
- $U_t = \sum_{s=1}^{t} \nu_s$, (ν_t) independent experiments with identical ambiguity
- time–consistent dynamic model of multiple priors

$$q_t = \exp \left(\sum_{s=1}^{t} \left(\alpha_s \nu_s - \frac{1}{2} \alpha_s^2 \right) \right)$$

for some U–predictable process (α_s) with values in $[-\kappa, \kappa]$
- why only U–predictable? Agents agree on independence of R and U under all priors!
Case Study: Details

- two agents with CARA utility, $u^i(x) = -\exp(-x)$
- aggregate endowment is zero
- agent 1 has endowment $\omega^1_t = R_t + U_t$
- R is risky and U is uncertain
- $R_t = \sum_{s=1}^{t} \varepsilon_s$, $\varepsilon_s \sim N(0, 1)$, i.i.d.
- $U_t = \sum_{s=1}^{t} \nu_s$, (ν_t) independent experiments with identical ambiguity
- time–consistent dynamic model of multiple priors

$$q_t = \exp \left(\sum_{s=1}^{t} \left(\alpha_s \nu_s - \frac{1}{2} \alpha_s^2 \right) \right)$$

for some U–predictable process (α_s) with values in $[-\kappa, \kappa]$

why only U–predictable? Agents agree on independence of R and U under all priors!
Case Study: Details

- two agents with CARA utility, \(u(x) = -\exp(-x) \)
- aggregate endowment is zero
- agent 1 has endowment \(\omega_1 = R_t + U_t \)
- \(R \) is risky and \(U \) is uncertain
- \(R_t = \sum_{s=1}^{t} \varepsilon_s, \quad \varepsilon_s \sim N(0, 1), \ i.i.d. \)
- \(U_t = \sum_{s=1}^{t} \nu_s, (\nu_t) \) independent experiments with identical ambiguity
- time–consistent dynamic model of multiple priors

\[
q_t = \exp \left(\sum_{s=1}^{t} \left(\alpha_s \nu_s - \frac{1}{2} \alpha_s^2 \right) \right)
\]

for some \(\nu \)–predictable process \((\alpha_s) \) with values in \([\!-\kappa, \kappa]\)

- why only \(\nu \)–predictable? Agents agree on independence of \(R \) and \(U \) under all priors!
Case Study: Details

- two agents with CARA utility, $u^i(x) = -\exp(-x)$
- aggregate endowment is zero
- agent 1 has endowment $\omega^1_t = R_t + U_t$
- R is risky and U is uncertain
 - $R_t = \sum_{s=1}^{t} \varepsilon_s$, $\varepsilon_s \sim N(0, 1)$, i.i.d.
 - $U_t = \sum_{s=1}^{t} \nu_s$, (ν_t) independent experiments with identical ambiguity
- time–consistent dynamic model of multiple priors
 - $q_t = \exp \left(\sum_{s=1}^{t} \left(\alpha_s \nu_s - \frac{1}{2} \alpha_s^2 \right) \right)$
 - for some U–predictable process (α_s) with values in $[-\kappa, \kappa]$
- why only U–predictable? Agents agree on independence of R and U under all priors!
Case Study: Savage and Gilboa–Schmeidler

- **Textbook knowledge:** with homogeneous priors and expected utility, full insurance in equilibrium

 Billot, Chateauneuf, Gilboa, Tallon: also with Gilboa–Schmeidler preferences if agents share at least one prior

 (argument carries over to dynamic settings)
Case Study: Savage and Gilboa–Schmeidler

- Textbook knowledge: with homogeneous priors and expected utility, full insurance in equilibrium
- *Billot, Chateauneuf, Gilboa, Tallon*: also with Gilboa–Schmeidler preferences if agents share at least one prior
- (argument carries over to dynamic settings)
Case Study: Savage and Gilboa–Schmeidler

- Textbook knowledge: with homogeneous priors and expected utility, full insurance in equilibrium
- *Billot, Chateauneuf, Gilboa, Tallon*: also with Gilboa–Schmeidler preferences if agents share at least one prior
- (argument carries over to dynamic settings)
Full Insurance of *both* risk and uncertainty is an equilibrium in the S–economy with homogeneous priors

hence an equilibrium in the B–economy

but not an equilibrium with inertia

Intuition: every agent finds one very optimistic prior where she prefers uncertainty over insurance

... positive mean

... outweighs keeping risk

$\kappa > 1$
Full Insurance of both risk and uncertainty is an equilibrium in the S–economy with homogeneous priors.

hence an equilibrium in the B–economy

but not an equilibrium with inertia

Intuition: every agent finds one very optimistic prior where she prefers uncertainty over insurance

... positive mean

... outweighs keeping risk

κ > 1
Full Insurance of both risk and uncertainty is an equilibrium in the S–economy with homogeneous priors

hence an equilibrium in the B–economy

but not an equilibrium with inertia

Intuition: every agent finds one very optimistic prior where she prefers uncertainty over insurance

... positive mean

... outweighs keeping risk

$\kappa > 1$
Case Study: Full Insurance No Equilibrium with Inertia

- Full Insurance of both risk and uncertainty is an equilibrium in the S–economy with homogeneous priors.
- Hence an equilibrium in the B–economy.
- But not an equilibrium with inertia.
- Intuition: every agent finds one very optimistic prior where she prefers uncertainty over insurance.
- ... positive mean.
- ... outweighs keeping risk.
- $\kappa > 1$.
Case Study: Full Insurance No Equilibrium with Inertia

- Full Insurance of *both* risk and uncertainty is an equilibrium in the S–economy with homogeneous priors
- hence an equilibrium in the B–economy
- but not an equilibrium with inertia
- Intuition: every agent finds one very optimistic prior where she prefers uncertainty over insurance
 - ... positive mean
 - ... outweighs keeping risk
 - $\kappa > 1$
Case Study: Full Insurance No Equilibrium with Inertia

- Full Insurance of both risk and uncertainty is an equilibrium in the S–economy with homogeneous priors.
- Hence an equilibrium in the B–economy.
- But not an equilibrium with inertia.
- Intuition: every agent finds one very optimistic prior where she prefers uncertainty over insurance.
- ... positive mean.
- ... outweighs keeping risk.
- \(\kappa > 1 \)
Full Insurance of *both* risk and uncertainty is an equilibrium in the S–economy with homogeneous priors.

hence an equilibrium in the B–economy

but not an equilibrium with inertia

Intuition: every agent finds one very optimistic prior where she prefers uncertainty over insurance

... positive mean

... outweighs keeping risk

$\kappa > 1$
Theorem

The above Bewley economy has an equilibrium with inertia in which agent 1 consumes

\[x_t^1 = U_t. \]

The equilibrium price is

\[p_t^* = \exp \left(- \left(\rho + \frac{1}{2} \right) t \right). \]
Case Study: Equilibrium, Uniqueness

Remark

- Risk R_t is fully insured
- Uncertainty U_t not traded at all
- No uniqueness, however

- Uncertainty can be traded, but not “too much”
Case Study: Equilibrium, Uniqueness

Remark

- Risk R_t is fully insured
- Uncertainty U_t not traded at all
- No uniqueness, however

In every equilibrium with inertia, risk is fully insured.

Uncertainty can be traded, but not "too much"
Remark

- Risk R_t is fully insured
- Uncertainty U_t not traded at all
- No uniqueness, however

Lemma

In every equilibrium with inertia, risk is fully insured.

- Uncertainty can be traded, but not “too much”
Remark

- Risk R_t is fully insured
- Uncertainty U_t not traded at all
- No uniqueness, however

Lemma

In every equilibrium with inertia, risk is fully insured.

- Uncertainty can be traded, but not “too much”
Case Study: Equilibrium, Uniqueness

Remark

- Risk R_t is fully insured
- Uncertainty U_t not traded at all
- No uniqueness, however

Lemma

In every equilibrium with inertia, risk is fully insured.

- Uncertainty can be traded, but not “too much”
Remark

- Risk R_t is fully insured
- Uncertainty U_t not traded at all
- No uniqueness, however

Lemma

In every equilibrium with inertia, risk is fully insured.

- Uncertainty can be traded, but not “too much”
Regulation of Financial Markets

Regulation can be interpreted as “imposing preferences”

- **stress testing**: accept a deal only if it performs better than status quo in all tests ⇔ Bewley with inertia
- **worst–case approach**: compare the worst–case outcomes deal versus status quo and accept a deal if the worst–case outcome of the deal is better than the worst–case outcome of the status–quo

- Coherent Risk Measures: Artzner, Delbaen, Eber, Heath ↔ Gilboa–Schmeidler
- Convex Risk Measures: Föllmer, Schied ↔ Frittelli, Giannini
- Variational Preferences
A Related Motivation: Control of Investment Banks

Regulation of Financial Markets

Regulation can be interpreted as “imposing preferences”

- **stress testing**: accept a deal only if it performs better than status quo in all tests ⇔ Bewley with inertia
- **worst-case approach**: compare the worst-case outcomes deal versus status quo and accept a deal if the worst-case outcome of the deal is better than the worst-case outcome of the status-quo

- Coherent Risk Measures *(Artzner, Delbaen, Eber, Heath ⇔ Gilboa–Schmeidler)*
- Convex Risk Measures *(Föllmer, Schied, Fritelli, Giannin) ⇔ Variational Preferences*
A Related Motivation: Control of Investment Banks

Regulation of Financial Markets

Regulation can be interpreted as “imposing preferences”

- **stress testing**: accept a deal only if it performs better than status quo in all tests \Leftrightarrow Bewley with inertia
- **worst–case approach**: compare the worst–case outcomes deal versus status quo and accept a deal if the worst–case outcome of the deal is better than the worst–case outcome of the status–quo

- Coherent Risk Measures (Artzner, Delbaen, Eber, Heath \Leftrightarrow Gilboa–Schmeidler)
- Convex Risk Measures (Föllmer, Schied, Fritelli, Giannin) \Leftrightarrow Variational Preferences
Regulation of Financial Markets

Regulation can be interpreted as “imposing preferences”

- **stress testing**: accept a deal only if it performs better than status quo in all tests ⇔ Bewley with inertia

- **worst–case approach**: compare the worst–case outcomes deal versus status quo and accept a deal if the worst–case outcome of the deal is better than the worst–case outcome of the status–quo
 - Coherent Risk Measures (*Artzner, Delbaen, Eber, Heath* ⇔ Gilboa–Schmeidler)
 - Convex Risk Measures (*Föllmer, Schied, Fritelli, Giannin*) ⇔ Variational Preferences
A Related Motivation: Control of Investment Banks

Regulation of Financial Markets

Regulation can be interpreted as “imposing preferences”

- **stress testing**: accept a deal only if it performs better than status quo in all tests ⇔ Bewley with inertia
- **worst–case approach**: compare the worst–case outcomes deal versus status quo and accept a deal if the worst–case outcome of the deal is better than the worst–case outcome of the status–quo

- Coherent Risk Measures (*Artzner, Delbaen, Eber, Heath*) ⇔ Gilboa–Schmeidler
- Convex Risk Measures (*Föllmer, Schied, Fritelli, Giannin*) ⇔ Variational Preferences
Conclusion

1. General Equilibrium Analysis for Bewley’s Incomplete Preference Approach
2. Link to Variational Expectations
3. Samet’s Theorem for L^∞
4. Link to Regulation of Financial Markets:
 - Regulation is a way to impose preferences on banks
 - imposing “objective” (incomplete + inertia) preferences might lead to market breakdown
 - argument in favor of “subjective” (complete, pessimistic) preferences
5. Case Study: Knightian uncertainty remains uninsured
Case Study: Computations

Note that

\[-E \exp (-U_t + \alpha U_t - \alpha^2 / 2t) = -\exp ((1/2 - \alpha) t)\]

Hence, agent 1 prefers U to 0 for $\alpha > 1/2$ and prefers full insurance to U for $\alpha < 1/2$. So, full insurance is not better than keeping U.