Corrigenda: Stochastic calculus with infinitesimals

(Lecture Notes in Mathematics, vol. 2067, Springer 2013)

Frederik S. Herzberg^{*}

Page xviii, lines 13–14: characterization of a.s. convergence [60, Theorem <u>7.1</u>]

Page 1, line -6: natural number other than zero

Page 2, line 8: equivalence classes of sequences of real numbers¹

Page 23–26, Theorem 3.7 and proof:

Theorem 3.7 (Uniqueness of the Itô decomposition). Let $\mu_1, \mu_2, \sigma_1, \sigma_2$ be \mathcal{F} -adapted processes. Suppose for all $t \in \mathbb{T} \setminus \{1\}$, we have

$$\mu_1(t)dt + \sigma_1(t)dW(t) = \mu_2(t)dt + \sigma_2(t)dW(t) + R(t+dt)(dt)^{1+p}$$

for some constant $p \gg 0$ and a random variable R(t + dt) such that $E\left[\int_0^1 R(t + dt)^2 dt\right]$ is limited.² Then for *P*-a.e. $\omega \in \Omega$ and ν -a.e. $t \in \mathbb{T} \setminus \{1\}$,

$$\sigma_1(t)(\omega) \simeq \sigma_2(t)(\omega), \qquad \mu_1(t)(\omega) \simeq \mu_2(t)(\omega).$$

Proof. Put $\mu = \mu_1 - \mu_2$ and $\sigma = \sigma_2 - \sigma_1$, so that for all $t \in \mathbb{T} \setminus \{1\}$,

$$\mu(t)dt - \sigma(t)dW(t) = R(t + dt)(dt)^{1+p}$$

Applying conditional expectations to our assumption $\mu(t)dt = \sigma(t)dW(t) + R(t+dt)(dt)^{1+p}$, we find (using the \mathcal{F}_t -linearity of the operator

^{*}Center for Mathematical Economics, Bielefeld Universiy, Universitätsstraße 25, D-33615 Bielefeld, Germany. *E-mail address:* fherzberg@uni-bielefeld.de

[†]Munich Center for Mathematical Philosophy, Ludwig Maximilian University of Munich, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany. *E-mail address:* frederik.herzberg@lrz.uni-muenchen.de

¹I thank Professor Mikhail Katz for spotting this omission.

²We denote this random variable by R(t + dt) rather than R(t) because it is \mathcal{F}_{t+dt} -measurable, but in general not \mathcal{F}_t -measurable.

$$E\left[\cdot | \mathcal{F}_{t}\right]\right)$$

$$\mu(t)dt = E\left[\mu(t)dt | \mathcal{F}_{t}\right] = \sigma(t)\underbrace{E\left[dW(t) | \mathcal{F}_{t}\right]}_{=0}$$

$$+E\left[R\left(t+dt\right) | \mathcal{F}_{t}\right](dt)^{1+p}$$

so $\mu(t) = E[R(t + dt)|\mathcal{F}_t](dt)^p$. Therefore,

$$\mu(t)^{2} = E \left[R \left(t + \mathrm{d}t \right) | \mathcal{F}_{t} \right]^{2} (\mathrm{d}t)^{2p}$$

and thus, by Jensen's inequality for conditional expectations,

$$\mu(t)^2 \le E\left[\left.R\left(t+\mathrm{d}t\right)^2\right|\,\mathcal{F}_t\right]\,(\mathrm{d}t)^{2p}.$$

It follows that

$$E\left[\int_{0}^{1}\mu(t)^{2}\mathrm{d}t\right] \leq E\left[\int_{0}^{1}E\left[R\left(t+\mathrm{d}t\right)^{2}\right|\mathcal{F}_{t}\right]\mathrm{d}t\right] (\mathrm{d}t)^{2p}$$

$$= \int_{0}^{1}E\left[E\left[R\left(t+\mathrm{d}t\right)^{2}\right|\mathcal{F}_{t}\right]\right] (\mathrm{d}t)^{1+2p}$$

$$= \int_{0}^{1}E\left[R\left(t+\mathrm{d}t\right)^{2}\right] (\mathrm{d}t)^{1+2p}$$

$$= E\left[\int_{0}^{1}R\left(t+\mathrm{d}t\right)^{2}\mathrm{d}t\right] (\mathrm{d}t)^{2p}$$

Since $E\left[\int_0^1 R(t+dt)^2 dt\right]$ was assumed to be limited, we deduce $E\left[\int_0^1 \mu(t)^2 dt\right] = \mathcal{O}\left((dt)^{2p}\right) \simeq 0$, which by the radically elementary Lebesgue Theorem means $\mu(t)(\omega) \simeq 0$ for *P*-a.e. $\omega \in \Omega$ and ν -a.e. *t*.

Moreover, a binomial expansion based on $\mu(t)dt - R(t+dt)(dt)^{1+p} = \sigma(t)dW(t)$ yields, when combined with $|dW(t)|^2 = dt$, the equation

$$\sigma(t)^{2} dt = \mu(t)^{2} (dt)^{2} - 2R (t + dt) \mu(t) (dt)^{2+p} + R (t + dt)^{2} (dt)^{2+2p},$$

which after taking expectations and applying the Cauchy-Schwarz inequality leads on to

$$E \left[\sigma(t)^{2} \right] dt \leq E \left[\mu(t)^{2} \right] (dt)^{2} + E \left[R \left(t + dt \right)^{2} \right] (dt)^{2+2p} + 2E \left[R \left(t + dt \right)^{2} \right]^{1/2} E \left[\mu(t)^{2} \right]^{1/2} (dt)^{2+p}$$

Therefore,

$$E\left[\int_{0}^{s} \sigma(t)^{2} dt\right] = \int_{0}^{s} E\left[\sigma(t)^{2}\right] dt$$

$$= \int_{0}^{s} E\left[\mu(t)^{2}\right] (dt)^{2} + \int_{0}^{s} E\left[R\left(t + dt\right)^{2}\right] (dt)^{2+2p}$$

$$+2 \int_{0}^{s} E\left[R\left(t + dt\right)^{2}\right]^{1/2} E\left[\mu(t)^{2}\right]^{1/2} (dt)^{2+p}$$

$$\leq E\left[\int_{0}^{1} \mu(t)^{2} dt\right] dt + E\left[\int_{0}^{1} R(t + dt)^{2} dt\right] (dt)^{1+2p}$$

$$+2 \int_{0}^{1} E\left[R\left(t + dt\right)^{2}\right]^{1/2} E\left[\mu(t)^{2}\right]^{1/2} (dt)^{2+p}.$$
 (1)

The third and last addend can be simplified as follows. First, because \int_0^1 is just short hand for $\sum_{t \in \mathbb{T} \setminus \{1\}}$, we have the (rather "wasteful") estimate

$$\int_{0}^{1} E\left[R\left(t+dt\right)^{2}\right]^{1/2} E\left[\mu(t)^{2}\right]^{1/2} (dt)^{2}$$

$$\leq \left(\int_{0}^{1} E\left[R\left(t+dt\right)^{2}\right]^{1/2} dt\right) \left(\int_{0}^{1} E\left[\mu(t)^{2}\right]^{1/2} dt\right)$$

Then, using either Jensen's inequality or the Cauchy–Schwarz inequality for the expectation operator $\int_0^1 \cdot dt$ (which maps each $f : \mathbb{T} \to \mathbb{R}$ to $\frac{1}{N} \sum_{k < N} f(k/N)$), one can further estimate this term:

$$\left(\int_{0}^{1} E\left[R\left(t+dt\right)^{2}\right]^{1/2} dt\right) \left(\int_{0}^{1} E\left[\mu(t)^{2}\right]^{1/2} dt\right)$$

$$= \left(\int_{0}^{1} E\left[R\left(t+dt\right)^{2}\right]^{1/2} dt\right) \left(\int_{0}^{1} E\left[\mu(t)^{2}\right]^{1/2} dt\right)$$

$$\leq \left(\int_{0}^{1} E\left[R\left(t+dt\right)^{2}\right] dt\right)^{1/2} \left(\int_{0}^{1} E\left[\mu(t)^{2}\right] dt\right)^{1/2}$$

$$\leq E\left[\int_{0}^{1} R\left(t+dt\right)^{2} dt\right]^{1/2} E\left[\int_{0}^{1} \mu(t)^{2} dt\right]^{1/2}$$
(2)

Now $E\left[\int_0^1 R(t+dt)^2 dt\right]$ is limited by assumption, and $E\left[\int_0^1 \mu(t)^2 dt\right]$ is even $O\left((dt)^{2p}\right)$, as we have seen before. Hence, the right-hand side of estimate (2) is $O\left((dt)^{3p}\right)$, whence the third and last addend in estimate (1) is actually $O\left((dt)^{3p}\right)$.

However, the fact that $E\left[\int_0^1 \mu(t)^2 dt\right]$ is infinitesimal (shown above) and the assumption of $E\left[\int_0^1 R(t+dt)^2 dt\right]$ being limited also jointly imply that the first two addends in estimate (1) are infinitesimal (to be more precise, they are $O\left((dt)^{2\wedge(1+2p)}\right)$). Thus, estimate (1) actually shows that

$$E\left[\int_0^s \sigma(t)^2 \mathrm{d}t\right] = \mathcal{O}\left((\mathrm{d}t)^{2\wedge(1+2p)\wedge 3p}\right) \simeq 0.$$

(In applications, one will typically have $p \leq 1/2$, so the exponent is just 3p.) This entails that for *P*-a.e. $\omega \in \Omega$ and ν -a.e. $t, \sigma(t)(\omega) \simeq 0$ (by the radically elementary Lebesgue Theorem).