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Abstract

A long standing unanswered question in number theory concerns the existence (or not) of odd perfect
numbers. Over time many properties of an odd perfect number have been established and refined.
The initial goal of this research was to improve the lower bound on the number of distinct prime
factors of an odd perfect number, if one exists, to at least 9.

Previous approaches to this problem involved the analysis of a carefully chosen set of special cases
with each then being eliminated by a contradiction. This thesis applies an algorithmic, factor chain
approach to the problem. The implementation of such an approach as a computer program allows the
speed, accuracy and flexibility of modern computer technology to not only assist but even direct the
discovery process.

In addition to considering odd perfect numbers, several related problems were investigated, con-
cerned with (i) harmonic, (ii) even multiperfect and (iii) odd triperfect numbers. The aim in these
cases was to demonstrate the correctness and versatility of the computer code and to fine tune its
efficiency while seeking improved properties of these types of numbers.

As a result of this work, significant improvements have been made to the understanding of harmonic
numbers. The introduction of harmonic seeds, coupled with a straightforward procedure for generating
most harmonic numbers below a chosen bound, expands the opportunities for further investigations
of harmonic numbers and in particular allowed the determination of all harmonic numbers below 10'2
and a proof that there are no odd harmonic numbers below 10'5.

When considering even multiperfect numbers, a search procedure was implemented to find the first
10-perfect number as well as several other new ones. As a fresh alternative to the factor chain search,
a 0-1 linear programming model was constructed and used to show that all multiperfect numbers
divisible by 2* for a < 65, subject to a modest constraint, are known in the literature.

0Odd triperfect numbers (if they exist) have properties which are similar to, but simpler than,
those for odd perfect numbers. An extended test on the possible prime factors of such a number was
developed that, with minor differences, applies to both odd triperfect and odd perfect numbers. When
applicable, this test allows an earlier determination of a contradiction within a factor chain and so
reduces the effort required. It was also shown that an odd triperfect number must be greater than
10128,

While the goal of proving that an odd perfect number must have at least 9 distinct prime factors
was not achieved, due to mainly practical limitations, the algorithmic approach was able to show
that for an odd perfect number with 8 distinct prime factors, (i) if it is exactly divisible by 32¢ then
a=1,2,3,5,6 or a > 31 (ii) if the special component is 7%, 7 < 10% and 7%+ < 1040, then o = 1.
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