Natural occuring Ball Packings of the Elements

latticeabsolute orderrelative ordercrystall classSchönfliesHermann-MauguinSpace group
bcccubicOh94/m 3 2/mIm3m
fccABC + + + cubicOh54/m 3 2/mFm3m
hcpAB + - hexagonalD6h46/m 2/m 2/mP63mmc
dhcpABAC + - - + hexagonalD6h46/m 2/m 2/mP63mmc
Sm-typeABABCBCAC + - + + - + + - + trigonalD3d3 2/mR3m

2 layers are decisive

latticeperiod lengthrulesrule: yxforcerelative rule
fcc31 -> z repulsive 2nd layer+ (same)
hcp21 -> y attractive 2nd layer- (invert)
Elements which crystalize in fcc lattice: Al, Ni, Cu, Rh, Pd, Ag, Ce, Yb, Ir, Pt, Au, Pb, Ca and Sr.
Elements which crystalize in hcp lattice: Mg, Co, Re, Tc, Tl, Sc, Zr, Gd, Ti, Lu, Ru, Tb, Hf, Os, Dy, Y, Tm, Er, Ho and Be. All these elements have a lattice parameter quotient of c/a < 1.633 from the ideal case c/a=sqrt(8/3). Zn and Cd have such a strongly distorted hcp-lattice -- c/a > 1.8 -- that symmetry is lost.
Here a is the distance of neighboured atoms inside any layer and c/2 the perpendicular distance of neighboured layers (thus c is the height of the hexagonal base unit).

3 layers are decisive

latticeabsolute orderrelative orderruleszyxxyxfcc/hcp mixturedistinguishable
dhcpABAC+ - - +2 -> y -> z 1:1 A layer
3rd layer controls repulsion/attraction of 2nd layer to new layer. Using relative order we can define this packing with only one rule: "n m -> -n" , meaning the next layer change will be inverse of the last but one layer change.
At ambient pressure and temperature, the elements La, Pr and Nd have their ground state in dhcp lattice. Also Ce, Pm and Sm at higher temperatures and/or pressures and the actinides Am, Cm, Bk and Cf have this lattice.

4 layers are decisive

relative orderabsolute orderperiod lengthrulesyzyxzxyxyxyxxzyxfcc/hcp mixturedistinguishable
+ + - - ABAC42 -> y -> z 1 : 1 A layer
+ + + - - - ABACBC63 -> z -> z -> y 2 : 1 B layer
+ + - + + - + + - ABABCBCAC93 -> y -> y -> z 1 : 2 no layer
+ + + - + + + - + + + - ABABCACABCBC124 -> z -> y -> z -> y 1 : 1 no layer

α-Sm (at room temperature) and Lithium below 80 K as well as Gd, Tb, Dy, Ho, Er Tm and Lu at high pressures have Sm-type lattice with this characteristic layer structure of period length 9.

If 5 layers are decisive

relative orderabsolute orderperiod lengthruleszxzyxyxzyxyzxyxxyzyxxyxyxzyzyxxzxyxzyxyxfcc/hcpdistinguishable
+ + + + - - - - ABACBABC84zyzz 3 : 1C layer
+ + - + - - + - ABABACAC84 zyyy1 : 3A layer
+ + + + - ABABC55zyy z z3 : 2C layer
+ + + - + - - - + - ABABACBCBC105y y zz y2 : 3B layer
+ + + - + + - - - + - - ABABCBACACBC126y yz yzz1 : 1A layer
+ + + - - + - - - + + - ABABCACBCBAC126y zy zyz1 : 1B layer
+ + + + - + - - - - + - ABABACBABABC126zyy zz y1 : 1C layer
+ + + + - + + - - - - + - - ABABCBACBCBABC147zyyz yzz4 : 3B layer
+ + + + - - + - - - - + + - ABABCABACACBAC147zyzy zyz4 : 3A layer
+ + + - + - - + + + - + - - + + + - + - - ABABACABCBCBABCACACBC217y yzzyzy3 : 4no layer
+ + - + - - - + + - + - - - + + - + - - - ABABACBCACACBABCBCBAC217y zyzzyy3 : 4no layer
+ + + + - + - - + + + + - + - - + + + + - + - - ABABACABCACACBCABCBCBABC248zyyzzyzy1 : 1no layer
+ + - + - - - - + + - + - - - - + + - + - - - - ABABACBABCBCBACBCACACBAC248zyzyzzyy1 : 1no layer

If no layer is distinguishable in the sequence of the periodic layer-sequence, such a sequence is called symmetric. Only for period length of 2, 3, 9 and 12 such a layer sequence is unique:

List of short-periodic symmetric layers

period length   # of layers   sequence
         1           0        -
         2           1        AB
         3           1        ABC
         6           0        -
         9           1        ABABCBCAC
        12           1        ABABCACABCBC
        15           2        ABACABCBABCACBC  ABABABCBCBCACAC
        18           3        ABACABCACBCABCBABC  ABABABCACACABCBCBC  ABABCABCBCABCACABC
        21           6
        24          10
        27          19
        30          33
        33          62
        36         112
Except the special case AB the period length must be divisible by 3, if a symmetric sequence exists. The nontrivial subsequence of stepping 3 of this list is also known as sequence A165920 and may be computed as 1/(3n) ∑d|n, n/d!=0 mod 3 μ(n/d) (2d - (-1)d) with μ(.) the moebius-function.

Achim Flammenkamp
Last update: 2012-02-06 17:23:54 UTC+2