On this web-page (and its sub-pages) results for all octal games of notation 0.???, 4.??? -- here a ? indicates any octal digit 0-7 -- , 0.61111...., Grundys-Game and 0.0n7 with n <= 25 -- this last notation indicates you must always reduce a heap by n tokens and 0, 1 or 2 heap(s) may remain -- are given.
A compendium containing all 2*83=1024 at most 3 place octal games to find or match its standard form.
Next a listing of all the 167 standard forms to look up basic attributes and the same listing sorted by their sgv-sequences.
In each line of this listing presents from left to right a game-name, its the period- and preperiod lengtn, its the maximum sg-value, its number of lost postions and the first 40 values of its sgv-sequence. If the sum of period and preperiod length of a game is larger than 250 it is left blank. In those 93 cases the game is called non-trivial and it is listed in the following table.
Game | sgv-sequence | type | bitstring | rare | last | max n | max G | index | lost | ultimate | depth | period | preperiod | except | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
.004 | 0000011112220333... | 0 | 0001111111111... | 184854 | 15869181 | 226 | 6279 | 50820532 | 32 | 827066 | 11905099 | ||||
.005 | 0001011222033411... | 1 | 1110101001011... | 148659 | 134182835 | 227 | 1059 | 3022366 | - | - | 3713078 | ||||
.006 | 0000111222033111... | 0 | 0000000101111... | 487832 | 67104903 | 226 | 6580 | 26683203 | 40 | 117632 | 16433620 | ||||
.007 | 0001112203311104... | 0 | 0001110111111... | 22476 | 5029983 | 228 | 1689 | 248902927 | 37 | 16170 | 5218954 | ||||
.014 | 0010010122123401... | 0 | 0111111111111... | 2037 | 64126 | 231 | 365 | 169860345 | 13 | 342 | 126438 | ||||
.015 | 0011010212230142... | 0 | 0111111111111... | 237 | 11973 | 235 | 101 | 2350397235 | 7 | 40 | 27036 | ||||
.016 | 0010122201014422... | 0 | 0010111111111... | 21442 | 180340840 | 229 | 1104 | 401309452 | 18 | 1474 | 78930408 | ||||
.024 | 0001122304112532... | 0 | ? | 225 | 12371 | 30810166 | 26 | 28624 | |||||||
.026 | 0001122304112533... | 0 | ? | 225 | 37903 | 33220674 | 27 | 2235172 | |||||||
.034 | 0011022314014312... | 0 | 1111111111111... | 1079 | 374473 | 234 | 256 | 26376 | 10 | 270 | 596840 | ||||
.04 | 0000111220331110... | 0 | 0001110111111... | 22476 | 5029984 | 228 | 1689 | 248902928 | 38 | 16171 | 5218954 | ||||
.054 | 0010122234411163... | 0 | 1011111111111... | 38 | 796 | - | 41 | 33671802 | 3 | 3 | 16284 | 10015179 | 193235616 | 18 | |
.055 | 0011122231114443... | 0 | 1111111111111... | 6 | 43 | - | 8 | 51 | 2 | 1 | 20 | 148 | 259 | 2 | |
.06 | 0001122031122334... | 0 | ? | 225 | 33383 | 33550389 | 37 | 7537483 | |||||||
.064 | 0001122334115533... | 0 | 0111111111111... | 6854 | 2104273309 | 231 | 523 | 275511554 | 3 | 2 | |||||
.104 | 0100010221224104... | 1 | 1110111111111... | 20 | 284 | - | 29 | 186892397 | - | - | 4178 | 11770282 | 197769598 | 9 | |
.106 | 0100012221440106... | 1 | 1011011111111... | 15 | 1103 | - | 31 | 1937780317 | - | - | 15343 | 328226140474 | 465384263797 | 25 | |
.114 | 0110011202120411... | 0 | 1111111101111... | 136867 | 67098692 | 226 | 1610 | 20501458 | 11 | 154 | |||||
.125 | 0102110213011302... | 0 | ? | 225 | 65792 | 33500174 | 150 | 28575440 | |||||||
.126 | 0100213321042503... | 1 | 0111001110001... | 20444 | 102973539 | 230 | 2222 | 265978 | - | - | 58702391 | ||||
.127 | 0102210441220144... | 1 | 1000001111111... | 693 | 27106 | - | 56 | 24734 | 1190 | 20984 | 13551 | 4 | 46578 | 11 | |
.135 | 0112011203110312... | 0 | ? | 225 | 47165 | 33446154 | 91 | 16773774 | |||||||
.136 | 0110021302110223... | 0 | ? | 225 | 41029 | 33153617 | 40 | 2769772 | |||||||
.14 | 0100102122104144... | 0 | 0011111111111... | 1896 | 178727 | 232 | 85 | 1839780623 | 172 | 2199 | 576735 | ||||
.142 | 0100222110332410... | 1 | 1100011101111... | 1357 | 117323 | 234 | 441 | 17142768844 | - | - | 411815 | ||||
.143 | 0101222010422150... | 0 | 1011111111111... | 9417 | 2561883 | 228 | 148 | 26789789 | 13 | 81 | 10087243 | ||||
.146 | 0100222411133244... | 0 | 1010111111111... | 5817 | 307166 | 229 | 1521 | 200428954 | 3 | 3 | 324505 | ||||
.156 | 0110222441113224... | 0 | 1101111111111... | 15 | 357 | - | 23 | 1032 | 2 | 3 | 243 | 349 | 3479 | 8 | |
.16 | 0100122140142140... | 0 | 0111111111111... | 53 | 13935 | - | 23 | 229790 | 7 | 837 | 21577 | 149459 | 105351 | 16 | |
.161 | 0102102132132430... | 0 | 0111111111111... | 489 | 23784 | 234 | 153 | 2744504036 | 14 | 429 | 107747 | ||||
.162 | 0100223110422610... | 0 | ? | 225 | 65749 | 31107590 | 63 | 24565333 | |||||||
.163 | 0102231042261042... | 0 | 0001110111111... | 2800497 | 33553435 | 225 | 39456 | 33326322 | 417 | 7050063 | |||||
.164 | 0100122344511632... | 0 | 0000011001111... | 333837 | 32952802 | 225 | 20543 | 3402756 | 3 | 3 | |||||
.165 | 0102132134436231... | 0 | 1101111111111... | (17#+87) | - | - | 25 | 620 | 2 | 2 | 2597 | 1550 | 5181 | 4 | |
.166 | 0100223411662244... | 0 | 1011111111111... | 176 | 4281 | 234 | 173 | 3561617983 | 3 | 3 | 12850 | ||||
.167 | 0102234116224411... | 0 | 1011111111111... | 60 | 1303 | 237 | 64 | 332129728 | 2 | 2 | 7645 | ||||
.172 | 0110223011322440... | 0 | 1011001111111... | 2352 | 51381 | 231 | 387 | 2116001133 | 10 | 3947 | 116905 | ||||
.174 | 0110213221445642... | 0 | 1101111111111... | 57 | 674 | 239 | 82 | 312784191354 | 2 | 3 | 12547 | ||||
.204 | 0010120101231212... | 1 | 0101110111111... | 2245 | 83860 | 231 | 445 | 38455 | - | - | 143454 | ||||
.205 | 0012010123123134... | 1 | 1110010111111... | 112 | 33944004 | 237 | 91 | 3114909246 | - | - | 63095619 | ||||
.206 | 0010123201012323... | 0 | 0011011111111... | 10339 | 5668113 | 229 | 803 | 191546903 | 19 | 5184 | 9861529 | ||||
.207 | 0012120301245312... | 1 | 0110100111111... | 154 | 433920 | 236 | 126 | 60119768867 | - | - | 776549 | ||||
.224 | 0012012312314304... | 0 | 0000001111111... | 1629867 | 32426611 | 225 | 25465 | 20103641 | 26 | 198802 | |||||
.244 | 0010123234515673... | 0 | 1000111111111... | 65367 | 7596617 | 227 | 6718 | 115537003 | 3 | 3 | 11295819 | ||||
.245 | 0012123451567321... | 0 | 0101111111111... | 151 | 1352 | 235 | 142 | 10549340935 | 2 | 1 | 40663 | ||||
.264 | 0012345163251867... | 0 | 1001111111111... | 1992 | 46544 | 231 | 946 | 488110831 | 2 | 1 | 205974 | ||||
.314 | 0120120212312453... | 0 | 0000011111111... | 180147 | 39657176 | 226 | 3105 | 4636848 | 56 | 2770 | 20507380 | ||||
.324 | 0102130134023421... | 1 | 1110010111111... | 126 | 129608 | 237 | 109 | 7776114395 | - | - | 386895 | ||||
.334 | 0120120312312435... | 0 | 0000100101111... | 3040144 | 33554031 | 225 | 32778 | 28929511 | 47 | 159618 | |||||
.336 | 0120312403120341... | 0 | 0011111111111... | 223 | 53899 | 234 | 90 | 4591503605 | 14 | 630 | 169971 | ||||
.342 | 0101232010323450... | 0 | ? | 225 | 35576 | 33321026 | 68 | 636295 | |||||||
.344 | 0101232451462321... | 0 | 0011111111111... | 8679 | 313574 | 228 | 1347 | 1158568 | 2 | 2 | 307675 | ||||
.346 | 0101232451672321... | 0 | ? | 225 | 103309 | 31112181 | 2 | 2 | |||||||
.354 | 0120124312352435... | 0 | 1111110111111... | 132 | 3227 | - | 113 | 1152 | 2 | 3 | 705 | 1180 | 10061916 | 44 | |
.356 | 0120212451675128... | 0 | 1101111111111... | 7 | 43 | - | 19 | 86 | 2 | 3 | 19 | 142 | 7315 | 2 | |
.36 | 0102102132132430... | 0 | 0111111111111... | 516 | 11798 | 234 | 208 | 1762187846 | 14 | 429 | 17168 | ||||
.362 | 0102341023415237... | 0 | 0011111111111... | 529 | 43110 | 234 | 131 | 1614638854 | 11 | 227 | 239495 | ||||
.364 | 0102132134534231... | 0 | 1111011111111... | 977 | 13573224 | 233 | 564 | 6784 | 2 | 2 | 94736011 | ||||
.366 | 0102345162345768... | 0 | 0111111111111... | 827 | 643528 | 232 | 533 | 609293376 | 2 | 2 | 1115356 | ||||
.37 | 0120123123403421... | 0 | 0111011111111... | 1583 | 20626 | 233 | 363 | 7775706553 | 13 | 407 | 1008822 | ||||
.371 | 0123103240234012... | 0 | 0000001110111... | 1498113 | 225 | 17474 | 27626301 | 42 | 40891 | 15399203 | |||||
.374 | 0120124312352435... | 0 | 0111111111111... | 246 | 2354 | 235 | 230 | 19481269639 | 2 | 3 | 6861 | ||||
.376 | 0120312435243514... | 0 | 0111111111111... | 510 | 1140540 | - | 176 | 341612 | 2 | 3 | 505866 | 4 | 2268248 | 42 | |
.404 | 0001122334115633... | 0 | 1101101011111... | 369 | 8024 | 234 | 263 | 5398126274 | 7 | 286 | 4621382 | ||||
.414 | 0011022344011322... | 0 | ? | 225 | 192342 | 33380460 | 21 | 238588 | |||||||
.416 | 0011223411663221... | 0 | 1010111111111... | 1014 | 10965 | 233 | 726 | 8167109156 | 3 | 16 | 11367 | ||||
.444 | 0001122334115633... | 0 | 1101111111111... | 364 | 72416309 | 234 | 212 | 4139813739 | 3 | 2 | 170177024 | ||||
.45 | 0011223114432211... | 0 | 1111111111111... | 11 | 198 | - | 8 | 37 | 2 | 1 | 37 | 20 | 498 | 8 | |
.454 | 0011223411663221... | 0 | 1011111111111... | 17 | 124 | - | 41 | 14456117 | 2 | 1 | 4858 | 60620715 | 160949019 | 16 | |
.56 | 0102241132446621... | 0 | 1101101111111... | 46 | 1795 | - | 64 | 22778 | 2 | 2 | 7405 | 144 | 326640 | 26 | |
.564 | 0102244113254768... | 0 | 0110011111111... | 1687 | 13275 | 231 | 1459 | 139723698 | 2 | 2 | 18757 | ||||
.6 | 0012012312340342... | 0 | 0111011111111... | 1584 | 20627 | 233 | 363 | 7775706554 | 14 | 408 | 1008823 | ||||
.604 | 0012012312345345... | 0 | ? | 225 | 192624 | 33505370 | 15 | 7943720 | |||||||
.606 | 0012340123451234... | 0 | 0111111111111... | 53811 | 268412360 | 228 | 1598 | 245416760 | 18 | 732 | 93636038 | ||||
.64 | 0012341532154268... | 0 | 0111110111111... | 488 | 156751 | 233 | 262 | 1911635806 | 2 | 1 | 470403814 | ||||
.644 | 001234516325896a... | 0 | 0111111111111... | 31 | 511 | - | 64 | 333 | 2 | 1 | 604 | 442 | 3256 | 32 | |
.74 | 0101232414623215... | 0 | 1101101111111... | 1386 | 15929 | 231 | 512 | 76103606 | 2 | 2 | 137102 | ||||
.744 | 0101232451672321... | 0 | 0011011111111... | 876 | 11268 | 232 | 733 | 382560700 | 2 | 2 | 43665 | ||||
.76 | 0102341623416732... | 0 | 0000000110011... | 219248 | 5208068 | 226 | 16925 | 28902242 | 2 | 2 | 3822819 | ||||
.764 | 0102345162345768... | 0 | 0111001111111... | 12078 | 941007 | 228 | 5110 | 117968040 | 2 | 2 | 1423305 | ||||
.774 | 0123145671328954... | 0 | 0101111111111... | 352 | 3519 | 234 | 257 | 3285 | 1 | 0 | 25238 | ||||
.776 | 0123416321674581... | 0 | 1001111011111... | 503 | 7348 | 234 | 296 | 5487 | 1 | 0 | 18381 | ||||
4.004 | 0010123231454323... | 0 | 0111111111111... | 8914 | 43090760 | 228 | 1996 | 20532406 | 3 | 3 | 23050686 | ||||
4.007 | 0012123454132825... | 0 | 1111110101111... | 2259 | 186900 | 230 | 938 | 47129291 | 2 | 1 | 240392 | ||||
4.026 | 0012345613274165... | 0 | 1000111111111... | 392894 | 33532520 | 225 | 16817 | 4081741 | 2 | 1 | |||||
4.044 | 0010123234541673... | 0 | 0011111111111... | 184 | 1688 | 235 | 293 | 17139683973 | 3 | 3 | 18849 | ||||
4.045 | 0012123454167828... | 0 | 1111101111111... | 34 | 497 | 237 | 93 | 15355901532 | 2 | 1 | 4155 | ||||
4.064 | 0012345613285764... | 0 | 1101011111111... | 52 | 470 | - | 111 | 19114 | 2 | 1 | 420 | 16132 | 94272 | 45 | |
4.324 | 0120312435241352... | 0 | 1110110111111... | 271 | 5956 | 235 | 256 | 654707 | 2 | 3 | 19904 | ||||
4.327 | 0124312435213524... | 0 | 1111111011111... | 7111 | 1084182 | 228 | 2247 | 7409767 | 1 | 0 | 1290657 | ||||
4.344 | 012021246164812a... | 0 | 1110111111111... | 14 | 271 | - | 35 | 190 | 2 | 3 | 164 | 51 | 998 | 4 | |
4.364 | 0120312435243521... | 0 | 0111111111111... | (6#+992) | - | - | 33 | 2141 | 2 | 3 | 4221 | 62 | 11687 | 14 | |
4.367 | 0124312435213524... | 0 | 0111111111111... | 142 | 3508 | 236 | 101 | 64466228791 | 1 | 0 | 23739 | ||||
4.404 | 0012314324523513... | 0 | 0111101111111... | 132 | 1852 | - | 208 | 229872163 | 2 | 1 | 17840 | 145 | 6872982644 | 71 | |
4.406 | 0012345621874598... | 0 | 1101111111111... | 23 | 205 | - | 50 | 231573 | 2 | 1 | 212 | 44 | 294097 | 32 | |
4.44 | 0012341632167458... | 0 | 1001111011111... | 504 | 7349 | 234 | 296 | 5488 | 2 | 1 | 18382 | ||||
.6111... | 0012312341321461... | 0 | 1011111111111... | 171 | 2026 | 236 | 73 | 15336888688 | 2 | 1 | 21401399 | ||||
Grundy's | 0001021021021321... | 0 | 0111111111111... | 1287 | 48399022 | 238 | 297 | 21544358589 | 42 | 1222 | 50808030 | ||||
Couples | 0001201231234034... | 0 | 0111011111111... | 1585 | 20628 | 232 | 335 | 2135301626 | 15 | 409 | 1008824 | ||||
Listing of these nontrivial Octal-Games with at most 3 places sorted by
legend:
Game | period* | preperiod* | miss | density | rare | last+t | max G | depth | auto | correl | solved |
---|---|---|---|---|---|---|---|---|---|---|---|
.45 | 20 | 498 | 67 | 0.1345 | 11 | 200 | 8 | 37 | 1956 | ||
.156 | 349 | 3479 | 1919 | 0.5516 | 15 | 360 | 23 | 243 | 66 | 0.8367 | 1967 |
.055 | 148 | 259 | 129 | 0.4980 | 6 | 46 | 8 | 20 | 28 | 0.8378 | 1976 |
.644 | 442 | 3256 | 2208 | 0.6781 | 31 | 514 | 64 | 604 | 207 | 0.7285 | 1976 |
.356 | 142 | 7315 | 6419 | 0.8775 | 7 | 46 | 19 | 19 | 26 | 0.9155 | 1976 |
.165 | 1550 | 5181 | 251 | 0.0484 | - | 25 | 2597 | 620 | 0.9277 | 1976 | |
.127 | 4 | 46578 | 15622 | 0.3354 | 693 | 27109 | 56 | 13551 | - | 0.0000 | 1988-10-?? |
.56 | 144 | 326640 | 291858 | 0.8935 | 46 | 1797 | 64 | 7405 | 59 | 0.6042 | 1988-10-?? |
.16 | 149459 | 105351 | 3634 | 0.0345 | 53 | 13937 | 23 | 21577 | 3 | 0.9148 | 1988-10-?? |
.376 | 4 | 2268248 | 1104157 | 0.4868 | 510 | 1140543 | 176 | 505866 | - | 0.0000 | 1988-10-?? |
.454 | 60620715 | 160949019 | 147240872 | 0.9148 | 17 | 127 | 41 | 4858 | 98 | 0.3424 | 2000-12-31 |
.104 | 11770282 | 197769598 | 163669736 | 0.8276 | 20 | 287 | 29 | 4178 | 12 | 0.4993 | 2001-07-01 |
.106 | 328226140474 | 465384263797 | 15 | 1106 | 31 | 15343 | 152 | 0.3548 | 2002-05-21 | ||
.054 | 10015179 | 193235616 | 170776546 | 0.8838 | 38 | 799 | 41 | 16284 | 108 | 0.5809 | 2002-05-27 |
.354 | 1180 | 10061916 | 7912461 | 0.7864 | 132 | 3230 | 113 | 705 | 193 | 0.7517 | 2002-05-28 |
To prove a period length p of such a game computationally, it is sufficient to verify the equation
G(i+p) = G(i) only for t+ max { last, depth } many successive sg-values
with t the largest index of a non-zero digit of the game's name (in the case of a sparse position space p should be even).
There are still 65 and 8 unsettled 2-place- respectively 3-place-octal games (and Grundy's Game and 0.6111...).
Remark: if there are only finitely many rare values, the game will become ultimatively periodic. For a given octal game, let a denote the number of digits which allows a take remaining still something, i.e. the number of digits containing 2, and let b denote the number of digits which allows a break in two heaps, i.e. the number of digits containing 4. Each rare value can prohibit a common value. Thus if all the, say s, rare values cover different (and the smallest) common values for all the move options, then at last the a+s*b+1 common value must be the sg-value. For a given bitstring m having the unique 1-complement representation 2n-1(2k-1)+1with n,k positive integers, there are at most 2n successive rare respectivley common values (n-1 is the number of successive lowest 0-bits in m). So we get a quantitive upper bound for the maximal occuring sg-value. Thus, the mex-rule can be considered as a shift-register of length largest rare index + t and its sum of period length and preperiod length must be bounded by (a+s*b+1)last+t.
Finally a tabular overview of the increase of the maximum as n climbs from the strongest growing 3-place octal games and of how fast n climbs for the next two power of all 3-place octal games.
Game | bitstring | rare | last | max n | max G | index | lost | ultimate |
---|---|---|---|---|---|---|---|---|
.0 17 | - | - | - | - | 9 | 86 | * | - |
.0 27 | 00011101111111... | 22476 | 5029983 | 228 | 1689 | 248902927 | 37 | 16170 |
.0 37 | 00011111111111... | 184837 | 7897143 | 223 | 5774 | 2925282 | 31 | 827065 |
.0 47 | ? | > 2796000 | 223 | 16390 | 8325820 | 29 | 1765270 | |
.0 57 | 01111010111111... | 8052 | 596514 | 226 | 1306 | 55169705 | 21 | 26851 |
.0 67 | 00010011111111... | 34905 | 8242860 | 223 | 868 | 8110374 | 20 | 2900 |
.0 77 | ?01111110111101... | > 2422056 | 223 | 11268 | 8254651 | 23 | 930307 | |
.0 87 | 01111111111111... | 4196 | 13699174 | 226 | 628 | 55881099 | 21 | 602 |
.0 97 | 01111111111111... | 15942 | 786315 | 225 | 1463 | 12051742 | 23 | 1943 |
.0107 | 01111101111111... | > 615153 | 8386853 | 223 | 11777 | 7625502 | 25 | 4074 |
.0117 | 01111111011111... | 178988 | 7775202 | 223 | 2187 | 2926368 | 24 | 809 |
.0127 | 01111111111111... | 9144 | 258184 | 226 | 945 | 34886850 | 26 | 9456 |
.0137 | 01111110111111... | 18418 | 33459253 | 225 | 979 | 26824407 | 27 | 5437 |
.0147 | 01111111011111... | 8954 | 6024150 | 226 | 1216 | 27955191 | 28 | 5834 |
.0157 | 01111111001111... | 279460 | 8388561 | 223 | 6020 | 8158733 | 29 | 6231 |
.0167 | ? | > 2690000 | 223 | 10250 | 8044410 | 30 | 6628 | |
.0177 | 01111111111111... | 54981 | 8380437 | 223 | 2226 | 4384211 | 30 | 1223 |
.0187 | 01111111111111... | 155214 | 8388224 | 223 | 2440 | 845568 | 31 | 1292 |
.0197 | 01111111111111... | 42430 | 4609107 | 223 | 2876 | 1253051 | 33 | 216131 |
.0207 | 00000000111011... | > 946372 | 223 | 11164 | 8203064 | 34 | 13930 | |
.0217 | 01111101101111... | 263675 | 8387320 | 223 | 4104 | 7507947 | 34 | 1499 |
.0227 | 01111111111111... | 63803 | 2126833 | 223 | 4096 | 4160051 | 37 | 41646 |
.0237 | 01111111101011... | > 721581 | 8388605 | 223 | 12359 | 7622353 | 37 | 91185 |
.0247 | ? | > 2068425 | 223 | 10951 | 8350696 | 37 | 1706 | |
.0257 | 01111111111111... | 148032 | 7772870 | 223 | 4114 | 5087945 | 38 | 1775 |
| | First position i for which G(i)=v | |||||||
v | | | .027 | .037 | .047 | .057 | .067 | .077 | .0n-17 |
---|---|---|---|---|---|---|---|---|
1 | | | 3 | 4 | 5 | 6 | 7 | 8 | n |
2 | | | 6 | 8 | 10 | 12 | 14 | 16 | 2n |
4 | | | 15 | 20 | 25 | 30 | 35 | 40 | 5n |
8 | | | 55 | 75 | 95 | 115 | 135 | 155 | 20n-5 |
16 | | | 154 | 157 | 190 | 230 | 270 | 310 | |
32 | | | 434 | 508 | 437 | 530 | 617 | 673 | |
64 | | | 1320 | 1521 | 1257 | 1125 | 1309 | 1461 | |
128 | | | 3217 | 5894 | 3368 | 2691 | 4588 | 4905 | |
256 | | | 9168 | 22337 | 11776 | 5425 | 19560 | 17925 | |
512 | | | 35662 | 65758 | 31700 | 15857 | 91999 | 66730 | |
1024 | | | 109362 | 157185 | 86894 | 74667 | - | 248642 | |
2048 | | | - | 450546 | 325183 | - | - | 745402 | |
4096 | | | - | 1192769 | 1123380 | - | - | 1747901 | |