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Monetary Risk Measures in Finance

I Let X (ω) ∈ R be a financial position

I X is a well-defined contract, ω is an observable state of the
world ex post

I example: digital option, you get 1 $ if the asset price of
Microsoft is above 250

I one likes to write down a probability space, but do we really
know P?
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Monetary Risk Measures in Finance

Convex Risk Measures

I Aim: Measure risk ρ(X ) of a position X in monetary terms

I for cash m, ρ(X + m) = ρ(X )−m

I monotonicity: if X ≥ Y , ρ(X ) ≤ ρ(Y )

I diversification reduces risk: ρ is convex
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Monetary Risk Measures in Finance

Theorem (Föllmer-Schied, Fritelli-Rosazza-Gianin)

Convex risk measures have the form

ρ(X ) = sup
Q

EQ [−X ]− α(Q)

for some penalty functions α(Q) ∈ [0,∞] for probability measures
Q.

Corollary (Artzner, Delbaen, Eber, Heath)

Positively homogeneous convex risk measures have the form

ρ(X ) = sup
Q∈P

EQ [−X ]

for a set of probability measures P.
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Monetary Risk Measures in Finance and Model Uncertainty

I Risk measures are a way to take model uncertainty into
account

I α measures the trust you have in a probabilistic model Q

I α = 0 highest trust, no penalty, α =∞ no trust

I for coherent risk measures, the agent chooses a set of models
he trusts and uses a worst-case approach
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Frank Knight, Risk, Uncertainty, and Profit, 1921

Workshop “Uncertainty and Risk” Commemorating the Centenary
of Publication of Frank H. Knight’s Risk, Uncertainty, and Profit
and John M. Keynes’ A Treatise on Probability See

https://sites.google.com/view/uncertainty-risk/home

Video of my lecture https://www.youtube.com/watch?v=sf0qDwdGGko

https://sites.google.com/view/uncertainty-risk/home
https://www.youtube.com/watch?v=sf0qDwdGGko


Uncertainty and Risk
A Workshop Commemorating the Centenary of 

Publication of 

Frank H. Knight’s "Risk, Uncertainty, and Profit" and  

John M. Keynes’ "A Treatise on Probability"

March 17-19, 2021 - Virtual

Uncertainty & Risk Home Program



Frank H. Knight

Photo: University of Chicago Photographic Archive, apf1-03513, Special Collections Research Center. 



Frank Knight, Risk, Uncertainty, and Profit, 1921

I Frank Knight is motivated by the question how profit can
emerge under conditions of competition

I Without uncertainty, profits are zero in competitive markets
when firms have positively homogeneous technologies

I in ideal exchange, the quantities exchanged are equal in value
terms, and there is no chance for anything like “profit” to
arise (p.86)

I Knight claims that the same conclusion holds true under risk,
i.e. in an environment where the probabilities are perfectly
known to each competitor

I Knight identifies proper uncertainty as a source of profit
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Frank Knight, Chapter 7

I the basic theory of utility and profit maximization applies in
“small worlds” when everything is perfectly known

I for sophisticated people, even situations of risk can be dealt
with:

I the bursting of bottles does not introduce any uncertainty or
hazard into the business of producing champagne (p. 213)

I Each single bottle bursts at random. But by the law of large
numbers, the total number of burst bottles is known and
becomes a fixed and known cost for the firm.

I markets can perfectly price such randomness (insurance)

I The mathematical type of probability is practically never met
with in business. (p.215)

I In typical business situations, there is no law of large numbers
that allows to estimate the probability of success with
accuracy.
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Frank Knight, Chapter 8: Uncertainty explains excess profit

I Knight distinguishes risk (measurable uncertainty) from
uncertainty (unmeasurable uncertainty)

I the income of an entrepreneur is larger ... as there is a scarcity
of self-confidence in society combined with the power to make
effective guarantees to employees.(p.283)

I excess profit is the result of confronting uninsurable
uncertainty
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A Taxonomy of Uncertainty

taken from Lo, Mueller 2010

1. Complete Certainty: past and future perfectly known like in
classical physics

2. Risk - objective probabilities - the realm of probability theory

3. Somewhat Reducible Uncertainty: probabilities are not known,
but can be estimated with a high degree of accuracy, law of
large numbers, ergodicity

4. Imprecise Probabilistic Information

5. Ignorance: data does not help, theories do not help, no
quantification is possible
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Insurance Premia under Uncertainty

based on joint work with Max Nendel, Maren Schmeck, Insurance: Mathematics and Economics 2022

I The axiomatization of premium principles is one of the most
classic topics in the field of actuarial mathematics.

I So far, premium principles are usually written as functionals of
the probability distribution of losses

I Implicitly, thus, a probabilistic model is assumed

I Model (Knightian) uncertainty is by now widely recognized
and crucial for insurance (Solvency II)

I We work in an ex-ante probability-free setting
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AN E C O N O M I C  P R E M I U M  P R I N C I P L E  

HANS BUHLMANN * 

Eidgen6ssische Technische Hochschule, Ziirich 

p r e m i u m  
calculat ion 

principle 

1. PREMIUM CALCULATION PRINCIPLES VERSUS ECONOMIC PREMIUM PRINCIPLES 

(a) The  notion of p r e m i u m  calculat ion principle has  become fairly general ly  
accep ted  in the risk theory  l i terature .  For  comple teness  we repea t  its definit ion : 

A p r e m i u m  calculat ion principle is a funct ional  ~ assigning to a r a n d o m  
var iable  X (or its d is t r ibut ion funct ion Fx(x)) a real n u m b e r  P.  In  symbols  

: X --~ P 

r a n d o m  real n u m b e r  
var iable  

or Fx(x) ~ P 
dis t r ibut ion real n u m b e r  
function 

The  in te rp re ta t ion  is r a the r  obvious.  The  r a n d o m  var iab le  X s tands  for the  

possible claims of a risk whereas  P is the  p r e m i u m  charged for assuming this 
risk. 

This  is of course formalizing the way  actuaries th ink  abou t  premiums.  In  
ac tuar ia l  terms,  the p r e m i u m  is a p rope r ty  of the risk (and nothing else), e.g. 

= E E l ,  etc. 

(b) Of course, in economics p remiums  are not  on]y depending on the risk but  
also on market conditions. Let  us assume for a m o m e n t  tha t  we can describe 
the  risk by  a r a n d o m  var iable  X (as under  a)),  describe the m a r k e t  condit ions 
b y  a r a n d o m  var iab le  Z. 

Then  we wan t  to show how an economic premium principle 

(x, z) P 
pail  of real n u m b e r  
r a n d o m  
var iables  

* This paper is greatly influenced by an exchange of ideas with Flavio Pressaco. I am 
also indebted to Hans Gerber for stimulating discussions on this subject. 



Insurance Premia

I The basic ad-hoc approach to premia: expected loss (fair
premium) plus some safety loading

I Simple example: variance principle

H(X ) = EP(X ) +
θ

2
varP(X ).

I Aim: Provide an axiomatization of premium principles under
Knightian uncertainty

I Main result: Insurance premium = risk measure + deviation
measure
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Setup

Throughout, we consider

I a measurable space (Ω,F ),

I the space Bb = Bb(Ω,F ) of all bounded measurable
functions Ω→ R,

I a set C ⊂ Bb of insurance claims with 0 ∈ C and X + m ∈ C
for all X ∈ C and m ∈ R.



Premium principles, Risk and Deviation Measures

Definition
We say that a map H : C → R is a premium principle if

I H(X + m) = H(X ) + m for all X ∈ C and m ∈ R.

I H(X ) ≥ H(0) = 0 for all X ∈ C with X ≥ 0.

Some comments:
I The definition of a premium principle implies that H(m) = m,

for all m ∈ R, leading to the common assumption of no
unjustified risk loading.

I The condition H(X ) ≥ 0, for all X ∈ C with X ≥ 0, is a
minimal requirement for a sensible notion of a premium
principle.
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Risk Measures and Deviation Measures

A map R : Bb → R is called a risk measure

I R(0) = 0 and R(X + m) = R(X ) + m for all X ∈ Bb and
m ∈ R, note the sign change!

I R(X ) ≤ R(Y ) for all X ,Y ∈ Bb with X ≥ Y .

A deviation measure (cf. Rockafellar-Uryasev (2013)) is a map
D : C → R with

I D(X + m) = D(X ) for all X ∈ C and m ∈ R,

I D(X ) ≥ D(0) = 0 for all X ∈ C .



Premium principles and their decomposition

Theorem
A map H : C → R is a premium principle if and only if

H(X ) = R(X ) + D(X ) for all X ∈ C ,

where R : Bb → R is a risk measure and D : C → R is a deviation
measure.

I Monetary measure generalizes expected loss

I deviation measure generalizes variance or other measures of
fluctuation

I The decomposition needs not be unique
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The “maximal” decomposition

Theorem
Let H : C → R be a premium principle. Define

RMax(X ) := inf
{
H(X0)

∣∣X0 ∈ C , X0 ≥ X
}
,

DMin(X ) := H(X )− RMax(X ).

Then, RMax : Bb → R is a risk measure, DMin : C → R is a
deviation measure.
For every other decomposition of the form H(X ) = R(X ) + D(X )
with a risk measure R and a deviation measure D, we have
R ≤ RMax and D ≥ DMin.



Example: variance principle

Consider the variance principle

H(X ) = EP(X ) +
θ

2
varP(X ), for X ∈ Bb,

with a constant θ ≥ 0.

I Here, R(X ) = EP(X ), and D(X ) = θ
2varP(X ) is one possible

decomposition of H into risk and deviation.
I However, for θ > 0, this is not the “maximal” decomposition.

For θ > 0, the maximal risk measure RMax is given by

RMax(X ) = max
Q∈P

EQ(X )− 1

2θ
G (Q|P),

where P consists of all probability measures Q, which are
absolutely continuous w.r.t. P and satisfy

G (Q|P) := varP

(
dQ
dP

)
<∞.

The map G is the Gini concentration index, see Maccheroni et
al. (2006,2009).



Example: Economic Premium Principle

Bühlmann (1980) provides a competitive market foundation for
insurance premia. In an expected utility framework for a common
prior P, in equilibrium, we have

H(X ) =
EP
(
X `′(Z )

)
EP
(
`′(Z )

)
for the insurer’s loss function ` and aggregate endowment Z .
Deprez and Gerber (1985) consider convex premium principles.
Utility indifference leads to

EP
(
`(Z + X − p)

)
= EP

(
`(Z )

)
.

For constant risk aversion

H(X ) =
1

α
log

EP
(
eα(Z+X )

)
EP
(
eαZ

) , for X ∈ Bb.



Choquet Premia

Wang, Young, and Panjer (1997) derive an axiomatic
characterization of premium principles in a competitive market
setting that results in a representation using Choquet integrals

H(X ) =

∫ ∞
minX

g
(
PX (t)

)
dt + minX ,

where, for t ≥ 0, PX (t) := P(X > t), and g is a suitable distortion
function.



Consistency with Financial Markets

Let H be sublinear.

I Suppose that insurance companies trade in an arbitrage-free
financial market given by a linear subspace M ⊂ C and a
nonnegative linear pricing functional F : M → R with
F (1) = 1

I P is a martingale measure if EP(X ) = F (X ) for X ∈ M

I we need to have H = F on M (competition, arbitrage)

I let R∗ be the superhedging functional of the financial market



Consistency with Financial Markets

Theorem
The following statements are equivalent:

1. The maximal risk measure in the decomposition of H is the
superhedging functional, i.e. RMax = R∗.

2. A model P is plausible if and only if it is a martingale measure.
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Model Uncertainty in Climate Science

Climate Change is Model Uncertainty

I Weather is the current state of temperature, humidity,
pressure, rainfall etc at a given location

I Climate is the probability distribution of weather at a given
location

I Climate change induces Knightian uncertainty as the change
of probabilities is not deterministic



Oslo Temperature Distribution Winter
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These climate changes will create more frequent and 
more severe climate-related hazards due to more 
extreme weather and to changes in normal weather. 
While some of the capital›s future climate-related 
hazards will be acute, others will emerge more 
gradually. The most acute hazards will be associated 
with more extreme precipitation. The increases in 
precipitation that have occurred and that will continue 
to occur in Oslo will materialise in the form of heavy 
and intense rainfall. As a consequence, today›s 
extreme precipitation may become the new normal. 
This would increase the likelihood of: 

	▸ Stormwater and urban floods. We must reduce the 
extent of impermeable surfaces in the city, manage 
stormwater locally, and use it as a resource in the 
urban landscape. 

	▸ River floods. It will be increasingly important to 
control where water runs when rivers flood, and to 
secure flood zones along rivers and streams that 
take a changed climate into account. 

	▸ 	Landslides and avalanches. Soil deposits and 
terrain types usually determine where landslides 
and avalanches occur, and potential slide zones will 
remain mostly the same, but because they are often 
triggered by extreme precipitation, future landslides 
and avalanches in Oslo may become more frequent 
and cause more damage. This will apply particularly 
to minor landslides and flood-related debris flows, 
but also to quick clay slides.Probability for some of the climate related hazards in Oslo towards 2100. 

Source: Klimaprofil for Oslo og Akershus (Norsk klimaservicesenter 2017)

INCREASED PROBABILITY

	The number of episodes of heavy precipi-
tation is expected to increase significantly 
in terms of intensity and frequency. These 
will also lead to more stormwater and 
urban floods.

	More frequent and heavier floods are expe-
cted, and floodwater flows in streams and 
rivers must be expected to increase. 

Increased risk of landslides and flood-rela-
ted debris flows resulting from increased 
precipitation. 

Higher storm surge levels are expected as 
a result of sea level rise.

Minor changes are expected in summer 
precipitation, and higher temperatures 
and increased evaporation may there-
fore increase the risk of drought during 
the summer.

Increased erosion caused by heavy 
precipitation and increased flooding 
of rivers and stream may trigger more 
quick clay slides.

POTENTIALLY INCREASED PROBABILITY

UNCHANGED OR LESS PROBABILITY

	Snowmelt floods will occur increas-
ingly earlier in the year and become 
smaller in scale towards the end of the 
century. 

Shorter ice cover season and reduced 
ice drift. Coastal rivers will have little 
ice cover. 

UNCERTAIN

It is uncertain whether the incidence 
and intensity of strong winds will 
change.

•	More frequent episodes of heavy pre-
cipitation may increase the frequency 
of rockfalls and rock slides, though 
mainly smaller rockfall events.
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Economics of Climate Change: Uncertainty

Michael Barnett, Climate Change and Uncertainty: An Asset
Pricing Perspective, Management Science, to appear

Figure 1: Climate Change and Model Uncertainty

(a) Source: NASA-GISS, NOAA.

(b) Source: Allen et al. (2018) (c) Source: Burke et al. (2015)

Figure 1 shows cumulative emissions-temperature correlation, as well as the uncertainty in models of transient
climate response to carbon emissions and climate change damage estimates. The top panel shows the cumulative
emissions-temperature correlation for US and Global mean temperatures based on data from NASA-GISS and
NOAA. The bottom left panel shows climate sensitivity uncertainty based on the spread in estimated results noted
by Allen et al. (2018). The bottom right panel shows damage function uncertainty based on the spread in estimated
economic damages from climate change from Figure 5a of Burke et al. (2015).
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A Parametric Statistical Model

I Let θ ∈ Θ = [0, 5] (or R) parametrize the change of average
temperature in the next 30 years.

I Let P0 = N(−2.3, 4) be the temperature distribution in Oslo
in February. Climate change uncertainty can then be modeled
by the family

P =
(
Pθ
)
θ∈Θ

.

I The different levels of plausibility can be captured by a prior
probability µ on Θ.

I How shall we evaluate the outcome of various policies?



Classic Approach: Expected Utility

The Predictive Probability

I Let X (ω) be the outcome of a policy after 30 years (GDP,
Employment, Health, ...)

I Let u be the Bernoulli utility function of society

I Savage, Anscombe–Aumann: average all possible expected
utilities U(X ) =

∫
Θ Eθu(X )µ(dθ) where Eθ is the expectation

under the probability measure Pθ

I Define the predictive probability P̄(A) =
∫

Θ Pθ(A)µ(dθ)

I We have U(X ) = EP̄u(X ), so expected utility under the
predictive measure

I shouldn’t we take the uncertainty of θ into account?
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New Approach: Smooth Model

Klibanoff, Marinacci, Mukerji, 2005

I two layers of uncertainty

I if climate is known, i.e. uncertainty about θ is resolved, we
have risk in X under Pθ

I if climate is not known, we have uncertainty, θ is a
(second-order) random variable, distributed according to µ

I let us model aversion to such second-order uncertainty as we
model risk aversion in the first layer
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New Approach: Smooth Model

I Introduce the certainty equivalent under Pθ

cθ(X ) = u−1
(
Eθu(X )

)
.

I Note that c · is a random variable at the second layer

I Introduce a concave (second-order) utility function v

I Define overall utility as

U(X ) =

∫
Θ
v(cθ(X ))µ(dθ) = Eµv (c(X ))
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New Approach: Smooth Model

I We also have

U(X ) =

∫
Θ
v(cθ(X ))µ(dθ)

= Eµφ
(
Eθu (X )

)
for φ(y) = v

(
u−1(y)

)

I if φ is concave, we have ambiguity aversion

I for φ(y) = y , we are back to expected utility under the
predictive probability

I if −φ′′(y)
φ′(y) →∞, U tends to Gilboa–Schmeidler (maxmin)

expected utility minθ Eθu(X )
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Application to Insurance

I Let us assume that a claim X is normally distributed with
unknown mean θ and known variance σ2

I Take the second-order prior µ = N(m, v2)

I Assume that the company uses the utility indifference
principle with constant absolute risk aversion a > 0 and
constant absolute ambiguity aversion b > 0

I u(x) = − exp(−ax), v(y) = − exp(−by)

I what is the equivalent insurance premium under risk resp
uncertainty?
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Application to Insurance

Lemma
The equivalent premium under risk is

f θ = θ + aσ2/2.

The equivalent premium under uncertainty is

f = m + aσ2/2 + bv2/2.

Model uncertainty leads to an additional insurance premium.



Identifiability

Definition
A statistical model (Ω,F , cP =

(
Pθ
)
θ∈Θ

) is identifiable if there

exist a measurable funktion k : Ω→ Θ with Pθ[k = θ] = 1 for all
θ ∈ Θ.



Identifiability

i.i.d. models

I Ω = RN, Qθ = N(θ, 1) probabilities on S

I Pθ =
⊗

n∈NQθ

I Xn nth projection

I law of large numbers: k = lim 1
n

∑n
l=1 Xl identifies θ
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Ellsberg Experiment

Ellsberg’s Thought Experiment 1

= 50; = 50
+

{ 100

Ellsberg Urn

I An urn contains 100 blue and red balls in unknown proportions

I composition of the urn is verifiable ex post

I ω = (c(olor), n(umberofredballs))

I Pn: the urn contains n red balls

I k(ω) = Pn



Predictive Representation

Theorem (Denti, Pomatto 2022)

If the statistical model (Ω,F , cP =
(
Pθ
)
θ∈Θ

) is identifiable by k,
then the smooth utility function has the predictive representation

U(X ) = EP̄
[
φ
(
EP̄ [u(X )|k]

)]
.

Remark

I Foundation for decision making under uncertainty in
identifiable models

I σ(k) is the σ-field of pure model uncertainty

I under identifiability, markets might insure such uncertainty
and resolve issued with market incompleteness due to
Knightian uncertainty (Friday!!)
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