A Counter-Example that the Scholz-Brauer Conjecture holds with Equality for all n

Index/Indices Element(s) Number of Elements resp. Indices Pair of Indices to form First Element Left Summand of First Element Right Summand of First Element First Element is generated by Smallstep No Number of 1-bits in binary representation
0 1 1 - 1
1 2 1 (0,0) \(1\) \(1\) - 1
2,...,5 3,...,24 4 (1,0) \(2\) \(1\) 1 2
6,...,10 \(2 (2^4-1),...,2^5 (2^4-1)\) 5 (5,3) \(24\) \(6\) 2 4
11 \(2^9-29\) 1 (10,2) \(2^5 (2^4 - 1)\) \(3\) 3 6
12,...,15 \(2^{10}-61,...,2^3(2^{10}-61)\) 4 (11,10)\(^*\) \(2^9-29\) \(2^5 (2^4-1)\) - 6
16 \(2^{13}-5\) 1 (15,11) \(2^3(2^{10}-61)\) \(2^9-29\) 4 12
17 \(2^{13}-3\) 1 (16,1)\(^*\) \(2^{13}-5\) \(2\) 5 12
18,...,28 \(2^3 (2^{11}-1),...,2^{13} (2^{11}-1)\) 11 (17,16)\(^*\) \(2^{13}-3\) \(2^{13}-5\) - 11
29 \(2^{24}-3\) 1 (28,17) \(2^{13} (2^{11}-1)\) \(2^{13}-3\) 6 23
30 \(2^{24}-1\) 1 (29,1) \(2^{24}-3\) \(2\) 7 24
31,...,53 \(2^2 (2^{23}-1),...,2^{24} (2^{23}-1)\) 23 (30,29)\(^*\) \(2^{24}-1\) \(2^{24}-3\) - 23
54,...,78 \(2^{47}-1,...,2^{24} (2^{47}-1)\) 25 (53,30) \(2^{24} (2^{23}-1)\) \(2^{24}-1\) 8 47
79,...,126 \(2^{71}-1,...,2^{47} (2^{71}-1)\) 48 (78,30) \(2^{24} (2^{47}-1)\) \(2^{24}-1\) 9 71
127,...,245 \(2^{118}-1,...,2^{118} (2^{118}-1)\) 119 (126,54) \(2^{47} (2^{71}-1)\) \(2^{47}-1\) 10 118
246,...,482 \(2^{236}-1,...,2^{236} (2^{236}-1)\) 237 (245,127) \(2^{118} (2^{118}-1)\) \(2^{118}-1\) 11 236
483,...,955 \(2^{472}-1,...,2^{472} (2^{472}-1)\) 473 (482,246) \(2^{236} (2^{236}-1)\) \(2^{236}-1\) 12 472
956,...,1900 \(2^{944}-1,...,2^{944} (2^{944}-1)\) 945 (955,483) \(2^{472} (2^{472}-1)\) \(2^{472}-1\) 13 944
1901,...,3789 \(2^{1888}-1,...,2^{1888} (2^{1888}-1)\) 1889 (1900,956) \(2^{944} (2^{944}-1)\) \(2^{944}-1\) 14 1888
3790,...,7566 \(2^{3776}-1,...,2^{3776} (2^{3776}-1)\) 3777 (3789,1901) \(2^{1888} (2^{1888}-1)\) \(2^{1888}-1\) 15 3776
7567,...,7581 \(2^{7552}-1,...,2^{14} (2^{7552}-1)\) 15 (7566,3790) \(2^{3776} (2^{3776}-1)\) \(2^{3776}-1\) 16 7552
7582,...,15145 \(2^3 (2^{7563}-1),...,2^{7566} (2^{7563}-1)\) 7564 (7581,18) \(2^{14} (2^{7552}-1)\) \(2^3 (2^{11}-1)\) 17 7563
15146,...,30272 \(2^3 (2^{15126}-1),...,2^{15129} (2^{15126}-1)\) 15127 (15145,7582) \(2^{7566} (2^{7563}-1)\) \(2^3 (2^{7563}-1)\) 18 15126
30273,...,60525 \(2^3 (2^{30252}-1),...,2^{30255} (2^{30252}-1)\) 30253 (30272,15146) \(2^{15129} (2^{15126}-1)\) \(2^3 (2^{15126}-1)\) 19 30252
60526,...,121030 \(2^3 (2^{60504}-1),...,2^{60507} (2^{60504}-1)\) 60505 (60525,30273) \(2^{30255} (2^{30252}-1)\) \(2^3 (2^{30252}-1)\) 20 60504
121031,...,242039 \(2^3 (2^{121008}-1),...,2^{121011} (2^{121008}-1)\) 121009 (121030,60526) \(2^{60507} (2^{60504}-1)\) \(2^3 (2^{60504}-1)\) 21 121008
242040,...,484056 \(2^3 (2^{242016}-1),...,2^{242019} (2^{242016}-1)\) 242017 (242039,121031) \(2^{121011} (2^{121008}-1)\) \(2^3 (2^{121008}-1)\) 22 242016
484057,...,968089 \(2^3 (2^{484032}-1),...,2^{484035} (2^{484032}-1)\) 484033 (484056,242040) \(2^{242019} (2^{242016}-1)\) \(2^3 (2^{242016}-1)\) 23 484032
968090,...,1936154 \(2^3 (2^{968064}-1),...,2^{968067} (2^{968064}-1)\) 968065 (968089,484057) \(2^{484035} (2^{484032}-1)\) \(2^3 (2^{484032}-1)\) 24 968064
1936155,...,3872283 \(2^3(2^{1936128}-1),...,2^{1936131} (2^{1936128}-1)\) 1936129 (1936154,968090) \(2^{968067} (2^{968064}-1)\) \(2^3 (2^{968064}-1)\) 25 1936128
3872284,...,7744540 \(2^3(2^{3872256}-1),...,2^{3872259}(2^{3872256}-1)\) 3872257 (3872283,1936155) \(2^{1936131} (2^{1936128}-1)\) \(2^3 (2^{1936128}-1)\) 26 3872256
7744541,...,15489053 \(2^3(2^{7744512}-1),...,2^{7744515}(2^{7744512}-1)\) 7744513 (7744540,3872284) \(2^{3872259} (2^{3872256}-1)\) \(2^3 (2^{3872256}-1)\) 27 7744512
15489054,...,30978078 \(2^3(2^{15489024}-1),...,2^{15489027}(2^{15489024}-1)\) 15489025 (15489053,7744541) \(2^{7744515} (2^{7744512}-1)\) \(2^3 (2^{7744512}-1)\) 28 15489024
30978079,...,30978147 \(2^3(2^{30978048}-1),...,2^{71}(2^{30978048}-1)\) 69 (30978078,15489054) \(2^{15489027} (2^{15489024}-1)\) \(2^3 (2^{15489024}-1)\) 29 30978048
30978148 \(2^{30978119}-1\) 1 (30978147,79) \(2^{71} (2^{30978048}-1)\) \(2^{71}-1\) 30 30978119
\( ^*\) means at least 1 carry occurs in binary addition; otherwise a missing asterisk means no carry occurs.

Thus we have \(l(2^{30978119}-1)\le 30978148<l(30978119)+30978119-1=31+30978119-1=30978149\).

This counter-example is a star-chain for 230978119-1 which was constructed by Neill Clift on 1st July 2024.