Number of Solutions of the No-Three-in-Line-Problem on Small Grids


   n     all      .      /      -      :      x    c     o      +      *    sum
--------------------------------------------------------------------------------
   1       0      0      0             0      0    0                          0
   2       1      0      0      0      0      0          0      0      1      1
   3       2      0      0             0      1    1                          1
   4      11      0      0      1      1      1          0      0      1      4
   5      32      3      2             0      0    0                          5
   6      50      4      0      0      2      2          3      0      0     11
   7     132     11      1            10      0    0                         22
   8     380     40      5      1      7      0          4      0      0     57
   9     368     41      3             7      0    1                         51
  10    1135    132      3      0     13      1          6      0      1    156
  11    1120    122      6            30      0    0                        158
  12    4348    524      3      0     33      2          4      0      0    566
  13    3622    407      9            82      1    0                        499
  14   10568   1284      5      0     61      3         13      0      0   1366
  15   30634   3681     13           283      1    0                       3978
  16   46304   5683     14      0    189      1         13      0      0   5900
  17   55576   6800     12           282      0    1                       7094
  18  152210  18853     14      0    328      2          7      0      0  19204
  19  258176  31967     16           594      0    2                      32577
  20      ..            17      0    675      2         16      0      0     ..
  21      ..            13          2413      0    1                         ..
  22      ..            18      0   1248      1          8      0      0     ..
  23      ..            34          3968      1    1                         ..
  24      ..            43      0   2852      2         23      0      0     ..
  25      ..            55          8983      2    3                         ..
  26      ..                    1             0         36      0      0     ..
  27      ..                           .      0    9                         ..
  28      ..                    1             0         58      0      0     ..
  29      ..                           .      1    8                         ..
  30      ..                    0             1         92      0      0     ..
  31      ..                                  2    5                         ..
  32      ..                    0             1        101      0      0     ..
  33      ..                           .      0   14                         ..
  34      ..                    0             0        172      0      0     ..
  35      ..                                  1   23                         ..
  36      ..                                  1        281      0      0     ..
  37      ..                                  0   21                         ..
  38      ..                                  1        337      0      0     ..
  39      ..                                  0   33                         ..
  40      ..                                  0        541      0      0     ..
  41      ..                                  0   35                         ..
  42      ..                                  1        746      0      0     ..
  43      ..                                  0   63                         ..
  44      ..                                  1       1016      0      0     ..
  45      ..                                  0  106                         ..
  46      ..                                  0       1366      0      0     ..
  47      ..                                  1  105                         ..
  48      ..                                  0       2124      0      0     ..
  49      ..                                     196                         ..
  50      ..                                          3381      0      0     ..
  51      ..                                     264                         ..
  52      ..                                          5062             0     ..
  53      ..                                     377                         ..
  54      ..                                            ..             0     ..
  55       .                                       .                          .
  56       .                                             .             0      .
  57       .                                       .                          .
  58       .                                             .             0      .
  59       .                                       .                          .
  60       .                                             .             0      .
  61       .                                             .                    .
  62       .                                             .             0      .
  63       .                                             .                    .
  64       .                                             .             0      .

The column with heading * continues to be 0 for all n <= 82 .

======================  last updated: 20. February 2026  ======================


Explanation to the entries:
---------------------------
A number in the apropriate place gives the number of all existing solutions.
 .  instead of a number means one known configuration.
..  means some known configurations.

Heading abbreviations:
----------------------
n     grid size
all   total #
.     # with no symmetry
/     # with exactly one diagonal reflection symmetry
-     # with exactly one orthogonal reflection symmetry
:     # with only half rotation symmetry
x     # with both diagonal reflection symmetries
c     # with quarter rotation symmetry except long diagonals
             thus the true symmetry is either : or x (if n=3)
o     # with quarter rotation symmetry, but not fully symmetric
+     # with both orthogonal reflection symmetries
*     # with all 8 symmetries of the grid, i.e. fully symmetric
sum   # which are not equivalent under symmetry transformation

    read # as   number of solutions of the No-Three-in-Line-Problem


Thus all solutions for a given symmetry class up to grid size max-n are known.

         all      .      /      -      :      x      c      o      +      *  
-------------------------------------------------------------------------------
max-n     19     19     25     34     25     48     53     52     50     82 


Achim Flammenkamp
2026-02-21 00:19 UTC+1