The Fundamental Theorem of Asset Pricing without Probabilistic Prior Assumptions

Frank Riedel

1Institute for Mathematical Economics
Bielefeld University

July 22, 2011
Outline

1. Introduction
2. Discrete Models
3. Finance without
 - Topological Model
 - Arbitrage
 - Viability
 - NA Prices
 - Superhedging as a LP
Motivation

- in discrete time and state spaces, finance does not need a probability on the state space
 - probability enters through the no arbitrage axiom
 - as a martingale measure
 - or linear pricing functional
- in complex models, we usually start with \((\Omega, \mathcal{F}, P)\), a probability space
 - \(P^*\) then equivalent martingale measure
- implicit assumption: agents / market knows null sets
- Knightian uncertainty / model uncertainty
- volatility uncertainty (Avellaneda, Peng etc.): singular measures
in discrete time and state spaces, finance does not need a probability on the state space

probability enters through the no arbitrage axiom

as a martingale measure

or linear pricing functional

in complex models, we usually start with \((\Omega, \mathcal{F}, P)\), a probability space

\(P^*\) then equivalent martingale measure

implicit assumption: agents / market knows null sets

Knightian uncertainty / model uncertainty

volatility uncertainty (Avellaneda, Peng etc.): singular measures
in discrete time and state spaces, finance does not need a probability on the state space

probability enters through the no arbitrage axiom

as a martingale measure

or linear pricing functional

in complex models, we usually start with \((\Omega, \mathcal{F}, P)\), a probability space

\(P^*\) then equivalent martingale measure

implicit assumption: agents / market knows null sets

Knightian uncertainty / model uncertainty

volatility uncertainty (Avallaneda, Peng etc.): singular measures
in discrete time and state spaces, finance does not need a probability on the state space
probability enters through the no arbitrage axiom
as a martingale measure
or linear pricing functional
in complex models, we usually start with \((\Omega, \mathcal{F}, P)\), a probability space
\(P^*\) then equivalent martingale measure
implicit assumption: agents / market knows null sets
Knightian uncertainty / model uncertainty
volatility uncertainty (Avellaneda, Peng etc.): singular measures
in discrete time and state spaces, finance does not need a probability on the state space

probability enters through the no arbitrage axiom

as a martingale measure

or linear pricing functional

in complex models, we usually start with \((\Omega, \mathcal{F}, P)\), a probability space

\(P^*\) then equivalent martingale measure

implicit assumption: agents / market knows null sets

Knightian uncertainty / model uncertainty

volatility uncertainty (Avellaneda, Peng etc.): singular measures
in discrete time and state spaces, finance does not need a probability on the state space
probability enters through the no arbitrage axiom
as a martingale measure
or linear pricing functional
in complex models, we usually start with (Ω, \mathcal{F}, P), a probability space
P^* then equivalent martingale measure
implicit assumption: agents / market knows null sets
Knightian uncertainty / model uncertainty
volatility uncertainty (Avallaneda, Peng etc.): singular measures
Motivation

- in discrete time and state spaces, finance does not need a probability on the state space
- probability enters through the no arbitrage axiom
- as a martingale measure
- or linear pricing functional
- in complex models, we usually start with \((\Omega, \mathcal{F}, P)\), a probability space
- \(P^*\) then equivalent martingale measure
- implicit assumption: agents / market knows null sets
- Knightian uncertainty / model uncertainty
- volatility uncertainty (Avallaneda, Peng etc.): singular measures
in discrete time and state spaces, finance does not need a probability on the state space

probability enters through the no arbitrage axiom

as a martingale measure

or linear pricing functional

in complex models, we usually start with \((\Omega, \mathcal{F}, P)\), a \textit{probability} space

\(P^*\) then \textit{equivalent} martingale measure

implicit assumption: agents / market knows null sets

\textbf{Knightian uncertainty} / \textbf{model uncertainty}

volatility uncertainty (Avallaneda, Peng etc.): singular measures
Motivation

- in discrete time and state spaces, finance does not need a probability on the state space
- probability enters through the no arbitrage axiom
- as a martingale measure
- or linear pricing functional
- in complex models, we usually start with (Ω, \mathcal{F}, P), a *probability space*
- P^* then *equivalent* martingale measure
- implicit assumption: agents / market knows null sets
- *Knightian uncertainty / model uncertainty*
- volatility uncertainty (Avallaneda, Peng etc.): singular measures
Today’s Talk

- develop the fundamental theorem of asset pricing on a Polish space (Ω, d)
- relation to economic equilibrium (Harrison–Kreps)
- superhedging as a linear program
Today’s Talk

- develop the fundamental theorem of asset pricing on a Polish space (Ω, d)
- relation to economic equilibrium (Harrison–Kreps)
- superhedging as a linear program
develop the fundamental theorem of asset pricing on a Polish space (Ω, d)
relation to economic equilibrium (Harrison–Kreps)
superhedging as a linear program
Based on Föllmer’s Calcul d’Itô sans probabilités (1981), one can develop the hedging argument of Black and Scholes without prior probabilities (Bick, Willinger 1994).

Föllmer and Schied develop monetary risk measures on $C_b(\Omega, d)$.

The fundamental theorem based on probability spaces goes back to Kreps and Yan (1980); general version due to Dalang-Morton-Willinger. Continuous time by Delbaen and Schachermayer.
Based on Föllmer’s Calcul d’Itô sans probabilités (1981), one can develop the hedging argument of Black and Scholes without prior probabilities (Bick, Willinger 1994).

Föllmer and Schied develop monetary risk measures on $C_b(\Omega, d)$.

The fundamental theorem based on probability spaces goes back to Kreps and Yan (1980); general version due to Dalang-Morton-Willinger. Continuous time by Delbaen and Schachermayer.
Based on Föllmer’s Calcul d’Itô sans probabilités (1981), one can develop the hedging argument of Black and Scholes without prior probabilities (Bick, Willinger 1994).

Föllmer and Schied develop monetary risk measures on $C_b(\Omega, d)$.

The fundamental theorem based on probability spaces goes back to Kreps and Yan (1980); general version due to Dalang-Morton-Willinger. Continuous time by Delbaen and Schachermayer.
The Fundamental Theorems of Asset Pricing in Discrete Models

- \(\Omega = \{\omega_1, \ldots, \omega_N\} \)
- \(D + 1 \) assets \(d = 0, \ldots, D \)
- price today \(f_d \geq 0 \)
- uncertain payoff tomorrow \(F_d(\omega_k) \)
- summarized by a \(D + 1 \times N \) matrix \(F \)
- safe asset: \(f_0 = 1, F_N(\omega_k) = 1 \)
The Fundamental Theorems of Asset Pricing in Discrete Models

- $\Omega = \{\omega_1, \ldots, \omega_N\}$
- $D + 1$ assets $d = 0, \ldots, D$
- price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d(\omega_k)$
- summarized by a $D + 1 \times N$ matrix F
- safe asset: $f_0 = 1, F_N(\omega_k) = 1$
The Fundamental Theorems of Asset Pricing in Discrete Models

- $\Omega = \{\omega_1, \ldots, \omega_N\}$
- $D + 1$ assets $d = 0, \ldots, D$
- price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d(\omega_k)$
- summarized by a $D + 1 \times N$ matrix F
- safe asset: $f_0 = 1, F_N(\omega_k) = 1$
The Fundamental Theorems of Asset Pricing in Discrete Models

- $\Omega = \{\omega_1, \ldots, \omega_N\}$
- $D + 1$ assets $d = 0, \ldots, D$
- price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d(\omega_k)$
- summarized by a $D + 1 \times N$ matrix F
- safe asset: $f_0 = 1, F_N(\omega_k) = 1$
The Fundamental Theorems of Asset Pricing in Discrete Models

- $\Omega = \{\omega_1, \ldots, \omega_N\}$
- $D + 1$ assets $d = 0, \ldots, D$
- price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d(\omega_k)$
- summarized by a $D + 1 \times N$ matrix F
- safe asset: $f_0 = 1, F_N(\omega_k) = 1$
The Fundamental Theorems of Asset Pricing in Discrete Models

- $\Omega = \{\omega_1, \ldots, \omega_N\}$
- $D + 1$ assets $d = 0, \ldots, D$
- price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d(\omega_k)$
- summarized by a $D + 1 \times N$ matrix F
- safe asset: $f_0 = 1, F_N(\omega_k) = 1$
A portfolio $\pi \in \mathbb{R}^{D+1}$ is called an arbitrage if

1. no cost: $\pi \cdot f \leq 0$
2. no losses: $F\pi \geq 0$
3. sometimes gain: $F\pi \neq 0$

Theorem

The model (f, F) admits no arbitrage if and only if there exist probabilities $p_k^* > 0$ such that $f = p^* \cdot F$, or $f_d = \sum_{k=1}^{N} p_k^* F_d(\omega_k)$

Remark

No prior probability needed.
The "martingale" measure has full support or is equivalent to the uniform measure on Ω.
A portfolio $\pi \in \mathbb{R}^{D+1}$ is called an arbitrage if
1. no cost: $\pi \cdot f \leq 0$
2. no losses: $F\pi \geq 0$
3. sometimes gain: $F\pi \neq 0$

Theorem

The model (f, F) admits no arbitrage if and only if there exists probabilities $p_k^* > 0$ such that $f = p^* \cdot F$, or $f_d = \sum_{k=1}^{N} p_k^* F_d(\omega_k)$

Remark

no prior probability needed
the "martingale" measure has full support
or is equivalent to the uniform measure on Ω
The Fundamental Theorems of Asset Pricing in Discrete Models

A portfolio \(\pi \in \mathbb{R}^{D+1} \) is called an arbitrage if

1. **No cost:** \(\pi \cdot f \leq 0 \)
2. **No losses:** \(F\pi \geq 0 \)
3. **Sometimes gain:** \(F\pi \neq 0 \)

Theorem

The model \((f, F)\) admits no arbitrage if and only if there exists probabilities \(p^*_k > 0 \) such that \(f = p^* \cdot F \), or \(f_d = \sum_{k=1}^{N} p^*_k F_d(\omega_k) \)

Remark

No prior probability needed

The “martingale” measure has full support

or is equivalent to the uniform measure on \(\Omega \)
The Fundamental Theorems of Asset Pricing in Discrete Models

- A portfolio \(\pi \in \mathbb{R}^{D+1} \) is called an arbitrage if
 1. no cost: \(\pi \cdot f \leq 0 \)
 2. no losses: \(F\pi \geq 0 \)
 3. sometimes gain: \(F\pi \neq 0 \)

Theorem

The model \((f, F)\) admits no arbitrage if and only if there exists probabilities \(p_k^* > 0 \) such that \(f = p^* \cdot F \), or

\[
 f_d = \sum_{k=1}^{N} p_k^* F_d(\omega_k)
\]

Remark

- no prior probability needed
A portfolio \(\pi \in \mathbb{R}^{D+1} \) is called an arbitrage if

1. no cost: \(\pi \cdot f \leq 0 \)
2. no losses: \(F_\pi \geq 0 \)
3. sometimes gain: \(F_\pi \neq 0 \)

Theorem

The model \((f, F)\) admits no arbitrage if and only if there exists probabilities \(p_k^* > 0 \) such that \(f = p^* \cdot F \), or \(f_d = \sum_{k=1}^{N} p_k^* F_d(\omega_k) \)

Remark

- no prior probability needed
- the "martingale" measure has full support
The Fundamental Theorems of Asset Pricing in Discrete Models

A portfolio $\pi \in \mathbb{R}^{D+1}$ is called an arbitrage if
1. no cost: $\pi \cdot f \leq 0$
2. no losses: $F\pi \geq 0$
3. sometimes gain: $F\pi \neq 0$

Theorem

The model (f, F) admits no arbitrage if and only if there exists probabilities $p^*_k > 0$ such that $f = p^* \cdot F$, or $f_d = \sum_{k=1}^{N} p^*_k F_d(\omega_k)$

Remark

- no prior probability needed
- the “martingale” measure has full support
- or is equivalent to the uniform measure on Ω
The Fundamental Theorems of Asset Pricing in Discrete Models

A portfolio \(\pi \in \mathbb{R}^{D+1} \) is called an arbitrage if

1. no cost: \(\pi \cdot f \leq 0 \)
2. no losses: \(F\pi \geq 0 \)
3. sometimes gain: \(F\pi \neq 0 \)

Theorem

The model \((f, F)\) admits no arbitrage if and only if there exists probabilities \(p^*_k > 0 \) such that \(f = p^* \cdot F \), or \(f_d = \sum_{k=1}^{N} p^*_k F_d(\omega_k) \).

Remark

- no prior probability needed
- the “martingale” measure has full support
- or is equivalent to the uniform measure on \(\Omega \)
A portfolio \(\pi \in \mathbb{R}^{D+1} \) is called an arbitrage if

1. no cost: \(\pi \cdot f \leq 0 \)
2. no losses: \(F\pi \geq 0 \)
3. sometimes gain: \(F\pi \neq 0 \)

Theorem

The model \((f, F)\) admits no arbitrage if and only if there exists probabilities \(p^*_k > 0 \) such that \(f = p^* \cdot F \), or \(f_d = \sum_{k=1}^{N} p^*_k F_d(\omega_k) \).

Remark

- no prior probability needed
- the “martingale” measure has full support
- or is equivalent to the uniform measure on \(\Omega \)
A portfolio \(\pi \in \mathbb{R}^{D+1} \) is called an arbitrage if

1. no cost: \(\pi \cdot f \leq 0 \)
2. no losses: \(F\pi \geq 0 \)
3. sometimes gain: \(F\pi \neq 0 \)

Theorem

The model \((f, F)\) admits no arbitrage if and only if there exists probabilities \(p_k^* > 0 \) such that \(f = p^* \cdot F \), or \(f_d = \sum_{k=1}^{N} p_k^* F_d(\omega_k) \)

Remark

- no prior probability needed
- the “martingale” measure has full support
- or is equivalent to the uniform measure on \(\Omega \)
The Topological Model of Finance

- (Ω, d) Polish space, \mathcal{F} Borel sets
- $D + 1$ assets $d = 0, \ldots, D$, price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d : (\Omega, d) \to \mathbb{R}_+$ continuous

Remark

Continuity not restrictive from modeling perspective, F_d projections, thus continuous.
Model does not work with measurability.
No strictly positive functionals on $\mathcal{B}(\Omega, d)$
Lusin: measurability is close to continuity.
(Ω, d) Polish space, \(\mathcal{F} \) Borel sets

\(D + 1 \) assets \(d = 0, \ldots, D \), price today \(f_d \geq 0 \)

uncertain payoff tomorrow \(F_d : (\Omega, d) \rightarrow \mathbb{R}_+ \) continuous

Remark

Continuity not restrictive from modeling perspective.
The Topological Model of Finance

- \((\Omega, d)\) Polish space, \(\mathcal{F}\) Borel sets
- \(D + 1\) assets \(d = 0, \ldots, D\), price today \(f_d \geq 0\)
- uncertain payoff tomorrow \(F_d : (\Omega, d) \rightarrow \mathbb{R}_+\) continuous

Remark

- Continuity not restrictive from modeling perspective
- Frequently \(F_d\) projections, thus continuous
- No strictly positive functionals on \(\mathcal{B}(\Omega, d)\)
- Lusin: measurability is close to continuity
The Topological Model of Finance

- \((\Omega, d)\) Polish space, \(\mathcal{F}\) Borel sets
- \(D + 1\) assets \(d = 0, \ldots, D\), price today \(f_d \geq 0\)
- uncertain payoff tomorrow \(F_d : (\Omega, d) \to \mathbb{R}_+\) continuous

Remark

- Continuity not restrictive from modeling perspective
- frequently \(F_d\) projections, thus continuous
- Model does not work with measurability
- No strictly positive functionals on \(B(\Omega, d)\)
- Lusin: measurability is close to continuity
The Topological Model of Finance

- \((\Omega, d)\) Polish space, \(\mathcal{F}\) Borel sets
- \(D + 1\) assets \(d = 0, \ldots, D\), price today \(f_d \geq 0\)
- uncertain payoff tomorrow \(F_d : (\Omega, d) \rightarrow \mathbb{R}_+\) continuous

Remark

- *Continuity not restrictive from modeling perspective*
- frequently \(F_d\) projections, thus continuous
- Model does not work with measurability
- No strictly positive functionals on \(B(\Omega, d)\)
- Lusin: measurability is close to continuity
The Topological Model of Finance

- (Ω, d) Polish space, \mathcal{F} Borel sets
- $D + 1$ assets $d = 0, \ldots, D$, price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d : (\Omega, d) \rightarrow \mathbb{R}_+$ continuous

Remark

- *Continuity not restrictive from modeling perspective*
- *frequently F_d projections, thus continuous*
 - Model does not work with measurability
 - No strictly positive functionals on $B(\Omega, d)$
 - Lusin: measurability is close to continuity
The Topological Model of Finance

- (Ω, d) Polish space, \mathcal{F} Borel sets
- $D + 1$ assets $d = 0, \ldots, D$, price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d : (\Omega, d) \rightarrow \mathbb{R}_+$ continuous

Remark

- *Continuity not restrictive from modeling perspective*
- *frequently F_d projections, thus continuous*
- *Model does not work with measurability*
- *No strictly positive functionals on $B(\Omega, d)$*
- *Lusin: measurability is close to continuity*
The Topological Model of Finance

- (Ω, d) Polish space, \mathcal{F} Borel sets
- $D + 1$ assets $d = 0, \ldots, D$, price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d : (\Omega, d) \rightarrow \mathbb{R}_+$ continuous

Remark

- Continuity not restrictive from modeling perspective
- frequently F_d projections, thus continuous
- Model does not work with measurability
- No strictly positive functionals on $B(\Omega, d)$
- Lusin: measurability is close to continuity
The Topological Model of Finance

- (Ω, d) Polish space, \mathcal{F} Borel sets
- $D + 1$ assets $d = 0, \ldots, D$, price today $f_d \geq 0$
- uncertain payoff tomorrow $F_d : (\Omega, d) \rightarrow \mathbb{R}_+$ continuous

Remark

- Continuity not restrictive from modeling perspective
- frequently F_d projections, thus continuous
- Model does not work with measurability
- No strictly positive functionals on $B(\Omega, d)$
- Lusin: measurability is close to continuity
Definition

A portfolio $\pi \in \mathbb{R}^{D+1}$ is called an arbitrage if

1. no cost: $\pi \cdot f \leq 0$
2. no losses: $F(\omega)\pi \geq 0$ for all $\omega \in \Omega$
3. sometimes gain: $F\pi(\omega) \neq 0$ for some $\omega \in \Omega$

Remark

weak definition of arbitrage

with continuity not so weak

an arbitrage generates gains on an open set
No arbitrage

Definition

A portfolio $\pi \in \mathbb{R}^{D+1}$ is called an arbitrage if

1. no cost: $\pi \cdot f \leq 0$
2. no losses: $F(\omega)\pi \geq 0$ for all $\omega \in \Omega$
3. sometimes gain: $F\pi(\omega) \neq 0$ for some $\omega \in \Omega$

Remark

A weak definition of arbitrage with continuity is not considered so weak because an arbitrage generates gains on an open set.
No arbitrage

Definition

A portfolio \(\pi \in \mathbb{R}^{D+1} \) is called an arbitrage if

1. no cost: \(\pi \cdot f \leq 0 \)
2. no losses: \(F(\omega)\pi \geq 0 \) for all \(\omega \in \Omega \)
3. sometimes gain: \(F\pi(\omega) \neq 0 \) for some \(\omega \in \Omega \)

Remark

- Weak definition of arbitrage
No arbitrage

Definition

A portfolio $\pi \in \mathbb{R}^{D+1}$ is called an arbitrage if

1. no cost: $\pi \cdot f \leq 0$
2. no losses: $F(\omega)\pi \geq 0$ for all $\omega \in \Omega$
3. sometimes gain: $F\pi(\omega) \neq 0$ for some $\omega \in \Omega$

Remark

- weak definition of arbitrage
- with continuity not so weak
- arbitrage generates gains on an open set
No arbitrage

Definition

A portfolio $\pi \in \mathbb{R}^{D+1}$ is called an arbitrage if

1. no cost: $\pi \cdot f \leq 0$
2. no losses: $F(\omega)\pi \geq 0$ for all $\omega \in \Omega$
3. sometimes gain: $F\pi(\omega) \neq 0$ for some $\omega \in \Omega$

Remark

- weak definition of arbitrage
- with continuity not so weak
- an arbitrage generates gains on an open set
No arbitrage

Definition

A portfolio \(\pi \in \mathbb{R}^{D+1} \) is called an arbitrage if

1. no cost: \(\pi \cdot f \leq 0 \)
2. no losses: \(F(\omega)\pi \geq 0 \) for all \(\omega \in \Omega \)
3. sometimes gain: \(F\pi(\omega) \neq 0 \) for some \(\omega \in \Omega \)

Remark

- *weak definition of arbitrage*
- *with continuity not so weak*
- *an arbitrage generates gains on an open set*
No arbitrage

Definition

A portfolio $\pi \in \mathbb{R}^{D+1}$ is called an arbitrage if

1. no cost: $\pi \cdot f \leq 0$
2. no losses: $F(\omega)\pi \geq 0$ for all $\omega \in \Omega$
3. sometimes gain: $F\pi(\omega) \neq 0$ for some $\omega \in \Omega$

Remark

- weak definition of arbitrage
- with continuity not so weak
- an arbitrage generates gains on an open set
No arbitrage

Definition

A portfolio $\pi \in \mathbb{R}^{D+1}$ is called an arbitrage if

1. no cost: $\pi \cdot f \leq 0$
2. no losses: $F(\omega)\pi \geq 0$ for all $\omega \in \Omega$
3. sometimes gain: $F\pi(\omega) \neq 0$ for some $\omega \in \Omega$

Remark

- *weak definition of arbitrage*
- *with continuity not so weak*
- *an arbitrage generates gains on an open set*
A probability P^* on (Ω, \mathcal{F}) is called a martingale measure if $f_d = E^{P^*} F_d$ for $d = 1, \ldots, D$. If P^* has full support, it is called a full support martingale measure.
The Fundamental Theorem of Asset Pricing

Theorem

The market \((f, F)\) admits no arbitrage if and only if there exists a full support martingale measure.

Remark

- Full Support measures exist on Polish spaces.
- Integrability of \(F_t\) comes for free (as in classical case).
- Full support is one natural generalization of the discrete case.
The Fundamental Theorem of Asset Pricing

Theorem

The market \((f, F)\) admits no arbitrage if and only if there exists a full support martingale measure.

Remark

- Full Support measures exist on Polish spaces
- Integrability of \(F_d\) comes for free (as in classical case)
- Full support is one natural generalization of the discrete case
The Fundamental Theorem of Asset Pricing

Theorem

The market \((f, F)\) admits no arbitrage if and only if there exists a full support martingale measure.

Remark

- Full Support measures exist on Polish spaces
- Integrability of \(F_d\) comes for free (as in classical case)
- Full support is one natural generalization of the discrete case
Theorem

The market \((f, F)\) admits no arbitrage if and only if there exists a **full support martingale measure**.

Remark

- **Full Support measures exist on Polish spaces**
- **integrability of** \(F_d\) **comes for free (as in classical case)**
- **full support is one natural generalization of the discrete case**
The Fundamental Theorem of Asset Pricing

Theorem

The market \((f, F)\) admits no arbitrage if and only if there exists a **full support martingale measure**.

Remark

- Full Support measures exist on Polish spaces
- Integrability of \(F_d\) comes for free (as in classical case)
- Full support is one natural generalization of the discrete case
Economic Equilibrium and No Arbitrage

- Ω compact

- Economic agent = complete, transitive, continuous relation \succeq on $C(\Omega, d)$. \succ is strictly monotone: if $X \in \mathcal{X}$ satisfies $X \geq 0$ and $X \neq 0$, then for all $Z \in C(\Omega, d)$, we have $Z + X \succ Z$.

- Marketed subspace

 $$M := \langle S_0, S_1, \ldots, S_D \rangle = \left\{ \pi \cdot S; \pi \in \mathbb{R}^{D+1} \right\} .$$

- Under no arbitrage, the price functional

 $$\phi : M \to \mathbb{R}$$

 given by $\phi (\pi \cdot S) = \pi \cdot f$ is well-defined.
Economic Equilibrium and No Arbitrage

- \(\Omega \) compact
- Economic agent = complete, transitive, continuous relation \(\succeq \) on \(C(\Omega, d) \). \(\succ \) is strictly monotone: if \(X \in \mathcal{X} \) satisfies \(X \geq 0 \) and \(X \neq 0 \), then for all \(Z \in C(\Omega, d) \), we have \(Z + X \succ Z \).
- Marketed subspace

\[
M := \langle S_0, S_1, \ldots, S_D \rangle = \left\{ \pi \cdot S; \pi \in \mathbb{R}^{D+1} \right\}.
\]
- Under no arbitrage, the price functional

\[
\phi : M \to \mathbb{R}
\]

given by \(\phi(\pi \cdot S) = \pi \cdot f \) is well-defined.
Economic Equilibrium and No Arbitrage

- Ω compact
- Economic agent $= \text{complete, transitive, continuous relation } \succeq \text{ on } C(\Omega, d)$. \succ is strictly monotone: if $X \in \mathcal{K}$ satisfies $X \geq 0$ and $X \neq 0$, then for all $Z \in C(\Omega, d)$, we have $Z + X \succ Z$.
- Marketed subspace

$$M := \langle S_0, S_1, \ldots, S_D \rangle = \left\{ \pi \cdot S; \pi \in \mathbb{R}^{D+1} \right\}.$$

- Under no arbitrage, the price functional

$$\phi : M \to \mathbb{R}$$

given by $\phi(\pi \cdot S) = \pi \cdot f$ is well-defined.
Economic Equilibrium and No Arbitrage

- Ω compact
- Economic agent \equiv complete, transitive, continuous relation \succeq on $C(\Omega, d)$. \succ is strictly monotone: if $X \in \mathcal{X}$ satisfies $X \geq 0$ and $X \neq 0$, then for all $Z \in C(\Omega, d)$, we have $Z + X \succ Z$.
- Marketed subspace

$$M := \langle S_0, S_1, \ldots, S_D \rangle = \left\{ \pi \cdot S; \pi \in \mathbb{R}^{D+1} \right\}.$$

- Under no arbitrage, the price functional

$$\phi : M \rightarrow \mathbb{R}$$

given by $\phi(\pi \cdot S) = \pi \cdot f$ is well–defined.
Definition

We say that the market \((f, S)\) is viable if there exists an agent \(\succeq\) such that no trade is optimal given the budget 0: for all \(\pi \in \mathbb{R}^{D+1}\) with \(\pi \cdot f \leq 0\) we have \(0 \succeq \pi \cdot S\).

Theorem

The market \((f, S)\) is viable if and only if there exists a strictly positive linear functional \(\Phi : C(\Omega, d) \rightarrow \mathbb{R}\) such that \(\Phi(X) = \phi(X)\) for \(X \in M\).

Remark

\(\Phi\) continuous \((C(\Omega, d)\) Banach lattice).
Economic Equilibrium and No Arbitrage

Definition

We say that the market \((f, S)\) is viable if there exists an agent \(\succeq\) such that no trade is optimal given the budget 0: for all \(\pi \in \mathbb{R}^{D+1}\) with \(\pi \cdot f \leq 0\) we have \(0 \succeq \pi \cdot S\).

Theorem

The market \((f, S)\) is viable if and only if there exists a strictly positive linear functional \(\Phi : C(\Omega, d) \to \mathbb{R}\) such that \(\Phi(X) = \phi(X)\) for \(X \in M\).

Remark

\(\Phi\) continuous (\(C(\Omega, d)\) Banach lattice).
Finance without Viability

Economic Equilibrium and No Arbitrage

Definition
We say that the market \((f, S)\) is viable if there exists an agent \(\succeq\) such that no trade is optimal given the budget 0: for all \(\pi \in \mathbb{R}^{D+1}\) with \(\pi \cdot f \leq 0\) we have \(0 \succeq \pi \cdot S\).

Theorem
The market \((f, S)\) is viable if and only if there exists a strictly positive linear functional \(\Phi : C(\Omega, d) \rightarrow \mathbb{R}\) such that \(\Phi(X) = \phi(X)\) for \(X \in M\).

Remark
\(\Phi\) continuous \((C(\Omega, d) \text{ Banach lattice})\).
No Arbitrage Prices

Definition
A derivative or (contingent) claim is a continuous mapping $H : \Omega \to \mathbb{R}_+$. $h \geq 0$ is called a no arbitrage price for H if the extended market with $D + 2$ assets and $f_{D+1} = h$ and $S_{D+1} = H$ admits no arbitrage opportunities.

Corollary
h is a no arbitrage price for a claim H if and only if

$$h = \int H \, dP$$

for a full support martingale measure P.
No Arbitrage Prices

Definition

A derivative or (contingent) claim is a continuous mapping $H : \Omega \rightarrow \mathbb{R}_+$. $h \geq 0$ is called a no arbitrage price for H if the extended market with $D + 2$ assets and $f_{D+1} = h$ and $S_{D+1} = H$ admits no arbitrage opportunities.

Corollary

h is a no arbitrage price for a claim H if and only if

$$h = \int H \, dP$$

for a full support martingale measure P.
A portfolio π is called a superhedge for the claim H if $\pi \cdot S(\Omega) \geq H(\omega)$ holds true for all $\omega \in \Omega$.

Find the cheapest superhedge for the claim H; minimize $\pi \cdot f$ over $\pi \in \mathbb{R}^{D+1}$ subject to $\pi \cdot S(\Omega) \geq H(\omega)$ for all $\omega \in \Omega$.

Superhedging and Linear Programming

Definition
A portfolio π is called a superhedge for the claim H if $\pi \cdot S(\Omega) \geq H(\omega)$ holds true for all $\omega \in \Omega$.

Problem (Problem SH)

*Find the cheapest superhedge for the claim H; minimize $\pi \cdot f$ over $\pi \in \mathbb{R}^{D+1}$ subject to $\pi \cdot S(\Omega) \geq H(\omega)$ for all $\omega \in \Omega$.***
Embedding into Linear Programming

Linear Programming in Infinite–Dimensional Spaces

- Two dual pairs of vector spaces
- here $X = Y = \mathbb{R}^{D+1}$, $Z = C(\Omega, d)$, $W = ca(\Omega, \mathcal{F})$
- linear constraint $B : \mathbb{R}^{D+1} \to C(\Omega, d)$, $B\pi = \pi \cdot F$
- Adjoint mapping $B^* : ca(\Omega, \mathcal{F}) \to \mathbb{R}^{D+1}$, $B^* \mu = \int Sd\mu$
Embedding into Linear Programming

Linear Programming in Infinite–Dimensional Spaces

- Two dual pairs of vector spaces
- here $X = Y = \mathbb{R}^{D+1}$, $Z = C(\Omega, d)$, $W = ca(\Omega, \mathcal{F})$
- linear constraint $B : \mathbb{R}^{D+1} \to C(\Omega, d)$, $B\pi = \pi \cdot F$
- Adjoint mapping $B^* : ca(\Omega, \mathcal{F}) \to \mathbb{R}^{D+1}$, $B^* \mu = \int Sd\mu$
Embedding into Linear Programming

Linear Programming in Infinite–Dimensional Spaces

- Two dual pairs of vector spaces
- here $X = Y = \mathbb{R}^{D+1}$, $Z = C(\Omega, d)$, $W = ca(\Omega, F)$
- linear constraint $B : \mathbb{R}^{D+1} \rightarrow C(\Omega, d)$, $B\pi = \pi \cdot F$
- Adjoint mapping $B^* : ca(\Omega, F) \rightarrow \mathbb{R}^{D+1}$, $B^* \mu = \int S d\mu$
Embedding into Linear Programming

Linear Programming in Infinite–Dimensional Spaces

- Two dual pairs of vector spaces
 - here $X = Y = \mathbb{R}^{D+1}$, $Z = C(\Omega, d)$, $W = ca(\Omega, \mathcal{F})$
- linear constraint $B : \mathbb{R}^{D+1} \rightarrow C(\Omega, d)$, $B\pi = \pi \cdot F$
- Adjoint mapping $B^* : ca(\Omega, \mathcal{F}) \rightarrow \mathbb{R}^{D+1}$, $B^* \mu = \int S d\mu$
Linear Programming in Infinite-Dimensional Spaces

- Two dual pairs of vector spaces
- Here $X = Y = \mathbb{R}^{D+1}$, $Z = C(\Omega, d)$, $W = ca(\Omega, \mathcal{F})$
- Linear constraint $B : \mathbb{R}^{D+1} \rightarrow C(\Omega, d)$, $B\pi = \pi \cdot F$
- Adjoint mapping $B^* : ca(\Omega, \mathcal{F}) \rightarrow \mathbb{R}^{D+1}$, $B^* \mu = \int Sd\mu$
no sign constraints on portfolio: equality in the dual program,
\[B^* \mu = f \]

\[\int S_d d\mu = f_d, \quad d = 0, \ldots, D. \]

\(d = 0 \): probability measure
\(d > 0 \): martingale measure

Problem (DSH)

Minimize the prices \(\int_\Omega H d\mu \) over all martingale measures \(\mu \in \text{ca}(\Omega, \mathcal{F}) \).
no sign constraints on portfolio: equality in the dual program, \(B^* \mu = f \)

\[
\int S_d d\mu = f_d, \quad d = 0, \ldots, D.
\]

- \(d = 0 \): probability measure
- \(d > 0 \): martingale measure

Problem (DSH)

Minimize the prices \(\int_{\Omega} H d\mu \) over all martingale measures \(\mu \in ca(\Omega, \mathcal{F}) \).
no sign constraints on portfolio: equality in the dual program,
\[B^* \mu = f \]

\[\int S_d d\mu = f_d, d = 0, \ldots, D. \]

\(d = 0 \): probability measure
\(d > 0 \): martingale measure

Problem (DSH)

Minimize the prices \(\int_\Omega H d\mu \) over all martingale measures \(\mu \in \text{ca}(\Omega, \mathcal{F}) \).
Embedding into Linear Programming

- no sign constraints on portfolio: equality in the dual program,
 \(B^\ast \mu = f \)

\[
\int S_d d\mu = f_d, \quad d = 0, \ldots, D.
\]

- \(d = 0 \): probability measure
- \(d > 0 \): martingale measure

Problem (DSH)

Minimize the prices \(\int_H d\mu \) over all martingale measures \(\mu \in \text{ca}(\Omega, \mathcal{F}) \).
Embedding into Linear Programming

- no sign constraints on portfolio: equality in the dual program, $B^* \mu = f$

$$\int S_d d\mu = f_d, \quad d = 0, \ldots, D.$$

- $d = 0$: probability measure
- $d > 0$: martingale measure

Problem (DSH)

Minimize the prices $\int_{\Omega} H d\mu$ *over all martingale measures* $\mu \in \text{ca}(\Omega, \mathcal{F})$.
Embedding into Linear Programming

Theorem

1. The linear programs SH and DSH are dual to each other. Both problems have the same value.

2. Both programs have optimal solutions; in particular, there exists a superhedge $\pi^* \in \mathbb{R}^{D+1}$ and a martingale measure P^* such that

 $$\pi^* \cdot f = \int HdP^*. $$

Remark

Full support martingale measures dense in the set of all martingale measures. Hence, superhedging value equal to upper bound of all no arbitrage prices.
The linear programs SH and DSH are dual to each other. Both problems have the same value.

Both programs have optimal solutions; in particular, there exists a superhedge $\pi^* \in \mathbb{R}^{D+1}$ and a martingale measure P^* such that

$$\pi^* \cdot f = \int HdP^*.$$

Remark

Full support martingale measures dense in the set of all martingale measures.
Embedding into Linear Programming

Theorem

1. **The linear programs **SH** and **DSH** are dual to each other. Both problems have the same value.**

2. **Both programs have optimal solutions; in particular, there exists a superhedge** $\pi^* \in \mathbb{R}^{D+1}$ **and a martingale measure** P^* **such that**

 \[\pi^* \cdot f = \int HdP^*. \]

Remark

- Full support martingale measures dense in the set of all martingale measures.
- Hence, superhedging value equal to upper bound of all no-arbitrage prices.
Embedding into Linear Programming

Theorem

1. The linear programs SH and DSH are dual to each other. Both problems have the same value.

2. Both programs have optimal solutions; in particular, there exists a superhedge $\pi^* \in \mathbb{R}^{D+1}$ and a martingale measure P^* such that

$$\pi^* \cdot f = \int H dP^*.$$

Remark

- Full support martingale measures dense in the set of all martingale measures.
- Hence, superhedging value equal to upper bound of all no arbitrage prices.
Embedding into Linear Programming

Theorem

1. The linear programs SH and DSH are dual to each other. Both problems have the same value.

2. Both programs have optimal solutions; in particular, there exists a superhedge \(\pi^* \in \mathbb{R}^{D+1} \) and a martingale measure \(P^* \) such that

\[
\pi^* \cdot f = \int H dP^*.
\]

Remark

- Full support martingale measures dense in the set of all martingale measures.
- Hence, superhedging value equal to upper bound of all no arbitrage prices
Embedding into Linear Programming

Theorem

1. The linear programs SH and DSH are dual to each other. Both problems have the same value.

2. Both programs have optimal solutions; in particular, there exists a superhedge $\pi^* \in \mathbb{R}^{D+1}$ and a martingale measure P^* such that

$$\pi^* \cdot f = \int HdP^*.$$

Remark

- Full support martingale measures dense in the set of all martingale measures.

- Hence, superhedging value equal to upper bound of all no arbitrage prices